湖北省武汉市部分重点高中2020-2021学年高一上学期期中联考数学试题含答案
湖北省武汉市部分学校2023-2024学年高一上学期期中联考语文试卷+Word版含答案
![湖北省武汉市部分学校2023-2024学年高一上学期期中联考语文试卷+Word版含答案](https://img.taocdn.com/s3/m/4c09b4153d1ec5da50e2524de518964bcf84d216.png)
2023~2024学年度第一学期武汉市部分学校高一年级期中调研考试语文试卷本试卷共10页,23题,全卷满分150分。
考试用时150分钟。
★祝考试顺利★注意事项:1.答题前,先将自己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
写在试卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内。
写在试卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试卷和答题卡一并上交。
一、现代文阅读(35分)(一)现代文阅读I(本题共5小题,19分)阅读下面的文字,完成1~5题。
北沟村位于北京市怀柔区,距离市中心约75km,距东侧慕田峪长城约2km。
20世纪90年代,北沟村仍处交通区位劣势,经济水平落后,且环境和秩序较差,村民的生活和工作质量均处低下水平。
2000年以来,因其位于慕田峪长城景区附近,交通得以改善,旅游业迅速发展。
最为典型的是北沟村琉璃瓦厂的工业遗存被改造成乡村精品酒店,琉璃瓦和红砖成为重要的地方性符号,大量游客慕名而来。
2019年,北沟村被正式录入全国第一批乡村旅游重点村名单,成为国内外游客的旅游休闲目的地。
北沟村的琉璃瓦与红砖是其地方品牌化过程中的核心物质元素。
以琉璃瓦为代表的琉璃构件是中国传统的建筑材料,特别是明清以来以紫禁城为代表的皇室建筑修建,琉璃作为原材料被大量使用,由此催生琉璃窑厂在北京城的广泛分布。
为了便于运输又不污染环境,清代以来大量的琉璃窑厂迁移到城郊地带,遍布在北京城以外的各个村庄之中,北沟村便是其中之一。
琉璃与其他陶瓷制品相似,需要在高温下烧制而成,因而琉璃窑厂的建造需要大量的红砖,以配合琉璃瓦的生产。
随着中国近代化进程的推进,大部分现代建筑不再依赖于琉璃构件,市场需求的下降使北沟村琉璃瓦厂生意不景气而最终倒闭,当地村民也不再从事琉璃烧制工作,大量年轻劳动力外出务工,北沟村的“空心化”问题日益严重。
湖北省武汉市三校2020-2021学年度第一学期九年级期末联考数学试卷(含答案)
![湖北省武汉市三校2020-2021学年度第一学期九年级期末联考数学试卷(含答案)](https://img.taocdn.com/s3/m/3b2fbe2a3186bceb18e8bbe3.png)
2020-2021学年度上学期湖北省武汉市三校九年级期末联考数学试卷(2021 01)一、选择题(共10小题,每小题3分,共30分)1.下列环保标志,既是轴对称图形,也是中心对称图形的是( )A. B. C. D.2.如图所示,从上面看该几何体的形状图为( )A. B. C. D. 3.有两把不同的钥匙和三把锁,其中两把钥匙分别能打开两把锁,且不能打开第三把锁,随机取出一把钥匙开任意一把锁,一次打开锁的概率是( )A. 12B. 13C. 14D. 16 4.若关于x 的方程(k -1)x 2+4x +1=0有两不相等实数根,则k 的取值范围是( )A. k ≤5B. k < 5C. k ≤5且k ≠1D. k <5且k ≠15.如图,在⊙O 中,弦AC ∥半径OB ,∠BOC=48°,则∠OAB 的度数为( )A. 24°B. 30°C. 60°D. 90°6.竖直向上的小球离地面的高度h (米)与时间t (秒)的关系函数关系式为h=-2t 2+mt+258 ,若小球经过 74 秒落地,则小球在上抛过程中,第( )秒离地面最高.A. 37B. 47C. 34D. 437.如图,在 △ABC 中,点 D 、E 、F 分别在 AB 、AC 、BC 边上,连接 DE 、EF ,若 DE//BC,EF//AB ,则下列结论错误的是( )A. AE EC =BF FCB. AD BF =AB BCC. EF AB =DE BCD. CE CF =EA BF8.如图,在平面直角坐标系中,Rt △ABC 的顶点 A 、C 的坐标分别为 (0,5) 、 (5,0) , ∠ACB =90° , AC =2BC ,函数 y =k x (k >0,x >0) 的图象经过点 B ,则 k 的值为( )A. 754B. 758C. 252D. 25 9.如图,在 △ABC 中, ∠ACB =90° ,点 D 为 AB 的中点, AC =3 , cosA =13,将 △DAC 沿着 CD 折叠后,点 A 落在点 E 处,则 BE 的长为( )A. 4√2B. 4C. 7D. 3√210.如图,抛物线 y =ax 2+bx +c(a ≠0) 的对称轴为直线 x =1 ,与x 轴的一个交点坐标为 (−1,0) ,其部分图象如图所示,下列结论:① 2a +b =0 ;② b 2−4ac <0 ;③当 y >0 时,x 的取值范围是 −1<x <3 ;④当 x >0 时,y 随x 增大而增大;⑤若t 为任意实数,则有 a +b ≥at 2+bt ,其中结论正确的个数是( )A. 4个B. 3个C. 2个D. 1个二、填空题(共6小题,每小题3分,共18分)11.一副三角尺按如图的位置摆放(顶点C 与F 重合,边CA与边FE叠合,顶点B、C、D在一条直线上).将三角尺ABC绕着点C按逆时针方向旋转n°后(0<n<360 ),若ED⊥AB,则n的值是________.12.抛物线y=ax2﹣2ax﹣3与x轴交于两点,分别是(x1,0),(x2,0),则x1+x2=________.13.在△ABC中,∠C=90°,∠A=30°,BC=4,D为边AB上的一点,若AD=2,则tan∠BDC的值为________。
湖北省武汉市部分重点高中2020-2021学年高一上学期期中联考数学试题含答案
![湖北省武汉市部分重点高中2020-2021学年高一上学期期中联考数学试题含答案](https://img.taocdn.com/s3/m/c851b8dd162ded630b1c59eef8c75fbfc77d949d.png)
湖北省武汉市部分重点高中2020-2021学年高一上学期期中联考数学试题含答案B.g(x)x 1x1C.h(x)x2 1D.k(x)x 210.已知函数f(x)x33x22x,g(x)ax2bx c,若f(x)g(x)2,则aA.1B.1C.2D. 211.已知函数f(x)x22x1,g(x)x1,则f(g(x))A.x22x2B.x22x3C.x23x2D.x23x 312.已知函数f(x)x2x2,g(x)x1,则f(g(x))A.x22x3B.x22x3C.x22x3D.x22x 3武汉市部分重点中学2020-2021学年度上学期期中联考高一数学试卷1.函数 $f(x)=\frac{3x^2}{1-x}-\frac{2}{3x+1}$ 的定义域是A。
$(-\infty,-1)\cup(1,\infty)$B。
$(-\infty,-1)\cup(-1,1)$C。
$[-1,1]$D。
$(-\infty,-\frac{1}{3})\cup(\frac{1}{3},\infty)$2.集合 $A=\{xy=2(2-x)\}$,$B=\{yy=2x,x>1\}$,则$A\cap B$=A。
$[0,2]$B。
$(1,2]$C。
$[1,2]$D。
$(1,+\infty)$3.已知命题 $p:\forall x>0,\ (x+1)e^x>1$,则命题 $p$ 的否定为A。
$\exists x\leq 0,\ (x+1)e^x\leq 1$B。
$\exists x>0,\ (x+1)e^x\leq 1$C。
$\exists x>0,\ (x+1)e^x\leq 1$D。
$\exists x\leq 0,\ (x+1)e^x\leq 1$4.设 $a=0.6^{0.6}$,$b=0.6^{1.2}$,$c=1.2^{0.6}$,则$a$,$b$,$c$ 的大小关系是A。
$a<b<c$B。
湖北省华中师范大学第一附属中学2020~2021学年第一学期期中检测高一数学试题及答案
![湖北省华中师范大学第一附属中学2020~2021学年第一学期期中检测高一数学试题及答案](https://img.taocdn.com/s3/m/67eb03980722192e4436f6b9.png)
华中师大一附中2020~2021学年度上学期期中检测高一年级数学试题试卷总分150分 考试时间120分钟一、单选题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项符合题目要求.1.已知A ={3-,0,1 },B ={4-,3-,1},则A ∪B 的真子集的个数为( )A .3B .7C .15D .312.钱大姐常说“便宜没好货”,她这句话中,“不便宜”是“好货”的( )A .充分条件B .必要条件C .充要条件D .既不充分也不必要条件3.已知函数()f x 的定义域为(1,1)-,函数()(21)g x f x =-,则函数()g x 的定义域为 ( )A .(1,1)-B .(0, 1)C .(3,1)-D .((3),(1))f f - 4.若正实数a ,b 满足1a b +=,则12a b+的最小值为( )A.B .6C .D .3+5.函数(f x( )A .(,2]-∞B .[2,)+∞C .[0,2]D .[2,4]6.若关于x 的不等式2|1||2|1()x x a a a -+-≤++∈R 的解集为空集,则实数a 的取值范围是( ) A .10a -<<B .01a <<C .12a <<D .1a <-7.已知函数()f x 是定义在R 上的偶函数,且在(0,)+∞上单调递减,(2)0f -=,则不等式()0xf x > 的解集为( )A .(,2)(0,2)-∞-B .(,2)(2,)-∞-+∞C .(2,0)(0,2)-D .(2,0)(2,)-+∞8.已知函数2()2+1,[0,2]f x x x x =-+∈,函数()1,[1,1]g x ax x =-∈-,对于任意1[0,2]x ∈,总存在2[1,1]x ∈-,使得21()()g x f x =成立,则实数a 的取值范围是( )A .(,3]-∞-B .[3,)+∞C .(,3][3,)-∞-+∞D .(,3)(3,)-∞-+∞二、多选题:本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有若干个选项符合题目要求,全部选对的得5分,选对但不全的得3分,有选错的得0分. 9.已知a ,b ,c 为互不相等的正数,且222a c bc +=,则下列关系中可能成立的是 ( )A .a b c >>B .c b a >>C .b a c >>D .a c b >> 10.下列各结论中正确的是( ) A .“0ab >”是“0ab>”的充要条件. B.函数y =2.C .命题“1x ∀>,20x x ->”的否定是“01x ∃≤,200x x -≤” . D .若函数21y x ax =-+有负值,则实数a 的取值范围是2a >或2a <-.11.定义域为R 的函数()f x 满足()()()f x y f x f y +=+,且当0x >时,()0f x >.以下结论正确的是( )A .()f x 为奇函数B .()f x 为偶函数C .()f x 为增函数D .()f x 为减函数12.设定义域为R 的函数1, 1|1|()1, 1x x f x x ⎧≠-⎪+=⎨⎪=-⎩,若关于x 的方程2[()]()0f x af x b ++=有且仅有三个不同的实数解x 1,x 2,x 3,且x 1 < x 2 < x 3.下列说法正确的是 ( )A .2221235x x x ++=B .10a b ++=C .1322x x x +>D .132x x +=-三、填空题(本大题共4小题,每小题5分,共20分) 13.已知集合{2,1}A =-,{|2}B x ax ==,若AB B =,则实数a 的取值集合为____________.14.关于x 的一元二次方程2210x kx k ++-=在区间(1,2)-内、外各有一个实数根,则实数k 的取值范围是___________.15.两次购买同一种物品,可以用两种不同的策略,第一种是不考虑物品价格的升降,每次购买这种物品的数量一定;第二种是不考虑物品价格的升降,每次购买这种物品所花的钱数一定.则第______种购物方式比较经济.16.已知函数2()=x ax a f x x++在(]0,1上单调递减,则实数a 的取值范围为____________.四、解答题(本大题共6小题,共70分) 17.(本小题满分10分)已知集合26{||1|2}{|1}4x A x x B x x -=-≤=<-,,定义{|}A B x x A x B -=∈∉且. (1)求A B -;(2)求B A -.18.(本题满分12分)已知非空集合()(){}2|312310A x x a x a =-++-<,集合(){}223|220B x x a a x a a =-++++<.命题p :x A ∈,命题q :x B ∈,若p 是q 的充分条件,求实数a 的取值范围.19.(本题满分12分)已知函数2()1mx nf x x +=+是定义在[1,1]-上的奇函数,且(1)1f = (1)求m ,n 的值;判断函数()f x 的单调性并用定义加以证明; (2)求使2(1)(1)0f a f a -+-<成立的实数a 的取值范围.20.(本题满分12分)已知函数2()(1)()f x x a x a =-++∈R .(1)若对于任意[1,2]x ∈,恒有2()2f x x ≥成立,求实数a 的取值范围; (2)若2a ≥,求函数()f x 在区间[0, 2]上的最大值()g a .21.(本题满分12分)华师一附中为了迎接建校70周年校庆,决定在学校艺术中心利用一侧原有墙体,建造一间墙高为3米,底面积为24平方米,且背面靠墙的长方体形状的荣誉室.由于荣誉室的后背靠墙,无需建造费用,甲工程队给出的报价为:荣誉室前面新建墙体的报价为每平方米400元,左右两面新建墙体报价为每平方米300元,屋顶和地面以及其他报价共计14400元.设荣誉室的左右两面墙的长度均为x 米(36)x ≤≤.(1)当左右两面墙的长度为多少时,甲工程队的整体报价最低?并求最低报价; (2)现有乙工程队也要参与此荣誉室的建造竞标,其给出的整体报价为1800(1)a x x+元(a>0),若无论左右两面墙的长度为多少米,乙工程队都能竞标成功(乙工程队的整体报价比甲工程队的整体报价更低),试求实数a 的取值范围.22.(本题满分12分)若函数()y f x =自变量的取值区间为[a , b ]时,函数值的取值区间恰为22[,]b a,就称区间[a , b ]为()y f x =的一个“和谐区间”.已知函数()g x 是定义在R 上的奇函数,当(0,)x ∈+∞时,()3g x x =-+.(1)求()g x 的解析式;(2)求函数()g x 在(0,)+∞内的“和谐区间”;(3)若以函数()g x 在定义域内所有“和谐区间”上的图像作为函数()y h x =的图像,是否存在实数m ,使集合2{(,)|()}{(,)|}x y y h x x y y x m ==+恰含有2个元素.若存在,求出实数m 的取值集合;若不存在,说明理由.高一年级数学试题参考答案一、单选题1.C 2.B 3.B 4.D 5.D 6.A 7.A 8.C 二、多选题9.BC 10.AD 11. AC 12.ABD 三、填空题13.{-1,0,2} 14.3,04⎛⎤- ⎥⎝⎦15.二 16.12a ≤-或1a ≥四、解答题17.解:{||1|2}{|13}A x x x x =-≤=-≤≤, (2)分26{|1}{|24}4x B x x x x -=<=<<- (4)分(1){|12}A B x x -=-≤≤ (7)分(2){|34}B A x x -=<< (10)分18.解:()(){}|2310A x x x a =---<⎡⎤⎣⎦,()(){}2|20B x x a x a ⎡⎤=--+<⎣⎦.∵22172024a a a ⎛⎫+-=-+> ⎪⎝⎭,∴22a a +>.∴{}2|2B x a x a =<<+. (2)分∵p 是q 的充分条件,∴A B ⊆. (3)分① 当1a =时,312a -=,A =∅,不符合题意; (5)分② 当1a >时,312a ->,{}|231A x x a =<<-,要使A B ⊆,则212312a a a a ⎧>⎪≤⎨⎪-≤+⎩ ∴12a <≤. (8)分③ 当1a <时,312a -<,{}|312A x a x =-<<,要使A B ⊆,则213122a a a a ⎧<⎪≤-⎨⎪≤+⎩ ∴112a ≤<. (11)分综上所述,实数a 的取值范围是1[,1)(1,2]2. (12)分19.