北师大版七年级数学下册 第三章 达标检测卷(含答案)

合集下载

北师大版七年级下册数学第三章测试卷及答案

北师大版七年级下册数学第三章测试卷及答案

第三章变量之间的关系一、选择题(每题3分,共24分)1.骆驼被称为“沙漠之舟”,它的体温随时间的变化而变化,在这一问题中,因变量是( )A.沙漠B.体温C.时间D.骆驼2.气温y(℃)随高度x(km)的变化而变化的情况如下表,由表可知,气温y随着高度x的增大而( )高度x/km 0 1 2 3 4 5 6 7 8气温y/℃28 22 16 10 4 -2 -8 -14 -20A.升高B.降低C.不变D.以上答案都不对3.长方形的周长为24 cm,其中一边长为x cm(其中0<x<12),面积为y cm2,则该长方形中y与x 的关系式可以写为( )A.y=x2B.y=(12-x)2C.y=(12-x)·xD.y=2(12-x)4.小明骑自行车上学,开始以正常速度匀速行驶,但行至途中自行车出了故障,只好停下来修车,车修好后,因怕耽误上课,加快了骑车速度.下面是小明离家后他到学校剩下的路程s关于时间t的图象,那么符合小明行驶情况的图象大致是( )5.如图是某市某一天的气温变化图,根据图象,下列说法中错误的是( )A.这一天中最高气温是24 ℃B.这一天中最高气温与最低气温的差为16 ℃C.这一天中2时至14时之间的气温在逐渐升高D.这一天中只有14时至24时之间的气温在逐渐降低6.某校组织学生到距学校6 km的光明科技馆参观.王红准备乘出租车去科技馆,出租车的收费标准如下表:里程数收费/元3 km以下(含3 km) 8.003 km以上每增加1 km 1.80则收费y(元)与出租车行驶里程数x(km)(x≥3)之间的关系式为( )A.y=8xB.y=1.8xC.y=8+1.8xD.y=2.6+1.8x7.均匀地向如图所示的容器中注满水,能反映在注水过程中水面高度h随时间t变化的图象的是( )8.A,B两地相距20 km,甲、乙两人都从A地去B地,图中l1和l2分别表示甲、乙两人所走路程s(km)与时间t(h)之间的关系.下列说法:①乙晚出发1 h;②乙出发3 h后追上甲;③甲的速度是4 km/h;④乙先到达B地.其中正确的个数是( )A.1B.2C.3D.4二、填空题(每题5分,共30分)9.同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的关系是y=x+32.如果某一温度的摄氏度数是25 ℃,那么它的华氏度数是____________.10.小雨画了一个边长为 3 cm的正方形,如果将正方形的边长增加x cm,那么面积的增加值y(cm2)与边长的增加值x(cm)之间的关系式为____________.11.如图是甲、乙两名运动员在自行车比赛中所走路程与时间的关系图象,则甲的速度____________乙的速度(用“>”“=”或“<”填空).12.小明早晨从家骑车到学校,先上坡,后下坡,行驶情况如图所示,如果返回时上、下坡的速度与去学校时上、下坡的速度相同,那么小明从学校骑车回家用的时间是____________.13.某航空公司行李的托运费按行李的质量收取,30 kg以下免费,30 kg及以上按图中所示的关系来计算,若某人行李的质量为200 kg,则他需要付托运费____________.14.小英、爸爸、妈妈同时从家中出发到达同一目的地后都立即返回,小英去时骑自行车,返回时步行;妈妈去时步行,返回时骑自行车;爸爸往返都步行,三人步行的速度不等,小英与妈妈骑车的速度相等,每个人的行走路程与时间的关系分别是下图中的一个,走完一个往返,小英用时____________,爸爸用时____________,妈妈用时____________.三、解答题(15题10分,16题12分,17,18题每题14分,19题16分,共66分)15.下表是佳佳往表妹家打长途电话的收费记录:时间/min 1 2 3 4 5 6 7电话费/元0.6 1.2 1.8 2.4 3.0 3.6 4.2(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)若佳佳的通话时间是10 min,则需要付多少电话费?16.如图表示某市2016年6月份某一天的气温随时间变化的情况,请观察此图回答下列问题:(1)这天的最高气温是多少摄氏度?(2)这天共有多少个小时的气温在31 ℃以上?(3)这天什么时间范围内气温在上升?(4)请你预测一下,次日凌晨1时的气温大约是多少摄氏度?17.张阳从家里跑步去体育场,在那里锻炼了一会儿后,又走到文具店去买笔,然后走回家,如图是张阳离家的距离与时间的关系图象.根据图象回答下列问题:(1)体育场离张阳家多少千米?(2)体育场离文具店多少千米?张阳在文具店逗留了多长时间?(3)张阳从文具店到家的速度是多少?18.如图,一个半径为18 cm的圆,从中心挖去一个正方形,当挖去的正方形的边长由小变大时,剩下部分的面积也随之发生变化.(1)若挖去的正方形边长为x(cm),剩下部分的面积为y(cm2),则y与x之间的关系式是什么?(2)当挖去的正方形的边长由1 cm变化到9 cm时,剩下部分的面积由变化到.19.弹簧挂上物体后会伸长.已知一弹簧的长度(cm)与所挂物体的质量(kg)之间的关系如下表:所挂物体的质量/kg 0 1 2 3 4 5 6 7弹簧的长度/cm 12 12.5 13 13.5 14 14.5 15 15.5(1)当所挂物体的质量为3 kg时,弹簧的长度是___________;(2)如果所挂物体的质量为x kg,弹簧的长度为y cm,根据上表写出y与x的关系式;(3)当所挂物体的质量为5.5 kg时,请求出弹簧的长度;(4)如果弹簧的最大长度为20 cm,则该弹簧最多能挂质量为多重的物体?参考答案一、1.【答案】B解:根据自变量和因变量的定义可知,在这一问题中,体温随时间的变化而变化,时间是自变量,体温是因变量,故选B.2.【答案】B3.【答案】C4.【答案】D5.【答案】D解:由题图可知,这一天中气温在逐渐降低的时段有0时至2时和14时至24时,故选D.6.【答案】D解:由题意知,当出租车行驶里程数x≥3时,y=8+1.8(x-3)=1.8x+2.6,故选D.7.【答案】A8.【答案】C解:①③④正确,②应为乙出发2 h后追上甲.二、9.【答案】77 ℉解:将x=25代入关系式可得y=×25+32=45+32=77,故它的华氏度数是77 ℉.10.【答案】y=x2+6x解:边长为3 cm的正方形的面积是9 cm2,边长为(x+3)cm的正方形的面积为(3+x)2 cm2,所以面积的增加值y=(3+x)2-9=x2+6x.11.【答案】>12.【答案】37.2 min解:由题图可知,上坡速度为 3 600÷18=200(m/min),下坡速度为(9 600-3 600)÷(30-18)=500(m/min),返回途中,上、下坡的路程刚好相反,所用时间为 3 600÷500+(9 600-3 600)÷200=37.2(min).13.【答案】340元14.【答案】21 min;24 min;26 min三、15.解:(1)反映了电话费与通话时间之间的关系;其中通话时间是自变量,电话费是因变量.(2)设电话费为y元,通话时间为t min.则由题意可知,y与t之间的关系式为y=0.6t,故当t=10时,y=6.所以需付6元电话费.16.解:(1)37 ℃.(2)9 h. (3)3时至15时.(4)25 ℃.(答案不唯一,合理即可)17.解:(1)体育场离张阳家2.5 km.(2)因为2.5-1.5=1(km),所以体育场离文具店1 km.因为65-45=20(min),所以张阳在文具店逗留了20 min.(3)文具店到张阳家的距离为1.5 km,张阳从文具店到家用的时间为100-65=35(min),所以张阳从文具店到家的速度为1.5÷=(km/h).18.解:(1)剩下部分的面积=圆的面积-正方形的面积,所以y与x之间的关系式为y=πr2-x2=324π-x2.(2)(324π-1)cm2(324π-81)cm219.解:(1)13.5 cm(2)由表格可知,弹簧的长度y与所挂物体的质量x之间的关系式为y=12+0.5x.(3)当x=5.5时,y=12+0.5×5.5=14.75(cm).(4)当y=20时,20=12+0.5x,解得x=16,故该弹簧最多能挂16 kg重的物体.。

