数学解题之一题多解与多题一解

合集下载

从“一题多解”到“多题一解”

从“一题多解”到“多题一解”
因为 m> , 以( r 1 3 ( n 3 n 4 ) 0所 3 + )= n3 一 m - m n
解法 4 因为直线 z 过定点 ( 30 直线 f过定 。 一 ,), 2
点 N O ) 所以I NI2 , (, , M =
又因为 oD 的半 径 r = 2 , 以如图 所 a f 3  ̄因为 t = = +0。 l a n
又因为oD的半径 r 2  ̄, = 4 直线 Z到直线 Z 的角为 。 : 3 。所以 0,





n 一,


)+ 3 2

r, / /

n一,
l= , 1 1 2

3 tn3 = l n a o +m
点评
= 澈 栅+ —= 3- m n 一1
点评
本题是两直线与 圆共 三个元 素的交点 , 如何
选择两者先求交点 , 再代入第 三者 当中 , 要有所取舍 , 否 则运算 极大 , 甚至无 功而返. 法在解 法一 的基础 上做 此
了适 当调整 , 减化了运算量.
3 +l m
^ 一
解法 1 ( 标准答案提 供方法 ) 将直线 z 与 f 的方 , 2
绍.
(m+ ) 3 2 n ,) ( m + m— ) [ ( — 一 3 1 = [ ( 一n + 3 n 2 n ] 2 n m)

(m + m n ] 3 n 2 — ) 化 简 , 3 1 = n3 + ) 3 一 m 一 m) 得(m+ ) 3 ( m 1 (n 3 n 4
3 8
中。 7 (l 第 期・ 中 ) ? 般I 21 5 高 版 o年
. 解题研究 .

“一题多解”与“多题一解”在高中数学教学中的价值研究与实践

“一题多解”与“多题一解”在高中数学教学中的价值研究与实践

“一题多解”与“多题一解”在高中数学教学中的价值研究与实践随着中国教育制度的不断改革,无论是教育目的还是方式方法,都是为了让学生拥有更加合理更加有效的学习环境而做出改变。

其中高中数学的教育目标,也不再单是让学生学会如何运用数学公式进行计算,除了针对学生对数学的学习兴趣以外,在实际解题方面,要求培养学生拥有更多更灵活的解题思路和方式,以改变统一性的教学模式。

就高中数学解题中“一题多解”与“多题一解”的解题方式加以分析研究。

高中数学解题方式思维模式学生在进入高中后,改变的不仅仅是学习的内容,学生自身的心智和思维模式也有较大的改变。

学生在思想成长的阶段,会出现种种的问题,这些问题会直接影响学生的学习情况,特别是数学。

因为高中阶段数学的难度将进一步加大,内容增多,因此学生解题的方式应更加的多样化。

因此,高中数学教学,首先要从学生解题过程中的思维模式入手,同时改变课堂教学的方式和内容,以此提高学生的学习成果。

一、“一题多解”在数学教学中的价值与实践(一)价值与实践在未来的社会发展中需求的人才将是多元化、多样化的,统一性思维的教育模式已经不再适用于现代社会。

因此,在高中数学教学中,“一题多解”的教学理念,是以学生学习为主,改变以老师为主导地位的教学模式。

因为每一个学生的受教育情况、性格、思维模式都不相同,因此一个固定性的解题方式不能最有效的适用于每一个学生,所以在数学教学的解题过程中,老师应引导学生多角度的去分析问题,让学生去探究、发现多样化的解题方式。

“一题多解”的根本在于问题本身,老师在创设和选择问题时,首先应考虑到问题自身是否具备多样化的解答模式。

同时,在培养学生多样化解题思维时,应注意调动学生解题的积极性,被动、消极的解题态度很难让学生产生多样化的解题思维。

所以针对这方面数学问题的内容应结合学生平时感兴趣的东西,让学生自觉的参与到多样化的解题中。

如有的学生喜欢足球,老师就把其融入习题中,让学生用原本感到枯燥的公式,运算他喜欢的与足球相关的问题。

七年级上册数学一题多解

七年级上册数学一题多解

七年级上册数学一题多解在数学中,一题多解是非常有价值的学习方法,它不仅能提高学生的解题能力,还能培养学生的思维灵活性和创造性。

七年级上册的数学题目中,很多题目都可以采用多种解法来解答。

以下是对一题多解的简述:一题多解的意义加深理解:通过尝试不同的解题方法,学生可以更加深入地理解数学概念和原理。

培养思维:一题多解有助于培养学生的发散性思维,使他们能够从多个角度看待问题。

提高能力:学生在掌握多种解题方法后,能够更灵活地应对各种数学问题,提高解题效率。

示例:解一元一次方程以解一元一次方程为例,除了常规的移项、合并同类项等方法外,还可以采用以下方法:方法一:直接计算法对于简单的一元一次方程,如 2x=4,可以直接通过除法得到x=2。

方法二:移项法对于形如 3x+2=5x−3 的方程,可以通过移项将未知数集中在方程的一边,然后解出 x 的值。

方法三:合并同类项对于含有多个未知数项的方程,如 2x+3x=5,可以先合并同类项得到 5x=5,然后再解出 x。

方法四:乘除法对于系数不为1的一元一次方程,如 0.5x=2,可以通过乘法将系数化为1,从而解出 x。

实际应用在实际解题过程中,学生可以根据题目的特点和自己的掌握情况,选择最合适的解法。

通过一题多解的训练,学生可以逐渐提高解题的灵活性和准确性,为后续的数学学习打下坚实的基础。

总之,一题多解是数学学习中非常有价值的方法,值得学生在日常学习中多加实践和应用。

在数学中,一题多解是非常有价值的学习方法,它不仅能提高学生的解题能力,还能培养学生的思维灵活性和创造性。

七年级上册的数学题目中,很多题目都可以采用多种解法来解答。

以下是对一题多解的简述:一题多解的意义加深理解:通过尝试不同的解题方法,学生可以更加深入地理解数学概念和原理。

培养思维:一题多解有助于培养学生的发散性思维,使他们能够从多个角度看待问题。

提高能力:学生在掌握多种解题方法后,能够更灵活地应对各种数学问题,提高解题效率。

初二数学练习题一题多解

初二数学练习题一题多解

初二数学练习题一题多解解题思路:在数学学习中,遇到一道题目可能有多种解法。

这不仅有助于提升学生的数学思维能力,也能让他们从不同的角度去理解和解决问题。

本文将以初二数学练习题为例,探讨一题多解的情况。

题目:甲、乙、丙三人比赛背大口诀。

甲比乙慢3分钟,乙比丙慢5分钟,甲比丙慢8分钟。

甲背完大口诀需要10分钟,请问乙和丙分别需要多少时间?解法一:代数法设乙背完大口诀需要的时间为x分钟,则甲背完大口诀需要的时间为x+3分钟,丙背完大口诀需要的时间为x+5分钟。