(1)解法一:因为函数()f x 是定义在[-1,1]上的奇函数,则()()0011f f ⎧=⎪⎨=⎪⎩,得012n m n =⎧⎪⎨+=⎪⎩,解得20m n =⎧⎨=⎩, (2)分经检验2m =,0n =时,()221xf x x =+是定义在[1,1]-上的奇函数. (3)分法二:()f x 是定义在[1,1]-上的奇函数,则()()f x f x -=-,即2211mx n mx nx x -+--=++,则0n =,所以()21mxf x x =+,又因为()11f =,得2m =,所以2m =,0n =. ………………3分设12,[1,1]x x ∀∈-且12x x <,则()()22121221211212222222121212222(1)2(1)2()(1)11(1)(1)(1)(1)x x x x x x x x x x f x f x x x x x x x +-+---=-==++++++1211x x -≤<≤ 222112120,10,(1)(1)0x x x x x x ∴->-<++>()()120f x f x ∴-< ()()12f x f x ∴< ()f x ∴在[1,1]-上是增函数 (6)分(2)由(1)知()221xf x x =+,()f x 在[1,1]-上是增函数, 又因为()f x 是定义在[]1,1-上的奇函数,由()()2110f a f a -+-<,得()()211f a f a -<-, (7)分2211111111a a a a -≤-≤⎧⎪∴-≤-≤⎨⎪-<-⎩, (10)分即2020221a a a ≤≤⎧⎪≤≤⎨⎪-<<⎩,解得01a ≤<. 故实数a 的取值范围是[0,1). (12)分20.(1)解法一:对任意的[]1,2x ∈,恒有()22f x x ≥,即22(1)2x a x x -++≥,整理得23(1)0x a x -+≤对任意的[]1,2x ∈恒成立, (2)分构造函数()23(1)g x x a x =-+,其中[]1,2x ∈,则()max0g x ≤,即()()1020g g ⎧≤⎪⎨≤⎪⎩,…… 4分 即3(1)0122(1)0a a -+≤⎧⎨-+≤⎩,解得5a ≥,因此,实数a 的取值范围是[)5,+∞.………………6分解法二:对任意的[]1,2x ∈,恒有()22f x x ≥,即22(1)2x a x x -++≥,整理得23(1)0x a x -+≤对任意的[]1,2x ∈恒成立, (2)分max 1(3)6a x ∴+≥= (5)分因此,实数a 的取值范围是[)5,+∞. (6)分(2)()()22211(1)24a a f x x a x x ++⎛⎫=-++=--+⎪⎝⎭. 2a ≥ 102a +∴> (7)分①当122a +<,即23a ≤<时,函数()y f x =在10,2a +⎡⎤⎢⎥⎣⎦上单调递增, 在1,22a +⎡⎤⎢⎥⎣⎦上单调递减,此时()()21124a a g a f ++⎛⎫== ⎪⎝⎭; (9)分②当122a +≥,即3a ≥时,()y f x =在[0, 2]上单调递增,此时()()222g a f a ==-.………………11分 综上所述,2(1),23()422,3a a g a a a ⎧+≤<⎪=⎨⎪-≥⎩. (12)分21.(1)设甲工程队的总造价为y 元, 则72163006400144001800()14400(36)y x x x x x =⨯+⨯+=++≤≤, ………………2分161800()14400180021440028800x x ++≥⨯=, ………………4分 当且仅当16x x =,即x = 4时等号成立. ………………5分故当左右两侧墙的长度为4米时,甲工程队的报价最低,最低报价为28800元. ……6分(2)由题意可得161800(1)1800()14400a x x x x+++>对任意的[3,6]x ∈恒成立. 故2(4)(1)x a x x x ++>,从而2(4)1x a x +>+恒成立, ………………8分令1x t +=,22(4)(3)961x t t x t t++==+++,[4,7]t ∈. 又96y t t =++在[4,7]t ∈为增函数,故min 494y =. ………………11分所以a 的取值范围为49(0,)4. (12)分22.(1)因为()g x 为R 上的奇函数,∴(0)0g =又当(0,)x ∈+∞时,()3g x x =-+所以,当(,0)x ∈-∞时,()()(3)3g x g x x x =--=-+=--;3,0()0,03,0x x g x x x x --<⎧⎪∴==⎨⎪-+>⎩ (3)分 (2)设0a b <<,∵()g x 在(0,)+∞上递单调递减,2()32()3g b b b g a a a⎧==-+⎪⎪∴⎨⎪==-+⎪⎩,即,a b 是方程23x x =-+的两个不等正根. ∵0a b << ∴12a b =⎧⎨=⎩ ∴()g x 在(0,)+∞内的“和谐区间”为[1,2]. ………………6分 (3)设[a , b ]为()g x 的一个“和谐区间”,则22a b b a <⎧⎪⎨<⎪⎩,∴a ,b 同号. 当0a b <<时,同理可求()g x 在(,0)-∞内的“和谐区间”为[2,1]--.[1,2]3,()[2,1]3,h x x x x x -+∈⎧⎨----∈∴=⎩ (8)分依题意,抛物线2y x m =+与函数()h x 的图象有两个交点时,一个交点在第一象限,一个交点在第三象限.因此,m 应当使方程23x m x +=-+在[1,2]内恰有一个实数根,并且使方程23x m x +=--,在[2,1]--内恰有一个实数.由方程23x m x +=-+,即230x x m ++-=在[1,2]内恰有一根,令2()3F x x x m =++-,则(1)10(2)30F m F m =-≤⎧⎨=+≥⎩,解得31m -≤≤;由方程23x m x +=--,即230x x m +++=在[2,1]--内恰有一根,令2()3G x x x m =+++,则(1)30(2)50G m G m -=+≤⎧⎨-=+≥⎩,解得53m -≤≤-. 综上可知,实数m 的取值集合为{3}-. ………………12分(用图象法解答也相应给分)。
2020-2021学年初一(上)期中考试数学试卷(含答案)
![2020-2021学年初一(上)期中考试数学试卷(含答案)](https://img.taocdn.com/s3/m/256cae41960590c69fc37638.png)
2020-2021学年初一(上)期中考试数 学(考试时间90分钟 满分100分)18分)1.如图是加工零件尺寸的要求,现有下列直径尺寸的产品(单位:mm ),其中不合格的是( )A .Φ45.02B .Φ44.9C .44.98D .Φ45.012.下列运算中正确的是( )A .2(2)4-=- B .224-= C .3(3)27-=- D .236= 3.若37x =是关于x 的方程70x m +=的解,则m 的值为( ) A .3- B .13- C .3 D .134.若单项式12m a b -与212n a b 是同类项,则mn 的值是( ) A .3 B .6 C .8 D .95.下列各式中,是一元一次方程的是( )A .852020x y -=B .26x -C .212191y y =+D .582x x +=6.下列计算正确的是( )A .8(42)8482÷+=÷+÷B .1(1)(2)(1)(1)12-÷-⨯=-÷-= C .3311311636624433434⎛⎫⎛⎫⎛⎫-÷=-⨯=-⨯+-⨯=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ D .[](2)(2)40--+÷= 7.下列方程的解法,其中正确的个数是( ) ①14136x x ---=,去分母得2(1)46x x ---= ②24132x x ---=,去分母得2(2)3(4)1x x ---= ③2(1)3(2)5x x ---=,去括号得22635x x ---=④32x =-,系数化为1得32x =- A .3 B .2 C .1 D .08.2020年国庆档电影《我和我的家乡》上映13天票房收入达到21.94亿元,并连续10天拿下票房单日冠军.其中21.94亿元用科学记数法可表示为( )A .821.9410⨯元B .82.19410⨯元C .100.219410⨯元D .92.19410⨯元9.如图,四个有理数m ,n ,p ,q 在数轴上对应的点分别为M ,N ,P ,Q ,若0n q +=,则m ,n ,p ,q 四个有理数中,绝对值最小的一个是( )A .pB .qC .mD .n二、填空题(本题共有9小题,每小题3分,共27分)10.如果数轴上A 点表示3-,那么与点A 距离2个单位的点所表示的数是 .11.比较大小:78- 89-(填“>”“<”或“=”) 12.历史上,数学家欧拉最先把关于x 的多项式用记号()f x 来表示,把x 等于某数a 时的多项式的值用()f a 来表示,例如多项式2()25f x x x =+-,则(1)f -= .13.用四舍五入法将3.694精确到0.01,所得到的近似值为 .14.老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如()2222153x x x x --+=-+-,则所捂住的多项式为 .15.“☆”是新规定的某种运算符号,设a ☆b =ab a b +-,若2 ☆8n =-,则n = .16.“整体思想”是中学数学解题中一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.如:已知2m n +=-,4mn =-,则2(3)3(2)mn m n mn ---的值为 .17.某校为学生购买名著《三国演义》100套、《西游记》80套,共用12 000元,《三国演义》每套比《西游记》每套多16元,求《三国演义》和《西游记》每套各多少元?设西游记每套x 元,可列方程为 .18.观察下列一组算式:2231881-==⨯,22531682-==⨯,22752483-==⨯,22973284-==⨯……根据你所发现的规律,猜想22201920178-=⨯ .三、按要求解答(第19小题8分,第20小题5分,第21小题10分,共23分)19.计算题(每小题4分,共8分) ①3511114662⎛⎫---- ⎪⎝⎭ ②[]31452(3)5211⎛⎫-⨯-÷-+ ⎪⎝⎭20.(本题5分)化简并求值:222212(2)()2x xy y xy x y ⎡⎤⎛⎫---+- ⎪⎢⎥⎝⎭⎣⎦,其中x 、y 的取值如图所示.21.解方程(每小题5分,共10分)①3(202)10y y --= ②243146x x --=-四、解答题(第22、23小题4分,第24小题5分,共13分)22.(本题4分)解一元一次方程的过程就是通过变形,把一元一次方程转化为x a =的形式.下面是解方程20.30.410.50.3x x -+-=的主要过程,请在如图的矩形框中选择与方程变形对应的依据,并将它前面的序号填入相应的括号中.解:原方程可化为4153x +-=( ) 去分母,得3(203)5(104)15x x --+=( )去括号,得609502015x x ---=( )移项,得605015920x x -=++( )合并同类项,得1044x =(合并同类项法则) 系数化为1,得 4.4x =(等式的基本性质2)23.(本题4分)阅读材料,回答问题.计算:121123031065⎛⎫⎛⎫-÷-+- ⎪ ⎪⎝⎭⎝⎭解:原式的倒数为211213106530⎛⎫⎛⎫-+-÷-⎪ ⎪⎝⎭⎝⎭ =2112(30)31065⎛⎫-+-⨯- ⎪⎝⎭=203512-+-+=10-故原式=110- 根据材料中的方法计算113224261437⎛⎫⎛⎫-÷-+- ⎪ ⎪⎝⎭⎝⎭. 24.(本题5分)在某地住房小区建设中,为了提高业主的宜居环境,某小区规划修建一个广场(平面图形如图所示). (1)用含m ,n 的代数式表示该广场的面积S ;(2)若m ,n 满足2(6)50m n -+-=,求出该广场的面积.五、解答题(第25、26小题6分,第27小题7分,共19分)25.(本题6分)列代数式或一元一次方程解应用题请根据图中提供的信息,回答下列问题:(1)一个水瓶与一个水杯分别是多少元?(2)甲、乙两家商场都销售该水瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打8折;乙商场规定:买一个水瓶赠送两个水杯,单独购买的水杯仍按原价销售.若某单位想在一家商场买5个水瓶和20个水杯,请问选择哪家商场更合算?请说明理由.26.(本题6分)下表中的字母都是按一定规律排列的.我们把某格中的字母的和所得多项式称为特征多项式,例如第1格的“特征多项式”为62x y +,第2格的“特征多项式”为94x y +,回答下列问题.(1)第3格的“特征多项式”为 ,第4格的“特征多项式”为 ,第n 格的“特征多项式”为 ;(n 为正整数)(2)求第6格的“特征多项式”与第5格的“特征多项式”的差.27.(本题7分)在数轴上,对于不重合的三点A,B,C,给出如下定义:若点C到点A的距离是点C到点B的距离的13倍,我们就把点C叫做【A,B】的理想点.例如:图中,点A表示的数为-1,点B表示的数为3.表示数0的点C到点A的距离是1,到点B的距离是3,那么点C是【A,B】的理想点;又如,表示数2的点D到点A的距离是3,到点B的距离是1,那么点D 就不是【A,B】的理想点,但点D是【B,A】的理想点.(1)当点A表示的数为-1,点B表示的数为7时,①若点C表示的数为1,则点C(填“是”或“不是”)【A,B】的理想点;②若点D是【B,A】的理想点,则点D表示的数是;(2)若A,B在数轴上表示的数分别为-2和4,现有一点C从点B出发,以每秒1个单位长度的速度向数轴负半轴方向运动,当点C到达点A时停止.请直接写出点C运动多少秒时,C,A,B中恰有一个点为其余两点的理想点?参考答案一、选择题(每小题2分,共18分)二、填空题(每小题3分,共27分)19.计算题(每小题4分,共8分)①原式=3511114662--+┈┈┈┈┈┈┈┈┈┈1分 =5131116642--++ =1224-+┈┈┈┈┈┈┈┈┈┈3分 =14┈┈┈┈┈┈┈┈┈┈4分 ②原式=14582211⎛⎫-⨯-÷ ⎪⎝⎭┈┈┈┈┈┈┈┈┈┈2分 =24--┈┈┈┈┈┈┈┈┈┈3分=6-┈┈┈┈┈┈┈┈┈┈4分20.解:原式=22221242x xy y xy x y ⎛⎫---+- ⎪⎝⎭┈┈┈┈┈┈┈┈┈┈1分 =22221242x xy y xy x y --+-+┈┈┈┈┈┈┈┈┈┈2分 =272x xy -┈┈┈┈┈┈┈┈┈┈3分 当2x =,1y =-时┈┈┈┈┈┈┈┈┈┈4分原式=2722(1)112-⨯⨯-=┈┈┈┈┈┈┈┈┈┈5分21.解方程(每小题5分,共10分)①3(202)10y y --=解:60610y y -+=┈┈┈┈┈┈┈┈┈┈2分61060y y +=+┈┈┈┈┈┈┈┈┈┈3分770y =┈┈┈┈┈┈┈┈┈┈4分10y =┈┈┈┈┈┈┈┈┈┈5分 ②243146x x --=- 解:3(2)122(43)x x -=--┈┈┈┈┈┈┈┈┈┈1分361286x x -=-+┈┈┈┈┈┈┈┈┈┈2分361286x x -=-+┈┈┈┈┈┈┈┈┈┈3分310x -=┈┈┈┈┈┈┈┈┈┈4分103x =-┈┈┈┈┈┈┈┈┈┈5分 四、解答题(第22、23小题4分,第24小题5分,共13分)22.③;②;④;①┈┈┈┈┈┈┈┈┈┈4分23.解:原式的倒数为132216143742⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭┈┈┈┈┈┈┈┈┈┈1分 1322(42)61437⎛⎫=-+-⨯- ⎪⎝⎭792812=-+-+14=-┈┈┈┈┈┈┈┈┈┈3分故原式=114-┈┈┈┈┈┈┈┈┈┈4分 24.解:(1)S 7220.52m n n m mn =⋅-⋅=┈┈┈┈┈┈┈┈┈┈2分 (2)由题意得6050m n -=⎧⎨-=⎩,解得65m n =⎧⎨=⎩┈┈┈┈┈┈┈┈┈┈3分当6m =,5n =时 S 7651052=⨯⨯=┈┈┈┈┈┈┈┈┈┈5分五、解答题(第25、26小题6分,第27小题7分,共19分)25.解:(1)设一个水瓶x 元,则一个水杯是(48)x -元┈┈┈┈┈┈┈┈┈┈1分34(48)152x x +-=┈┈┈┈┈┈┈┈┈┈2分40x =┈┈┈┈┈┈┈┈┈┈3分∴4848408x -=-=┈┈┈┈┈┈┈┈┈┈4分答:一个水瓶40元,一个水杯8元.(2)甲商场需付款:80%(540208)288⨯⨯+⨯=(元)┈┈┈┈┈┈┈┈┈┈5分 乙商场需付款:5408(2052)280⨯+⨯-⨯=(元)┈┈┈┈┈┈┈┈┈┈6分 ∴选择乙商场更划算.26.解:(1)126x y +;158x y +;3(1)2n x ny ++┈┈┈┈┈┈┈┈┈┈3分(2)(2112)(1810)x y x y +-+┈┈┈┈┈┈┈┈┈┈5分32x y =+┈┈┈┈┈┈┈┈┈┈6分27.(1)①是┈┈┈┈┈┈┈┈┈┈1分②5或11┈┈┈┈┈┈┈┈┈┈3分(2)设运动时间为t 秒,则BC t =,6AC t =-依题意,得C 是【A ,B 】的理想点时有16=3t t -,∴92t = C 是【B ,A 】的理想点时有1(6)3t t =-,∴32t = A 是【C ,B 】的理想点时有16=63t -⨯,∴4t =B 是【C ,A 】的理想点时有1=6=23t ⨯ 答:点C 运动92秒、32秒、4秒、2秒时,C ,A ,B 中恰有一个点为其余两点的理想点.┈┈┈┈┈┈┈┈┈┈7分。
2021届湖北省武汉市2020-2021学年度部分学校高三起点质量检测数学试卷【含答案】
![2021届湖北省武汉市2020-2021学年度部分学校高三起点质量检测数学试卷【含答案】](https://img.taocdn.com/s3/m/05a9c65ca6c30c2258019e14.png)
湖北武汉市2021届高三起点质量检测数学全卷满分150分,考试时间120分钟。
