材料表面与界面知识复习资料题库
材料表界面习题答案
![材料表界面习题答案](https://img.taocdn.com/s3/m/62e0584858fafab068dc0220.png)
材料表界面习题答案【篇一:材料表界面期末复习】> 1、表界面的定义及其种类。
定义;表界面是由一个相过渡到另一个相的过渡区域。
若其中一相为气体,这种界面通常称为表面。
种类:表界面通常有五类:气-液界面(表面),气-固界面(表面),液-液界面,液-固界面,固-固界面。
二、液体表面1、表面张力定义及表面自由能定义答:表面张力是单位长度上的作用力,单位是n/m表界面张力的热力学定义为:由能量守恒定律,外界所消耗的功存储于表面,成为表面分子所具有的一种额外的势能,也称为表面能。
??(?g/?a)p,t,nb由于分子在体相内部与界面上所处的环境是不同的,产生了净吸力。
而净吸力会在界面2、计算:r1=1mm,r2=10-5 mm2?32a=4?r?4?3.1416?(6.2?10m)11?4.83?10?4m2se?ga1=?a11-3?2?42=(72?10j?m)(4.83?10m)?3.5?10?5j3、laplace方程表达式12 ?p??(1/r?1/r) (2-18)就是laplace方程,是表面化学的基本定律之一。
注释:(1)若:r1=r2=r,则曲面为球面,回到(2-15)式;(2)若:r1=r2=无穷大,则液面为平面,压差为0。
4、表面张力的几种测定方法。
(1)毛细管法(2)最大气泡压力法 (3)滴重法 (4)吊环法解:先求水滴半径:代入kelvin公式:6、gibbs吸附等温式(溶液的表面张力)表面张力随溶液组成的变化规律一般有三种比较典型的类型三、固体表面1、比表面积定义:-? 1g某种固体,其密度为2.2 g/cm3,把它粉碎成边长为106cm的小立方体,求其总表面积。
2、吸附等温线:吸附量可用单位质量吸附剂所吸附气体的量或体积来表示。
3、langmuir吸附等温式a、langmuir吸附公式b、用活性炭吸附chcl3,符合langmuir吸附等温式,在0 ℃时的饱和吸附量为93.8 dm-3*kg-1。
材料表界面-考题答案
![材料表界面-考题答案](https://img.taocdn.com/s3/m/7791c9735acfa1c7aa00cce9.png)
名词解释:小角度倾斜晶界两个晶粒交界处晶向之间的夹角称为晶界角。
晶界角小于10度的晶界称为小角度倾斜晶界。
表面自扩散原子经由自己元素的晶体点阵而迁移的扩散。
不依赖浓度梯度,仅由热振动而产生的扩散。
表面热缺陷热激发导致,可以由晶体体内热缺陷的存在而相伴产生,也可以由晶体表面原子的迁移、脱位或吸附等产生的缺陷。
接触角:在固、液、气三相交界处,气液相界面与固液相界面之间的夹角。
肖特基势垒若忽略金属和半导体的间隙和界面态的影响,可以得到表面势垒这种势垒称之为肖特基势垒。
式中X为半导体导带底电子到真空能级的亲和势。
表面探针。
由光子、电子、离子、声、热、电场和磁场等可以与表面作用,来获取表面的各种信息。
它们通常被称为“探针”(Probe)表面原子弛豫表面原子的受力情况和体内不同造成的的表面原子层相对于体内原子层下的整体移动以降低体系的能量,而表面原子的近邻数和旋转对称性均不改变的现象,这种现象称为表面弛豫。
外延生长在单晶衬底(基片)上生长一层有一定要求的、与衬底晶向相同的单晶层,犹如原来的晶体向外延伸了一段,故称外延生长。
表面振动模固体表面层原子和分子的振动。
由于表面原子只在平行表面方向上的排列有周期性,在垂直表面方向原子的分布失去严格周期性。
表面原子的近邻配位原子同体内的不一样。
因而表面原子具有的对称性和它受力的分布同体内原子差异显著,致使表面振动形成特殊的模式。
表面量子化简答:XPS & AES XPS即X射线光电子能谱结合能Eb是把一个电子从束缚态激发到真空自由态所需的能量。
对于不同的电子壳层,其Eb也不相同,原子所处的化学环境对结合能的影响非常大,可以利用电子能谱仪测出电子的动能,于是得到结合能Eb,这就是光电子能谱分析表面电子结构的基本原理。
XPS 分析是采用X 射线照射样品,检测样品表面发射出来的光电子的能量分布。
在入射光子能量确定的情况下,光电子能量与原子轨道结合能量一一对应。
当原子与所处的化学环境不同时,光电子谱峰发生化学位移,因而可以从光电子谱峰的峰位与峰形,分析样品表面的元素组成以及原子所处的化学环境。
材料表界面期末考试卷
![材料表界面期末考试卷](https://img.taocdn.com/s3/m/7bdb2ffb0129bd64783e0912a216147917117e33.png)
材料表界面期末考试卷一、选择题(每题2分,共20分)1. 材料表界面的类型主要包括:A. 晶界B. 相界C. 界面D. 所有选项2. 晶界对材料性能的影响主要表现在:A. 强度B. 韧性C. 硬度D. 所有选项3. 相界是指:A. 两个晶体之间的界面B. 两个不同相之间的界面C. 晶体内部的界面D. 材料表面的界面4. 界面能是指:A. 界面处原子的化学能B. 界面处原子的表面能C. 界面处原子的结合能D. 界面处原子的内能5. 界面的稳定性与哪些因素有关:A. 界面能的大小B. 界面的几何形状C. 界面处的应力状态D. 所有选项6. 界面的微观结构包括:A. 晶粒大小B. 晶粒取向C. 晶界类型D. 所有选项7. 界面的宏观性能包括:A. 界面强度B. 界面韧性C. 界面硬度D. 所有选项8. 材料表界面的微观表征方法主要包括:A. 扫描电子显微镜(SEM)B. 透射电子显微镜(TEM)C. X射线衍射(XRD)D. 所有选项9. 材料表界面的宏观表征方法主要包括:A. 拉伸试验B. 硬度测试C. 冲击试验D. 所有选项10. 界面工程的目的在于:A. 提高材料的界面强度B. 改善材料的界面韧性C. 优化材料的界面性能D. 所有选项二、简答题(每题10分,共30分)1. 简述材料表界面的分类及其各自的特点。