根据题目中的信息可得以下方程:$x + 3 = 10$$x + 5 = 10 + 8$解这个方程组,得到$x = 2$分钟。

所以,乙背完大口诀需要2分钟,丙背完大口诀需要7分钟。

解法二:逻辑推理法根据题目的信息,可以得出以下推理:甲比乙慢3分钟,而乙比丙慢5分钟,所以甲比丙慢8分钟。

这说明甲、乙、丙三个人的时间差是连续递增的。

甲背完大口诀需要10分钟,假设乙背完大口诀需要t分钟,那么丙背完大口诀需要t+5分钟。

根据题目的要求,甲、乙、丙三个人的时间差应该是8分钟,所以有以下关系:$t = 10 + 8$$t + 5 = 10 + 8 + 5$解这个方程组,得到$t = 18$分钟。

所以,乙背完大口诀需要18分钟,丙背完大口诀需要23分钟。

解法三:列式计算法甲背完大口诀需要10分钟,假设乙比甲慢p分钟,丙比甲慢q分钟。

根据题目的信息,可以得到以下列式:$p + q + 10 = p + 3 + q + 8$简化列式,得到$p + q = 2$再根据题目的要求,乙比丙慢5分钟,即有$p = 5 + q$。

将$p = 5 + q$代入$p + q = 2$,得到$q = -3$再代入$p = 5 + q$,得到$p = 5 - 3$所以,乙背完大口诀需要2分钟,丙背完大口诀需要7分钟。

结论:通过以上三种解法,我们可以得到相同的结论:乙背完大口诀需要2分钟,丙背完大口诀需要7分钟。

万能高中数学说题 一题多解,多题归一

万能高中数学说题    一题多解,多题归一
1、选题为解三角形题,是历年高考的必考点。一题为2022年全国甲卷第16题, 二题为2020年新课标2卷理科第17题
2、解三角形在高考中主要以简单、基础题出现,考察内容与三角函数、向量、 均值不等式结合的较多。题型设置主要是一道选择题加一道解答题,难度以简单基 础为主。因此,高考中是学生必须拿下的一块阵地,也是学生学习、考试由浅入深 的关口。
一题多解,多题归一
各位老师,您们好: 我今天要说的题目是:
一、已知
中,点D在边BC上,
二、△ABC中,sin²A- sin²B- sin²C =sinBsinC. (1)求A; (2)若BC=3,求△ABC周长的最大值。
.当 取得最小值时,
________.
1
2
3
题目背景 解题思路 变式迁移
一、题目背景
3、考察学生代数推导、数学运算、解题优化的思想和能力。
二、解题思路
一.填空题【2022年全国甲卷】已知
中,点D在边BC上,
.当
取得最小值时,
________.
【分析】 利用余弦定理表示出
后,结合均值不等式即可得解.
【解】 设
,则在
中,
,在 ,所以
中,
,当且仅当

时,等号成立,所以当
取最小值时,
二、解答题【2020年新课标2卷理科】
四、反思
1、 在日常教学中,通过不断的变式,运用数学转化的思 想,加深对题意的理解,让学生在充分的交流与合作中加深 对问题的认识。
2、引导他们探索数学问题的解题方法,做一题,通一类, 会一片。更重要的是可以提高学生的化归迁移的思维能力和 思维灵活性。引领学生善于思考,提高他们分析问题和解决 问题,sin2A-sin2B-sin2C=sinBsinC.

一题多解,多解归一

一题多解,多解归一

一题多解,多解归一作者:杨露露来源:《读与写·下旬刊》2018年第08期中图分类号:G633.6 文献标识码:B 文章编号:1672-1578(2018)24-0146-01解题,作为数学教学活动过程中的核心内容,它既是推进数学认知过程的有效手段,也是培养学生数学思维能力的重要途径.在解题教学中,越来越多的人提倡“一题多解”.但是面对“一题多解”,教师有些茫然,导致他们在教学中经常会进入一些误区.例如盲目地罗列多种解法,重“量”轻“质”,教师以为把自己的“研究成果”无私地奉献给学生,却不知道学生在惊叹于教师的高明之余茫然于各种解法的得到,甚至会使学生产生自卑感等消极的心态.教师致力于寻找各种不同的解法却忘了对多种解法中的思想方法理解透彻、融会贯通.目前这种状况就需要教师对“一题多解”的教学及时反思,找出相应的教学策略。

面对“一题多解”,教师应何去何从呢?1.一题多解,多解归一,一题一解对于书上的解答或者是学生提出的多种解法,教师都应该对这多种解法进行分析,分析多种解法中分别运用的方法,涉及到的知识点,蕴含的数学思想方法.如果几种解法虽然算式、程序不完全一样,而解题的立义和根据无根本的不同,其实可以多解归一.一个题目的多种解法中总会找到共通点,教师应充分挖掘其内在联系及背后的思想方法。

“一题”之所以能“多解”,往往就在于这些解法之间是有联系的,这些联系之间是有规律可循的,通过“多解”后的“归一”,让学生能站在系统的高度看问题,进而升华到从哲学的角度认识世界,这样就可以形成强大的认识力,由此获得对数学的通透理解。

[1]到底讲哪些方法好?时间允许吗?该不该给学生讲所有的方法?等等这些问题困惑着一线教师。

笔者认为,其实问题的关键不在于解法的多少,而在于透过这些不同的解法,能够挖掘出多种解法的内在联系,提炼出多种解法中的思想方法。

因此最根本的是掌握基本概念、定义、性质等,进而把问题化归转化为已知问题求解。

“一题多解”与“多题一解”在高中数学教学中的价值研究与实践

“一题多解”与“多题一解”在高中数学教学中的价值研究与实践

“一题多解”与“多题一解”在高中数学教学中的价值研究与实践作者:钱万毅来源:《中学课程辅导·教师教育(上、下)》2017年第02期摘要:经新课标的多次改革,高中数学教学由从前的教师为主导,逐渐演变为教师的作用为指导、引导,而学生为主体的自主多样性课堂,这样的课堂可以帮助学生更加主动地学习,锻炼学生思考、组织、分析、归纳等的能力。