★祝考试顺利★注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上。
并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题作答用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
答在试卷和草稿纸上无效。
3.非选择题作答用0.5毫米黑色墨水签字笔直接答在答题卡上对应的答题区域内。
答在试卷和草稿纸上无效。
考生必须保持答题卡的整洁。
考试结束后,只需上交答题卡一、选择题:本题共 8 小题,每小题 5 分,共 40 分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A={x| x2-x-2 <0},B ={x|0 < x< 3},则A⋂B =A. (-1,2)B. (0,2)C. (-1 ,3)D. ( 0 ,3 )2.若a+i3-2i为纯虚数,则实数 a的值为A.23 B.-23 C.32 D. -323.已知命题p : 所有的三角函数都是周期函数,则, ⌝p 为A.所有的周期函数都不是三角函数B. 所有的三角函数都不是周期函数C. 有些周期函数不是三角函数D. 有些三角函数不是周期函数4.平面向量 a = ( 2 , 1 ) ,|b| = 2 ,a·b=4,则向量a, b夹角的余弦值为A.255 B.45 C.55 D.155.某学校组织三个年级的学生到博物馆参观,该博物馆设有青铜器,瓷器,书画三个场馆.学校将活动时间分为三个时间段,每个时间段内三个年级的学生参观的场馆互不相同,并且每个年级的学生在三个时间段内参观的场馆不重复,则不同的安排方法有A. 6 种B. 9 种C. 12 种D. 18 种6.过抛物线E : y2= 2x焦点的直线交E于 A, B两点,线段AB中点M到y轴距离为1,则 |AB |==A. 2B.52C . 3D. 47. 如图,点 A , B , C , M , N 为正方体的顶点或所在棱的中点,则下列各图中,不满足直线MN // 平面ABC 的是8. 我国古人认为宇宙万物是由金,木,水,火,土这五种元素构成,历史文献《尚书· 洪范》提出了五行的说法,到战国晚期,五行相生相克 的思想被正式提出这五种物质属性的相生相克关系如图所示,若从这五种物质属性中随机选取三种,则取出的三种物质属性中 ,彼此间恰好有一个相生关系和两个相克关 系的概率为 A.35 B.12 C.25 D.13二、选择题:本题共 4 小题,每小题 5 分,共 20 分 在每小题 给出的选项中,有多项符合题目要求。
2020-2021学年度高一上学期期中考试化学试卷及答案(含五套题)
![2020-2021学年度高一上学期期中考试化学试卷及答案(含五套题)](https://img.taocdn.com/s3/m/608b42d109a1284ac850ad02de80d4d8d15a0123.png)
2020-2021学年度⾼⼀上学期期中考试化学试卷及答案(含五套题)10 / 102020-2021学年度⾼⼀上学期期末考试化学试题题号⼀⼆三总分得分(满分:100分时间:100分钟)可能需要的相对原⼦质量数据H: 1 , C :12, O :16,Na :23,S :32,Cl :35.5,Al :27,Cu: 64, Ba:137 Fe :56 Mg :24 Cr:52 K:39 N:14 Si:28⼀、选择题:本⼤题共16⼩题,每⼩题3分,在每⼩题给出的四个选项中,只有⼀项是符合题⽬要求的。
1.对于易燃、易爆、有毒的化学物质,往往会在其包装上⾯贴上危险警告标签。
下列物质贴错了包装标签的是( ) A. 浓硫酸B. 汽油C. 酒精D. 氯化钾2.完成下列实验所选择的装置或仪器(夹持装置已略去)正确的是A. AB. BC. CD. D3.我国古代四⼤发明之⼀的⿊⽕药是由硫磺粉、硝酸钾和⽊炭粉按⼀定⽐例混合⽽成的,爆炸的反应为:S+2KNO 3+3C K 2S+N 2↑+3CO 2↑,下列说法中正确的是() A. 该反应中的还原剂为KNO 3B. 该反应中C 被还原C. 若消耗32g S ,该反应转移电⼦数为2 N AD. 若⽣成标准状况下⽓体22.4L ,则有0.75 mol 物质被还原 4.阿伏加德罗常数的值为N A ,下列说法中正确的是() A. 5NH 4NO 32HNO 3+4N 2↑+9H 2O 反应中,⽣成28 g N 2,转移的电⼦数⽬为3.75N AB. 常温常压下,ag 某⽓体含分⼦数为b ,则cg 该⽓体的体积为22.4bc aN ALC. 2mol/L 的CaCl 2溶液中Cl -的数⽬为4N AD. 46g NO 2和N 2O 4的混合⽓体中含有的氧原⼦个数为3N A 5.下列说法正确的是( )A. 摩尔是⼀种国际基本物理量B. 氧⽓的摩尔质量为32gC. H 2的⽓体摩尔体积约为22.4LD. 1mol H 2O 约含有6.02×1023个⽔分⼦6.氧化还原反应与四种基本反应类型的关系如下所⽰,则下列化学反应属于阴影部分的是( )此卷只装订不密封班级姓名准考证号考场号座位号10 / 10A. Cl 2+2KBrBr 2+2KClB. 2NaHCO 3Na 2CO 3+H 2O+CO 2↑C. 4NO 2+O 2+2H 2O=4HNO 3D. 2Na 2O 2+2CO 2=2Na 2CO 3+O 2 7.下列说法正确的个数有①盐卤点⾖腐、江河⼊海⼝处“三⾓洲”的形成、⾼压直流电除烟尘均与胶体的性质有关②通电时,溶液中的溶质粒⼦分别向两极移动,胶体中的分散质粒⼦向某⼀极移动③氢氧化铁胶体能稳定存在的主要原因是胶体粒⼦做布朗运动④做氢氧化铁胶体电泳实验时,阴极周围红褐⾊加深,说明氢氧化铁胶体带正电⑤向FeCl 3溶液中滴加NaOH 溶液,可制得Fe(OH)3胶体⑥1mol FeCl 3完全与⽔反应⽣成氢氧化铁胶体粒⼦数约为N A 个⑦淀粉溶液和蛋⽩质溶液是溶液,不可能是胶体 A. 1个 B. 2个 C. 3个 D. 4个8.下列各组离⼦中,能在溶液中⼤量共存的是() A. Na +、Cu 2+、Cl ﹣、OH ﹣ B. H +、Ca 2+、HCO 3﹣、NO 3﹣ C. Fe 2+、H +、SO 42﹣、NO 3﹣ D. Na +、CO 32﹣、OH ﹣、K + 9.下列离⼦⽅程式正确的是( ) A. 往NaHSO 4溶液中加Ba(OH)2溶液⾄恰好中和:Ba 2++2OH -+2H ++SO 42-=BaSO 4↓+2H 2O B. 碳酸钙与盐酸反应:2H ++CO 32-=CO 2↑+H 2OC. 铁与稀盐酸反应:2Fe+6H +=2Fe 3++3H 2↑D. 往Ba(OH)2溶液中加少量硫酸溶液:Ba 2++OH -+H ++SO 42-=BaSO 4↓+H 2O10.下列溶液中,溶质的物质的量浓度不是1 mol ·L -1的是() A. 10g NaOH 固体溶解在⽔中配成250mL 溶液 B. 将80g SO 3溶于⽔并配成1L 的溶液C. 将0.5mol ·L -1的NaNO 3溶液100mL 加热蒸发掉50g ⽔的溶液D. 标况下,将22.4L 氯化氢⽓体溶于⽔配成1L 溶液11.今有⼀种固体化合物X ,X 本⾝不导电,但熔化状态或溶于⽔中能够电离,下列关于该化合物X 的说法中正确的是 A. X ⼀定是电解质 B. X 可能为⾮电解质 C. X 只能是盐类 D. X 可以是任意化合物12.将SO 2通⼊⾜量Fe 2(SO 4)3溶液中,完全反应后再加⼊K 2CrO 4溶液,发⽣的两个化学反应为SO 2+2Fe 3++2H 2O=SO 42-+2Fe 2++W ①, Cr 2O 72-+a Fe 2++b H +Cr 3++Fe 3++H 2O ②,下列有关说法正确的是A. 还原性:Cr 3+>SO 2B. 配平后⽅程式②中,a=6,b=7C. Cr 2O 72-能将Na 2SO 3氧化成Na 2SO 4D. ⽅程式①中W 为OH - 13.200 mL 0.3 mol/L 的K 2SO 4溶液和100 mL 0.2 mol/L 的Fe 2(SO 4)3溶液混合后(不考虑混合后溶液体积的变化),溶液中SO 42-的物质的量浓度为A. 0.3 mol/LB. 0.4 mol/LC. 0.45 mol/LD. 0.5 mol/L 14.下列离⼦⽅程式的书写中,正确的是A. H 2SO 4与Ba (OH )2溶液反应: Ba 2++ OH - + H +⼗SO 42-= BaSO 4↓ + H 2O10 / 10B. 碳酸钙中加⼊盐酸 : CO 32- + 2H + = CO 2↑ + H 2OC. 将氢氧化铁放⼊盐酸中: Fe (OH )3 + 3H + = Fe 3+ + 3H 2OD. 氧化铜与稀硫酸反应: 2H + + O 2—= H 2O15.物质的量浓度为0.05 mol ·L -1的⾦属氯化物(RCl x ) 溶液20 mL ,恰好与20 mL 0.15 mol ·L -1的AgNO 3溶液完全反应。
湖北省武汉市部分重点中学2020-2021学年高一下学期期中联考化学试题含答案
![湖北省武汉市部分重点中学2020-2021学年高一下学期期中联考化学试题含答案](https://img.taocdn.com/s3/m/935bb0ad852458fb760b5677.png)
武汉市部分重点中学2020-2021学年度下学期期中联考高一化学试卷可能用到的相对原子质量:H-1 C-12 N-14 O-16 Mg-24 Fe-56 Cu-64一、选择题(本题共15小题,每小题3分,共计45分。
在每小题给出的四个选项中,只有一项符合题目要求。
)1. 钧瓷是中国古代五大名瓷之一,以其独特的釉料及烧制方法而闻名于世。
下列钧瓷的制作工艺中,主要发生了化学变化的是()A.掘泥B.做坯C.画坯D.烧炉A. AB. BC. CD. D2. 下列物质性质与用途的对应关系不正确的是选项性质用途A NaClO具有强氧化性抗击疫情中杀灭新冠病毒B Si硬度大“华为麒麟980”手机中芯片C 浓硫酸具有吸水性干燥剂D 液氨汽化时要吸收大量的热制冷剂A. AB. BC. CD. D3. 下列表述正确的是①浓硝酸通常保存在棕色试剂瓶中②检验亚硫酸钠溶液在空气中久置是否变质,可以先加硝酸酸化,再加氯化钡溶液③锌与稀硝酸反应主要得到氢气④足量铁与稀硝酸反应后溶液呈浅绿色,说明稀硝酸只能将铁氧化为Fe2+⑤婺州窑胎体原料为高岭土[Al2Si2O5(OH)4],用氧化物形式表示为:Al2O3·2SiO2·2H2O⑥二氧化硫和二氧化氮都能形成酸雨,酸雨的pH等于5.6⑦制玻璃的主要原料是纯碱、石灰石和石英砂A. ①③④B. ①②⑦C. ①⑤⑦D. ①②⑥4. “中国芯”的发展离不开高纯单晶硅。
从石英砂(主要成分为SiO2)制取高纯硅涉及的主要反应,用流程图表示如图。
已知:SiHCl3遇水剧烈水解。
下列说法不正确...的是A. 反应①中氧化剂和还原剂的物质的量之比为1:2B. 反应①②③均为置换反应C. 流程中可以循环利用的物质只有H2D. 为防止SiHCl3水解而损失及氢气爆炸,反应③需在无水、无氧的条件下进行5. 下列物质间的转化(其中A、B、C、D含同种元素,某些条件和产物已略去)如图所示。
2020-2021学年湖北省部分重点中学高二下学期期中数学复习卷(含答案解析)
![2020-2021学年湖北省部分重点中学高二下学期期中数学复习卷(含答案解析)](https://img.taocdn.com/s3/m/940c2456cc22bcd127ff0cba.png)
2020-2021学年湖北省部分重点中学高二下学期期中数学复习卷一、单选题(本大题共12小题,共60.0分)1.下列说明正确的是()A. “若a>1,则a2>1”的否命题是“若a>1,则a2≤1”B. {a n}为等比数列,则“a1<a2<a3”是“a4<a5”的既不充分也不必要条件C. ∃x0∈(−∞,0),使3x0<4x0成立D. “tanα≠√3”必要不充分条件是“a≠π3”2.设复数z1=1−i,z2=2+i,其中i为虚数单位,则z1⋅z2的虚部为()A. −1B. 1C. −iD. i3.“∃x0∈R,x02+1<0”的否定是()A. ∀x∈R,x2+1≥0B. ∀x∈R,x2+1<0C. ∃x0∈R,x02+1≥0D. ∃x0∈R,x2+1<04.若,则等于()A. −2B. −4C. 2D. 05.已知椭圆x2a2+y2b2=1(a>b>0)的左顶点A的斜率为k的直线交椭圆C于另一点B,且点B的在x轴上的射影恰好为右焦点F,若椭圆的离心率为23,则k的值为()A. −13B. 13C. ±13D. ±126.方程|x|+|y|=1所表示的图形在直角坐标系中所围成的面积是()A. 2B. 1C. 4D. √27.直线l1:y=mx+1,直线l2的方向向量为a⃗=(1,2),且l1⊥l2,则m=A. 12B. −12C. 2D. −28.已知F1,F2是双曲线E:x2a2−y2b2=1的左,右焦点,点M在E上,MF1与x轴垂直,sin∠MF2F1=13,则双曲线E的渐近线方程为()A. y=±12x B. y=±x C. y=±√3 D. y=±2x9. 已知A 、B 两点均值焦点为F 的抛物线y 2=2px(p >0)上,若|AF ⃗⃗⃗⃗⃗ |+|BF ⃗⃗⃗⃗⃗ |=4,线段AB 的中点到直线x =p2的距离为1,则p 的值为( )A. 1B. 1或3C. 2D. 2或610. 已知命题p :f(x)=12+12x −1为奇函数;命题q :∀x ∈(0,π2),sinx <x <tanx ,则下面结论正确的是( )A. p ∧(¬q)是真命题B. (¬p)∨q 是真命题C. p ∧q 是假命题D. p ∨q 是假命题11. 直线y =kx 与函数f(x)=|x 2−1|x−1图象有两个交点,则k 的范围是( )A. (0,√3)B. (0,1)∪(1,√3)C. (1,√3)D. (0,1)∪(1,2)12. 抛物线y =ax 2的准线方程为y =−1,则实数a =( )A. 4B. 14C. 2D. 12二、单空题(本大题共4小题,共20.0分)13. 已知M(2,0),N(3,0),P 是抛物线C :y 2=3x 上一点,则PM⃗⃗⃗⃗⃗⃗ ⋅PN ⃗⃗⃗⃗⃗⃗ 的最小值是______ . 14. 已知函数f(x)=x 3+ax 2+bx +c ,下列结论中正确的序号是______ .①∃x 0∈R ,使f(x 0)=0;②若x 0是f(x)的极值点,则f′(x 0)=0;③若x 0是f(x)的极小值点,则f(x)在区间(−∞,x 0)上单调递减; ④函数y =f(x)的图象是中心对称图形. 15. 设F 1、F 2为曲线C 1:的焦点,P 是曲线:与C 1的一个交点,则△PF 1F 2的面积为_______________________. 16. 设函数,若在区间内的图象上存在两点,在这两点处的切线相互垂直,则实数的取值范围是 . 三、解答题(本大题共6小题,共70.0分) 17. (12分)(I)求函数图象上的点处的切线方程;(Ⅱ)已知函数,其中是自然对数的底数,对于任意的,恒成立,求实数的取值范围。
江苏省2020-2021学年高一上学期数学期中试题汇编04:函数的概念与性质【填选题】(答案版)
![江苏省2020-2021学年高一上学期数学期中试题汇编04:函数的概念与性质【填选题】(答案版)](https://img.taocdn.com/s3/m/7cfb8117524de518974b7d12.png)
8.(江苏省南京市第十二中学2020-2021学年上学期期中4)下面各组函数中表示同个函数的是()
A. , B. ,
C. , D. ,
【答案】B
【解析】对于A, 的定义域为 ,而 的定义域为 ,两函数的定义域不相同,所以不是同一函数;
对于B,两个函数的定义域都为 ,定义域相同, ,所以这两个函数是同一函数;
A.0B.2
C.4D.-2
【答案】B
【解析】取 ,则 ,
因为函数为奇函数,则 , 即 ,
整理可得 ,即 .故选:B
10.(江苏省南通市西亭高级中学2020-2021学年上学期期中4)已知函数 ,若 =10,则实数a的值为()
A 5B.9C.10D.11
【答案】B
【解析】由 ,令 ,则 .
因为 ,所以a=9.故选:B
A.-4 B.5 C.14 D.23
【答案】C
【解析】由题意可设 ,则当 时, 单调,且 ≥0恒成立,因为 的对称轴方程为 ,则 或 ,解得6≤a≤17或-3≤a≤-2,即 ,则只有14满足题意,故答案选C.
23.(江苏省南通市西亭高级中学2020-2021学年上学期期中6)已知 是偶函数,且其定义域为 ,则 的值是()
【答案】C
【解析】满足条件的函数的定义域为 、 、 、 、 、 、 、 、 ,共 个.故选:C.
18.(江苏省南京市南师附中2020-2021学年上学期期中5)函数 的值域为( )
A. B. C. D.
【答案】D
19.(江苏省南通市西亭高级中学2020-2021学年上学期期中5)已知函数 的值域是()
C.[-4,-1]∪[0,2]D.(-∞,-1]∪[0,2]
湖北省武汉市部分学校2020-2021学年上学期高一10月联考数学试卷+PDF版含答案
![湖北省武汉市部分学校2020-2021学年上学期高一10月联考数学试卷+PDF版含答案](https://img.taocdn.com/s3/m/edb14d9ecfc789eb162dc863.png)
A.(a+b)2≥4ab
B.当 a=b 时,A1,B1,C1,D1 四点重合 C.(a-b)2≤4ab
D.(a+b)2>(a-b)2
⒓下列命题正确的是( )
A. a R,x R ,使得 ax 2
C.