2. 描述晶界强化机制,并举例说明其在实际材料中的应用。
3. 解释界面能对材料界面稳定性的影响。
三、计算题(每题15分,共30分)1. 假设一个立方体材料的晶粒尺寸为1mm,晶界面积与晶粒体积的比值为0.05。
计算该材料的晶界总长度。
2. 给定一个材料界面的界面能为50 mJ/m²,界面面积为100 m²,计算该界面的总界面能。
四、论述题(20分)论述材料表界面在材料科学中的重要性,并结合实例说明如何通过界面工程来改善材料的性能。
五、实验题(20分)设计一个实验来研究不同热处理工艺对材料晶界类型和界面能的影响,并简要说明实验步骤和预期结果。
材料表面与界面-习题含答案培训资料
![材料表面与界面-习题含答案培训资料](https://img.taocdn.com/s3/m/a5274e93336c1eb91b375d23.png)
材料表面与界面-习题含答案第一章1、什么是Young 方程?接触角的大小与液体对固体的润湿性好坏有怎样的关系?答:Young 方程:界面化学的基本方程之一。
它是描述固气、固液、液气界面自由能γsv,γSL ,γLv 与接触角θ之间的关系式,亦称润湿方程,表达式为:γsv -γSL =γLv COSθ。
该方程适用于均匀表面和固液间无特殊作用的平衡状态。
关系:一般来讲,接触角θ的大小是判定润湿性好坏的依据,若θ=0.cosθ=1,液体完全润湿固体表面,液体在固体表面铺展;若0<θ<90°,液体可润湿固体,且θ越小,润湿性越好;90°<θ<180°,液体不润湿固体;θ=180°,完全不润湿固体,液体在固体表面凝集成小球。
2、水蒸气骤冷会发生过饱和现象,在夏天的乌云中,用飞机撒干冰微粒,试气温骤降至293K ,水气的过饱和度(P/Ps )达4,已知在293K 时,水的表面能力为0.07288N/m ,密度为997kg/m 3,试计算:(1)在此时开始形成雨滴的半径。
(2)每一雨滴中所含水的分子数。
答:(1)根据Kelvin 公式有'2ln 0R RT M P P ργ=开始形成的雨滴半径为:0ln 2'p pRT MR ργ=将数据代入得:m R 101079.74ln 997293314.8018.007288.02'-⨯=⨯⨯⨯⨯⨯=(2)每一雨滴中所含水的分子数为N=N A n ,n=m/M=ρV/M ,得个661002.6018.03997)1079.7(14.34)(34233103'=⨯⨯⨯⨯⨯⨯⨯===-A A N M R N M V N ρπρ3、在293k 时,把半径为1.0mm 的水滴分散成半径为1.0μm 的小水滴,试计算(已知293K 时水的表面Gibbs 自由为0.07288J .m -2)(1)表面积是原来的多少倍?(2)表面Gibbs 自由能增加了多少?(9分)答:(1)设大水滴的表面积为A 1,小水滴的总表面积为A 2,则小水滴数位N ,大水滴半径为r 1,小水滴半径为r 2。
材料表面界面考试知识点整理2023年修改整理
![材料表面界面考试知识点整理2023年修改整理](https://img.taocdn.com/s3/m/04aa023103020740be1e650e52ea551810a6c9e9.png)
1.原子间的键合方式及性能特点原子间的键合方式包括化学键和物理键,其中化学键又分为离子键,共价键和金属键,物理键又包括分子键和氢键.结合方式 晶体特性离子键 电子转移,结合力大,无方向性和饱和性 硬度高,脆性大,熔点高,导电性差共价键 电子共用,结合力大,有方向性和饱和性 强度高,硬度高,熔点低,脆性大,导电性差金属键 依靠正离子与构成电子气的自由电子之间的静导电性,导热性,延展性好,熔点较高 电引力使原子结合,电子逸出共有,结合力较大,无方向性和饱和性分子键 电子云偏移,结合力很小,无方向性和饱和性熔点低,硬度低氢键 氢原子同时与两个负电性很大而原子半径很小的原子结合而产生的具有比一般次价键大的键力,具有饱和性和方向性2.原子的外层电子结构,晶体的能带结构。
3.晶体(单晶、多晶)的基本概念,晶体与非晶体的区别。
单晶:质点按同一取向排列,由一个核心(晶核)生长而成的晶体;多晶:由许多不同位向的小晶体(晶粒)所组成的晶体.晶体 非晶体原子排列 规则排布 紊乱分布熔点 有固定的熔点 没有明显的熔点性能 各向异性 各向同性4.空间点阵与晶胞、晶面指数、晶面间距的概念,原子的堆积方式和典型的晶体结构。