其中“一题多解”和“多题一解”在高中数学教学中有良好的价值,值得实践与推广。

关键词:高中数学;解题方式;思维模式中图分类号:G633.6 文献标识码: A 文章编号:1992-7711(2017)02-057-01学生在进入高中学习后,不仅仅面临着学习内容的改变,学习的难度上了一个更高的台阶,还面临着思想的成熟和思维方式的养成。

在这一阶段,学生要学会用发散思维和提纲挈领的方法处理问题,而数学的学习,对培养学生这些能力都非常有益,其中“一题多解”与“多题一解”正是培养这些能力的关键教学实践方法。

在此阶段,注重数学教学的方式方法,传递给学生正确的思考方式,锻炼学生正确的思考能力,对于学生今后学习能力以及生活能力的提高都尤为重要。

一、“一题多解”在数学教学中的价值研究与实践(一)价值在传统的数学教学模式中,通常是老师在讲台上教授数学公式、概念等内容,学生在下面记笔记。

学生和老师都认为掌握了大量的定理、定义,以及数学公式,就能做好题,做对题,就能够在考试中取得好成绩。

在此背景和环境下,培养学生的发散性思维是很必要的。

老师不应该对数学题目只做生硬的讲解,只讲一种“标准答案”,这样只会禁锢学生的思维。

长久下去,学生只会变成“书呆子”。

教师应该多注重教学的有效性,应在课堂上观察学生的状态,倾听学生的需求,倾听学生的提问与回答,倾听学生的讨论。

这样才能使课堂互动起来。

数学的学习,本来就应该是丰富多彩的。

这样一个锻炼逻辑思维的学科,教师在教授的过程中应当充分发挥学科特点,让学生学习了数学,真正能有所用。

例谈“一题多解”与“多题一解”之争

例谈“一题多解”与“多题一解”之争

: , = 一 , = 一 ,0 = 1 2 贝有 : + = , + 6
C× ; 3 A A 一8 ; ‘
方法三 对 同 色 球 不 加 区 别 , 认 为 3 只 红 球 都 是 相 即 同的 , 5只 白球 也 都 是 一 样 的 , 所 有 的 球 一 一 摸 出 排 成 一 把 排, 每种 排 法 作 为 一 个 基 本 事 件 , 基 本 事 件 总 数 为 n= 则
把 所 有 的 球 都 一 一 摸 出 依 次 排 成 一 排 , 一 种 排 法 作 为 一 每
个 基本事件 , 么基本事 件 的总数 为 n= :其 中第 4个球 那 A,
C XA:
内 的球 数 , 根 据 题 意 得 : 则
是红球的排法数为 m c × ; = A, 所以P —_ ÷. = n = -

以上四道题 目, 内容各有不 同 , 在 解答 时都采 用 了 虽 但 同 一种 放 法 —— 插 空 法 .
;×A5
^7
詈÷ ・
方 法 四 只 考 虑 第 4次 摸 出 的 球 的 每 一 种 可 能 作 为 基 本 事 件 , 么 基 本 事 件 总数 为 n: 那 3十5=8 而 摸 出 红 球 的基 ,

解 题 技 巧 与 方 法




.I _ ., .


题 臆
◎ 马俊 杰 ( 武威 二 中 730 ) 30 0
28 8 0种 排 法 .

插法 , 右端 插入 , 有 A 从 也 种 插 法 , 以 共 有 2×A 所 ×A =
【 要 】 高 中数 学 教 学 中 贯 彻 “ 题 多 解 ” “ 题 一 摘 在 一 与 多