北师大版七年级下学期数学第三单元测试题及答案

北师大版七年级下学期数学第三单元测试题及答案

北师大版七年级下册第三单元测试题一.选择题〔本大题共10小题,每小题3分,共30分〕1.4.13×10-4用小数表示为〔〕A.-41300 B.0.0413 C.0.00413 D.0.0004132.生活在海洋中的蓝鲸,又叫长须鲸或剃刀鲸,它的体重达到150多吨,它体重的百万分之一会与〔〕的体重相近.A.大象 B.豹 C.鸡 D.松鼠3.小敏利用某种测量工具测得自己收集到的一片树叶的长度为7.34厘米,则这种测量工具的最小单位是〔〕A.毫米 B.厘米 C.分米 D.微米4.20##1~5月份,某市累计完成地方一般预算收入216.58•亿元,数据216.58亿精确到〔〕A.百亿位 B.亿位 C.百万位 D.百分位5.下列四个近似数中,保留三个有效数字的是〔〕A.0.035 B.0.140 C.25 D.6.125×1046.下列说法中正确的是〔〕A.近似数63.0与63的精确度相同B.近似数63.0与63的有效数字相同C.近似数0.0103与2个有效数字D.近似数4.0万与4.0×104的精确度和有效数字都相同7.如图所示的是华联商厦某个月甲,乙,丙三种品牌彩电的销售量统计图,则甲,丙两种品牌彩电该月共销售了〔〕A .50台B .65台C .75台D .95台8.太阳内部高温核聚变反应释放的辐射能功率为33.8102⨯千瓦,到达地球的仅占20亿分之一,到达地球的辅射能功率为〔〕千瓦.〔用科学计数法表示,保留2个有效数字〕A .141.910⨯B .142.010⨯C .157.610⨯D .151.910⨯9.小华和小丽最近都测量了自己的身高,小华量得自己的身高约1.6米,小丽量得A .小华和小丽一样高B .小华比小丽高C .小华比小丽矮D .无法确定谁高10. 如图所示是学校对九年级的100名学生学习数学的兴趣进行问卷调查的结果,被调查的学生中对学生数学很感兴趣的有〔〕A .40人B .30人C .20人D .10人二、填空题〔本大题共6小题,每小题3分,共18分〕11.某种微生物的长度约为0.0000006m,用科学记数法表示为______.12.5纳米=______米.13.用四舍五入法取近似数,647.96精确到十分位的近似数是_______.14.3.15百万,精确到________位.15. 某中学对该校的200•名学生进行了关于"造成学生睡眠少的主要原因"的抽样调查,将调查结果制成扇形统计图〔如图〕,由图中的信息可知认为造成学生睡眠少的主要原因是作业太多的学生有______名.16.如图所示的是某居民家庭全年各项支出的统计图,则该家庭教育支出占全年总支出的百分比是 ________.三、〔本大题共3小题,第17小题6分,第18、19小题各7分,共20分〕17.某种花粉的直径大约是40微米,多少粒这种花粉首尾连接起来能达到1米?18. 全国中小学危房改造工程实施五年来,已改造的农村中小学危房占地总面积约7800万平方米,如果按一幢教学楼占地面积约750平方米计算,那么该工程共修建了大约有多少幢教学楼?〔结果保留两个有效数字〕19.小明的身高约为1.7m,小华的身高约为1.70m,小强的身高约为1.700m,这里近似数1.7,1.70,1.700有无区别?请说明理由.四、〔本大题共2小题,每小题7分,共14分〕20.某商店为了了解本店一种罐装饮料上半年的销售情况,随机调查了8•天该种饮料的日销售量,结果如下〔单位:听〕:75,70,85,75,60,50,80,60.〔1〕这8天的平均日销售量约是多少听?〔结果精确到个位〕〔2〕根据〔1〕中的计算结果,估计上半年〔按181天计算〕该店能销售这种饮料多少听?〔结果用科学记数法表示,并保留两个有效数字〕21.某中学七年级一班的45名学生中,12岁的有5人,13岁的有35人,14岁的有4人,15岁的有1人,求这个班学生的平均年龄.〔结果精确到个位〕五、〔本大题共2小题,第22小题8分,第23小题10分,共18分〕22.某地区教育部门要了解初中学生阅读课外书籍的情况,随机调查了本地区500名初中学生一学期阅读课外书的本数,并绘制了如图3-3-12所示的统计图.请根据统计图反映的信息回答问题.〔1〕这些课外书籍中,哪类书的阅读数量最大?〔2〕这500名学生一学期平均每人阅读课外书约多少本?〔精确到1本〕〔3〕若该地区共有2万名初中学生,请估计他们一学期阅读课外书的总本数.23.某校为了解七年级学生体育测试情况,以九年级〔1〕班学生的体育测试成绩为样,,,四个等级进行统计,并将统计结果绘制成如下的统计图,请你结合图本,按A B C D中所给信息解答下列问题:〔说明:A级:90分~100分;B级:75分~89分;C级:60分~74分;D级:60分以下〕〔1〕请把条形统计图补充完整;〔2〕样本中D级的学生人数占全班学生人数的百分比是;〔3〕若该校九年级有500名学生,请你用此样本估计体育测试中A级和B级的学生人数约为人.北师大版七年级下册第三单元测试题答一、1.D 2.D 3.A 4.C 5.B 6.D 7.C 8.A 9.D 10.B二、11.6×10-7m 12.5×10-9 13.648.0 14.万 15.88三、17.解:因为1微米=10-6米,所以这种花粉的直径大约是40×10-6米,即4×10-5米,1÷〔4×10-5〕=2.5×104〔粒〕.答:2.5×104粒这种花粉首尾连接起来能达到1米.18. 解:78000000÷750=104000=1.04×105≈1.0×105〔幢〕.答:该工程共修建了大约1.0×105幢教学楼.19. 解:近似数1.7,1.70,1.700有区别.理由:〔1〕它们的精确度不同:1.7精确到十分位;1.70精确到百分位;1.700•精确到千分位;〔2〕它们的有效数字也不同:1.7有2位有效数字;1.70有3•个有效数字;•1.700有4个有效数字.因此它们是有区别的.四、20.解:〔1〕〔75+70+85+75+60+50+80+60〕÷8=69.375≈69〔听〕答:这8天的平均日销售量约是69听.〔2〕69×181=12489≈1.2×104〔听〕答:估计上半年〔按181天计算〕该店能销售这种饮料约1.2×104听.21.解:〔12×5+13×35+14×4+15×1〕÷45=586÷45=13.02≈13〔岁〕等级5答:这个班学生的平均年龄约为13岁.五、22.解:〔1〕这些课外书籍中,小说类的阅读数量最大.〔2〕〔2.0+3.5+6.4+8.4+2.4+5.5〕×100÷500=5.64≈6〔本〕. 答:这500名学生一学期平均每人阅读课外书约6本.〔3〕20000×6=120000〔本〕或2×6=12〔万本〕.答:他们一学期阅读课外书的总本数是12万本.23.〔1〕条形图补充正确;〔2〕10﹪;〔3〕330.。

七年级数学下册北师大版第三单元测试(含答案)

七年级数学下册北师大版第三单元测试(含答案)

七年级数学下册北师大版第三单元测试班级姓名一、选择题1.如果在一个顶点周围用两个正方形和n 个正三角形恰好可以进行平面镶嵌,则n 的值是( ).A .3 B .4 C .5 D .62.下面四个图形中,线段BE 是⊿ABC 的高的图是( )3.已知三角形的两边长分别为4cm 和9cm ,则下列长度的四条线段中能作为第三边的是()A .13cmB .6cmC .5cmD .4cm4.三角形一个外角小于与它相邻的内角,这个三角形是( )A .直角三角形B .锐角三角形C .钝角三角形D .属于哪一类不能确定5.如图,在直角三角形ABC 中,AC≠AB,AD 是斜边上的高,DE⊥AC,DF⊥AB,垂足分别为E 、F ,则图中与∠C (∠C 除外)相等的角的个数是( ) A 、3个 B 、4个 C 、5个 D 、6个6.如图,将一副三角板叠放在一起,使直角的顶点重合于O ,则∠AOC+∠DOB=( )A 、900B 、1200C 、1600D 、18007.以长为13cm 、10cm 、5cm 、7cm 的四条线段中的三条线段为边,可以画出三角形的个数是( )(A)1个 (B)2个 (C)3个 (D)4个8.给出下列命题:①三条线段组成的图形叫三角形 ②三角形相邻两边组成的角叫三角形的内角 ③三角形的角平分线是射线 ④三角形的高所在的直线交于一点,这一点不在三角形内就在三角形外 ⑤任何一个三角形都有三条高、三条中线、三条角平分线 ⑥三角形的三条角平分线交于一点,且这点在三角形内。

正确的命题有( )第5题图第6题图AA.1个B.2个C.3个D.4个二、填空题9.如图,一面小红旗其中∠A=60°, ∠B=30°,则∠BCD= 。

10.为了使一扇旧木门不变形,木工师傅在木门的背面加钉了一根木条这样做的道理是___________________.11.把一副常用的三角板如图所示拼在一起,那么图中∠ADE 是 度。