空间点阵:呈周期性的规律排列的阵点所形成的具有等同的四周环境的三维阵列;晶胞:在空间点阵中,能代表空间点阵结构特点的最小平行六面体,反应晶格特性的最小几何单元;晶面指数: 在晶格中,通过任意三个不在同一直线上的格点作一平面,称为晶面,描写晶面方位的一组数称为晶面指数.一般选取晶面在三个坐标轴上的截距,取倒数作为晶面指数;晶面间距:两近邻晶面间的垂直距离;原子的堆积方式:六角堆积和立方堆积;典型的晶体结构:面心立方结构,体心立方结构,密排六方结构.5.表面信息猎取的要紧方式及基本原理能够通过光子,电子,离子,声,热,电场和磁场等与材料表面作用,来猎取表面的各种信息,或者利用原子线度的极细探针与被测材料的表面近距离接近,探测探针与材料之间的信号,来猎取表面信息.电子束技术原理:离子束技术原理:离子比光子电子都重,它轰击表面时产生的效应特别明显.离子不但具有电荷还有电子结构和原子结构,当离子与表面接近时,除具有静电场和接触电势差作用外,它本身还能够处于不同的激发电离态,离子还能够与表面产生各种化学反应,总之,离子与表面作用后,提供的信息特别丰富.光电子能谱原理:扫描探针显微镜技术原理:6.为什么XPS可获得表面信息,而X射线衍射只能获得体信息?[略]X射线衍射(XRD)是利用晶体形成X射线衍射,对物质进行内部原子在空间分布状况的结构分析方法.将具有一定波长的X射线照耀到晶体上时,X射线因在晶体内遇到规则排列的原子或离子而发生散射,散射的X射线在某些方向上加强,从而显示与晶体结构相应的特有衍射现象.7.利用光电子能谱(XPS)和俄歇电子能谱(Auger)进行表面分析的基本原理和应用范围。
材料表面与界面-4
![材料表面与界面-4](https://img.taocdn.com/s3/m/5880222d3169a4517723a3e0.png)
= γ SV − γ SL
发生条件:
Wi > 0
体现固体和液体间的粘附能力
Wi
也称为粘附张力A
铺展 spreading
∆G = γ SL + γ LV − γ SV
铺展系数
Si = −∆G = γ SV − γ SL − γ LV
发生条件:
S >0
粘附过程
Wa = γ LV + γ SV − γ SL = A + γ LV
小于γc的液体能够在固 体表面上铺展, γc称为 临界表面张力
γc
γLV
非同系物液体
cosθ=1 cosθ
γc
γLV
2)临界表面张力规律 polymer PTFE 甲基硅树脂 PE PP PMMA PET PA66 脲醛树脂 γc 18 20 31 29 39 43 46 61
① 固体表面润湿性与固体极性有关,极性 大,润湿性好
5.4.4 高能表面的自憎现象
S = γ SV − γ SL − γ LV
γ SV > 100mN / m
高能表面吸附液体形成单分子层,使固体的临 界表面张力小于液体本身的表面张力,使液体 无法在固体表面铺展的现象,称为表面自憎现 象,液体称为自憎液体
1-辛醇 γ 27.8
-CH3 γc 22 非极性液体可铺展,极性液体取决 于它们的表面张力和临界表面张力
Wi = A
S = γ SV − γ LV − γ SL = A − γ LV
Wa > Wi > S
若S > 0,一切形式的润湿类型均可发生
S 为体系的润湿指标
S = A − γ LV
物理意义:固体和液体间粘附张力克服液体的 表面张力,铺展才可以进行
材料表界面知识点汇总
![材料表界面知识点汇总](https://img.taocdn.com/s3/m/eeb543ce59f5f61fb7360b4c2e3f5727a5e92438.png)
材料表界面知识点汇总1.表,界面是指一个相到另一个相的过渡区域。
2.表界面可以分为一下五类:固-气,液-气,固-液,液—液,固—固。
3.把凝聚相和气相之间(固-气,液-气)的分界面称为表面;把凝聚相之间(固—液,液-液,,固-固)的分界面称为界面.4.理想表面的定义:指除了假设确定的一套边界条件外,系统不发生任何变化的表面。
特点:表面的原子位置和电子密度都和在体内一样,且在实际生活中理想表面是不可能存在的。
5.清洁表面的定义:指不存在任何污染的化学纯表面,即不存在吸附,催化反应或杂质扩散等一系列物理,化学效应的表面.特点:可以发生多种与体内不同的结构和成分变化.6.吸附表面的定义:吸附有外来原子的表面称之为吸附表面.特点:吸附原子可以形成无序的或有序的覆盖层。
7.材料表面的分类:机械作用界面,化学作用界面,固态结合界面,液相或气相沉积界面,凝固共生界面,粉末冶金界面,粘接界面,熔焊界面.8.表面张力的定义:在液体表面膜中,存在着使液体表面积缩小的张力,这种张力称为表面张力.9.吸附是组分在热力学体系的各相中偏离热力学平衡组成的非均匀分布现象。
通常将被吸附的分子成为吸附质,固体则称为吸附剂.10.吸附类型分为物理吸附和化学吸附。
11.表面张力计算公式:12.表面张力产生的根本原因是分子间相互作用力的不平衡引起的。
13.表面张力本质上是由分子间相互作用力,即范德瓦尔斯力,单位为:J/m2place方程:附加压力的方向总是指向曲率中心一边,且与曲率大小有关。
place方程:球面: 与曲率半径成反比任意曲面:;对于平液面,两个曲率半径都为无限大,p=0,表示跨过平液面不存在压差。
16.当毛细管浸在液体中,若液体能浸润管壁,则会发生毛细上升现象,液面呈凹月形。
反之,若液体不能浸润管壁,则液面下降呈凸液面。
17.Kelvin公式:po为T温度下,平液面的蒸汽压;P为T温度下,弯液面的蒸汽压;V为液体摩尔体积;r为弯液面的曲率半径。
材料表面与界面复习题答案
![材料表面与界面复习题答案](https://img.taocdn.com/s3/m/ed3891b7f121dd36a32d8221.png)
1.液体的原子结构的主要特征。
液体的原子结构存在以下三个主要特征:(1)液体结构中近邻原子数一般为5~11个(呈统计分布),平均为6个,与固态晶体密排结构的12个最近邻原子数相比差别很大;(2)在液体原子的自由密堆结构中,四面体间隙占了主要地位。
(3)液体原子结构在几个原子直径范围内是短程有序的,而长程是无序的。
2.液体表面张力的概念和影响因素。