“一题多解”与“多题一解”在高中数学教学中的价值

“一题多解”与“多题一解”在高中数学教学中的价值

㊀㊀解题技巧与方法㊀㊀108数学学习与研究㊀2019 24一题多解多题一解在高中数学教学中的价值一题多解 与 多题一解 在高中数学教学中的价值Һ韩云凤㊀(云南省昌宁县第一中学ꎬ云南㊀保山㊀678100)㊀㊀ʌ摘要ɔ 一题多解 与 多题一解 是锻炼学生思维能力的重要途径.高中数学具有一定的抽象性ꎬ对学生的思维能力提出了更高的要求.所以ꎬ高中数学教师应当巧用以上两种方式ꎬ帮助学生灵活运用数学概念㊁数学公式以及数学性质ꎬ不断锤炼学生的思维能力和提升学生的思维水平ꎬ为了达到重建学生思维体系的目的ꎬ从而提高学生的数学学习效率.ʌ关键词ɔ高中数学ꎻ解题能力ꎻ价值意义数学教学的本质是不断锻炼学生的思维ꎬ不断帮助学生解决问题. 一题多解 与 多题一解 这两种解决问题的方法对提高学生的思维品质有重要影响.因此ꎬ在日常数学教学中ꎬ高中数学教师能结合实际教学内容ꎬ有针对性㊁计划性地利用这两种方式锤炼学生的思维水平ꎬ扩大学生解题视野和解决思路ꎬ不断提高学生解决问题的能力.一㊁ 一题多解 的含义概述一题多解的含义是指:在原有问题的基础上ꎬ引导学生从不同的角度和层次思考原题ꎬ拓展学生的问题解决视野.实现思维扩散式发展ꎬ以帮助学生寻找到多种解题途径.允许学生使用不同的方法和方法来分析数学问题ꎬ可以帮助学生加深对数学知识ꎬ定理和自然的理解ꎬ并灵活地应用它们.在一定程度上ꎬ它还提高了学生的思维能力和创新能力.在高中数学课堂上ꎬ应用 一问与多解 的求解方法要求学生从原问题的实际情况出发.对题意进行深入分析ꎬ尝试从多个角度入手解决问题ꎬ通过对比ꎬ最终筛选出最佳解题方案.学生解决 一问与多解 问题的习惯和能力ꎬ可以有效激活学生的思维能力.学生的思维活起来ꎬ也就避免了 钻牛角尖 思维定式 等问题的出现.例如ꎬ在教授 不平等 相关知识点时ꎬ可以使用 一问与多解 教学模式.首先ꎬ要求学生用比较法㊁分析法来解析ꎻ接着ꎬ要求学生从不同角度再次解决问题.此外ꎬ为了提升学生对数学知识的掌握熟练度ꎬ还可以指导学生利用换元法㊁向量法等方式来进行解题.如果问题得到解决ꎬ学生将接受 一个问题和多个解决方案 的培训ꎬ学生将从解决方法演变为各种解决问题的方法.学生也实现了对此类问题的融会贯通ꎬ学生的思维能力㊁解题能力也得到了有效地提升.又如ꎬ在解析 概率 相关例题时ꎬ可以有意识地引导学生从不同角度进行排列计算ꎬ从而让学生掌握多样化求概率的方法.不难看出ꎬ 一个问题和多个解决方案 问题的解决方案并不仅仅意味着数量从 一个 变为 多个 .其本质意义在于锻炼学生的思维能力ꎬ培养学生的创新思维ꎬ帮助学生实现思想的质变.二㊁ 多题一解 的含义概述多题一解 的含义是指:利用一种解题思路去解析不同的题目ꎬ虽然利用到的数学性质㊁数学公式可能不同ꎬ但是ꎬ解题过程和解题思维是相同的. 多题一解 要求学生能够拥有较为完整的知识体系ꎬ能够在日常解题过程中ꎬ不断归纳和总结相应的解题方式ꎬ从而提高学生自己的解题水平.在高中数学问题解决中运用 多问题ꎬ一解 教学模式ꎬ引导学生运用一种方法探索数学的内在规律和本质标志.通过掌握问题解决方法之间的联系ꎬ可以发现数学问题的共同特征ꎬ并总结和总结解决相同类型问题的常用方法.从而提高学生的解题效率.多题一解 教学模式能够使学生的思维更加缜密ꎬ强化了学生对相关概念㊁性质㊁定理的理解以及运用ꎬ这也在一定程度上打破了 题海战术 的弊端ꎬ起到了 做题精炼 的效果.例如ꎬ在教授 寻找功能价值 等数学时ꎬ可以引导学生通过 数字组合 来解决问题.以函数f(x)=sinxcosx-2的值为例ꎬ首先提醒学生绘制函数图像ꎬ让学生使用图像识别函数的形式.然后让学生把它变成找到斜率的问题(假设移动点P(cosxꎬsinx)和固定点A(2ꎬ0)ꎬ迅速计算出PA的斜率值ꎬ即[-ꎬ0])ꎻ又如ꎬ在教学三角函数求值相关问题时ꎬ也可以采用数形结合的方法进行解析.总之ꎬ数学教师应该经常向学生提出一些类似的问题ꎬ引导学生掌握 多问题ꎬ一个解决 的常见问题解决思路.这样学生可以继续反思和总结ꎬ学会推理ꎬ触摸类比ꎬ然后提高学生解决数学问题的能力.三ꎬ 多题一解 和 一题多解 的数学价值(一)帮助学生构建系统的知识体系无论是 一问多解 ꎬ还是 多问题一解 ꎬ其教学价值在于培养学生的思维能力ꎬ提高学生的思维品质.两者解题方式的顺利实施ꎬ离不开学生的主动思考.学生在利用两种方式解题的时候ꎬ也是学生温习旧知的重要途径ꎬ通过对旧概念㊁旧定义和旧公式的复习ꎬ学生可以更清楚地了解知识的相关性ꎬ并帮助学生建立系统的知识体系.自然也就提高了学生的学习效率.(二)帮助学生提高解题能力利用 一题多解 和 多题一解 两种方法解决问题ꎬ可以有效地消除 题海战术 引起的枯燥无聊的感觉.真正实现了量变向质变的有效过渡.学生解决问题的思维更加灵活多变ꎬ有效地避免了学生 深陷 的困境ꎻ学生解决问题的思路更加广泛ꎬ各种问题都清晰可见ꎬ有效地提高了学生解决问题的效率.(三)提升学生的创新思维通过这两种解题方式不断锤炼学生的思维品质ꎬ带领学生积极思考㊁温故知新ꎬ最大化地激发了学生的思维潜能.学生不仅能在有限时间内找到快速解题的方式ꎬ也在一定程度最大化激发了学生的潜能ꎬ提升了学生的创新能力ꎬ发展了学生的创新思维能力.以上只是作者的粗略见解ꎬ旨在抛出砖块吸引玉石ꎬ希望广大数学教育家批评和纠正.ʌ参考文献ɔ[1]朱如昌.例析一题多解㊀一题多变㊀多题一解[J].数理化学习(高中版)ꎬ2005(1):47-49.[2]申祝平.一题多解㊁多题一解㊁一解多写与多解一写[J].中学数学教学参考ꎬ1995(5):13-15.。

谈谈数学问题中的一题多解

谈谈数学问题中的一题多解

谈谈数学问题中的一题多解摘要:一题多解是由多种途径获得同一数学问题的最终结论,文中主要从一题多解的定义、解题思想、典型例子以及其对学生产生的意义出发,一题多解不但达到了解题的目标要求,而且让学生的思维得以拓展,不受固定思维模式的束缚。

学生多角度、多方位地去思考解题的方案,让解题增添了新颖性和趣味性,并在解题中解放了解题思维模式,使得枯燥的数学解题更加丰富而多彩。

关键词:定义;思想;范例;意义一、一题多解一题多解,就是启发和引导学生从不同角度、不同思路,运用不同的方法和不同的运算过程,解答同一道数学问题,即由多种途径获得同一数学问题的最终结论,它属于解题的策略问题。

心理学研究表明,在解决问题的过程中,如果主体所接触到的不是标准的模式化了的问题,那么,就需要进行创造性的思维,需要有一种解题策略,所以策略的产生及其正确性被证实的过程,常常被视为创造的过程或解决问题的过程。