北师大版七年级下册数学第三章测试卷及答案

北师大版七年级下册数学第三章测试卷及答案

第三章知识梳理A卷知识点1用表格表示的变量间关系一、选择题1.在利用太阳能热水器来加热水的过程中,热水器里的水温随所晒时间的长短而变化,这个问题中的因变量是()A.太阳光强弱B.水的温度C.所晒时间D.热水器答案:B2.一个长方形的面积是10 cm2,其长是a cm,宽是b cm,下列判断错误的是()A.10是常量B.10是变量C.b是变量D.a是变量答案:B3.某地受台风影响发生强降雨,某水库一天的水位记录如表.根据表中数据可知,水位上升最快的时段是()A.8~12时B.12~16时C.16~20时D.20~24时答案:D二、填空题4.小明的妈妈自小明出生起,每隔一段时间就给小明称体重,得到如表的数据.从表中可以得到:小明体重是随小明的变化而变化,这两个变量中,是自变量,是因变量.答案:年龄年龄体重三、解答题5.已知某易拉罐厂设计一种易拉罐,在设计过程中发现符合要求的易拉罐的底面半径与用铝量有如下关系:(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)当易拉罐底面半径为2.4 cm时,易拉罐需要的用铝量是多少?(3)根据表格中的数据,你认为易拉罐的底面半径为多少时比较适宜?说明理由;(4)简要说明易拉罐底面半径对所需铝质量的影响.答案:解:(1)上表反映了易拉罐的底面半径与用铝量之间的关系,易拉罐的底面半径是自变量,用铝量是因变量.(2)当易拉罐的底面半径为2.4 cm时,易拉罐需要的用铝量是5.6 cm3. (3)易拉罐的底面半径为2.8 cm时比较适宜,因为此时用铝量少,成本低. (4)当易拉罐底面半径为1.6~2.8 cm时,用铝量随半径的增大而减少;当易拉罐底面半径为2.8~4.0 cm时,用铝量随半径的增大而增加.知识点2用关系式表示的变量间关系一、选择题6.以固定的速度v向上抛一个小球,小球的高度h与小球的运动时间t之间的关系式是h=vt-4.9t2,在这个关系式中,常量、变量分别是()A.4.9是常量,t,h是变量B.v是常量,t,h是变量C.v0,-4.9是常量,t,h是变量 D.4.9是常量,v,t,h是变量答案:C7.某地温度T与高度d之间的关系可以近似地用如图所示的关系式表示,当d=900时,T的值为()A.4B.5C.6D.16答案:A8.李大爷要围成如图所示的长方形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长度恰好为24 m.设BC边的长为x m,AB边的长为y m,则y 与x之间的关系式为()A.y=-12x+12 B.y=-2x+24C.y=2x-24D.y=12x-12答案:A9.据测试:拧不紧的水龙头每分钟滴出100滴水,每滴水约0.05 mL.小康洗手后,没有把水龙头拧紧,水龙头以测试的速度滴水,当小康离开x min后,水龙头滴出y mL水,则y与x之间的关系式是()A.y=0.05xB.y=5xC.y=100xD.y=0.05x+100答案:B二、填空题10.(上海)同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的关系式是y=95x+32,如果某一温度的摄氏度数是25 ℃,那么它的华氏度数是℉. 答案:7711.如图,△ABC的边长BC是8,BC边上的高AD′是4,点D在BC上运动,设BD的长为x,则△ACD的面积y与x的关系式是.答案:y=2(8-x)12.汽车开始行驶时,油箱中有油55 L,如果每小时耗油7 L,则油箱内剩余油量y L与行驶时间t h之间的关系式是.答案:y=55-7t三、解答题13.地壳的厚度约为8~40 km,在地表以下某地的温度y可按y=3.5x+t计算,其中x是深度,t是地表温度.(1)在这个变化过程中,自变量和因变量分别是什么?(2)如果t=2,求当x=5时y的值.答案:解:(1)自变量是深度x,因变量是地表以下某地的温度y.(2)当t=2,x=5时,y=3.5×5+2=19.5.14.人在运动时的心跳速率通常和人的年龄有关,如果用x来表示年龄,用y来表示正常情况下运动时所能承受的每分钟心跳的最高次数,那么有y=0.8×(200-x).(1)正常情况下,在运动时一个13岁的学生每分钟所能承受的最高心跳次数是多少?(2)一个30岁的人运动时,如果半分钟心跳的次数是70,那么他有危险吗?答案:解:(1)x=13时,y=0.8×(200-13)=189.6(次).答:在运动时一个13岁的学生每分钟所能承受的最高心跳次数是189.6次. (2)x=30时,y=136,136÷2=68<70.所以他有危险.知识点3用图象表示的变量间关系一、选择题15.(贵州六盘水)为了加强爱国主义教育,学校每周一都要举行庄严的升旗仪式,同学们凝视着冉冉上升的国旗,下列哪个函数图象能近似地刻画上升的国旗离旗杆顶端的距离与时间的关系()答案:A16.如图是护士统计一位流感病人的体温变化图,这位病人在16时的体温约是()A.37.8 ℃B.38 ℃C.38.7 ℃D.39.1 ℃答案:C17.小明的父亲从家走了20 min到一个离家900 m的书店,在书店看了10 min 书后,用15 min返回家,下列图中表示小明的父亲离家的距离与时间的函数图象是( )答案:B二、填空题18.园林队在公园进行绿化,中间休息了一段时间.已知绿化面积S与时间t的函数关系如图所示,则休息后园林队绿化面积为平方米.答案:10019.如图是某地的气温变化情况.(1)在时气温最高,为℃;(2)在时到时气温是逐渐上升的.答案:(1)15 15(2)8 15三、解答题20.如图是江津区某一天的气温随时间变化的图象.根据图象回答:(1)12时的气温是多少?(2)什么时间气温最高,最高是多少?什么时间气温最低,最低是多少?(3)什么时间的气温是4 ℃?答案:解:(1)8 ℃.(2)14时气温最高,最高是10 ℃;4时气温最低,最低是-4 ℃.(3)8时和22时.21.小华某天上午9时骑自行车离开家,17时回家,他有意描绘了离家的距离与时间的变化情况,如图所示.(1)图象表示了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)10时和11时,他分别离家多远?(3)他最初到达离家最远的地方是什么时间?离家多远?(4)11时到13时,他行驶了多少千米?答案:解:(1)图象表示了离家的距离与时间之间的关系,时间是自变量,离家的距离是因变量.(2)10时他离家15 km,11时他离家20 km.(3)他最初到达离家最远的地方是13时,离家30 km.(4)11时到13时,他行驶了10 km.。