液体表面分子或原子受到内部分子或原子的吸引,趋向于挤入液体内部,使液体表面积缩小,因而在液体表面切向方向始终存在一种使液体表面积缩小的力,液体表面这种沿着切向方向,合力指向液体内部的作用力,就称为液体表面张力。
液体表面张力影响因素很多,如果不考虑液体内部分子或原子向液体表面的偏聚和外部原子或分子对液体表面的吸引,影响液体表面张力的因素主要有:(1)液体自身结构:液体的表面张力来源于液体内部原子或分子间的吸引力,因此液体内部原子或分子间的结合能的大小直接影响到液体的表面张力的大小。
一般来说,液体中原子或分子的结合能越大,液体表面张力越大,一般液体表面张力随结构不同变化趋势是:金属键结合物质>离子键结合物质>极性共价键结合物质>非极性共价键结合物质(2)表面所接触的介质:液体的表面张力的产生是由于处于表面层的原子或分子一方面受到液体内部原子或分子的吸引,另一方面受到液体外部原子或分子的吸引。
当液体处在不同介质环境时,液体表面的原子或分子与不同物质接触所受的作用力不同,因此导致液体表面张力的不同。
一般来说,介质物质的原子或分子与液体表面原子或分子结合能越大,液体表面能越小,反之越大(3)温度:随着温度的升高,液体密度下降,液体内部原子或分子间的作用力降低,液体内部原子或分子对表面原子或分子的吸引力减弱,液体表面张力下降。
最早给出的预测液体表面张力与温度关系的半经验表达式为:γ= γ0(1-T/T c)n式中T c为液体的气化温度,γ0为0K时液体的表面张力。
材料物理化学 第五章 表面与界面 习题
![材料物理化学 第五章 表面与界面 习题](https://img.taocdn.com/s3/m/5caa02ca4028915f804dc29c.png)
4、固体表面的驰豫与无机超细粉体性能之间有何关系? 解:由于固相的三维周期性在固体表面处突然中断,表面上原子产生的相对于正常 位置的上、下位移,称为表面弛豫。
材料物理化学
湖南工学院
粉体:微细的固体微料集合体,原料加工成微细颗粒以利于成型和烧结。粉体制备:反 复粉碎形成一系列新表面。而离子极化变形重排畸变有序性降低,随粒子的微细化从表 面增大,无序性增大并向纵深发展,不断影响内部结构,最后使粉体表面结构趋于无定 形化。 一种认为粉体表面层是无定形结构。一种认为粉体表面层是粒度极小的微晶结构。 所以在无机超细粉体上可以发生表面驰豫现象。
A γ αα = 2 A γ αβ
γαβ A γαα
(当 β 位于晶粒内
cos 0 = 2 γ αβ 2 A γαβ
(γA ) = A1 γ α β 晶内
( γA ) 晶内 /( γA ) 晶界 = ( 2 A A1 ) γ αβ / 2 A γ αβ =
2 A A1 2A
1
因而 β 相存在于晶界上时较为稳定。
6、陶瓷原料球磨时,湿磨的效率往往高于干磨,如果再加入表面活性剂,则可进一步 提高球磨效率,试分析这些效率的机理。 解:陶瓷原料球磨时,当加入水和表面活性剂时,表面活性剂在水中溶解,并且按 着一定的结构排列, 会在陶瓷原料和球上进行吸附、 润湿, 减少了陶瓷原料和球的摩擦, 因此提高了球磨效率。
7、什麽是润湿?影响湿润的因素有那些? 解:固体与液体接触后,体系(固体+液体)的吉布斯自由能降低时,称之。 (1)固体表面粗糙:当真实接触角小于 90 芳时,粗糙度越大,表面接触角越小,就
题 5-10 附图
由题意
(a ) (c )
γ SS 2 γ SO cos( 112 γ OO 2 γ SO cos( 100 112 2 γ OO cos 50
表面及界面习题
![表面及界面习题](https://img.taocdn.com/s3/m/c0b6d6530740be1e640e9a0c.png)
Chapter 11、表面与界面的定义。
1)表面:固体与真空的界面;2)界面:相邻两个结晶空间的交界面称为“界面”。
2、叙述表面与本体的不同点。
表面与本体:结构、化学组成、性质都存在不同。
材料与外界的相互作用是通过表面来进行的。
因此,表面具有特殊性,它的性质将直接影响材料的整体性质。
材料的性质虽然与组成的本体有关,但其表面对性能的影响却占很大的比重。
因为,不少性能是通过表面来实现的,如表面硬度、表面电导,同时,材料某些性能将通过表面受到外界环境的影响。
3、什么叫相界面?有哪几类?1)相界面:相邻相之间的交界面成为相界面。
2)分为3类:固相与固相的界面,固相与气相的界面,固相与液相的界面。
4、材料表面与界面的表征手段有哪些?材料表面与界面的表征主要通过对比表面积、表面力(表面能)等测定来实现1)比表面积a 静态吸附法(BET )(测量准确度和精度都很好,但达到吸附平衡慢,仪器装置较复杂,需要高真空系统,并且要使用大量的汞,逐步被动态吸附法所取代)b 动态吸附法:常压流动法,气相色谱法(操作简单而快速 )2)表面力a 高聚物熔体表面力外推法(γ∝T 成直线关系,测定不同温度下高聚物熔体的表面力,外推到20℃时的表面力)b Zisman 的浸润临界表面力法(测定固体在已知表面力的液体中的接触角 )C 还有几何平均方程求解法、状态方程测求法等等d 理论计算:等比容法、聚能密度法、Tg 参数计算法5、试述表面力产生的原因。
材料的表面结构和性质与其本体有明显的差别,这是因为位于材料本体的原子受到周围原子的相互作用是相同的,处于对称力场之中,总的作用之和等于0;而处于表面的原子只有局部受到与本体相同的相互作用,而其余的部分则完全不同,表面由此产生表面力。