数学问题的解题策略是指探求数学问题的答案时所采取的途径和方法。

在数学解题中一般包括枚举法、模式识别、问题转化、中途点法、以退求进、特殊到一般、从整体看问题、正难则反等策略。

一题多解则是诸多解题策略的综合运用。

在教学中,积极、适宜地进行一题多解的训练,有利于充分调动学生思维的积极性,提高学生综合运用已学知识解答数学问题的技能和技巧;有利于锻炼学生思维的灵活性,促进学生知识与智慧的增长;有利于开拓学生的思路,引导学生灵活地掌握知识之间的联系,培养和发挥学生的创造性。

二、一题多解的解题思想数学思想是人类对数学及其对象,对数学的概念、命题、法则、原理以及数学方法的本质性认识。

在数学研究范围的拓展、研究对象的延伸、数学方法的形成、各种方法之间的融合并发展成新的方法等过程之中,都体现出数学思想的核心作用。

数学知识和方法是形成数学思想的基础,但有了知识不等于有思想,方法如果没有思想作为灵魂,就只能是一种机械的“操作手册”数学思想是数学的核心与灵魂,它不仅是数学的重要组成部分,而且是数学发展的源泉与动机。

初中数学一题多变一题多解(二)

初中数学一题多变一题多解(二)

一题多解一题多变(二)1、一题多解,培养思维的发散性一题多解实际上是解题或证明定理、公式的变式,因为它的实质是以不同的论证方式反映条件和结论问的同一必然的本质联系,运用这种变式教学,可以引导学生对同一材料,从不同角度、从不同方位、用各种途径、多种方法思考问题,探求不同的解答方案,这样,既可暴露学生解题的思维过程,增加教学透明度,又能够拓广学生思路,使学生熟练掌握知识的内在联系,使思维向多方向发展,培养思维的发散性。

这方面的例子很多,尤其是几何证明题。

已知:点O是等边△ABC内一点,OA=4,OB=5,OC=3求∠AOC的度数。

练习:把此题适当变式:变式在△ABC中,AB=AC,∠BAC=90°OA=4,OB=6,OC=2求∠AOC的度数。

变式2:如图,点O是等边△ABC内一点,∠AOB=110°, ∠BOC=135°试问:(1)以OA、OB、OC为边能否构成一个三角形?若能,请求出三角形各内角的度数;若不能,请说明理由.(2)如果∠AOB的大小保持不变,那么当∠BOC等于多少度时, 以OA、OB、OC为边的三角形是一个直角三角形?2、一题多变,培养思维的灵活性一题多变是题目结构的变式,是指变换题目的条件或结论,或者变换题目的形式,而题目的实质不变,以便从不同角度,不同方面揭示题目的本质,用这种方式进行教学,能使学生随时根据变化了的情况积极思索,设法想出解决的办法,从而防止和消除呆板和僵化,培养思维的灵活性。

一题多变可以改变条件,保留结论;也可以保留条件,改变结论;或者同时改变条件和结论;也可以将某项条件与结论对换等等。

例如:已知:C 为AB 上一点,△ACM 和△CBN 为等边三角形(如图所示)求证:AN=BM(分析:如对此题多做一些引申,既可以培养学生的探索能力,又可培养学生的创新素质)探索一:设CM 、CN 分别交AN 、BM 于P 、Q ,AN 、BM 交于点R 。

浅谈小学数学中的“一题多解与一题多变”

浅谈小学数学中的“一题多解与一题多变”

浅谈小学数学中的“一题多解与一题多变”在当今教育模式下,通常我们数学的教育模式都是以“标准题目”和“标准答案”来解决问题,这导致学生的思维受到禁锢并沿着定向发展,导致千人一面,这种单一、刻板的思维严重地束缚着小学生创新思维的发展。

因此,教师必须打破禁锢。

想要锻炼思维,可以通过一系列的变式训练,以多侧面、多角度地去探索问题中的本质,这样有利于弄清知识脉络和知识间的联系,可以培养学生的思维转换能力。

在新课程改革实行的背景下,一题多解和一题多变是数学研究中的一个热点问题,一题多解式和一题多变式的教学形式也不断呈现出了新的特点,而数学作为一门应用最广泛,最能培养创造性思维和问题解决的能力的一门基础课程,通过不断激发学生积极思维和求知兴趣,从而达到举一反三、触类旁通的效果,因此其在培养学生的创新能力上具有独特优势。

一、“一题多解”在小学数学教学过程中的实践一个题目能否得到解决的确非常的重要,但是去探求不同于别人的新解法,才是学习上梦寐以求的乐事。

学生学习的兴趣往往与所创造出的欢乐是紧密相连的。

因此研究一题多解是为了增强学生们的求知欲望,从而激发人们的创新精神。

那么所谓的“一题多解”是什么呢?从字面上看很容易看出就是指一题多解训练,对同一问题的结论通过不同的方法得出,不断通过指引和启迪学生从不同的思路、不同的方向、不同的方法以及不同的运算过程去分析和解答问题。

为了能充分解释一题多解在培养小学生思维方面的应用,将通过下面两个例子,来详细的介绍“一题多解”。

例1:计划修一条长120米的水渠,前5天修了这条水渠的20%,照这样的进度,修完这条水渠还需多少天?这道题先启发学生求工作效率,即从“工作量÷工作时间”来思考:解法(1):120÷(120×20%÷5)-5 ;解法(2):(120-120×20%)÷(120×20%÷5);这道题也还可以从分数的意义直接进行解答:解法(3):1÷(20%÷5)-5 ;解法(4):(1-20%)÷(20%÷5);解法(5) 5÷20%-5例2:李老师带了若干元去买书。

“一题多解”与“多题一解”在高中数学教学中的价值研究与实践

“一题多解”与“多题一解”在高中数学教学中的价值研究与实践

“一题多解”与“多题一解”在高中数学教学中的价值研究与实践一、概述高中数学作为培养学生逻辑思维、抽象思维和解决问题能力的重要学科,其教学方法的创新与实践一直是教育领域关注的重点。