七年级数学下册北师大版第三单元测试(含答案)

七年级数学下册北师大版第三单元测试(含答案)

七年级数学下册北师大版第三单元测试班级 姓名一、选择题1.如果在一个顶点周围用两个正方形和n 个正三角形恰好可以进行平面镶嵌,则n 的值是( ).A .3 B .4 C .5 D .6 2.下面四个图形中,线段BE 是⊿ABC 的高的图是( )3.已知三角形的两边长分别为4cm 和9cm ,则下列长度的四条线段中能作为第三边的是( ) A .13cmB .6cmC .5cmD .4cm4.三角形一个外角小于与它相邻的内角,这个三角形是( ) A .直角三角形 B .锐角三角形 C .钝角三角形 D .属于哪一类不能确定 5.如图,在直角三角形ABC 中,AC ≠AB ,AD 是斜边上的高, DE ⊥AC ,DF ⊥AB ,垂足分别为E 、F ,则图中与∠C (∠C 除外)相等的角的个数是( ) A 、3个 B 、4个 C 、5个 D 、6个6.如图,将一副三角板叠放在一起,使直角的顶点重合于O , 则∠AOC+∠DOB=( )A 、900B 、1200C 、1600D 、18007.以长为13cm 、10cm 、5cm 、7cm 的四条线段中的三条线段为边,可以画出三角形的个数是( )(A)1个 (B)2个 (C)3个 (D)4个8.给出下列命题:①三条线段组成的图形叫三角形 ②三角形相邻两边组成的角叫三角形的内角 ③三角形的角平分线是射线 ④三角形的高所在的直线交于一点,这一点不在三角形内就在三角形外 ⑤任何一个三角形都有三条高、三条中线、三条角平分线 ⑥三角形的三条角平分线交于一点,且这点在三角形内。

正确的命题有( )第5题图第6题图A.1个B.2个C.3个D.4个二、填空题9.如图,一面小红旗其中∠A=60°, ∠B=30°,则∠BCD= 。

10.为了使一扇旧木门不变形,木工师傅在木门的背面加钉了一根木条这样做的道理是___________________.11.把一副常用的三角板如图所示拼在一起,那么图中∠ADE 是 度。