6、单位体积的物体所具有的表面积称为比表面,请得 出下列结果:(1)半径为r 的球形颗粒,其比表面为:(2)质量为m ,密度为ρ的球形颗粒的比表面:(3) 边长为L 的立方体的比表面为:(4) 质量为m ,密度为ρ的立方体的比表面为:7.水蒸气迅速冷却至25℃会发生过饱和现象。
材料表面与界面-3
![材料表面与界面-3](https://img.taocdn.com/s3/m/c6d31542af45b307e971971a.png)
• 若纤维的半径r和液体表面张力σ L已 知,则用电子天平法测出∆P后,由上 式可求出接触角θ 。
界面张力和界面接触角的测试
两种互不相溶液体之间
若完全浸润(如采用铂丝)
Δ P=2πrσL1/L2
若界面张力σ L1/L2已知,液体与纤维之间存在 接触角θ L1/L2,则:
Δ P=2π rσ L1/L2cosθ L1/L2 因此,测定Δ P可求出纤维在L1/L2界面的接触 角θ L1/L2。
(1.9.3)
令A=σSG-σSL为粘附张力,由热力学平衡准则可知,只有A>0的过程才能 发生浸湿。A<0为不能浸湿。
铺展润湿过程
铺展润湿是液体与固体表面接触后,在固体表面上 排除空气而自行铺展的过程,亦即一个以液/固界 面取代气/固界面同时液体表面也随之扩展的过程。
• 液体从C自发铺展至B,覆盖面积为a,则相应的 自由焓变化为:
电子天平法的局限性
对仪器精密度要求高,操作难度大; 测试的是单根纤维,误差大。
以对水完全润湿的r=20微米的纤维为例:
用纤维束测接触角示意图
在管中充填一束纤维,充填率ξ=0.47~0.53。使纤 维束与液面接触,因毛细现象,液体沿纤维间空 隙上升,用电子天平测出增重量m随浸润时间变化
以一束纤维代 替一根纤维
文献数
201 2011 201 201 201 201 2016
0
2
3
4
5
Super/Ultra 568 671 782 932 101 116 1302
hydrophobi
35
c
Lotus Effect 141 150 135 160 167 193 173
m2 Wl3 l cos t
材料表面与界面标答
![材料表面与界面标答](https://img.taocdn.com/s3/m/d12cba1110a6f524ccbf85d5.png)
2012研“材料表面与界面”期末考试标准答案一、表界面的定义是什么?举例说明研究材料表界面现象的重要意义。
1、表面定义界面定义分为5大类:固-气、液-气、固-液、液-液、固-固;其中前两者称为表面,后三者称为界面。
(10分)2、腐蚀、老化、硬化、破坏、印刷、涂膜、粘结、复合等。
(10分)二、溶质加到溶剂中可引起其表面张力的变化,简述溶质浓度对溶剂表面张力影响的三种类型。
哪种类型的物质可以称为表面活性剂?表面活性剂如何分类?1、三种类型:1)表面张力随溶质浓度的增加几乎成直线关系上升;2)表面张力随溶质浓度的增加而下降;3)加入少量可显著降低溶液的表面张力。
第三种类型的物质可以称为表面活性剂。
(10分)2、按亲水基类型分类:阴离子、阳离子、两性、非离子按分子量分类:低分子量、中分子量、高分子量按工业用途分类(10分)三、简述陶瓷材料表面结构、晶界、相界的特点。
陶瓷为无机非金属粉末晶体在一定条件下形成的多晶聚集体。
(5分)表面:无论经过多么精细的研磨、抛光处理,其表面都是相当不平整的,除明显起伏外,还有裂纹和空洞。
(5分)晶界:晶界可分为孪晶界、小角度晶界和大角度晶界三种。
(5分)相界:相界并不是单纯的一个面而是一个过渡层,有多个分子层。
陶瓷经过严格研磨抛光后,在距表面1微米内,晶粒尺寸与体内明显不同;特别在距表面0.1微米的范围,晶粒尺寸很细,相界区有非晶态存在。
(5分)四、填空题(1) 33.2、41.5及42.0;66.4、83.0及84.0 (1分)聚氯乙烯的极性使得其表面焓较大(1分)大体积苯环的存在使其表面熵较小(1分)(2) 17.9;12.7;(1分)22.1;(1分)0.758 (1分)(3) ⎪⎭⎫⎝⎛--+-)1ln()1()ln(nnnrnk(1.5分)⎪⎭⎫⎝⎛--+-)1ln()1()ln(nnnrnk(1.5分)(4)⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫⎝⎛'-Ω222221dzdnbzznεε(1.5分)Ωzn2ε(1.5分)(5) ⎰∞∞-⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎫⎝⎛'--+⎪⎭⎫⎝⎛--+Ω=dzdzdnbznnznnnrnkT222)1(2)1ln()1()ln(1εεγ(3分)五、判断题(1) ( √ ) (1分)(2) ( √ ) (1分)(3) (×) (1分)(4) ( √ ) (1分)(5) (×) (1分)(6) ( √ ) (1分)(7) ( √ ) (1分)(8) ( √ ) (1分)(9) (×) (1分)(10) ( √ ) (1分)六、简答题(1) a) 高能粒子轰击聚合物表面产生大量自由基,形成致密的交联结构;(1分)b) 若被处理聚合物结构中含氧,则轰击使大分子链断裂分解产生活性氧,其效果类似于氧等离子处理;(1分)c) 轰击产生的新生自由基半衰期长,能与空气中氧作用,导致氧结合到大分子链上。
材料表面与界面复习题
![材料表面与界面复习题](https://img.taocdn.com/s3/m/9d16c017591b6bd97f192279168884868662b84a.png)