是
的必要不充分条件
B. 若 c>a>b>0,则 a b ca cb
D.若 a≥b>-1,则
三、填空题(本大题共 4 小题,每小题 5 分,共 20 分。请将答案填在答.题.卡.对.应.题.号.的位置上。答错位置, 书写不清,模棱两可均不得分。)
∴ y 200 x2 4x
………………3'
S= 4200x2 210 4xy 1 y2 4 80 …………6' 2
38000
4000 x 2
400000 x2
…………………8'
38000 2
4000 x 2
400000 x2
118000
………10'
当且仅当 x= 10 时,等号成立。 ………………11'
A.3 B. 4
C. 7
D.8
⒊
已知集合 C
(x, y) y x ,集合
D
( x,
y)
2x x 4
y y
1 5
,则下列正确的是(
)
A. C D B. C D
C. C D
D. D C
⒋已知 t a 4b , s a b2 4 ,则 t 和 s 的大小关系是( )
A. t s
1 4
,
4
……………………12'
⒚ (本小题 12 分)某商品每件成本价 80 元,售价 100 元时,每天售出 100 件.若售价降低 x 成(1
湖北省部分重点中学2020-2021学年高二上学期期中生物试卷及解析
![湖北省部分重点中学2020-2021学年高二上学期期中生物试卷及解析](https://img.taocdn.com/s3/m/294f8c591a37f111f0855b06.png)
湖北省部分重点中学2020-2021学年高二上学期期中生物试卷注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I卷(选择题)一、选择题(题型注释)茄。
下列有关二者的比较正确的是()A.都涉及染色体数目变异B.都直接或间接与生长素有关C.都必须对母本去除雄蕊D.都是可遗传的变异2.下列有关遗传学实验的叙述中,正确的是()A.艾弗里的实验证明了DNA是主要的遗传物质B.用35S和32P同时标记噬菌体进行实验,可证明进入大肠杆菌体内的是噬菌体的DNAC.孟德尔用“F1产生数量相等的两种配子,解释一对相对性状的实验结果”,属于演绎推理D.摩尔根通过白眼果蝇的杂交实验证明了基因在染色体上3.将一个不含放射性同位素32P标记的大肠杆菌放在含有32P-胸腺嘧啶脱氧核苷酸的培养基中培养一段时间,检测到如图I、Ⅱ两种类型的DNA(虚线表示含有放射性的脱氧核苷酸链)。
下列有关该实验的结果预测与分析正确的是()A.每个DNA第二次复制产生的子代DNAI、Ⅱ两种类型,比例为1:3B.DNA复制后分配到两个子细胞时,其上的基因遵循基因分离定律C.用32P标记细菌DNA,证明细菌DNA的复制方式不是半保留复制D.复制n次形成的放射性脱氧核苷酸单链为2n+l-24.编码酶X的基因中某个碱基被替换时,表达产物将变为酶X i(包括X1、X2、X3、X4)。
与酶X活性相比,酶X i活性的变化如下表。
下列叙述错误的是()A.酶X1活性变化说明基因结构没有发生改变B.酶X2活性变化是因为1个氨基酸被替换C.酶X3活性变化可能是因为突变导致了终止密码子提前D.酶X4活性变化可能是因为突变导致了终止密码子推后5.一段鲜为人知的科学史:格里菲斯在小鼠体内成功实现了R型细菌的转化。
但他用灭活的S型细菌与R型活菌的混合物在培养基中培养时,总是无法看到转化现象。
而艾弗里在培养基中加入一定量的抗R型菌株的抗体(注:抗体不杀死R型菌),就成功实现了转化。
专题01 集合 高一数学上学期期中考试好题汇编(人教A版2019)
![专题01 集合 高一数学上学期期中考试好题汇编(人教A版2019)](https://img.taocdn.com/s3/m/d25aad2db14e852459fb5784.png)
专题01 集合知识点一:相等集合一般地,如果集合A 的任何一个元素都是集合B 的元素,同时集合B 的任何一个元素都是集合A 的元素,那么集合A 与集合B 相等,记作A =B.显然若两个集合相等,则它们的元素完全相同1.(安徽省安庆市五校联盟2018-2019学年高一上学期期中)下列集合中表示同一集合的是( )A .{(3,2)}M =,{(2,3)}N =B .{4,5}M =,{5,4}N =C .{}(,)1M x y x y =+=,{}1N y x y =+=D .{1,2}M =,{(1,2)}N =【答案】B 【分析】根据集合的元素是否相同判断即可. 【详解】解:A 两个集合的元素不相同,点的坐标不同, B 两个集合的元素相同,C 中M 的元素为点,N 的元素为数,D 中M 的元素为点,N 的元素为数, 故A ,C ,D 都不对. 故选:B . 2.(多选题)(广东省佛山市南海区第一中学2020-2021学年高一上学期)下列各组中的两个集合相等的有__________.A 、{}2,P x x n n Z ==∈,(){}21,Q x x n n Z ==-∈;B 、{}21,P x x n n N *==-∈,{}21,Q x x n n N *==+∈;C 、{}20P x x x =-=,()11,2nQ x x n Z ⎧⎫+-⎪⎪==∈⎨⎬⎪⎪⎩⎭. 【答案】AC 【分析】判断出A 选项中两个集合均为偶数集,可得出结论;分析出B 选项中的集合P 为正奇数集,集合Q 是从3开始的正奇数构成的集合,可得出结论;求出C 选项中的两个集合,可得出结论.【详解】对于A ,集合{}2,P x x n n Z ==∈为偶数集,集合(){}21,Q x x n n Z ==-∈也为偶数集,则P Q =;对于B ,集合{}21,P x x n n N *==-∈为正奇数集,集合{}21,Q x x n n N *==+∈是从3开始的正奇数构成的集合,则P Q ≠;对于C ,{}{}200,1P x x x =-==,对于()()112nx n Z +-=∈,若n 为奇数,则0x =;若n 为偶数,则1x =,即{}0,1Q =.P Q ∴=.故答案为:AC.3.(福建省龙岩市高级中学2020-2021学年高一上学期期中考试)已知集合{}20,1,A a =,{1,0,23}=+B a ,若A B =,则a 等于 A .1-或3 B .0或1- C .3 D .1- 【答案】C 【分析】根据两个集合相等的知识列方程,结合集合元素的互异性求得a 的值. 【详解】 由于A B =,故223a a =+,解得1a =-或3a =.当1a =-时,21a =,与集合元素互异性矛盾,故1a =-不正确.经检验可知3a =符合. 故选:C4..(多选题)(广东省广州市(广附、广外、铁一)三校2020年高一上学期期中)下列各组中M ,P 表示不同集合的是( ) A .M ={3,-1},P ={(3,-1)} B .M ={(3,1)},P ={(1,3)}C .M ={y |y =x 2+1,x ∈R},P ={x |x =t 2+1,t ∈R}D .M ={y |y =x 2-1,x ∈R},P ={(x ,y )|y =x 2-1,x ∈R} 【答案】ABD 【分析】选项A 中,M 和P 的代表元素不同,是不同的集合; 选项B 中,(3,1)与(1,3)表示不同的点,故M ≠P ; 选项C 中,解出集合M 和P .选项D 中,M 和P 的代表元素不同,是不同的集合. 【详解】选项A 中,M 是由3,-1两个元素构成的集合,而集合P 是由点(3,-1)构成的集合; 选项B 中,(3,1)与(1,3)表示不同的点,故M ≠P ;选项C 中,M ={y |y =x 2+1,x ∈R}=[)1,+∞,P ={x |x =t 2+1,t ∈R}=[)1,+∞,故M =P ;选项D 中,M 是二次函数y =x 2-1,x ∈R 的所有因变量组成的集合,而集合P 是二次函数y =x 2-1,x ∈R 图象上所有点组成的集合. 故选ABD .5.(山西省太原市2018-2019学年高一上学期期中)已知集合{,,2}A a b =,2{2,,2}B b a =,若A B =,求实数a ,b 的值.【答案】01a b =⎧⎨=⎩或1412a b ⎧=⎪⎪⎨⎪=⎪⎩. 【分析】利用集合相等的定义列出方程组,再结合集合中元素的互异性质能求出实数a ,b 的值. 【详解】解:由已知A B =,得22a ab b =⎧⎨=⎩(1)或22a b b a ⎧=⎨=⎩.(2) 解(1)得00a b =⎧⎨=⎩或01a b =⎧⎨=⎩,解(2)得00a b =⎧⎨=⎩或1412a b ⎧=⎪⎪⎨⎪=⎪⎩,又由集合中元素的互异性 得01a b =⎧⎨=⎩或1412a b ⎧=⎪⎪⎨⎪=⎪⎩.知识点二:元素与集合关系1、集合中元素的三个特性 (1)确定性;(2)互异性;(3)无序性2、(1)“属于”:如果a 是集合A 的元素,就说a 属于集合A ,记作a ∈A.(2)“不属于”:如果a 不是集合A 中的元素,就说a 不属于集合A ,记作a ∉A.1、(福建省莆田第一中学2020-2021学年高一上学期期中)设集合{}22,,A x x =,若1A ∈,则x 的值为 A .1- B .±1 C .1 D .0 【答案】A 【详解】2111A x orx ∈∴== ,若211x x =⇒= ,不满足集合元素的互异性, 故21x =, 1.x =- 故结果选A .2.(内蒙古集宁一中2018-2019学年高一上学期期中)已知集合 {}1,2,3,4,5A =,{}1,2,3B =,{}|,C z z xy x A y B ==∈∈且,则集合C 中的元素个数为A .15B .13C .11D .12 【答案】C 【分析】根据题意,确定,x y 的可能取值;再确定z xy =能取的所有值,即可得出结果. 【详解】因为{}1,2,3,4,5A =,{}1,2,3B =,{}|,C z z xy x A y B ==∈∈且, 所以x 能取的值为1,2,3,4,5;y 能取的值为1,2,3,因此z xy =能取的值为1,2,3,4,5,6,8,9,10,12,15,共11个, 所以集合C 中的元素个数为11. 故选C3.(河南省开封市2020-2021学年高一上学期五县联考期中)已知集合{}230A x x ax a =-+≤,若1A -∉,则实数a 的取值范围为______.【答案】14a >-【分析】利用元素与集合的关系知1x =-满足不等式230x ax a -+>,代入计算即得结果. 【详解】若1A -∉,则1x =-不满足不等式230x ax a -+≤,即1x =-满足不等式230x ax a -+>,故代入1x =-,有130++>a a ,得14a >-.故答案为:14a >-.4.(湖北省武汉市问津联盟2020-2021学年高一上学期期中联考)设集合2{|8150}A x x x =-+=,{|10}B x ax =-=.(1)若15a =,试判定集合A 与B 的关系;(2)若B A ⊆,求实数a 的取值集合.【答案】(1)B 是A 的真子集;(2)11{0,,}35.【分析】(1)算出A 、B 后可判断B 是A 真子集. (2)就B φ=、B φ≠分类讨论即可.(1){}{}3,5,5A B ==,∴B 是A 真子集 (2)当B φ=时,满足B A ⊆,此时0a =;当B φ≠时,集合1B a ⎧⎫=⎨⎬⎩⎭,又B A ⊆,得13a =或5,解得13a =或15综上,实数a 的取值集合为110,,35⎧⎫⎨⎬⎩⎭.知识点三:空集的特殊应用(1)空集:只有一个子集,即它本身; (2)空集是任何非空集合的真子集. ∅{0}∅{∅}或 ∅∈{∅}1.( )A .{}0B .{8xx >∣,且}5x < C .{}210x x ∈-=N∣ D .{}4x x >【答案】B【分析】根据空集的定义判断. 【详解】A 中有元素0,B 中集合没有任何元素,为空集,C 中有元素1,D 中集合,大于4的实数都是其中的元素. 故选:B .2.(河北省张家口市崇礼区第一中学2020-2021学年高一上学期期中)下列五个写法:①{0}{1,2,3}∈;②{0}∅⊆;③{0,1,2}{1,2,0}⊆;④0∈∅;⑤0∅=∅,其中错误写法的个数为 A .1 B .2 C .3 D .4 【答案】C 【分析】利用元素与集合的关系以及集合与集合之间的关系,便可得出答案. 【详解】对①:{0}是集合,{1,2,3}也是集合,所以不能用∈这个符号,故①错误. 对②:∅是空集,{0}也是集合,由于空集是任何集合的子集,故②正确.对③:{0,1,2}是集合,{1,2,0}也是集合,由于一个集合的本身也是该集合的子集,故③正确.对④:0是元素,∅是不含任何元素的空集,所以0∉∅,故④错误.对⑤:0是元素,∅是不含任何元素的空集,所以两者不能进行取交集运算,故⑤错误.3.(青海省西宁市大通县第一中学2019-2020学年高一上学期期中)关于以下集合关系表示不正确的是( ) A .∅∈{∅} B .∅∈{∅} C .∅∈N* D .∅∈N* 【答案】C 【分析】空集是任何集合的子集.根据元素与集合的关系、集合与集合的关系对选项逐一进行判断,由此得出正确选项. 【详解】对于A 选项,集合中含有一个元素空集,故空集是这个集合的元素,故A 选项正确. 空集是任何集合的子集,故B,D 两个选项正确.对于C 选项,空集不是正整数集合的元素,C 选项错误.故选C.4.(青海省西宁市海湖中学2020-2021学年高一上学期)下列关系正确的是 A .{0}∅⊆ B .{0}∅∈ C .0∈∅ D .{0}⊆∅ 【答案】A 【分析】根据空集是任何集合的子集即可判断出选项A 正确. 【详解】空集是任何集合的子集; {}0∴∅⊆正确 本题正确选项:A知识点四:子集的应用子集有下列两个性质:①自反性:任何一个集合都是它本身的子集,即A ⊆A ;②传递性:对于集合A ,B ,C ,如果A ⊆B ,且B ⊆C ,那么A ⊆C.1.(吉林省长春市十一高中2020-2021学年高一上学期)已知集合{2,3,1}A =-,集合2{3,}B m =.若B A ⊆,则实数m 的取值集合为( )A .{1}B .C .{1,1}-D .{【答案】C 【分析】根据子集关系列式可求得结果. 【详解】因为B A ⊆,所以21m =,得1m =±, 所以实数m 的取值集合为{1,1}-. 故选:C2.(江苏省淮安市淮安区2020-2021学年高一上学期期中)满足{}{}1,21,2,3,4,5A ⊆⊆的集合A 的个数为( ) A .8 B .7 C .4 D .16 【答案】A 【分析】根据已知条件可知集合A 中必有1,2,集合A 还可以有元素3,4,5,写出集合A 的所有情况即可求解. 【详解】因为集合A 满足{}{}1,21,2,3,4,5A ⊆⊆,所以集合A 中必有1,2,集合A 还可以有元素3,4,5,满足条件的集合A 有:{}1,2,{}1,2,3,{}1,2,4,{}1,2,5,{}1,2,3,4,{}1,2,3,5,{}1,2,4,5,{}1,2,3,4,5共有8个,故选:A.3.(湖北省孝感市汉川市第二中学2020-2021学年高一上学期期中)若集合M N ⊆,则下列结论正确的是 A .M N M ⋂= B .M N N ⋃=C .M M N ⊆⋂()D .()M N N ⋃⊆【答案】ABCD 【分析】根据子集的概念,结合交集、并集的知识,对选项逐一分析,由此得出正确选项. 【详解】由于M N ⊆,即M 是N 的子集,故M N M ⋂=,M N N ⋃=,从而M M N ⊆⋂(),()M N N ⋃⊆. 