(北师大版)初中数学七年级下册第三章综合测试01含答案解析

(北师大版)初中数学七年级下册第三章综合测试01含答案解析

加油!有志者事竟成答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。

2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。

亲爱的朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。

相信你是最棒的!第三章综合测试一、选择题(每小题3分,共30分)1.滑雪动员从斜坡顶部滑了下来,可以大致刻画出滑雪动员下滑过程中速度随时间变化情况的是( )A B C D2.在ABC △中,它的一边是a ,该边上的高是h ,则ABC △的面积12S ah =,当h 为定长时,在此式中( ) A .S ,a 是变量,12,h 是常量 B .S ,h ,a 是变量,12是常量 C .a ,h 是变量,12,S 是常量 D .S 是变量,12,a ,h 是常量 3.弹簧挂重物会伸长,测得弹簧长度y (cm )最长为20cm ,与所挂物体质量x (kg )间有下面的关系.A .x 与y 都是变量,x 是自变量,y 是因变量B .所挂物体为6kg 时,弹簧长度为11cmC .在弹簧伸缩范围内,物体每增加1kg ,弹簧长度就增加0.5cmD .挂30kg 物体时一定比原长增加15cm4.“人间四月芳菲尽,山寺桃花始盛开”,说明温度随着高度的升高而降低.已知某地地面温度为20℃,且每升高1千米温度下降6℃,则山上距离地面h 千米处的温度t 为( )A .206t h =−B .206h t =−C .206t h =− D .206h t=− 5.星期六,小明从家里骑自行车到同学家去玩,然后返回,如图所示是他离家的距离y (千米)与时间x (分)的关系的图象,根据图象信息,下列说法不一定正确的是( )A .小明到同学家的路程是3千米B .小明在同学家逗留的时间是1小时C .小明去时走上坡路,回家时走下坡路D .小明回家时用的时间比去时用的时间少6.在生理上,人的情绪的高低呈一定的周期性变化.如图所示是小明在一个月中情绪起伏的状况.下列说法正确的是()A.小明从情绪最低到情绪最高要一个月时间B.小明的情绪周期大约为半个月C.小明从情绪最低到情绪最高要半个月时间D.每月的6日后不能与小明交往7.如图所示的四幅图象分别表示变量之间的关系,请按图象的顺序,将下面的四种情境与之对应排序.a b c d①运动员推出去的铅球(铅球的高度与时间的关系);②静止的小车从光滑的斜面滑下(小车的速度与时间的关系);③一个弹簧秤由不挂重物到所挂重物的质量逐渐增加(弹簧秤的长度与所挂重物的质量的关系);④小明先从A地到B地后,停留一段时间,然后按原速度原路返回(小明离A地的距离与时间的关系).正确的顺序是()A.①②③④B.①④②③C.①③②④D.①③④②8.如图所示的四幅图象分别近似刻画两个变量之间的关系,请按图象顺序将下面情景与之对应排序()甲乙丙丁①一辆汽车在公路上匀速行驶(汽车行驶的路程与时间的关系);②向底大口小的锥形瓶中匀速注水(水面的高度与注水时间的关系);③将常温下的温度计插入一杯热水中(温度计的读数与时间的关系);④一杯越来越凉的水(水温与时间的关系).A.①②③④B.③④②①C.①④②③D.③②④①9.陈灿从家中出发,到离家1.5千米的早餐店吃早餐,用了一刻钟吃完早餐后,按原路返回到离家1千米的学校上课,在下列图象中,能反映这一过程的大致图象是()A B C D10.甲骑摩托车从A地去B地,乙开汽车从B地去A地,同时出发,匀速行驶,各自到达终点后停止,设甲、乙两人间的距离为s(单位:千米),甲行驶的时间为t(单位:时),s与t之间的关系如图所示,有下列结论:①出发1小时时,甲、乙在途中相遇;②出发1.5小时时,乙比甲多行驶了60千米;③出发3小时,甲、乙同时到达终点;④甲的速度是乙的速度的一半.其中正确结论的个数是()A.4B.3C.2D.1二、填空题(每小题4分,共24分)11.“冰层越厚,所承受的压力就越大”,其中自变量是________,因变量是________.12.梯形的上底长为8,下底长为x,高是6,那么梯形面积y与下底长x之间的关系式是________.(不必写出自变量的取值范围)13.小明从家跑步到学校,接着马上原路步行回家.如图是小明离家的路程y(米)与时间t(分)的关系图象,则小明回家的速度是每分钟步行________.14.某城市大剧院地面的一部分为扇形,观众席的座位数按下表设置,则第5排、第6排分别有________、________个座位;第n排有________个座位.15.根据如图所示的计算程序计算变量y的对应值,若输入x的值为−,则输出的结果为________.216.火车匀速通过隧道时,火车在隧道内的长度y(米)与火车行驶时间x(秒)之间的关系用图象描述如图所示,有下列结论:①火车的长度为120米;②火车的速度为30米/秒;③火车整体都在隧道内的时间为25秒;④隧道长度为750米.其中正确的结论是________.(把你认为正确结论的序号都填上)三、解答题(共46分)17.(10分)要通过驾照考试,初学驾驶的人就必须熟悉交通规则,也要知道路况不好时,使车子停止前进所需的大约距离,经交警部门测算,得到如下表所示的一些对应的数值:(1(2)说一说这两个变量之间的变化趋势如何,从中可以得到什么启示.18.(10分)周末,小明坐公交车到滨海公园游玩,他从家出发0.8小时后达到中心书城,逗留一段时间后继续坐公交车到滨海公园,小明离家一段时间后,爸爸驾车沿相同的路线匀速前往滨海公园.