材料表面与界面复习题第一章1.试述表面力(表面能)产生的原因。
怎样测试液体的表面力?(1)原因液体表面层的分子所受的力不均匀而产生的。
液体表面层即气液界面中的分子受到指向液体部的液体分子的吸引力,也受到指向气相的气体分子的吸引力,由于气相吸引力太小,这样,气液界面的分子净受到指向液体部并垂直于表面的引力作用,即为表面力。
这里的分子间作用力为德华力。
(2)测试①毛细管上升法测定原理将一支毛细管插入液体中, 液体将沿毛细管上升, 升到一定高度后, 毛细管外液体将达到平衡状态, 液体就不再上升了。
此时, 液面对液体所施加的向上的拉力与液体总向下的力相等。
则γ=1 /2(ρl-ρg)ghrcosθ (1)(1)式中γ为表面力, r为毛细管的半径, h为毛细管中液面上升的高度,ρl为测量液体的密度,ρg为气体的密度( 空气和蒸气) , g为当地的重力加速度, θ为液体与管壁的接触角。
若毛细管管径很小, 而且θ=0 时, 则上式(1)可简化为γ=1/2ρghr (2)②Wilhelmy 盘法测定原理用铂片、云母片或显微镜盖玻片挂在扭力天平或链式天平上, 测定当片的底边平行面刚好接触液面时的压力, 由此得表面力, 公式为: W总-W片=2γlcosφ式中,W总为薄片与液面拉脱时的最大拉力,W片为薄片的重力, l为薄片的宽度, 薄片与液体的接触的周长近似为2l, φ为薄片与液体的接触角。
③悬滴法测定原理悬滴法是根据在水平面上自然形成的液滴形状计算表面力。
在一定平面上, 液滴形状与液体表面力和密度有直接关系。
由Laplace 公式, 描述在任意的一点P 曲面外压差为式中R1, R2 为液滴的主曲率半径; z 为以液滴顶点O为原点, 液滴表面上P 的垂直坐标; P0 为顶点O处的静压力。
定义S= ds/de式中de为悬滴的最大直径, ds为离顶点距离为de 处悬滴截面的直径再定义H=β(de/b)2 则得γ= (ρl-ρg)gde2/H 式中b为液滴顶点O处的曲率半径。
材料科学基础--材料表面与界面(专业课)
![材料科学基础--材料表面与界面(专业课)](https://img.taocdn.com/s3/m/4b48783f83c4bb4cf7ecd1f6.png)
正确答案:A.1/11重合位置点阵
5.下列对变形储能描述正确的是( )。
正确答案:A.变形储能越大,变形储能差值越大,界面的迁移速率越大。
多选题
----------------------------------------------------------------------------------------------------
7.二维点阵的晶界有( )自由度。
正确答案:B.二个
多选题
----------------------------------------------------------------------------------------------------
1.析出物形状是由( )两个互相竞争着的因素所决定。
正确答案:A.对称倾侧晶界 B.不对称晶界 C.扭转晶界
4.下列描述中正确的是( )。
正确答案:A.变形储能越大,变形储能差值越大。 C.变形储能越大,界面的迁移速率越大
5.下面对常见的材料表面按其形成途径分类描述正确的( )。
正确答案:A.机械作用界面 C.凝固共生界面 D.熔焊界面
正确答案:A.小角晶界 B.中角晶界 C.大角晶界
5.下列描述中正确的是( )。
正确答案:A.变形储能越大,变形储能差值越大。 C.变形储能越大,界面的迁移速率越大
6.下面对晶界曲率描述正确的是( )。
正确答案:A.晶界曲率是晶界迁移的驱动力 B.界曲率是向凹侧推进
判断题
----------------------------------------------------------------------------------------------------
2011.12.15材料表面与界面化学复习资料
![2011.12.15材料表面与界面化学复习资料](https://img.taocdn.com/s3/m/c92f6cf2a45177232f60a2a5.png)
2011年材料表面与界面化学复习资料一、概念:1、表界面的定义表界面是由一个相过渡到另一相的过渡区域。
2、机械作用界面受机械作用而形成的界面称为机械作用界面。
喷沙、变形、磨损等。
3、化学作用界面由于表面反应、粘结、氧化、腐蚀等化学作用而形成的界面称化学作用界面。
4、固体结合界面出两个固体相直接接触,通过真空、加热、加压、界面扩散相反应等途径所形成的界面称为固态结合界面。
5、液相或气相沉积界面物质以原子尺寸形态从液相或气相析出而在固态表面形成的膜层或块体称为液相或气相沉积界面。
6、凝固共生界面两个固相同时从液相中凝固析出并且共同生长所形成的界面称为凝固共生界面。
7、粉末冶金界面通过热压、热锻、热等静压、烧结、热喷涂等粉末工艺,将粉末材料转变为块体所形成的界面称为粉末冶金界面。
8、粘结界面由无机或有机粘结剂使两个固体相结合而形成的界面称为粘结界面。
9、熔焊界面在固体表面造成熔体相,然后两者在凝固过程中形成冶金结合的界面称为熔焊界面。
10、理想表面理想表面是指除了假设确定的一套边界条件外,系统不发生任何变化的表面。
11、清洁表面清洁表面指不存在任何污染的化学纯表面,即不存在吸附、催化反应或杂质扩散等物理、化学效应的表面。
12、表面弛豫弛豫是指表面区原子或离子间的距离偏离体内的晶格常数,但晶胞结构基本不变。