故选ABCD.4.(湖南省怀化市洪江市黔阳二中2020-2021学年高一上学期期中)已知集合M ,N ,P 为全集U 的子集,且满足M ∈P ∈N ,则下列结论正确的是 ( )A .U N ∈U PB .N P ∈N MC .(U P )∩M =∈D .(U M )∩N =∈ 【答案】ABC 【分析】由已知条件画出Venn 图,如图所示,然后根据图形逐个分析判断即可 【详解】因为集合M ,N ,P 为全集U 的子集,且满足M ∈P ∈N ,所以作出Venn 图,如图所示,由Venn 图,得U N ∈U P ,故A 正确; N P ∈N M ,故B 正确; (U P )∩M =∈,故C 正确; (U M )∩N ≠∈,故D 错误. 故选:ABC知识点五:交集、并集、补集的运算(1)交集的运算性质:A ∩B =B ∩A ,A ∩B ⊆A ,A ∩A =A ,A ∩∅=∅,A ∩B =A ⇔A ⊆B . (2)并集的运算性质:A ∪B =B ∪A ,A ⊆A ∪B ,A ∪A =A ,A ∪∅=A ,A ∪B =B ⇔A ⊆B .(3)全集与补集的性质∁U A ⊆U ,∁U U =∅,∁U ∅=U ,A ∪(∁U A )=U ,A ∩(∁U A )=∅,∁U (∁U A )=A .1.(陕西省商洛市商丹高新学校2019-2020学年高一上学期期中)设集合{}{}{}1,0,3,3,21,3A B a a A B =-=++=,则实数a 的值为________. 【答案】0或1 【分析】由于{}3A B ⋂=,所以可得33a +=或213a +=,从而可出a 的值【详解】解:因为{}{}{}1,0,3,3,21,3A B a a A B =-=++=所以33a +=或213a +=,所以0a =或经检验,0a =或1a =都满足题目要求,所以0a =或1a =,故答案为:0或1, 2.(浙江省杭州市高级中学2020-2021学年高一上学期期中)已知集合{}}242{60M x x N x x x =-<<=--<,,则M N ⋂=A .}{43x x -<<B .}{42x x -<<-C .}{22x x -<<D .}{23x x << 【答案】C 【分析】本题考查集合的交集和一元二次不等式的解法,渗透了数学运算素养.采取数轴法,利用数形结合的思想解题. 【详解】由题意得,{}{}42,23M x x N x x =-<<=-<<,则 {}22M N x x ⋂=-<<.故选C .3.(广西桂林市第十八中学2020-2021学年高一上学期期中)已知集合U ={−2,−1,0,1,2,3},A ={−1,0,1},B ={1,2},则()U A B ⋃=( ) A .{−2,3} B .{−2,2,3} C .{−2,−1,0,3} D .{−2,−1,0,2,3} 【答案】A 【分析】首先进行并集运算,然后计算补集即可. 【详解】由题意可得:{}1,0,1,2A B ⋃=-,则(){}U 2,3A B =-. 故选:A.4.(江西省南昌大学附中2020-2021年高一上学期期中)设A 、B 、U 均为非空集合,且满足A B U ⊆⊆,则下列各式中错误的是( ) A .()U C A B U = B .()()U U U C A C B C B = C .()U A C B ⋂=∅ D .()()U U C A C B U = 【答案】D 【分析】做出韦恩图,根据图形结合交集、并集、补集定义,逐项判断,即可得出结论. 【详解】A B U ⊆⊆,如下图所示,则U U C B C A ⊆, ()U C A B U =,选项A 正确,()()U U U C A C B C B =,选项B 正确, ()U A C B ⋂=∅,选项C 正确,()()U U U C A C B C A U =≠,所以选项D 错误.故选:D.5.(黑龙江省齐齐哈尔市克东一中、克山一中等五校2019-2020学年高一上学期期中联考)已知集合{}|3A x a x a =≤≤+,24{|}120B x x x =--> (1)若A B =∅,求实数a 的取值范围; (2)若A B B ⋃=,求实数a 的取值范围.【答案】(1)[]2,3-;(2){5|a a -<或6}a >.(1)求出集合{}32|{|A x a x a B x x =≤≤+=<-,或6}x >,由A B =∅,列出不等式组,能求出实数a 的取值范围.(2)由A B B ⋃=,得到A B ⊆,由此能求出实数a 的取值范围. 【详解】 解:(1)∈集合{}|3A x a x a =≤≤+,24120{|}2{|B x x x x x =-->=<-或6}x >,A B =∅,∈236a a ≥-⎧⎨+≤⎩,解得23a -≤≤∈实数a 的取值范围是[]2,3-(2)A B B A B =∴⊆,32a ∴+-<或6a >,解得5a -<或6a >. ∈实数a 的取值范围是{5|a a <-或6}a >6.(广东省华南师范大学附属中学南海实验高级中学2020-2021学年高一上学期期中)已知集合{}{}121215{}A xx B x x C x x m =-≤≤=≤-≤=>∣,∣,∣ (1)求(),R A B A B ⋃⋂;(2)若()A B C ⋃⋂≠∅,求实数m 的取值范围.【答案】(1){}13A B x x ⋃=-≤≤,(){}11R A B x x ⋂=-≤<,(2)(,3)-∞ 【分析】(1)先求出集合B ,再求B R ,然后求(),R A B A B ⋃⋂, (2)由()A B C ⋃⋂≠∅,可得答案 【详解】 解:(1)由1215x ≤-≤,得13x ≤≤,所以{}13B x x =≤≤, 所以{1R B x x =<或}3x >,因为{}12A x x =-≤≤,所以{}13A B x x ⋃=-≤≤,(){}11R A B x x ⋂=-≤< (2)因为()A B C ⋃⋂≠∅,{}C x x m =>,{}13A B x x ⋃=-≤≤, 所以3m <,所以实数m 的取值范围为(,3)-∞,1.(江苏省无锡市江阴四校2018-2019学年高二下学期期中)设集合M ={x |x =4n +1,n ∈Z },N ={x |x =2n +1,n ∈Z },则( ) A .M ≠⊂N B .N ≠⊂M C .M ∈N D .N ∈M 【答案】A 【分析】根据集合,M N 元素的特征确定正确选项. 【详解】对于集合N ,当n =2k 时,x =4k +1(k ∈Z );当n =2k -1时,x =4k -1(k ∈Z ).所以N ={x |x=4k +1或x =4k -1,k ∈Z },所以M ≠⊂N . 故选:A2、(重庆市涪陵高级中学2019-2020学年高一上学期)已知集合{}260A x x x =+-≤,{}212B x m x m =-≤≤+,若B A ⊆,则实数m 的取值范围( )A .(][),10,-∞-+∞B .[]()1,03,-+∞ C .()3,+∞D .[)1,3-【答案】B 【分析】求出集合A ,然后分B =∅和B ≠∅两种情况讨论,结合条件B A ⊆得出关于实数m 的不等式组,解出即可. 【详解】{}{}26032A x x x x x =+-≤=-≤≤.当B =∅时,则212m m ->+,得3m >,此时B A ⊆成立;当B ≠∅时,则212m m -≤+,得3m ≤,由B A ⊆,得21322m m -≥-⎧⎨+≤⎩,解得10m -≤≤,此时10m -≤≤.综上所述,实数m 的取值范围是[]()1,03,-+∞.故选:B.3.(广东省佛山市第三中学2018-2019学年高一上学期期中数学试题)已知集合{}21,A x y x y Z==+∈,{}21,B y y x x Z ==+∈,则A 、B 的关系是( )A .AB = B .A BC .BAD .A B =∅【答案】C 【分析】由题意得出Z A ⊆,而集合B Z ,由此可得出A 、B 的包含关系.【详解】由题意知,对任意的x ∈Z ,21y x Z =+∈,Z A ∴⊆.{}21,B y y x x Z ==+∈,∴集合B 是正奇数集,则BZ ,因此,BA .故选:C.4.(四川省成都市双流区棠湖中学2019-2020学年高一上学期期中)已知集合{|20}A x x =-<,{|}B x x a =<,若A B B ⋃=,则实数a 的取值范围是 A .(,2]-∞- B .[2,)-+∞ C .(,2]-∞ D .[2,)+∞ 【答案】D 【分析】先根据A B B ⋃=得到A B 、之间的关系,然后利用不等式确定a 的范围. 【详解】因为A B B ⋃=,所以A B ⊆,又因为{}{|20}|2A x x x x =-<=<,{|}B x x a =<,所以2a ≥,即[)2,a ∈+∞,故选:D.5.(上海市华东师范大学第二附属中学2016-2017年高一上学期)已知集合{}2263A x k x k =-+<<-,{}B x k x k =-<<,若AB ,则实数k 的取值范围为________.【答案】10,2⎛+ ⎝⎦【分析】由题意知B ≠∅,可得出0k >,分A =∅和A ≠∅,结合条件A B ,列出关于实数k 的不等式组,解出即可. 【详解】AB ,B ∴≠∅,则k k -<,解得0k >.当A =∅时,2326k k -≤-+,即2290k k +-≤,解得11k -≤≤-+,此时01k <≤;当A ≠∅时,2326k k ->-+,即2290k k +->,解得1k <-或1k >-此时1k >.AB ,则2263k k k k -+≥-⎧⎨-≤⎩,即2630k k k ≤⎧⎨--≤⎩,解得1122k +≤≤,1k <≤经检验,当12k +=时,A B ≠.综上所述,实数k 的取值范围是10,2⎛ ⎝⎦.故答案为:⎛ ⎝⎦.6.(重庆市第八中学2018-2019学年度高一上学期期中考试)已知集合A={x|x 2-(a -1)x -a<0,a∈R},集合B={x|2x 12x+-<0}.(1)当a=3时,求A∩B ;(2)若A∈B=R ,求实数a 的取值范围.【答案】(1)A ∩B ={x |-1<x 12-<或2<x <3};(2)()2,+∞.【分析】(1)结合不等式的解法,求出集合的等价条件,结合集合交集的定义进行求解即可.(2)结合A∈B=R ,建立不等式关系进行求解即可. 【详解】 解:(1)当a =3时,A ={x |x 2-2x -3<0}={x |-1<x <3}, B ={x |212x x+-<0}={x |x >2或x <-12}. 则A ∩B ={x |-1<x 12-<或2<x <3}.(2)A ={x |x 2-(a -1)x -a <0}={x |(x +1)(x -a )<0},B ={x |x >2或x <-12}. 若A ∈B =R ,则2a >,即实数a 的取值范围是()2,+∞.7.(北京市第十三中学2019-2020学年高一上学期期中)已知函数()f x 的定义城为A ,集合{}11B x a x a =-<<+(1)求集合A ;(2)若全集{}5U x x =≤,2a =,求u A B ;(3)若x B ∈是x A ∈的充分条件,求a 的取值范围. 【答案】(1)|34x xA;(2){}|3134UAB x x x =-<≤-≤≤或;(3)|3a a .11 【分析】(1)分母不能为0,偶次方根式的被开方数不能负值.(2)一个集合的补集是在全集而不在这个集合中的元素组成的集合,两个集合的交集是两个集合的公共元素组成的集合;(3)依题意得B 是A 的子集,即集合B 的元素都在集合A 中,由此确定a 的范围.【详解】解: (1)要使函数()f x 有意义,则4030x x -≥⎧⎨+>⎩,即34x 所以函数的定义域为|34x x .所以集合|34x x A(2)因为全集{}5U x x =≤,2a =, ,{}{}1113B x a x a x x ∴=-<<+=-<<{}|135U B x x x ∴=≤-≤≤或,{}|3134U A B x x x =-<≤-≤≤或;(3)由(1)得|34x x A ,若x B ∈是x A ∈的充分条件,即B A ⊆,①当B =∅时, B A ⊆,即11,a a -≥+0a ∴≤②当B ≠∅时, B A ⊆,11013403143a a a a a a a a -<+>⎧⎧⎪⎪-≥-⇒≤⇒<≤⎨⎨⎪⎪+≤≤⎩⎩, 综上所述: a 的取值范围为{}|3a a ≤.8.(安徽省合肥市第六中学2019-2020学年高一上学期期中)已知集合{}2320,,A x ax x x R a R =-+=∈∈.(1)若A 是空集,求a 的取值范围;(2)若A 中只有一个元素,求a 的值,并求集合A ;(3)若A 中至多有一个元素,求a 的取值范围【答案】(1)9,8⎛⎫+∞ ⎪⎝⎭;(2)当0a =时,23A ⎧⎫=⎨⎬⎩⎭;当98a =时,43A ⎧⎫=⎨⎬⎩⎭;(3){}90,8⎡⎫⋃+∞⎪⎢⎣⎭. 【分析】(1)方程ax 2﹣3x +2=0无解,则0a ≠,根据判别式即可求解;(2)分a =0和a ≠0讨论即可;(3)综合(1)(2)即可得出结论.【详解】(1)若A 是空集,则方程ax 2﹣3x +2=0无解此时0,a ≠ ∆=9-8a <0即a 98> 所以a 的取值范围为9,8⎛⎫+∞ ⎪⎝⎭(2)若A 中只有一个元素则方程ax 2﹣3x +2=0有且只有一个实根当a =0时方程为一元一次方程,满足条件当a ≠0,此时∆=9﹣8a =0,解得:a 98= ∈a =0或a 98= 当0a =时,23A ⎧⎫=⎨⎬⎩⎭;当98a =时,43A ⎧⎫=⎨⎬⎩⎭(3)若A 中至多只有一个元素,则A 为空集,或有且只有一个元素由(1),(2)得满足条件的a 的取值范围是{}90,8⎡⎫⋃+∞⎪⎢⎣⎭.。
湖北省鄂西北六校2020-2021学年高一下学期期中联考数学试题
![湖北省鄂西北六校2020-2021学年高一下学期期中联考数学试题](https://img.taocdn.com/s3/m/801aa9dc0b4c2e3f572763ea.png)
19.(1) ;(2) .
【分析】
(1)由正弦定理把 转化为 可求得 ;
(2)由 ,两边平方可求得 长,从而求得 的面积.
【详解】
解:(1)因为 ,由正弦定理得 ,
即 ,所以 ,
因为在 中, ,所以 ,
因为 ,所以 .
(2)因为 为 的中点,则 两边平方得,
因为 , 所以 ,
解得 或 (舍去),
【详解】
把点 代入 中, ,解得 .
所以当 时,
因为当空气中每立方米的含药量降低到0.2毫克以下时,学生方可进入教室
所以 ,解得 .
至少需要经过 分钟后,学生才能回到教室.
故选:B.
5.C
【分析】
根据题意,分别计算出 、 、 ,进而可得 , 夹角.
【详解】
根据题意得, ,
,
,
故 ,因此 , 夹角为120°.
21.如图:某快递小哥从 地出发,沿小路 以平均时速30公里/小时,送快件到 处,已知 (公里), , , 是等腰三角形, .
(1)试问,快递小哥能否在30分钟内将快件送到 处?
(2)快递小哥出发5分钟后,快递公司发现快件有重大问题,由于通讯不畅,公司只能派车沿大路 追赶,若汽车平均时速60公里/小时,问汽车是否先到达 处?(参考数据: , )
正方体的体对角线的长度就是外接球的直径,所以 ,
所以外接球的表面积为: ,
故答案为: .
14.-1
【分析】
先计算 ,再利用复数的运算性质即可得出.
【详解】
解: , .
.
故答案为: .
15.2
【分析】
根据 ,得 ,结合“1”的巧用即可求解.