如图是他们离家路程(km)与小明离家时间(h)的关系图,请根据图回答下列问题:(1)图中自变量是________,因变量是________;(2)小明家到滨海公园的路程为________km,在中心书城逗留的时间为________h;(3)小明出发________小时后爸爸驾车出发;(4)小明从中心书城到滨海公园的平均速度为________km/h,小明爸爸驾车的平均速度为________km/h;(5)爸爸驾车经过________小时追上小明,他离家路程s与小明离家时间t之间的关系式为________. 19.(12分)将长为30cm,宽为10cm的长方形白纸按如图所示的方法黏合起来,黏合部分的宽为3cm.(1)求5张白纸黏合后的长度;(2)设x 张白纸黏合后的总长度为cm y ,写出y 与x 之间的关系式,并求20x =时y 的值及813y =时x 的值;(3)设x 张白纸黏合后的总面积为2cm S ,写出S 与x 之间的关系式,并求30x =时S 的值及5430S =时x 的值.20.(14分)阳阳离开家去新华书店买书,回来后,阳阳用所学知识绘制了一幅反映他离家的距离与时间的关系图(如图),请根据阳阳绘制的这幅图回答以下问题:(1)阳阳到达新华书店用了多长时间?(2)新华书店离阳阳家有多远?(3)阳阳回家用了多长时间?(4)阳阳从家到新华书店的平均速度是多少?返回时的平均速度是多少?第三章综合测试答案解析一、 1.【答案】A 2.【答案】A 【解析】因为12S ah =,当h 为定长时,12,h 不变,是常量,S ,a 是变量. 3.【答案】D【解析】选项A 正确,x 与y 都是变量,x 是自变量,y 是因变量;选项B 正确,所挂物体为6kg 时,弹簧长度为860.511cm +⨯=;选项C 正确,在弹簧伸缩范围内,物体每增加1kg ,弹簧长度就增加0.5cm ;选项D 错误,8152320+=>,而弹簧长度最长为20cm .故选D. 4.【答案】A【解析】因为每升高1千米温度下降6℃,所以升高h 千米温度下降6h ℃,所以山上距离地面h 千米处的温度206t h =−. 5.【答案】C【解析】由题图可知小明到同学家的路程是3千米,小明去同学家用了20分钟,在同学家逗留的时间是1小时,从同学家回自己家用了15分钟,比去时用的时间少,但不能确定是上坡路还是下坡路.故选C. 6.【答案】C【解析】由题图读出6日情绪最低,21号情绪最高,故选C. 7.【答案】D【解析】a 与①对应;b 中小车开始时是静止的,所以它的速度应从0开始,逐渐增大,所以b 与④对应;c 中弹簧秤不挂重物时有一定的长度,随着所挂重物的质量逐渐增加,弹簧秤逐渐伸长,所以c 与②对应;d 中小明由A 地出发又返回A 地,中间有一段停留时间,所以d 与③对应,故选D. 8.【答案】D【解析】对“①一辆汽车在公路上匀速行驶(汽车行驶的路程与时间的关系)”进行分析,由于路程=速度×时间,速度一定,路程与时间的关系应为图象丁,故可排除选项A 、C.对“②向底大口小的锥形瓶中匀速注水(水面的高度与注水时间的关系)”进行分析,水面的高度应随注水时间的增加而增加,但增加得越来越快;对“④一杯越来越凉的水(水温与时间的关系)”进行分析,水温应随时间的增加而减小,且减小得越来越慢,故选D. 9.【答案】B【解析】陈灿从家中出发,到离家1.5千米的早餐店吃早餐,距离逐渐增大,当吃早餐时,距离不变,当返回学校时,距离逐渐变小,到达学校后距离不再变化.故选B. 10.【答案】B【解析】由题图可得,A 、B 两地相距120千米,行驶1小时,甲、乙两人相遇,故①正确;乙行驶1.5小时到达A 地,甲行驶3小时到达B 地,故③错误;乙的速度为120 1.580/÷=(千米时),甲的速度为120340/÷=(千米时),∴甲的速度是乙的速度的一半,故④正确;出发 1.5小时,乙比甲多行驶了1.5804060⨯−=()(千米),故②正确.故选B.二、11.【答案】冰层厚度 压力12.【答案】324y x =+【解析】根据梯形的面积公式可得862324y x x =+⨯÷=+(),故答案为324y x =+. 13.【答案】80【解析】通过读图可知:小明从学校步行回家所用的时间是15510−=(分),所走的路程是800米,所以小明回家的速度是每分钟步行8001080÷=(米).故答案为80.14.【答案】62 65 473n +()【解析】由题表可以看出每增加1排,增加3个座位,第n 排有5031473n n +−=+()()个座位.15.【答案】32−【解析】21111322122x y =−−−∴=−=−,-<<,.16.【答案】②③【解析】火车的长度是150米,故①错误;如图,在BC 段,所用的时间是5秒,路程是150米,则速度是150530/÷=米秒,故②正确;整个火车都在隧道内的时间是355525−−=秒,故③正确;隧道长是3530150900⨯−=米,故④错误.故正确的是②③.三、17.【答案】解:(1)反映的是“车子的速度”与“停止距离”两个变量之间的关系.(2)车速越快,停止距离越大,这样在路上行驶时越不安全,为保证行车安全,应该按照交通规则规定的速度行驶.18.【答案】解:(1)时间 路程 (2)30 1.7 (3)2.5 (4)12 30 (5)233075s t =− 【解析】爸爸驾车经过12301322h −=追上小明;爸爸离家路程s 与小明离家时间t 之间的关系式为2.530s t =−⨯(),即3075s t =−.19.【答案】解:(1)138cm .(2)273y x =+(x 为正整数),当20x =时,543y =;当813y =时,30x =. (3)27030S x =+(x 为正整数),当30x =时,8130S =;当5430S =时,20x =. 20.【答案】解:(1)阳阳到达新华书店用了20分钟. (2)新华书店离阳阳家有900米.(3)453015−=(分),阳阳回家用了15分钟.(4)9002045/÷=(米分);9001560/÷=(米分).阳阳从家到新华书店的平均速度是45米/分,返回时的平均速度是60米/分.。