“一题多解”与“多题一解”这两种教学方法,以其独特的优势,在高中数学教学中发挥着重要作用。

“一题多解”是指针对同一数学问题,从不同角度、不同知识点出发,寻找多种解题思路和方法。

这种方法能够帮助学生拓宽思维视野,培养思维的灵活性和创新性。

在“一题多解”的教学过程中,教师可以引导学生对同一问题进行深入探讨,通过比较不同解法的优劣,帮助学生掌握数学问题的本质和规律。

“多题一解”则是指通过归纳总结不同数学问题的共性和规律,找到一种通用的解题方法和思路。

这种方法能够帮助学生建立数学知识的体系化结构,提高解题效率。

在“多题一解”的教学过程中,教师可以引导学生发现不同问题之间的联系和相似之处,通过总结规律,让学生掌握一种更加高效的解题方法。

在高中数学教学中,将“一题多解”与“多题一解”相结合,可以充分发挥这两种教学方法的优势,提高教学效果。

通过“一题多解”培养学生的创新思维和灵活思维,通过“多题一解”提高学生的解题效率和知识体系化能力。

同时,这两种方法也能够激发学生的学习兴趣和积极性,促进学生的全面发展。

“一题多解”与“多题一解”在高中数学教学中具有重要的价值。

通过深入研究和实践这两种教学方法,可以推动高中数学教学的创新与发展,提高教育质量,培养更多具有创新精神和实践能力的人才。

1. 高中数学教学的挑战与机遇高中数学教学面临着诸多挑战与机遇。

一方面,随着课程改革的深入推进,高中数学的教学内容和教学方法都发生了显著的变化,对教师的教学能力和专业素养提出了更高的要求。

另一方面,随着信息技术的快速发展,高中数学教学的手段和方式也日趋多样化,为教学创新提供了广阔的空间。

在挑战方面,高中数学的知识点繁多且抽象,需要学生具备较强的逻辑思维能力和空间想象能力。

“一题多解与一题多变”在培养学生思维能力中的应用

“一题多解与一题多变”在培养学生思维能力中的应用

“一题多解与一题多变”在培养学生思维能力中的应用创新的教育价值观认为,教学的根本目的不是教会解答、掌握结论,而是在探究和解决问题的过程中锻炼思维,发展能力。

在数学教学中,常用一题多解、一题多变的方法开拓学生的思路,克服思维定势,培养学生思维的发散性和创造性。

下面我将结合人教版三年级数学教材浅析如下:一题多解所谓“一题多解”,就是启发和引导学生从不同角度、不同思路、不同的方位,运用不同的方法和不同的运算过程,解答同一道数学问题。

教学中适当的一题多解,可以激发学生去发现和去创造的强烈欲望,加深学生对所学知识的深刻理解,训练学生对数学思想和数学方法的娴熟运用,锻炼学生思维的广阔性和深刻性、灵活性和独创性,从而培养学生的思维品质,发展学生的创造性思维。

如:“你们的折法相同吗?为什么涂色部分都是这张纸的四分之一?”通过一题多解,让学生异中求同,从而揭示出分数的本质。

一、鼓励学生进行一题多解的实际练习。

一题多解训练的目的,不是单纯地解题,而是为了培养和锻炼学生的思维,发展学生的智力,提高学生的解题能力。

二、口述不同的解题思路和解题方法。

口述不同的解题思路和解题方法,就是只要求学生说出不同的解题思路和解题方法,不用具体解答,让学生动脑动口。

三、引导学生自己找出最简便的解法。

在学生求得多种解题方法之后,让他们自己去分析比较,可以相互讨论,也允许相互争论,让学生在此过程中,找出最简便的解题方法。

一题多解训练,还应当注意以下几点:(1)目的要明确。

(2)要注意把握上这种课的时机。

(3)选题要得当,方法要灵活。

一题多变所谓“一题多变”就是指一个题目反复变换,使学生学会用联想旧知,联想同类,改变事情,改变问题中的条件或问题等等变题方法,从中悟出解题规律、方法。

通过“一题多变”可以激发学生的学习兴趣,有效地避免题海战术,巩固数学知识,可培养学生独立思考,举一反三的学习态度,有利于扩大学生的视野,可以增强学生解题的应变能力,培养思维的广阔性和深刻性,从而培养创新思维的品质。

从“一题多解”到“多题一解”

从“一题多解”到“多题一解”

投稿邮 sj v . 3 O 箱: k i1 . r  ̄@ p6C B
例2 已 知 数 列 { 和 { } 是 等 差 数 列 , 和 分 别 是 它 %} b 都
们 的前 0和 , i 若 :—n 4 +3



评 洼 解 法 三 挖 掘 题 目 中 的 隐 含 条 件 — — 过定 点 , 用 到 利 角 公 式 巧 妙 计 算 , 算 量 小 , 而 , 用 知 识 不 在 苏 教 版 《 试 运 然 所 考 说 明 》 要 求 的范 围 中 , 所 因此 最 好 不 要 向 学生 介 绍 . 解 法 四 因 为 直 线 Z 过 定 点 ( 3 0 , 线 Z过 定 点N( , l 一 ,)直 2 O
点 为 P. 点 脓 且 o D上 .



I 、 3m(+ ) y / x 3 , = 方程 联 立方程 组 { 消去y (m+ ) + 得 3 1x 2
【 一 、 - = , + 2 /3y 9 0
m 2

(8 1 mL6 x 2 m2 8 9 n 因 ̄ X + 一 ) m 1 m) + 7 -1 m- : 2 o ( 3 :6 - 8


所 以 点
①若 0D关于直线z对称 , 的值 ; 求n ②若m 0 n 0 求 证 : n m n > ,> , m + — 为常数.
让 我 们 来 看 一 下 第 二 问 的 第 2 , 的解 答 过 程 . d问
jm ‘ l +

Qm23 Vmm)因 也 直。 , (3. , '2+ )。 Q在 线上 ’ 69 ’ -+ 1.为 ’ f 所 1 6 -1 -% 3( m m + 4 一 m 。 。 点 ‘ 2 以 ’

“一题多解、多变”练思维 “多解、多题归一”悟本质

“一题多解、多变”练思维  “多解、多题归一”悟本质

文/王永坚近年来,在初中数学教学实践中,围绕着培养学生的创造性思维能力问题,已作出了许多有益的探索。

系统论指出:整体功能大于部分功能之和。

它的启示是:在数学教学中,如果能以某一主题为中心,注意把“一题多解”、“一题多变”、“多解归一”、“多题归一”等方法组成一个互相联系互相作用的综合整体,更有助于加深对知识的巩固与深化,提高解题技巧及分析问题、解决问题的能力,增强思维的灵活性、变通性和创新性。