【详解】
浙江省台州市2023-2024学年高一上学期期中数学试题含解析
![浙江省台州市2023-2024学年高一上学期期中数学试题含解析](https://img.taocdn.com/s3/m/6cace24d854769eae009581b6bd97f192279bf90.png)
2023年学年第一学期期中考试试卷高一数学(答案在最后)总分:150分考试时间:120分钟一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求.1.已知全集U =R ,集合{}1,0,1,2A =-,{}|210B x x =->,则()A B ⋂R ð等于()A.{}1,0- B.{}1,2C.{}1,0,1- D.{}0,1,2【答案】A 【解析】【分析】先求B R ð,然后由交集运算可得.【详解】因为{}1|210|2B x x x x ⎧⎫=->=>⎨⎬⎩⎭,所以1|2B x x ⎧⎫=≤⎨⎬⎩⎭R ð,所以(){}1,0A B ⋂=-R ð.故选:A2.命题“2000,10x x x ∃∈++<R ”的否定为()A.2000,10x x x ∃∈++≥R B.2000,10x x x ∃∈++>R C.2,10x x x ∀∈++≥R D.2,10x x x ∀∈++>R 【答案】C 【解析】【分析】在写命题的否定中要把存在变任意,任意变存在.【详解】因为特称命题的否定为全称命题,所以2000,10x x x ∃∈++<R 的否定即为2,10x x x ∀∈++≥R .故选:C.3.设x ∈R ,则“220x x -<”是“12x -<”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A 【解析】【分析】解不等式,再判断不等式解集的包含关系即可.【详解】由220x x -<得()0,2x ∈,由12x -<得()1,3x ∈-,故“220x x -<”是“12x -<”的充分不必要条件.故选:A.4.已知关于x 的不等式20ax bx c ++>的解集为{|2x x <-或}3x >,则下列说法错误的是()A.0a >B.不等式0bx c +>的解集是{}6x x <C.0a b c ++< D.不等式20cx bx a -+<的解集是1|3x x ⎧<-⎨⎩或12x ⎫>⎬⎭【答案】B 【解析】【分析】先求得,,a b c 的关系式,然后对选项进行分析,所以确定正确答案.【详解】由于关于x 的不等式20ax bx c ++>的解集为{|2x x <-或}3x >,所以0a >(A 选项正确),且2323b ac a ⎧-+=-⎪⎪⎨⎪-⨯=⎪⎩,整理得,6b a c a =-=-,由0bx c +>得60,6ax a x --><-,所以不等式0bx c +>的解集是{}6x x <-,所以B 选项错误.660a b c a a a a ++=--=-<,所以C 选项正确.()()22260,6121310cx bx a ax ax a x x x x -+=-++<--=-+<,解得13x <-或12x >,所以D 选项正确.故选:B5.已知函数()y f x =的定义域为{}|06x x ≤≤,则函数()()22f xg x x =-的定义域为()A.{|02x x ≤<或}23x <≤B.{|02x x ≤<或}26x <≤C.{|02x x ≤<或}212x <≤ D.{}|2x x ≠【答案】A 【解析】【分析】由已知列出不等式组,求解即可得出答案.【详解】由已知可得,02620x x ≤≤⎧⎨-≠⎩,解得,02x ≤<或23x <≤.故选:A .6.已知函数5(2),22(),2a x x f x a x x⎧-+≤⎪⎪=⎨⎪>⎪⎩是R 上的减函数,则实数a 的取值范围是()A.()0,2 B.()1,2 C.[)1,2 D.(]0,1【答案】C 【解析】【分析】由题可得函数在2x ≤及2x >时,单调递减,且52(2)22aa -+≥,进而即得.【详解】由题意可知:ay x=在()2,+∞上单调递减,即0a >;5(2)2y a x =-+在(],2-∞上也单调递减,即20a -<;又()f x 是R 上的减函数,则52(2)22aa -+≥,∴02052(2)22a a a a ⎧⎪>⎪-<⎨⎪⎪-+≥⎩,解得12a ≤<.故选:C .7.已知函数()y f x =的定义域为R ,()f x 为偶函数,且对任意12,(,0]x x ∈-∞都有2121()()0f x f x x x ->-,若(6)1f =,则不等式2()1f x x ->的解为()A.()(),23,-∞-⋃+∞ B.()2,3- C.()0,1 D.()()2,01,3-⋃【答案】B 【解析】【分析】由2121()()0f x f x x x ->-知,在(,0]-∞上单调递增,结合偶函数,知其在在[0,)+∞上单调递减即可解.【详解】对120x x ∀<≤,满足()()21210f x f x x x ->-,等价于函数()f x 在(,0]-∞上单调递增,又因为函数()f x 关于直线0x =对称,所以函数()f x 在[0,)+∞上单调递减.则()21f x x ->可化为26x x -<,解得23x -<<.故选:B.8.函数()f x x =,()22g x x x =-+.若存在129,,,0,2n x x x ⎡⎤⋅⋅⋅∈⎢⎥⎣⎦,使得()()()()121n n f x f x f x g x -++⋅⋅⋅++()()()()121n n g x g x g x f x -=++++ ,则n 的最大值是()A.8B.11C.14D.18【答案】C 【解析】【分析】令()222h x x x =-+,原方程可化为存在129,,,0,2n x x x ⎡⎤⋅⋅⋅∈⎢⎥⎣⎦,使得()()()()121n n h x h x h x h x -++⋅⋅⋅+=,算出左侧的取值范围和右侧的取值范围后可得n 的最大值.【详解】因为存在129,,,0,2n x x x ⎡⎤⋅⋅⋅∈⎢⎥⎣⎦,使得()()()()121n n f x f x f x g x -++⋅⋅⋅++()()()()121n n g x g x g x f x -=++++ ,故2221111222222n n n n x x x x x x ---+++-+=-+ .令()222h x x x =-+,90,2x ⎡⎤∈⎢⎥⎣⎦,则()5314h x ≤≤,故()221111531222214n n n x x x x n ---≤-+++-+≤- ,因为()5314n h x ≤≤故5314n -≤,故max 14n =.故选:C.【点睛】本题考查二次函数的最值,注意根据解析式的特征把原方程合理整合,再根据方程有解得到n 满足的条件,本题属于较难题.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多个选项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.对实数a ,b ,c ,d ,下列命题中正确的是()A.若a b <,则22ac bc <B.若a b >,c d <,则a c b d ->-C.若14a ≤≤,21b -≤≤,则06a b ≤-≤D.a b >是22a b >的充要条件【答案】BC 【解析】【分析】利用不等式的性质一一判定即可.【详解】对于A ,若0c =,则22ac bc =,故A 错误;对于B ,c d c d <⇒->-,由不等式的同向可加性可得a c b d ->-,故B 正确;对于C ,2121b b -≤≤⇒≥-≥-,由不等式的同向可加性可得06a b ≤-≤,故C 正确;对于D ,若102a b =>>=-,明显22a b <,a b >不能得出22a b >,充分性不成立,故D 错误.故选:BC10.已知函数()42f x x =-,则()A.()f x 的定义域为{}±2x x ≠ B.()f x 的图象关于直线=2x 对称C.()()56ff -=- D.()f x 的值域是()(),00,-∞+∞ 【答案】AC 【解析】【分析】根据解析式可得函数的定义域可判断A ,利用特值可判断,直接求函数值可判断C ,根据定义域及不等式的性质求函数的值域可判断D.【详解】由20x -≠,可得2x ≠±,所以()f x 的定义域为{}±2x x ≠,则A 正确;因为()14f =-,()34f =,所以()()13f f ≠,所以()f x 的图象不关于直线=2x 对称,则B 错误;因为()453f -=,所以()()56f f -=-,则C 正确;因为2x ≠±,所以0x ≥,且2x ≠,所以22x -≥-,且20x -≠,当220x -≤-<时,422x ≤--,即()2f x ≤-,当20x ->时,402x >-,即()0f x >,所以()f x 的值域是(](),20,-∞-+∞ ,故D 错误.故选:AC.11.高斯是德国著名的数学家,近代数学奠基之一,享有“数学王子”的称号,他和阿基米德、牛顿并列为七界三大数学家,用其名字命名的“高斯函数”为:设x ∈R ,用[]x 表示不超过x 的最大整数,则[]y x =称为高斯函数,如:[]1.21=,[]1.22-=-,[]y x =又称为取整函数,在现实生活中有着广泛的应用,诸如停车收费,出租车收费等均按“取整函数”进行计费,以下关于“取整函数”的描述,正确的是()A.x ∀∈R ,[][]22x x =B.x ∀∈R ,[][]122x x x ⎡⎤++=⎢⎥⎣⎦C.x ∀,R y ∈,若[][]x y =,则有1x y ->-D.方程[]231x x =+的解集为【答案】BCD 【解析】【分析】对于A :取12x =,不成立;对于B :设[]x x a =-,[0,1)a ∈,讨论10,2a ⎡⎫∈⎪⎢⎣⎭与1,1)2a ⎡∈⎢⎣求解;对于C :,01x m t t =+≤<,,01y m s s =+≤<,由||x y -=||1t s -<得证;对于D :先确定0x ≥,将[]231x x =+代入不等式[][]()2221x x x ≤<+得到[]x 的范围,再求得x 值.【详解】对于A :取12x =,[][][]1211,2220x x ⎡⎤==⎢⎥⎣⎦==,故A 错误;对于B :设11[],[0,1),[][][]22x x a a x x x x a ⎡⎤⎡⎤=-∈∴++=+++⎢⎥⎢⎥⎣⎦⎣⎦12[]2x a ⎡⎤=++⎢⎥⎣⎦,[2][2[]2]2[][2]x x a x a =+=+,当10,2a ⎡⎫∈⎪⎢⎣⎭时,11,122a ⎡⎫+∈⎪⎢⎣⎭,2[0,1)a ∈,则102a ⎡⎤+=⎢⎥⎣⎦,[2]0a =则1[]2[]2x x x ⎡⎤++=⎢⎣⎦,[2]2[]x x =,故当10,2a ⎡⎫∈⎪⎢⎣⎭时1[]2[]2x x x ⎡⎤++=⎢⎥⎣⎦成立.当1,1)2a ⎡∈⎢⎣时,131,22a ⎡⎫+∈⎪⎢⎣⎭,2[1,,)2a ∈则112a ⎡⎤+=⎢⎥⎣⎦,[2]1a =则1[]2[]1[2]],2[12x x x x x ⎡⎤++=+=+⎢⎣⎦,故当1,1)2a ⎡∈⎢⎣时1[]2[]2x x x ⎡⎤++=⎢⎥⎣⎦成立.综上B 正确.对于C :设[][]x y m ==,则,01x m t t =+≤<,,01y m s s =+≤<,则|||()x y m t -=+-()|||1m s t s +=-<,因此1x y ->-,故C 正确;对于D :由[]231x x =+知,2x 一定为整数且[]310x +≥,所以[]13x ≥-,所以[]0x ≥,所以0x ≥,由[][]()2221x x x ≤<+得[][][]()22311x x x ≤+<+,由[][]231x x ≤+解得[]33 3.322x +≤≤≈,只能取[]03x ≤≤,由[][]()2311x x +<+解得[]1x >或[]0x <(舍),故[]23x ≤≤,所以[]2x =或[]3x =,当[]2x =时x =[]3x =时x =,所以方程[]231x x =+的解集为,故选:BCD.【点睛】高斯函数常见处理策略:(1)高斯函数本质是分段函数,分段讨论是处理此函数的常用方法.(2)由x 求[]x 时直接按高斯函数的定义求即可.由[]x 求x 时因为x 不是一个确定的实数,可设[]x x a =-,[0,1)a ∈处理.(3)求由[]x 构成的方程时先求出[]x 的范围,再求x 的取值范围.(4)求由[]x 与x 混合构成的方程时,可用[][]1x x x ≤<+放缩为只有[]x 构成的不等式求解.12.函数()1f x a x a =+--,()21g x ax x =-+,其中0a >.记{},max ,,m m n m n n m n ≥⎧=⎨<⎩,设()()(){}max ,h x f x g x =,若不等式()12h x ≤恒有解,则实数a 的值可以是()A.1B.12 C.13 D.14【答案】CD 【解析】【分析】将问题转化为()min 12h x ≥;分别在a ≥和0a <<的情况下,得到()f x 与()g x 的大致图象,由此可得确定()h x 的解析式和单调性,进而确定()min h x ,由()min 12h x ≤可确定a 的取值范围,由此可得结论.【详解】由题意可知:若不等式()12h x ≤恒有解,只需()min 12h x ≥即可.()1,21,x x af x a x x a +≤⎧=⎨+-≥⎩,∴令211ax x x -+=+,解得:0x =或2x a=;令2121ax x a x -+=+-,解得:x =或x =;①当2a a≤,即a ≥时,则()f x 与()g x大致图象如下图所示,()()()(),02,02,g x x h x f x x a g x x a ⎧⎪≤⎪⎪∴=<<⎨⎪⎪≥⎪⎩,()h x ∴在(],0-∞上单调递减,在[)0,∞+上单调递增,()()()min 001h x h g ∴===,不合题意;②当2a a>,即0a <<时,则()f x 与()g x大致图象如下图所示,()()()(),0,0,g x x h x f x x g x x ⎧≤⎪∴=<<⎨⎪≥⎩()h x ∴在(],0-∞,a ⎡⎣上单调递减,[]0,a,)+∞上单调递增;又()()001h g ==,21hg a ==,∴若()min 12h x ≥,则需()min h x h =,即1212a ≤,解得:14a -≤;综上所述:实数a的取值集合10,4M ⎛⎤-= ⎥ ⎝⎦,1M ∉ ,12M ∉,13M ∈,14M ∈,∴AB 错误,CD 正确.故选:CD.【点睛】关键点点睛:本题考查函数不等式能成立问题的求解,解题关键是将问题转化为函数最值的求解问题,通过分类讨论的方式,确定()f x 与()g x 图象的相对位置,从而得到()h x 的单调性,结合单调性来确定最值.三、填空题:本题共4小题,每小题5分,共20分.13.若幂函数()f x 过点()42,,则满足不等式()()21f a f a ->-的实数a 的取值范围是__________.【答案】312⎡⎫⎪⎢⎣⎭,【解析】【分析】利用待定系数法求出幂函数()f x 的解析式,再利用函数定义域和单调性求不等式的解集.【详解】设幂函数()y f x x α==,其图像过点()42,,则42α=,解得12α=;∴()12f x x ==,函数定义域为[)0,∞+,在[)0,∞+上单调递增,不等式()()21f a f a ->-等价于210a a ->-≥,解得312a ≤<;则实数a 的取值范围是31,2⎡⎫⎪⎢⎣⎭.故答案为:31,2⎡⎫⎪⎢⎣⎭14.已知0a >,0b >,且41a b +=,则22ab +的最小值是______.【答案】18【解析】【分析】利用基本不等式“1”的妙用求解最小值.【详解】由题意可得24282221018b a b ab a b a ab +=++=⎛⎫⎛⎫ ⎪⎪⎝⎭⎝++≥⎭,当且仅当13a =,6b =时,等号成立.故答案为:1815.若函数()()22()1,,=-++∈f x x xax b a b R 的图象关于直线2x =对称,则=a b +_______.【答案】7【解析】【分析】由对称性得()(4)f x f x =-,取特殊值(0)(4)(1)(3)f f f f =⎧⎨=⎩求得,a b ,再检验满足()(4)f x f x =-即可得,【详解】由题意(2)(2)f x f x +=-,即()(4)f x f x =-,所以(0)(4)(1)(3)f f f f =⎧⎨=⎩,即15(164)08(93)b a b a b =-++⎧⎨=-++⎩,解得815a b =-⎧⎨=⎩,此时22432()(1)(815)814815f x x x x x x x x =--+=-+--+,432(4)(4)8(4)14(4)8(4)15f x x x x x -=--+-----+432232(1696256256)8(644812)14(168)32815x x x x x x x x x x =--+-++-+---+-++432814815x x x x =-+--+()f x =,满足题意.所以8,15a b =-=,7a b +=.故答案为:7.16.设函数()24,()2,ax x a f x x x a-+<⎧⎪=⎨-≥⎪⎩存在最小值,则a 的取值范围是________.【答案】[0,2]【解析】【分析】根据题意分a<0,0a =,02a <≤和2a >四种情况结合二次函数的性质讨论即可》【详解】①当a<0时,0a ->,故函数()f x 在(),a -∞上单调递增,因此()f x 不存在最小值;②当0a =时,()24,0()2,0x f x x x <⎧⎪=⎨-≥⎪⎩,当0x ≥时,min ()(2)04f x f ==<,故函数()f x 存在最小值;③当02a <≤时,0a -<,故函数()f x 在(),a -∞上单调递减,当x a <时,2()()4f x f a a >=-+;当x a ≥时,2()(2)(2)0f x x f =-≥=.若240a -+<,则()f x 不存在最小值,故240a -+≥,解得22a -≤≤.此时02a <≤满足题设;④当2a >时,0a -<,故函数()f x 在(),a -∞上单调递减,当x a <时,2()()4f x f a a >=-+;当x a ≥时,22()(2)()(2)f x x f a a =-≥=-.因为222(2)(4)242(2)0a a a a a a ---+=-=->,所以22(2)4a a ->-+,因此()f x 不存在最小值.综上,a 的取值范围是02a ≤≤.故答案为:[0,2]【点睛】关键点点睛:此题考查含参数的分段函数求最值,考查二次函数的性质,解题的关键是结合二次函数的性质求函数的最小值,考查分类讨论思想,属于较难题.四、解答题:本题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知集合{|13}A x x =<<,集合{|21}B x m x m =<<-.(1)若A B ⋂=∅,求实数m 的取值范围;(2)命题p :x A ∈,命题q :x B ∈,若p 是q 的充分条件,求实数m 的取值范围.【答案】(1)[)0,∞+(2)(],2-∞-【解析】【分析】(1)根据B 是否为空集进行分类讨论,由此列不等式来求得m 的取值范围.(2)根据p 是q 的充分条件列不等式,由此求得m 的取值范围.【小问1详解】由于A B ⋂=∅,①当B =∅时,21m m ³-,解得13m ≥,②当B ≠∅时,2111m m m <-⎧⎨-≤⎩或2123m mm <-⎧⎨≥⎩,解得103m ≤<.综上所述,实数m 的取值范围为[)0,∞+.【小问2详解】命题:p x A ∈,命题:q x B ∈,若p 是q 的充分条件,故A B ⊆,所以2113m m ≤⎧⎨-≥⎩,解得2m ≤-;所以实数m 的取值范围为(],2-∞-.18.2018年8月31日,全国人大会议通过了个人所得税法的修订办法,将每年个税免征额由42000元提高到60000元.2019年1月1日起实施新年征收个税.个人所得税税率表(2019年1月1日起执行)级数全年应纳税所得额所在区间(对应免征额为60000)税率(%)速算扣除数1[]0,36000302(]36000,1440001025203(]144000,30000020X 4(]300000,42000025319205(]420000,66000030529206(]660000,96000035859207()960000,+∞45181920有一种速算个税的办法:个税税额=应纳税所得额×税率-速算扣除数.(1)请计算表中的数X ;(2)假若某人2021年税后所得为200000元时,请按照这一算法计算他的税前全年应纳税所得额.【答案】(1)16920X =(2)153850元.