七年级数学下册北师大版第三单元测试(含答案)

七年级数学下册北师大版第三单元测试(含答案)

七年级数学下册北师大版第三单元测试班级姓名一、选择题1.如果在一个顶点周围用两个正方形和n个正三角形恰好可以进行平面镶嵌,则n的值是().A.3 B.4 C.5 D.62.下面四个图形中,线段BE是⊿ABC的高的图是()3.已知三角形的两边长分别为4cm和9cm,则下列长度的四条线段中能作为第三边的是()A.13cm B.6cm C.5cm D.4cm4.三角形一个外角小于与它相邻的内角,这个三角形是()A.直角三角形 B.锐角三角形 C.钝角三角形 D.属于哪一类不能确定5.如图,在直角三角形ABC中,AC≠AB,AD是斜边上的高,DE⊥AC,DF⊥AB,垂足分别为E、F,则图中与∠C(∠C除外)相等的角的个数是()A、3个B、4个C、5个D、6个6.如图,将一副三角板叠放在一起,使直角的顶点重合于O,则∠AOC+∠DOB=()A、900B、1200C、1600D、18007.以长为13cm、10cm、5cm、7cm的四条线段中的三条线段为边,可以画出三角形的个数是()(A)1个 (B)2个 (C)3个 (D)4个8.给出下列命题:①三条线段组成的图形叫三角形②三角形相邻两边组成的角叫三角形的内角③三角形的角平分线是射线④三角形的高所在的直线交于一点,这一点不在三角形内就在三角形外⑤任何一个三角形都有三条高、三条中线、三条角平分线⑥三角形的三条角平分线交于一点,且这点在三角形内。

正确的命题有( )第5题图第6题图A.1个B.2个C.3个D.4个二、填空题9.如图,一面小红旗其中∠A=60°, ∠B=30°,则∠BCD= 。

10.为了使一扇旧木门不变形,木工师傅在木门的背面加钉了一根木条这样做的道理是___________________.11.把一副常用的三角板如图所示拼在一起,那么图中∠ADE 是 度。

12.如图,∠1=_____.13.若三角形三个内角度数的比为2:3:4,则相应的外角比是 . 14.如图,⊿ABC 中,∠A = 40°,∠B = 72°,CE 平分∠ACB ,CD ⊥AB 于D ,DF ⊥CE , 则∠CDF = 度。

2021-2022学年北师大版七年级数学下册《第3章变量之间的关系》单元综合达标测试题(附答案)

2021-2022学年北师大版七年级数学下册《第3章变量之间的关系》单元综合达标测试题(附答案)