一、一题多解,激活学生思维的发散性一题多解,培养学生求异创新的发散性思维。

通过一题多解的训练,学生可以从多角度、多途径寻求解决问题的方法,开拓解题思路。

例1:有两个完全相同的长方体恰好拼成了一个正方体,正方体的表面积是30平方厘米。

如果把这两个长方体改拼成一个大长方体,那么大长方体的表面积是多少?【解法1】30-30÷6+30÷6×2=30-5+10=35(平方厘米)。

或:30+30÷6×(2-1)=30+5=35(平方厘米)。

【解法2】30+30÷6=30+5=35(平方厘米)。

【解法3】30÷6×(6+1)=30÷6×7=35(平方厘米)。

【评注】比较以上三种解法,解法2和解法3是本题较好的解法。

在数学解题过程中,可以通过“一题多解”训练拓宽自己的思路,在遇到新的问题时能顺利挖掘出新旧知识间的相互关系和内在联系,培养求异思维,使自己的思维具有流畅性。

二、一题多变,激励学生思维的变通性一题多变,培养学生思维的应变性。

把习题通过条件变换、因果变换等,使之变为更多的有价值、有新意的新问题,使更多的知识得到应用,从而获得“一题多练”、“一题多得”的效果。

这种习题,有助于启发引导学生分析比较其异同点,抓住问题的实质,加深对本质特征的认识,从而更好地区分事物的各种因素,形成正确的认识,进而更深刻地理解所学知识,促进和增强学生思维的深刻性。

“一题多解”与“多题一解”在提升中学数学教学质量中的应用

“一题多解”与“多题一解”在提升中学数学教学质量中的应用

“一题多解”与“多题一解”在提升中学数学教学质量中的应用作者:闫萧寒来源:《求知导刊》2014年第12期摘要:数学知识内容丰富、形式多变,对于传统的数学教学来说,教学过程的重点不外乎为:讲解定义、推导公式、例题演练、练习及习题的安排。

“一题多解”与“多题一解”的解题策略能够提升学生的数学问题解答能力,对学生数学水平的提升具有重要的影响。

下面就几道典型的一题多解与多题一解问题在教学中的运用谈谈我个人的几点看法,借以使学子们初步认识一题多解与多题一解问题,领略一题多解与多题一解问题的魅力,激发起学习兴趣,活化其解题思想。

关键词:“一题多解”;“多题一解”;中学数学教学;数学教学质量意大利著名的数学家、物理学家伽利略·伽利雷曾经说过:“数学是描述世界的语言。

”数学符号和数学公式精确、简洁而优美,为我们的生活带来了无限的便利,指引我们更好地认识世界、感受世界。

“一题多解”与“多题一解”的思想能够有效满足新课程改革背景下,对中学数学教学的要求,改善传统教学方式中的缺点和不足之处,使学生能够形成一定的数学思维,为学生未来的数学知识学习和综合能力的发展奠定良好的基础。

一、“4多”原则对数学教学的作用“4多”原则主要指的是多看、多想、多做和多问,“4多”原则能够直接影响中学数学教学的质量和效果。

1.多看数学知识离不开多看、多学,学生需要多看书,做好课前预习、课后复习才能将课本中的数学知识和数学难点进行深刻的理解。

多看对于中学数学教学具有积极的影响,学生对课堂教学内容产生了一定的了解,就会使课堂教学活动变得更加轻松、愉快,使中学数学教学达到事半功倍的效果[1]。

2.多想数学教学不仅在于指导学生学习数学知识点、提升学生的问题解答能力和数学知识灵活运用能力,更在于使学生通过数学知识的学习、应用,形成一定的数学逻辑思维能力和数学独立思考能力[2]。

3.多做俗话说:“熟能生巧。

”多做、多练能够增加学生对数学知识的深刻理解,巩固学生的数学知识和提升学生对数学知识灵活运用的能力,融会贯通,把不同内容的数学知识点关联起来,帮助学生建立一个完整的知识结构和框架体系[3]。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

摘要本文意在明确一题多解和多题一解与学生思维能力发展之间的关系,从而使教师在数学解题教学过程中更加重视解题方法对学生思维能力的培养。

本文通过两种典型例题即一题多解型和多题一解型的讲解,阐述了通过不同的例题可以达到对学生思维能力的训练培养的目的。

通过一题多解,可以开阔学生思路、发散学生思维,让学生学会多角度分析和解决问题;通过多题一解,能够加深学生的思维深度,分析事物时学会由表及里,抓住事物的本质,找出事物间内在的联系。

与此同时,对一题多解和多题一解的运用,要注意相互结合,灵活运用,不可只求一技,失之偏颇。

关键词:一题多解多题一解思维能力AbstractA multi solution with multi-title, a solution is a monly used method in the teaching of mathematical problem solving. To a given problem, can mathematical knowledge has been an organic gathering of students' divergent thinking is a good opportunity for its exercise; a solution of the multi-title, students can digest the knowledge, but also training the students of the Idea.In this paper, two typical example that is a question to the multi-solution and multi-title solution-based explanation on the purpose of training the training of the students' thinking abilities can be achieved through different examples. To a given problem, you can broaden the horizons of the students 'thinking, divergent thinking of the students, for students to learn multi-angle analysis and problem solving; a solution more than the question, can enhance students' depth of thinking, learn to analyze things from outside to inside, to seize the the nature of things, find things intrinsically linked.This article is intended relationship between the development of the ability to clear a given problem and a solution of the multi-title, with students thinking, so that teachers pay more attention to the culture of problem-solving approach to students' thinking ability in mathematical problem solving teaching process.Key words:Multiple solutions for one question A solutions of the multi-title Thinking ability数学解题过程中一题多解与多题一解对学生思维能力的培养引言现代心理学认为,数学是人类思维的体操,在培养人的聪明才智方面起着巨大的作用。