【解析】【分析】(1)根据公式“个税税额=应纳税所得额×税率-速算扣除数”计算,其中个税税额按正常计税方法计算;(2)先判断他的全年应纳税所参照的级数,是级数2还是级数3,然后再根据计税公式求解.【小问1详解】按照表格,假设个人全年应纳税所得额为x 元(144000300000x ≤≤),可得:()()20%14400020%1440003600010%360003%x X x -=-⨯+-⨯+⨯,16920X =.【小问2详解】按照表格,级数3,()30000030000020%16920256920-⨯-=;按照级数2,()14400014400010%2520132120-⨯-=;显然1321206000019212020000031692025692060000+=<<=+,所以应该参照“级数3”计算.假设他的全年应纳税所得额为t 元,所以此时()20%1692020000060000t t -⨯-=-,解得153850t =,即他的税前全年应纳税所得额为153850元.19.已知定义在R 上的函数()f x 满足()()()2f x y f x f y +=++,且当0x >时,()2f x >-.(1)求()0f 的值,并证明()2f x +为奇函数;(2)求证()f x 在R 上是增函数;(3)若()12f =,解关于x 的不等式()()2128f x x f x ++->.【答案】(1)(0)2f =-,证明见解析(2)证明见解析(3){1x x <-或}2x >【解析】【分析】(1)赋值法;(2)结合增函数的定义,构造[]1122()()f x f x x x =-+即可;(3)运用题干的等式,求出(3)10f =,结合(2)的单调性即可.【小问1详解】令0x y ==,得(0)2f =-.()2()2(0)20f x f x f ++-+=+=,所以函数()2f x +为奇函数;【小问2详解】证明:在R 上任取12x x >,则120x x ->,所以12()2f x x ->-.又[]11221222()()()()2()f x f x x x f x x f x f x =-+=-++>,所以函数()f x 在R 上是增函数.【小问3详解】由(1)2f =,得(2)(11)(1)(1)26f f f f =+=++=,(3)(12)(1)(2)210f f f f =+=++=.由2()(12)8f x x f x ++->得2(1)(3)f x x f -+>.因为函数()f x 在R 上是增函数,所以213x x -+>,解得1x <-或2x >.故原不等式的解集为{1x x <-或}2x >.20.已知函数()2,R f x x x k x k =-+∈.(1)讨论函数()f x 的奇偶性(写出结论,不需要证明);(2)如果当[]0,2x ∈时,()f x 的最大值是6,求k 的值.【答案】(1)答案见解析(2)1或3【解析】【分析】(1)对k 进行分类讨论,结合函数奇偶性的知识确定正确答案.(2)将()f x 表示为分段函数的形式,对k 进行分类讨论,结合二次函数的性质、函数的单调性求得k 的值.【小问1详解】当0k =时,()f x =||2x x x +,则()f x -=||2x x x --=()f x -,即()f x 为奇函数,当0k ≠时,(1)f =|1|2k -+,(1)|1|2f k -=-+-,(1)(1)|1|2|1|2|1||1|0f f k k k k +-=-+-+-=--+≠,则()f x 不是奇函数,(1)(1)|1|2|1|2|1||1|40f f k k k k --=-++++=-+++≠,则()f x 不是偶函数,∴当0k =时()f x 是奇函数,当0k ≠时,()f x 是非奇非偶函数.【小问2详解】由题设,()f x ()()222,2,x k x x k x k x x k ⎧+-≥⎪=⎨-++<⎪⎩,函数()22y x k x =+-的开口向上,对称轴为2122k kx -=-=-;函数()22y x k x =-++的开口向下,对称轴为2122k k x +=-=+-.1、当1122k k k -<+<,即2k >时,()f x 在(,1)2k-∞+上是增函数,∵122k+>,∴()f x 在[]0,2上是增函数;2、当1122k k k <-<+,即2k <-时,()f x 在1,2k ⎛⎫-+∞ ⎪⎝⎭上是增函数,∵102k-<1,∴()f x 在[]0,2上是增函数;∴2k >或2k <-,在[]0,2x ∈上()f x 的最大值是(2)2|2|46f k =-+=,解得1k =(舍去)或3k =;3、当1122k kk -≤≤+,即22k -≤≤时,()f x 在[]0,2上为增函数,令2246k -+=,解得1k =或3k =(舍去).综上,k 的值是1或3.【点睛】研究函数的奇偶性的题目,如果要判断函数的奇偶性,可以利用奇偶函数的定义()()f x f x -=或()()f x f x -=-来求解.也可以利用特殊值来判断函数不满足奇偶性的定义.对于含有绝对值的函数的最值的研究,可将函数写为分段函数的形式,再对参数进行分类讨论来求解.21.已知函数()2f x x =-,()()224g x x mx m =-+∈R .(1)若对任意[]11,2x ∈,存在[]24,5x ∈,使得()()12g x f x =,求m 的取值范围;(2)若1m =-,对任意n ∈R ,总存在[]02,2x ∈-,使得不等式()200g x x n k -+≥成立,求实数k 的取值范围.【答案】(1)54m ⎡∈⎢⎣(2)(],4∞-【解析】【分析】(1)将题目条件转化为()1g x 的值域包含于()2f x 的值域,再根据[]11,2x ∈的两端点的函数值()()1,2g g 得到()y g x =对称轴为[]1,2x m =∈,从而得到()()min g x g m =,进而求出m 的取值范围;(2)将不等式()200g x x n k -+≥化简得不等式024x n k ++≥成立,再构造函数()0024h x x n =++,从而得到()0max h x k ≥,再构造函数()(){}0max max ,8n h x n n ϕ==+,求出()min n ϕ即可求解.【小问1详解】设当[]11,2x ∈,()1g x 的值域为D ,当[]24,5x ∈,()2f x 的值域为[]2,3,由题意得[]2,3D ⊆,∴()()211243224443g m g m ⎧≤=-+≤⎪⎨≤=-+≤⎪⎩,得5342m ≤≤,此时()y g x =对称轴为[]1,2x m =∈,故()()[]min 2,3g x g m =∈,即()222243g m m m =-+≤≤得1m ≤≤1m ≤≤-,综上可得54m ⎡∈⎢⎣.【小问2详解】由题意得对任意n ∈R ,总存在[]02,2x ∈-,使得不等式024x n k ++≥成立,令()0024h x x n =++,由题意得()0max h x k ≥,而()()(){}{}0max max 2,2max ,8h x h h n n =-=+,设(){}max ,8n n n ϕ=+,则()min n k ϕ≥,而(){},4max ,88,4n n n n n n n ϕ⎧<-⎪=+=⎨+≥-⎪⎩,易得()()min 44n k ϕϕ=-=≥,故4k ≤.即实数k 的取值范围为(],4∞-.22.已知函数()()01ax g x a x =≠+在区间1,15⎡⎤⎢⎥⎣⎦上的最大值为1.(1)求实数a 的值;(2)若函数()()()()()210x b f x b b g x +=-+>,是否存在正实数b ,对区间1,15⎡⎤⎢⎥⎣⎦上任意三个实数r 、s 、t ,都存在以()()f g r 、()()f g s 、()()f g t 为边长的三角形?若存在,求实数b 的取值范围;若不存在,请说明理由.【答案】(1)2a =(2)存在,15153b <<【解析】【分析】(1)由题意()1a g x a x =-+,1,15x ⎡⎤∈⎢⎥⎣⎦,然后分a<0,0a >两种情况讨论函数()g x 的单调性,即可得出结果;(2)由题意()()0bf x x b x=+>,可证得()f x 在(为减函数,在)+∞为增函数,设()u g x =,1,13u ⎡⎤∈⎢⎥⎣⎦,则()()()()0b f g x f u u b u ==+>,从而把问题转化为:1,13u ⎡⎤∈⎢⎥⎣⎦,()()min max2f u f u >时,求实数b 的取值范围.结合()bf u u u=+的单调性,分109b <≤,1193b <≤,113b <<,1b ≥四种情况讨论即可求得答案.【小问1详解】由题意()11ax a g x a x x ==-++,1,15x ⎡⎤∈⎢⎥⎣⎦①当a<0时,函数()g x 在区间1,15⎡⎤⎢⎥⎣⎦上递减,所以()max 151566a ag x g a ⎛⎫==-== ⎪⎝⎭,得6a =(舍去).②当0a >时,函数()g x 在区间1,15⎡⎤⎢⎥⎣⎦上递增,所以()()max 1122a ag x g a ==-==,得2a =.综上所述,2a =.【小问2详解】由题意()22211x g x x x ==-++,又115x ≤≤,由(1)知函数()g x 在区间1,15⎡⎤⎢⎥⎣⎦上递增,∴()()115g g x g ⎛⎫≤≤ ⎪⎝⎭,即()113g x ≤≤,所以函数()g x 在区间1,15⎡⎤⎢⎥⎣⎦上的值域为1,13⎡⎤⎢⎥⎣⎦.又因为()()()()()()()()()2211111x b x x b x b x b f x b b b g x x x++++++=-+=-+=-+,∴()()20x b bf x x b x x+==+>,令120x x <<,则()()()12121212121b b b f x f x x x x x x x x x ⎛⎫⎛⎫⎛⎫-=+-+=-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,当1x ,(2x ∈时,()121210b x x x x ⎛⎫--> ⎪⎝⎭,所以()()12f x f x >,()f x 为减函数;当1x ,)2x ∈+∞时,()121210b x x x x ⎛⎫--< ⎪⎝⎭,所以()()12f x f x <,()f x 为增函数;∴()f x 在(为减函数,在)+∞为增函数,设()u g x =,由(1)知1,13u ⎡⎤∈⎢⎥⎣⎦,∴()()()()0bf g x f u u b u==+>;所以,在区间1,15⎡⎤⎢⎥⎣⎦上任意三个实数r 、s 、t ,都存在()()f g r 、()()f g s 、()()f g t 为边长的三角形,等价于1,13u ⎡⎤∈⎢⎥⎣⎦,()()min max 2f u f u >.①当109b <≤时,()b f u u u =+在1,13⎡⎤⎢⎥⎣⎦上单调递增,∴()min 133f u b =+,()max 1f u b =+,由()()min max 2f u f u >,得115b >,从而11159b <≤.②当1193b <≤时,()b f u u u =+在13⎡⎢⎣上单调递减,在⎤⎦上单调递增,∴()min f u =,()max 1f u b =+,由()()min max 2f u f u >得77b -<<+1193b <≤.③当113b <<时,()b f u u u =+在13⎡⎢⎣上单调递减,在⎤⎦上单调递增,∴()min f u ==,()max 133f u b =+,由()()min max 2f u f u >得74374399b -+<<,从而113b <<.④当1b ≥时,()b f u u u =+在1,13⎡⎤⎢⎥⎣⎦上单调递减,∴()min 1f u b =+,()max 133f u b =+,由()()min max 2f u f u >得53b <,从而513b ≤<.综上,15153b <<.。
湖北省武汉市部分重点中学2020-2021学年高二上学期期末联考 英语 Word版含答案
![湖北省武汉市部分重点中学2020-2021学年高二上学期期末联考 英语 Word版含答案](https://img.taocdn.com/s3/m/326e99cec281e53a5902ff16.png)
武汉市部分重点中学2020-2021学年度上学期期末联考高二英语试卷第一部分听力(共两节,满分30分)做题时,先将答案标在试卷上,录音内容结束后,你将有两分钟的时间将试卷上的答案转涂到答题卡上。
第一节(共5小题;每小题1.5分,满分7.5分)听下面5段对话,每段对话后有一个小题。
从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
1. Where are the two speakers most probably?A. In a bookstore.B. At home.C. In a cinema.2. How much is this pair of jeans now?A. 125 dollars.B. 100 dollars.C. 75 dollars.3. When will the man pick up the woman?A. At five o'clock.B. At six o'clock.C. At seven o'clock.4. What will the man do?A. Hold his wedding outside.B. Cancel his wedding.C. Hold his wedding inside.5. How will the woman feel probably?A. Excited.B. Embarrassed.C. Disappointed.第二节(共15小题,每小题1.5分,满分22.5分)听下面5段对话或独白。
每段对话或独白后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项。
听每段对话或独白前,你将有时间阅读各个小题,每小题5秒钟;听完后,各小题将给出5秒钟的作答时间。
每段对话或独白读两遍。
听第6段材料,回答第6、7题。
湖北省武汉市部分学校2020-2021学年高一化学10月联考试题[含答案]
![湖北省武汉市部分学校2020-2021学年高一化学10月联考试题[含答案]](https://img.taocdn.com/s3/m/2adb10913169a4517623a33b.png)
液中 Al3+和 A.4:5
的个数比为 B.1:3
C.2:3
D.1:4
13.工业上冶炼锡的第一步反应原理为 A.a 的值为 2 C.每生成 1 个 M 转移电子 8 个
2Sn+a M↑+CO2↑,则下列说法中错误的是 B.反应中 SnO2 被还原 D.反应后只有一种氧化产物
14.某温度下将 Cl2 通入 KOH 溶液里,反应后得到 KCl、KClO、KClO3 的混合溶液,经测定 ClO-与
题号
11
12
13
14
15
答案
三、填空题(本题共
4
B小D题,共
50
第
分)A
II
卷(非选择题)
CD
C
BC
16(18 分,每空 2 分)Ⅰ(1) ①③⑤⑩ ②③④⑥⑨ ⑦ ①⑤⑩
(2)NH4HSO4= NH4++H+ + SO4 2-
(3) NH4++H+ + SO4 2- +2OH-+Ba2+=BaSO4↓+H2O+NH3·H2O
(填序
17(12 分,每空 2 分).将少量饱和 FeCl3 溶液分别滴加到下列物质中,得到三种分散系,完成相 关问题:
甲:饱和 FeCl3 溶液滴加到 NaOH 溶液中;
乙:饱和 FeCl3 溶液滴加到冷水中;
丙:饱和 FeCl3 溶液滴加到沸水中。
(1)将丙继续加热煮沸得到红褐色透明液体,反应的化学方程式为
(5)可用如图所示的装置除去 Fe(OH)3 胶体中的杂质离子来提纯 Fe(OH)3 胶体,实验过程中需
不断更换烧杯中的蒸馏水。更换蒸馏水若干次后,取少量烧杯中的液体,向其中加入 AgNO3 溶液, 若
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
武汉市部分重点中学2020-2021学年度上学期期中联考高一数学试卷(武汉一中,武汉三中,武汉六中,武汉十一中,武钢三中,省实验)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要 求的.1.函数2()f x =的定义域是 A.1,13⎛⎫- ⎪⎝⎭B.11,33⎛⎫- ⎪⎝⎭C.1,13⎡⎤-⎢⎥⎣⎦D.1,3⎛⎫-∞ ⎪⎝⎭2.集合{A x y ==,{}2,0x B y y x ==>,则A∩B=A.[0,2]B.(1,2]C.[1,2]D.(1,+∞) 3.已知命题p :∀x >0,总有(1)1xx e +>,则命题p 的否定为A.00x ∃≤,使得00(1)1x x e+≤ B.00x ∃>,使得00(1)1x x e +≤C.00x ∃>,总有(1)1x x e +≤D.0x ∃≤,总有(1)1xx e +≤4.设0.60.6a =, 1.20.6b =,0.61.2c =中,则a ,b ,c 的大小关系是A.a <b <cB.a <c <bC.b <a <cD.b <c <a5.已知函数()y f x =在(0,2)上是增函致,函数(2)y f x =+是偶函数,则下列结论正确的是A.57(1)22f f f ⎛⎫⎛⎫<<⎪ ⎪⎝⎭⎝⎭ B.57(1)22f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭C.75(1)22f f f ⎛⎫⎛⎫<<⎪ ⎪⎝⎭⎝⎭ D.75(1)22f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭6.己知函数2()28f x x kx =--在[-2,1]上具有单调性,则实数k 的取值范围是 A.k≤-8 B.k≥4 C.k≤-8或k≥4 D.-8≤k≤4 7.函数1()1xx f x e x -=++的部分图象大致是 A. B.C. D.8.已知函数()1f x x =+,2()2x g x a +=+,若对任意1x ∈[3,4],存在2x ∈[-3,1],使12()()f x g x ≥,则实数a 的取值范围是A.4a ≤-B.2a ≤ c.3a ≤ D.4a ≤二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分. 9,下列四个命题中不正确的是A.21()2x xf x -⎛⎫= ⎪⎝⎭在1,2⎛⎫-∞ ⎪⎝⎭上是单调递增函数 B.若函数2()2f x ax bx =++与x 辅没有交点,则280b a -<且a >0C.幂函数的图象都通过点(1,1)D.1y x =+和y =表示同一个函数10.若函数()f x 同时满足:∈对于定义域上的任意x ,恒有()()0f x f x +-=;∈()f x 在定义域上单调递减,则称函数()f x 对“理想函数”,下列四个函数中能被称为“理想函数”的有A.()f x x =-B.23()f x x = C.1()f x x = D.22,0(),0x x x f x x x x ⎧--≥⎪=⎨-<⎪⎩11.已知a ,b 为正实数,则下列判断中正确的是A.11+b+4a a b ⎛⎫⎛⎫≥ ⎪⎪⎝⎭⎝⎭B.若a +b =2,则22a b+的最小值为4 C.若a >b ,则2211a b < D.若a +b =l ,则14a b+的最小值是8 12.德国著名数学家狄利克雷在数学领域成就显著,是解析数论的创始人之一,以其名命名的函数1,()0x f x x ⎧=⎨⎩为有理数,为无理数称为狄利克雷函数,则关于()f x 下列说法正确的是 A.函致()f x 的值域是[0,1]B.,(())1x R f f x ∀∈=C.(2)()f x f x +=对任意x ∈R 恒成立D.存在三个点11(,())A x f x ,22(,())B x f x ,33(,())C x f x ,使得ΔABC 为等腰直角三角形 三、填空题:本题共4小题,每小题5分,共20分.13.已知幂函数()y f x =的图像过点(2,2),则这个函数的解析式为()f x =__________.14.若函数,1()42,12x a x f x a x x ⎧>⎪=⎨⎛⎫-+≤ ⎪⎪⎝⎭⎩是R 上的增函数,则实数a 的取值范围为_________. 15.定义在R 上的偶函数()f x 满足:对任意的1x ,2x ∈(-∞,0](12x x ≠),有2121()()0f x f x x x -<-,且f (2)=0,则不等式()f x ≤0的解集是_________.16.函数2()20202021f x ax x =-+(a >0),在区间[t-1,t+1](t ∈R)上函数()f x 的最大值为M ,最小值为N .当t 取任意实数时,M-N 的最小值为2,则a =________.