13、重构就是表面原子重新排列,形成不同于体内的晶面。
14、台阶化是指出现一种比较规律的非完全平面结构的现象。
吸附和偏析(指化学组分在表面区的变化),15、表面吸附固体表面存在大量的具有不饱和键的原子或离子,能吸引外来的原子、离子和分子,产生吸附。
16、偏析偏析是指表面或界面附近薄层内化学组成偏离晶体内部的平均组成,某种原子、离子或化合物浓度明显高与内部。
17、表面张力外力F与液膜边缘的长度成正比,比例常数与液体表面特性有关,以σ表示,称为表面张力。
18、自动增疏效应一般的液体在底能表面上形成的接触角比较大,平衡铺展压则变小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.液体原子结构的主要特征。
(1)液体结构中近邻原子数一般为5~11个(呈统计分布),平均为6个,与固态晶体密排结构的12个最近邻原子数相比差别很大;(2)在液体原子的自由密堆结构中存在五种间隙,四面体间隙占了主要地位。
(3)液体原子结构在几个原子直径范围内是短程有序的,而长程是无序的。
2.液体表面能的产生原因。
液体表面层的分子,一方面受到液体内层的邻近分子的吸引,另一方面受到液面外部气体分子的吸引,而且前者的作用要比后者大。
因此在液体表面层中,每个分子都受到一个垂直于液面并指向液体内部的不平衡力。
这种吸引力使表面上的分子趋向于挤入液体内部,促成液体的最小表面积。
要使液体的表面积增大就必须要反抗液体内部分子的吸引力而做功,从而增加分子的位能,这种位能就是液体的表面能。
3.液体表面张力的概念和影响因素。
液体表面层的原子或分子受到内部原子或分子的吸引,趋向于挤入液体内部,使液体表面积缩小,因此在液体表面的切线方向始终存在一种使液体表面积缩小的力,其合力指向液体内部的作用力,这种力称为液体表面张力。
液体的表面张力大小受很多因素的影响。
如果不考虑液体内部其它组元向液体表面的偏聚和液体外部组元在液体表面的吸附,液体表面张力大小主要受物质本身结构、所接触的介质和温度的影响。
(1)液体的表面张力来源于液体内部原子或分子间的吸引力,因此液体内部原子或分子间的结合能的大小直接影响到液体的表面张力的大小。
一般来说,液体中原子或分子间的结合能越大,表面张力越大。
具有金属键原子结合的物质的表面张力最大;其次由大到小依次为:离子键结合的物质、极性共价键结合的物质、非极性共价键结合的物质。
(2)液体的表面张力的产生是由于处于表面层的原子或分子一方面受到液体内部原子或分子的吸引,另一方面受到液体外部原子或分子的吸引。
当液体处在不同介质环境时,液体表面的原子或分子与不同物质接触所受的作用力不同,因此导致液体表面张力的不同。
一般来说,介质物质的原子或分子与液体表面的原子或分子结合能越高,液体的表面张力越小;反之,介质物质的原子或分子与液体表面的原子或分子结合能越低,液体的表面张力越大。
(3)液体的表面张力还与温度有关。
温度升高,液体的密度降低,液体内部原子或分子间的作用力降低,因此液体内部原子或分子对表面层的原子或分子吸引力减弱,导致液体的表面张力下降。
预测液体表面张力与温度关系的半经验表达式为:γ = γ0(1-T/T c)n式中T c为液体的气化温度,γ0为0K时液体的表面张力。
( 举例:水的表面张力随温度的升高而下降的趋势。
这一变化规律可以从两个方面进行解释:一方面,随温度升高,水的体积膨胀,内部分子间距离增大,导致水中内部分子对表面分子的吸引力降低;另一方面,随温度升高,蒸汽压提高,气相中的分子对水表面分子的吸引力增大。
)4.固体表面能的影响因素。
影响固体表面能的主要因素有:固体原子间的结合能、固体表面原子的晶面取向和温度。
(1)由于表面能的大小主要取决于形成固体新表面所消耗的断键功,因此原子间的结合能越高,断开相同结合键需要消耗的能量越高,所形成的固体表面能越高。
(2)由于固体晶体结构是各向异性的,不同晶面的原子面密度不同,所以形成单位面积的新表面需要断开原子键的数量不同,导致所形成的表面能不同。
一般来说,固体表面原子面密度越高,形成单位面积的新表面需要断开原子键的数量越小,表面能越低。
(3)与液体一样,固体的表面能随温度的升高而下降,并且固体表面能随温度升高而下降的速度大于液体。
5.计算并讨论立方晶系(100)、(110)和(111)面的表面能大小。
采用“近邻断键模型”来计算固体晶体的表面能。
假设:第一,每个原子只与其最近邻的原子成键(最近邻原子数即为该晶体结构的配位数),并且只考虑最近邻原子间的结合能;第二,原子间的结合能不随温度变化。
对于具有任意晶体结构的固态晶体,某一晶面{hkl}的表面能(γS{hkl})可以用下式计算:γS{hkl} = N{hkl}Z(Ua/2) 其中N{hkl}为{hkl}晶面单位面积的原子数,Z为晶体沿{hkl}晶面断开形成新表面时{hkl}晶面上每个原子需要断裂的键数。
简单立方:面心立方:体心立方aaa(a)单胞结构(c){011}晶面(b){001}晶面(d){111}晶面a(a)单胞结构a(b){001}晶面a(c){011}晶面(d){111}晶面6. 固体晶体表面形状的形成原则和确定方法。
固体晶体的表面平衡形状一方面取决于所形成的总表面积大小,但更重要的是决定于构成表面的晶面表面能大小。
一般情况下,固体晶体的表面由那些表面能较低的低指数晶面组成,从而形成多面体形状。
形成的原则是固体总表面自由能最低。
确定方法:在一个单晶体平衡多面体中,由多面体中心引出一组矢量,方向与多面体各表面垂直,矢量的长度与各晶面的表面能成正比。