所以,数学教学实质上是数学思维活动的教学。

也就是说,在数学教学中,除了要使学生掌握基础知识、基本技能外,还要注意培养学生的思维能力。

培养学生的思维能力是新课程改革的基本理念,也是数学教育的基本目标之一。

“学生在学习数学和运用数学解决问题时,不断地经历直观感知、观察发现、归纳类比、空间想象、抽象概况、符号表示、运算求解、数据处理、演绎证明、反思与建构等思维过程。

这些过程是数学思维能力的具体体现,有助于学生对客观事物中蕴含的数学模式进行思考和做出判断。

” 数学思维能力对形成理性思维有着独特的作用。

因此,作为一名数学教师,应把培养学生的思维能力贯穿在教学的全过程。

XX市XX区广播电视大学舒芳教授在《在数学解题教学中培养学生的思维能力》中认为,不同的解题方法,可以培养学生不同的思维方式。

如,一题多解可以培养思维的广阔性;数形结合,可以培养思维的灵活性;巧妙构造,可以培养思维的独创性;逆向探求,可以培养思维的敏捷性;动静变换,可以培养思维的变通性等。

从心理学角度讲,发散性思维和集中性思维的有机结合,正是培养创造性思维的有效途径。

本文着重阐述一题多解与多题一解的灵活运用对培养学生思维能力的重要性。

一、一题多解对学生思维能力的培养同一数学问题用不同的数学方法来解答,我们称之为“一题多解”。

其特点就是对同一个问题从不同的角度、不同的结构形式、不同的相互关系通过不同的思路去解答同一个问题。

一题多解能快速整合所学知识,重要的是能培养学生细致的观察力、丰富的联想力和创造性的思维能力。

苏东坡的《题西林壁》“横看成岭侧成峰,远近高低各不同”其中强调“横看”、“侧看”、“远看”、“近看”、“高看”、“低看”形象的给我们展示了“一题多解”的精髓。

(一)提高分析、解决问题的能力一题多解,能够使学生开阔思路,把学过的知识和方法融会贯通,使用自如,大大提升分析问题和解决问题的能力。

例1.甲乙两地相距450千米。

客车和货车同时从两地相向而行,客车行完全程需10小时,货车行完全程需15小时,相遇时两车各行多少千米?解法一:用工程问题的解法。

根据速度=路程÷时间可以求出客车的速度为450÷10=45(千米/小时),货车的速度为450÷15=30(千米/小时)。

(1)几小时后两车相遇:450÷(45+30)=6(小时)(2)相遇时客车行了多少千米:45×6=270(千米)(3)相遇时货车行了多少千米:30×6=180(千米)解法二:用比例分配的方法。

两车所需的时间之比是:10:15,根据距离一定,速度与时间成反比例关系进行解答。

(1)两车所需的时间之比是:10:15=2:3所以两车速度之比是:3:2(2)两车运行时间相同,所以路程与速度成正比例,即两车行驶路程之比是:3:2(3)相遇时客车行了多少千米:450×(35)=270(千米)(4)相遇时货车行了多少千米:450×(25)=180(千米)答:相遇时客车行了270千米,货车行了180千米。

解法一通过求出两车相遇时间作为中介,进而求出相遇时两车各自的行程,这种方法是处理类似工程问题最为一般的方法,也是最为普遍和有效的方法,是解决更为复杂的工程问题的基础。

通过这种方法的解答,可以让学生对类似工程问题中的基本变量以及各个变量之间的关系有了最清晰的认识。

而解法二是通过对公式路程=速度×时间的灵活运用,只需求出两车的速度之比,进而运用比例对两车各自的行程进行分配,可以说是对公式的升华。

两种解法各有千秋,解法一让人一目了然,可以培养学生处理问题的掌控能力,鼓励学生在处理问题时要全面分析,把握各个要素,理清各自关系,按部就班,步步为营,各个击破。

解法二是在对基础知识的熟知之上,运用技巧处理各要素关系,进而使问题迎刃而解,是一种简便快捷而有效的方法。

通过对这种一题两解的培养,可以锻炼学生在对基础知识和方法的掌握之后进行融会贯通,灵活运用,增强求简意识、优化思维品质,提升学生分析问题和解决问题的能力。

(二)提高多角度分析能力一题多解可以培养学生灵活、敏捷的思维能力,让学生学会对问题进行多角度、多层次的分析,达到对问题的全面理解,进而迅速准确的解决问题。

例2.6人站成一排,若甲不能站排头,乙不能站排尾,则不同的站法有多少种?解法一:假设左边第一个位置为排头,那么甲的站法有如下五种可能:①□甲□□□□②□□甲□□□③□□□甲□□④□□□□甲□⑤□□□□□甲。

又因为乙不能站排尾,故①-④中乙的站法各有C1 4种,在⑤中乙的站法有C1 5种,各图中其他人的站法均为A4 4种。

根据乘法和加法原理,不同的站法种数共有4C1 4A4 4+C1 5A4 4=504种。

解法二:有了上述分析为基础,我们可更抽象地分析如下:若甲站在中间4个位置之一,则乙可站在除排尾及甲的位置之外的4个位置之一,其余4人站在空下的4个位置之上,有C1 4C1 4A4 4种;若甲站排尾,则其余5人可站在空下的位置上,有5A种站法。

据加法原理共有C1 4C1 4A4 4+A5 5=504种不同的站法。

5解法三:排头、排尾的站法可分三类,其一是由甲、乙之外的四人站,然后其他人再站,有A2 4A4 4种;其二是甲站排尾,其余五人再站,有A5 5种站法;其三是乙站排头,甲不站排尾,有C1 4A4 4种站法。

根据加法原理共有A2 4A4 4+A5 5+C1 4A4 4=504种不同的站法。

解法四:不考虑甲乙的要求共有A6 6种站法,其中甲站排头的有A5 5种站法,乙站排尾的也有A5 5种站法,但这两种站法中都包含了甲站排头、乙站排尾的情形,即A4 4种站法,因此符合要求的站法种数有A6 6-(2A5 5-A4 4)=504种。

四种解法中,第一种解法最为直接,即通过题干的条件一一进行确定,先确定甲不站排头,再确定乙不站排尾,最后再确定其他人位置,进而得出结果,调理清楚,顺理成章;第二种解法是对第一种解法的抽象;第三种解法与前两种从人员分配入手的解法不同,该解法从位置角度入手,分别确定排头、排尾的三类站法,进而相加求出结果;第四种解法采取逆向思维,先不考虑题干具体要求,求出站法总数,然后再依据要求一一进行排除,从而得出结论。

四种解法入手点各有不同,前两者从人员入手,第三种从位置入手,最后一种从反面入手,逆向思维。

通过这种多角度解题方法的训练,可以培养学生思维的立体性,多面性,灵活性,避免思维的单一和固化。

相关文档
最新文档