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)已知集合A={x |x ≤-3或x ≥2},B={x |1<x ≤5},C={x |m-l≤x ≤2m}.(1)求A∩B ,(C R A)∪B :(2)若B ∩C=C ,求实数m 的取值范围.18.(本小题满分12分)已知命题p :实数x 满足245220xx⋅-⋅+≥,命题q :实数x 满足2(21)(1)0x m x m m -+++≥.(1)求命题p 为真命题,求实数x 的取值范围;(2)若命题q 是命题p 的必要不充分条件,求实数m 的收值范围. 19.(本小题满分12分)已知二次函数2()2(1)4f x x a x =--+.(1)若()f x 为偶函数,求()f x 在[-1,3]上的值域;(2)当x ∈[1,2]时,()f x ax >恒成立,求实数a 的取值范围.20.(本小题满分12分)为了保护环境,某工厂在政府部门的鼓励下进行技术改进,把二氧化碱转化为某种化工产品,经测算,该处理成本y (单位:万元)与处理量x (单位:吨)之间的函数关系可近似表示为2401600y x x =-+(30≤x ≤50),已知每处理一吨二氧化碳可获得价值20万元的某种化工产品.(1)判断该技术改进能否获利?如果能获利,求出最大利润;如果不能获利,则国家至少需要补贴多少万元该工厂才不会亏损?(2)当处理量为多少吨时,每吨的平均处理成本最少?21.(本小题满分12分)已知函数131()33x x f x +-+=+.(1)判断()f x 的奇偶性;(2)判断函数()f x 的单调性,并用定义证明;(3)若不等式1(31)(33)0x x f f k k +-+⋅+>在区间[0,+∞)上有解,求实数k 的收值范围.22.(本小题满分12分)己知函数9()f x x a a x=--+,a ∈R.(1)若a =0,试判断f(x)的奇偶性,并说明理由;(2)若函数()f x 在[1,a ]上单调,且对任意x ∈[1,a ],()f x <-2恒成立,求a 的取值范围;(3)着x ∈[1,6],当a ∈(3,6)时,求函数()f x 的最大值的表达式M(a ).武汉市部分重点中学2020-2021学年度上学期期中联考高一数学试卷解析(武汉一中,武汉三中,武汉六中,武汉十一中,武钢三中,省实验)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要 求的.1.函数2()f x =的定义域是 A.1,13⎛⎫- ⎪⎝⎭B.11,33⎛⎫- ⎪⎝⎭C.1,13⎡⎤-⎢⎥⎣⎦D.1,3⎛⎫-∞ ⎪⎝⎭【答案】A.【解析】11013103x x x x <⎧->⎧⎪⇒⎨⎨+>>-⎩⎪⎩∴113x -<<∴1,13x ⎛⎫∈- ⎪⎝⎭2.集合{A x y ==,{}2,0x B y y x ==>,则A∩B=A.[0,2]B.(1,2]C.[1,2]D.(1,+∞) 【答案】B.【解析】0(2)0(2)0021121x x x x x y y y -≥-≤≤≤⎧⎧⎧⇒⇒⎨⎨⎨>>>=⎩⎩⎩∴(]1,2AB =3.已知命题p :∀x >0,总有(1)1xx e +>,则命题p 的否定为A.00x ∃≤,使得00(1)1x x e+≤ B.00x ∃>,使得00(1)1x x e +≤C.00x ∃>,总有(1)1x x e +≤D.0x ∃≤,总有(1)1xx e +≤【答案】B.【解析】0:0p x ⌝∃>,使得00(1)1x x e+≤.4.设0.60.6a =, 1.20.6b =,0.61.2c =中,则a ,b ,c 的大小关系是A.a <b <cB.a <c <bC.b <a <cD.b <c <a 【答案】C.【解析】0.61.20.60.6>,∴a b >0.60.60.61 1.2<<,a c <∴b <a <c5.已知函数()y f x =在(0,2)上是增函致,函数(2)y f x =+是偶函数,则下列结论正确的是A.57(1)22f f f ⎛⎫⎛⎫<<⎪ ⎪⎝⎭⎝⎭ B.57(1)22f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭C.75(1)22f f f ⎛⎫⎛⎫<<⎪ ⎪⎝⎭⎝⎭ D.75(1)22f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭【答案】D.【解析】()f x 在(0,2)单调递增(2)y f x =+是偶函数,∴()f x 向左平移2单位为偶函数∴75(1)22f f f ⎛⎫⎛⎫<<⎪ ⎪⎝⎭⎝⎭6.己知函数2()28f x x kx =--在[-2,1]上具有单调性,则实数k 的取值范围是 A.k≤-8 B.k≥4 C.k≤-8或k≥4 D.-8≤k≤4 【答案】C.【解析】对称轴为4kx =①24k≤-,∴8k ≤- ②14k≥,∴4k ≥ 综上所述:k≤-8或k≥4. 7.函数1()1xx f x e x -=++的部分图象大致是 A.B. C. D.【答案】D.【解析】12()111xx x f x e e x x -=+=+-++ 两条渐近线为y =1和x =-1,排除A 和B当x →∞,()xf x e →,呈指数增长,故选D.8.已知函数()1f x x =+,2()2x g x a +=+,若对任意1x ∈[3,4],存在2x ∈[-3,1],使12()()f x g x ≥,则实数a 的取值范围是A.4a ≤-B.2a ≤ c.3a ≤ D.4a ≤ 【答案】C.【解析】依题意只需1min 2min ()()f x g x ≥当1x ∈[3,4],()f x 单增,则min ()(3)4f x f ==当2x ∈[-3,1],2()2x g x a +=+,即2x +取最小时,有2min ()g x[]20,3x +∈02min ()21g x a a =+=+∴14a +≤ ∴3a ≤.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分. 9.下列四个命题中不正确的是A.21()2x xf x -⎛⎫=⎪⎝⎭在1,2⎛⎫-∞ ⎪⎝⎭上是单调递增函数 B.若函数2()2f x ax bx =++与x 辅没有交点,则280b a -<且a >0C.幂函数的图象都通过点(1,1)D.1y x =+和y =表示同一个函数【答案】BD.【解析】A.21()2tf x t x x⎧⎛⎫=⎪ ⎪⎨⎝⎭⎪=-⎩,根据同增异减,只需求2t x x =-的递减区间对称轴12x =,即t 在1,2⎛⎫-∞ ⎪⎝⎭单调递减,正确.B.函数2()2f x ax bx =++与x 轴无交点,a =0显然不成立,则只需280b a ∆=-<,且a ≠0即可,B 错错误. C.正确D.1y x ==+,解析式不同,D 错误.10.若函数()f x 同时满足:∈对于定义域上的任意x ,恒有()()0f x f x +-=;∈()f x 在定义域上单调递减,则称函数()f x 对“理想函数”,下列四个函数中能被称为“理想函数”的有A.()f x x =-B.23()f x x = C.1()f x x = D.22,0(),0x x x f x x x x ⎧--≥⎪=⎨-<⎪⎩【答案】AD.【解析】根据()()0f x f x +-=得()f x 为奇函致,且在定义域递减.A 选项()f x x =-,符合.B 选项23()f x x =,是幂函数,为偶函数,错误. C 选项1()f x x=,在(-∞,0)和(0,+∞)递减,非(-∞,0)∪(0,+∞)递减,错误. D 选项作图易知正确.11.已知a ,b 为正实数,则下列判断中正确的是A.11+b+4a a b ⎛⎫⎛⎫≥ ⎪⎪⎝⎭⎝⎭B.若a +b =2,则22a b+的最小值为4 C.若a >b ,则2211a b < D.若a +b =l ,则14a b+的最小值是8 【答案】ABC.【解析】A :∵a >0,b >0,∴10a a +>,10b b+> ∴12a a +≥,当且仅当1a a =,∴1a = ∴10b b +>,当且仅当1b b=,∴b=1正确B.224a b +≥=正确C.当0a b >>时,220a b >>,则22110a b <<,正确 D.当1a b +=,14144()59b a a b a b a b a b⎛⎫+=++=++≥ ⎪⎝⎭ 取等条件:13a =,23b = 所以最小值为9,D 错误.12.德国著名数学家狄利克雷在数学领域成就显著,是解析数论的创始人之一,以其名命名的函数1()0x f x x ⎧=⎨⎩,为有理数,为无理数称为狄利克雷函数,则关于()f x 下列说法正确的是 A.函致()f x 的值域是[0,1]B.,(())1x R f f x ∀∈=C.(2)()f x f x +=对任意x ∈R 恒成立D.存在三个点11(,())A x f x ,22(,())B x f x ,33(,())C x f x ,使得ΔABC 为等腰直角三角形【答案】BC.【解析】A.值域为{0,1},错误.B.当x 为有理数时,()1f x =,(())()1f f x f x ==当x 为无理数时,()0f x =,(())(0)0f f x f ==则R ∀∈,(())1f f x =,正确.C.x 为有理数时:x +2为有理数,(2)()f x f x +==1当x 为无理数时,x +2为无理数,(2)()f x f x +==0则(2)()f x f x +=恒成立,正确.D.若ΔABC 为等腰直角三角形,则211x x -=,所以12()()f x f x =,前后矛盾,错误. 三、填空题:本题共4小题,每小题5分,共20分.13.已知幂函数()y f x =的图像过点(2,2),则这个函数的解析式为()f x =__________.【答案】12()f x x =.【解析】设()af x x =,带入点(2)2a=,解得12a =则12()f x x =14.若函数,1()42,12x a x f x a x x ⎧>⎪=⎨⎛⎫-+≤ ⎪⎪⎝⎭⎩是R 上的增函数,则实数a 的取值范围为_________. 【答案】(]4,8a ∈.【解析】是R 上的增函数,则题中满足1402422a aaa ⎧⎪>⎪⎪->⎨⎪⎪-+≤⎪⎩解得(]4,8a ∈.15.定义在R 上的偶函数()f x 满足:对任意的1x ,2x ∈(-∞,0](12x x ≠),有2121()()0f x f x x x -<-,且f (2)=0,则不等式()f x ≤0的解集是_________.【答案】[-2,2].【解析】∵对∀1x ,2x ∈(-∞,0](12x x ≠)有2121()()f x f x x x -<-∴()f x 在(-∞,0]上单调递增,且f(2)=0,由图像可知x ∈[-2,2]16.函数2()20202021f x ax x =-+(a >0),在区间[t-1,t+1](t ∈R)上函数()f x 的最大值为M ,最小值为N .当t 取任意实数时,M-N 的最小值为2,则a =________. 【答案】a =2.【解析】2()2021f x ax =-(a >0)对称轴1010x a=要使m-n 最小,t-1与t+1必关于对称轴对称 所以1010t a=① (1)()2f t f t ++=22(1)2020(1)202120202021a t t at t +-++-+-220202at a =+-= ②联立得2×1010+a -2020=2 ∴a =2四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)已知集合A={x |x ≤-3或x ≥2},B={x |1<x ≤5},C={x |m-l≤x ≤2m}. (1)求A∩B ,(C R A)∪B :(2)若B ∩C=C ,求实数m 的取值范围.【答案】(1)A ∩B={x |2≤x ≤5};(C R A)∪B={x|-3<x ≤5}; (2)(-2,-1)∪(2,52] 【解析】(1)A ∩B={x |2≤x ≤5} 2分 C R A={x |-3<x <2},(C R A)∪B={x|-3<x ≤5} 4分 (2)∈B ∩C=C∴C B ⊆ 5分①当C=∅时,∴m-1>2m 即m<-1 7分②当C ≠∅时,∴121125m m m m -≤⎧⎪->⎨⎪≤⎩∴522m <≤9分 综上所述:m 的取值范围是(-∞,-1)∈(2,52] 10分. 18.(本小题满分12分)已知命题p :实数x 满足245220xx⋅-⋅+≥,命题q :实数x 满足2(21)(1)0x m x m m -+++≥.(1)求命题p 为真命题,求实数x 的取值范围;(2)若命题q 是命题p 的必要不充分条件,求实数m 的收值范围. 【答案】(1){x |x ≤-1或x ≥1}; (2)[-1,0] 【解析】(1)由命题p 为真命题,知245220xx⋅-⋅+≥,可化为(22)(221)0x x -⋅-≥ 2分解得122x≤或22x≥,所以实数x 的取值范围是{x |x ≤-1或x ≥1} 4分 (2)命题q :由2(21)(1)0x m x m m -+++≥,得[]()(1)0x m x m --+≥,解得x ≤m 或x ≥m+1 8分 设A={x |x ≤-1或x ≥1},B={x |x ≤m 或x ≥m+l}因为q 是p 必要不充分条件,所以A ⊄B 9分111m m ≥-⎧⎨+≤⎩,解得-l≤m≤0, 所以实致m 的取值范围为[-1,0] 12分 19.(本小题满分12分)已知二次函数2()2(1)4f x x a x =--+.(1)若()f x 为偶函数,求()f x 在[-1,3]上的值域;(2)当x ∈[1,2]时,()f x ax >恒成立,求实数a 的取值范围.【答案】(1)[4,13];(2)(-∞,2) 【解析】(1)根据题意,函数2()2(1)4f x x a x =--+,为二次函数,其对称轴为1x a =-.若()f x 为偶函数,则10a -=,解可得1a = 2分则2()4f x x =+,又由-1≤x≤3,则有4()13f x ≤≤即函数()f x 的值域为[4,13]. 6分(2)由题意知x ∈[1,2]时,()f x ax >恒成立,即2(32)40x a x --+> 7分方法一:所以2432x a x+-<恒成立 8分因为x ∈[1,2],所以2444x x x x +=+≥=,当且仅当4x x=,即x =2时等号成立. 所以324a -<,解得a <2,所以a 的取值范围是(-∞,2) 12分 方法二:令2()(32)4g x x a x =--+,所以只需min ()0g x >,对称轴为322a x -=当3212a -≤,即43a ≤时,min ()(1)730g x g a ==->解得73a <,故43a ≤ 8分 当32122a -<<,即423a <<时,2min 32(32)()4024a a g x g --⎛⎫==-> ⎪⎝⎭解得223a -<<,故423a << 10分 当3222a -≥,即2a ≥,min ()(2)1260g x g a ==-> 解得2a <,舍去 12分 绦上所述,a 的取值范围是(-∞,2).20.(本小题满分12分)为了保护环境,某工厂在政府部门的鼓励下进行技术改进,把二氧化碱转化为某种化工产品,经测算,该处理成本y (单位:万元)与处理量x (单位:吨)之间的函数关系可近似表示为2401600y x x =-+(30≤x ≤50),已知每处理一吨二氧化碳可获得价值20万元的某种化工产品.(1)判断该技术改进能否获利?如果能获利,求出最大利润;如果不能获利,则国家至少需要补贴多少万元该工厂才不会亏损?(2)当处理量为多少吨时,每吨的平均处理成本最少? 【答案】(1)700;(2)40 【解析】(1)当x ∈[30,50]时,设该工厂获利S ,则2220(401600)(30)700S x x x x =--+=--- 2分 所以当x ∈[30,50]时,S max =-700<0 4分因此该工厂不会获利,国家至少需要补贴700万元,该工厂才不会亏损. 5分 (2)由题易知,二氧化碳的平均处理成本1600()40y P x x x x==+-(x ∈[30,50) 7分 当x ∈[30,50]时,1600()404040P x x x =+-≥= 10分 当且仅当1600x x=,即x =40时等号成立, 故P(x)取得最小值为P(40)=40所以当处理量为40吨时,每吨的平均处理成本最少. 12分21.(本小题满分12分)已知函数131()33x x f x +-+=+.(1)判断()f x 的奇偶性;(2)判断函数()f x 的单调性,并用定义证明;(3)若不等式1(31)(33)0x x f f k k +-+⋅+>在区间[0,+∞)上有解,求实数k 的取值范围.【答案】(1)略;(2)略;(3)(-∞,0) 【解析】(1)∵13113()333(13)x xx x f x +-+-==++,定义域为R ,关于原点对称, 1分又133(13)31()()3(13)33(13)3(31)x x x x x x x x f x f x --------====-+⨯++ 因此,函数131()33x x f x +-+=+为奇函数; 4分(2)312(13)21()3(31)3(31)3(31)3x x x x xf x -+-+===-+++,任取1x 、2x ∈R 且1x <2x ,则12122121()()3(31)33(31)3x x f x f x ⎡⎤⎡⎤-=---⎢⎥⎢⎥++⎣⎦⎣⎦211212222(22)3(12)3(12)3(12)(12)x x x x x x -=-=++++ 6分∵12x x <∴21220x x ->,2120x +>,1120x +> ∴12()()0f x f x ->,即12()()f x f x >因此,函数131()33x x f x +-+=+在R 上为减函数 8分(3)∈函数()y f x =为R 上的奇函数,由1(31)(33)0x x f f k k +-+⋅+>可得1(33)(31)(13)x x x f k k f f +⋅+>--=-又由于函数()y f x =为R 上的减函数,∴13313x x k k +⋅+<- 10分.∴113()33xx k f x +-<=+ 由题意知,存在x ∈[0,+∞),使得113()33xx k f x +-<=+成立,则max ()k f x < 因为函数131()33x x f x +-+=+在[0,+∞)上为减函数,则max ()(0)0f x f ==∴0k <因此,实数k 的取值范围是(0,+∞). 12分 22.(本小题满分12分)己知函数9()f x x a a x=--+,a∈R. (1)若a =0,试判断f(x)的奇偶性,并说明理由;(2)若函数()f x 在[1,a ]上单调,且对任意x ∈[1,a ],()f x <-2恒成立,求a 的取值范围;(3)着x ∈[1,6],当a ∈(3,6)时,求函数()f x 的最大值的表达式M(a ).【答案】(1)非奇非偶函数(2)11a << (3)921,3,24()2126,,64a M a a a ⎧⎛⎫∈ ⎪⎪⎪⎝⎭=⎨⎡⎫⎪-∈⎪⎢⎪⎣⎭⎩【解析】(1)当a =0时,9()f x x a x =--,为非奇非偶函数. 2分 (2)当[]1,x a ∈时,9()2f x x a x=--+因为函数()f x 在[]1,a 上单调,所以13a <≤, 3分 此时()f x 在[]1,a 上单调递增,max 9()()f x f a a a==-+ 由题意:max 9()2f x a a=-+<-恒成立,即2290a a +-<.所以11a <<. 5分(也可以用参数分离:9()22f x x a x=--+<-,即1912a x x ⎛⎫<+- ⎪⎝⎭,右边最小值为1912a a ⎛⎫+- ⎪⎝⎭, 所以1912a a a ⎛⎫<+- ⎪⎝⎭,解得:11a <<又13a <≤, 所以a的取值范围为11a <<) 6分(3)当[]1,6x ∈时,[](]92,1,()9,,6x a x a xf x x a a x ⎧--+∈⎪⎪=⎨⎪-∈⎪⎩7分又()3,6a ∈,由上式知,()f x 在区间(],6a 单调递增, 7分 当()3,6a ∈时,()f x 在[1,3)上单调递增,在[3,a ]上单调递减.所以,()f x 在[1,3)上单调递增,在[3,a ]上单调递减,(a ,6]上单调递增. 10分则()max921,3,249()max (3),(6)max 26,22126,,64a f x f f a a a ⎧⎛⎫∈ ⎪⎪⎪⎝⎭⎛⎫==-=⎨ ⎪⎝⎭⎡⎫⎪-∈⎪⎢⎪⎣⎭⎩宗上所述,函数()f x 的最大值的表达式为:921,3,24()2126,,64a M a a a ⎧⎛⎫∈ ⎪⎪⎪⎝⎭=⎨⎡⎫⎪-∈⎪⎢⎪⎣⎭⎩12分。