在各矢量的端点做垂直于该矢量的平面,各平面相交则得到晶体的平衡形状。
按照Wuff 提出的晶体平衡形状的半经验规律,OA/OB = γ(10) /γ(11)。
再根据两个四边形的公共部分所组成的八边形的面积应该为1cm 2,就可以最终确定该八边形的尺寸。
7. 对比分析固体表面物理吸附和化学吸附的主要特点。
物理吸附:(1)固体表面的分子或原子具有不均匀力场,当气体分子(原子)接近固体表面时,将受到固体表面分子(原子)的吸引力,在固体表面形成富集。
这种现象为物理吸附。
(2)如果被吸附物质深入到固体体相内部,则称为吸收。
(3)物理吸附的作用力是范德华力,可以看作是气体冷凝形成的液膜,因此物理吸附热的数值与液化热相似。
(4)因为范德华力存在于任何分子之间,因此物理吸附没有选择性。
(5)物理吸附速度一般较快。
(6)物理吸附往往容易脱附,是可逆的。
次表面最表面 再次表(b)0.59cm 0.32cm (11) (10) (a) (11) (10) O A B化学吸附:(1)通过电子转移或电子对共用形成化学键或生成表面配位化合物等方式产生的吸附为化学吸附。
(2)化学吸附的作用力是化学键力,吸附力较大,吸附热与化学反应热相似。
(3)只有固-液体系满足化学反应的热力学条件时,化学吸附才能发生,因此化学吸附有选择性。
(4)化学吸附需要一定的活化能,所以吸附速度较慢。
(5)化学吸附一般不发生脱附,所以是不可逆的。
8.固体表面吸附Langmuri等温式的基本假设、推导过程和物理含义。
基本假设:(1)固体表面是均匀的,表面各个位置发生吸附时吸附热都相等。
(2)固体表面存在一定的活化位置,每个活化位置只能吸附一个分子(原子)。
(3)吸附只发生在固体的空白表面上,并且是单分子层吸附。
(4)被吸附分子(原子)间没有相互作用力。
(5)当吸附在固体表面的分子(原子)热运动足够大时,又可发生脱附。
(6)吸附速率和脱附速率相等时,达到动态平衡假设固体表面有S个吸附位,其中已被吸附了S1个,还有S0个未被吸附,则:固体表面已被吸附的面积分数为:θ= S1/S固体表面未被吸附的面积分数为:1-θ=S0/S气体的吸附速率v1与气体的压力p和未被吸附面积分数(1-θ)成正比:v1 = k1p(1-θ)已吸附分子(原子)的脱附速率v2与已被吸附面积分数(θ)成正比:v2 = k2θ式中k1和k2为比例常数,在恒温下吸附与脱附达到平衡时,有:v1 = v2即:k1p(1- θ) = k2θ, θ = k1p/(k2 + k1p)令:吸附系数b = k1/k2,则:θ = bp/(1 + bp)Langmuri等温式描述了固体表面已被吸附的面积分数(θ )与气体平衡压力(p)之间的关系。
9.固体表面吸附质超点阵的概念及表示方法被吸附粒子在金属表面形成了规律排列的二维点阵,称为超点阵。
可用Wood标注法说明超点阵与金属表面点阵之间的关系。
如果金属表面点阵的基矢为a1和a2,超点阵的基矢为a s1和a s2,则超点阵单元基矢的标注为(a s1/a1×a s2/a2)。
超点阵表示方法:图中给出的四种超点阵标注分别为:(1×1)、(2×2)、C(2×2)和(3×1)。
其中C表示在超点阵单元中心多出一个吸附原子。
一个超点阵图样的Wood完整标注还应包括吸附剂和吸附质的种类和表面覆盖率。
例如:Ni(111)-C(2×2)-O(1/4)表示氧在金属镍的(111)表面吸附时,当表面覆盖率达到θ =1/4时,得到的超点阵图样为C(2×2)。
10.讨论液体在固体表面的润湿与铺展现象。
(看书和PPT)(1)润湿现象及润湿角液体在固体表面上铺展的现象,称为润湿。
润湿与不润湿不是截然分开的,可用润湿角进行定量描述。
润湿角定义:当固液气三相接触达到平衡时,从三相接触的公共点沿液—气界面作切线,切线与固-液界面的夹角为润湿角。
润湿角大小与润湿程度的关系:θ<90 o:润湿θ>90 o:不润湿θ=0 o:完全润湿θ=180o:完全不润湿润湿角公式:σs-g=σs-l+σl-g cosθ所以cosθ=(σs-g-σs-l)/σl-g当σs-g>σs-l时,cosθ>0,θ<90 o,σs-g与σs-l差越大,润湿性越好。
当σs-g<σs-l时,cosθ<0,θ>90 o,σs-g与σs-l差越大,不润湿程度越大。
以上方程的使用条件:σs-g-σs-l≤σl-g,σs-g为固体的表面能(2) 液体在固体表面的铺展内聚功Wc表征了相同液体表面间吸引强度;粘附功Wa表征了不同液体或固体与液体之间的吸引强度。
一种液体滴在另一种与其不相溶的液体或固体表面上,可能发生两种情况:第一,液滴在另一液体或固体表面不铺展而成为凸镜或液滴,这时表明液滴本身内聚功大于该液体对另一液体或固体的粘附功。
第二,液滴在另一液体或固体表面铺展开而形成一层薄膜,这时表明液滴的本身内聚功小于该液体对另一液体或固体的粘附功。
一种液体能否在另一种与其不相溶的液体或固体表明上铺展,可用粘附功和内聚功之差来表示:S=Wa-Wc=[σA+σB-σAB]-2σ B=σA-σB-σABS-铺展系数S>0时,B在A表面上会自动铺展开,S值越大,铺展越容易S<0时,B在A表面上不铺展,负值越大,铺展越难S>0是铺展的基本条件,这时σA-σB-σAB>0对液相在固相表面的铺展:σA=σs-gσB=σl-gσAB=σl-s,所以σs-g-σl-s-σl-g >0,所以σs-g-σl-s >σ l-g。
这时润湿角方法已经不能再适用。
铺展是润湿的最高标准11.分析晶界结构模型。
多晶体中各晶粒之间的交界——晶界。