2021-2022学年北师大版七年级数学下册《第3章变量之间的关系》单元综合达标测试题(附答案)一.选择题(共8小题,满分40分)1.某市居民生活用水的收费标准是2.5元/立方米,当用水量为x(立方米)时,收取水费为y(元).对于这一问题中,下列说法正确的是()A.2.5是自变量,x是因变量B.2.5是因变量,y是自变量C.2.5是因变量,y是常量,x是自变量D.2.5是常量,x是自变量,y是因变量2.下列关系式中,表示y不是x的函数的是()A.B.C.D.3.点燃的蜡烛每分钟燃烧的长度一定,长22cm的蜡烛,点燃10分钟,变短了4cm,设点燃x分钟后,还剩ycm,下列说法正确的有()A.蜡烛每分钟燃烧0.6cm B.y与x的关系式为y=22﹣4xC.第23分钟时,蜡烛还剩12.8cm D.第51分钟时,蜡烛燃尽4.火车匀速通过隧道时,火车在隧道内的长度y(米)与火车行驶时间x(秒)之间的关系用图象描述如图所示,下列结论正确的是()A.火车的长度为120米B.火车的速度为30米/秒C.火车整体都在隧道内的时间为35秒D.隧道长度为750米5.一个学习小组利用同一块木板,测量了小车从不同高度下滑的时间,他们得到如表数据:支撑物的高度h(cm)10203040506070小车下滑的时间t(s) 4.23 3.00 2.45 2.13 1.89 1.71 1.59下列说法正确的是()A.当h=70cm时,t=1.50sB.h每增加10cm,t减小1.23C.随着h逐渐变大,t也逐渐变大D.随着h逐渐升高,小车下滑的平均速度逐渐加快6.如图,一个矩形的长比宽多3cm,矩形的面积是Scm2.设矩形的宽为xcm,当x在一定范围内变化时,S随x的变化而变化,则S与x满足的函数关系是()A.S=4x+6B.S=4x﹣6C.S=x2+3x D.S=x2﹣3x7.变量x,y的一些对应值如下表:x…﹣2﹣10123…y…﹣8﹣16132027…根据表格中的数据规律,当x=﹣5时,y的值是()A.75B.﹣29C.41D.﹣758.某天早晨,小明从家骑自行车去上学,途中因自行车发生故障而维修.如图所示的图象反映了他骑车上学的整个过程,则下列结论正确的是()A.修车花了10分钟B.小明家距离学校1000米C.修好车后花了25分钟到达学校D.修好车后骑行的速度是110米/分钟二.填空题(共6小题,满分30分)9.某复印店复印收费y(元)与复印面数x面的函数图象如图所示,从图象中可以看出,复印超过100面的部分,每面收费元.10.李师傅加工一批零件,工作时间与加工零件总数的关系如图.(1)工作时间与加工零件总数成比例.(2)照这样计算,加工270个零件需要小时.11.小涵骑车从学校回家,中途在十字路口等红灯用了1分钟,然后继续骑车回家.若小涵骑车的速度始终不变,从出发开始计时,小涵离家的距离s(单位:米)与时间t(单位:分钟)的对应关系如图所示,则该十字路口与小涵家的距离为.12.某市地铁票价计费标准如表所示:乘车距离x,单位:公里.乘车距离x x≤66<x≤1212<x≤2222<x≤32x>32票价(元)3456每增加1元可乘20公里另外,使用市政交通一卡通,每个自然月每张卡片支出累计满100元后,超出部分打8折;满150元后,超出部分打5折;支出累计达400元后,不再打折.小红妈妈上班时,需要乘坐地铁15公里到达公司,每天上下班共乘坐两次,如果每次乘坐地铁都使用市政交通一卡通,那么每月第22次乘坐地铁上下班时,她刷卡支出的费用是元.13.小李从沂南通过某快递公司给在南昌的外婆寄一盒樱桃,快递时,他了解到这个公司除收取每次6元的包装费外,樱桃不超过1kg收费22元,超过1kg,则超出部分按每千克10元加收费用.已知小李给外婆快寄了 2.5kg樱桃,请你求出这次快寄的费用是元.14.如图1,在长方形MNPQ中,动点R从点N出发,沿N→P→Q→M方向运动至点M处停止,设点R运动的路程为x,三角形MNR的面积为y,如果y随x变化的图象如图2所示,则三角形MNR的最大的面积是.三.解答题(共6小题,满分50分)15.已知某易拉罐厂设计一种易拉罐,在设计过程中发现符合要求的易拉罐的底面半径与用铝量有如下关系:底面半径x(cm) 1.6 2.0 2.4 2.8 3.2 3.6 4.0用铝量y(cm³) 6.9 6.0 5.6 5.5 5.76 6.5(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)当易拉罐底面半径为2.4cm时,易拉罐需要的用铝量是多少?(3)根据表格中的数据,你认为易拉罐的底面半径为多少时比较适宜?说说你的理由;(4)粗略说一说易拉罐底面半径对用铝量的影响16.在面积都相等的若干矩形中,当其中一个矩形的一边长为1时,它的另一边长为3.(1)设矩形的长宽分别为x、y,求y关于x的函数表达式;(2)圆圆说其中有一个矩形的周长为6,方方说有一个矩形的周长为10,你认为圆圆和方方的说法对吗?为什么?17.宁陵酥梨个大皮薄,酥脆多汁,香甜味美,含糖量高达15%,富含磷、铁、VC等多种元素和维生素,是畅销海内外的佳品珍果.2020年果农小林家的酥梨喜获丰收,在销售过程中,酥梨的销售额y(元)与销量x(千克)满足如下关系:销量x(千克)12345678销售额y(元)3691215182124(1)上表这个变化过程中,自变量是,因变量是.(2)酥梨的销售额y(元)与销量x(千克)之间的关系式为.(3)当酥梨销量为50千克时,销售额是多少元?18.一个函数的图象如图所示,根据图象回答问题(1)写出自变量x的取值范围;(2)当x=18时,则y的值是;(3)求△ABO的面积;(4)当18≤x<23时,请说明:当x的值逐渐变大时,函数值y怎样变化?19.某城市对用户的自来水收费实行阶梯水价,收费标准如下表所示:超过18吨的部分月用水量不超过12吨的部分超过12吨不超过18吨的部分收费标准(元/吨) 2.00 2.50 3.00(1)某用户5月份缴水费45元,则该用户5月份的用水量是多少?(2)某用户想月所缴水费控制在20元至30元之间,则该用户的月用水量应该如何控制?(3)若某用户的月用水量为m吨,请用含m的代数式表示该用户月所缴水费.20.某商场在“五一”期间举行促销活动,根据顾客按商品标价一次性购物总额,规定相应的优惠方法:①如果不超过500元,则不予优惠;②如果超过500元,但不超过800元,则按购物总额给予8折优惠;③如果超过800元,则其中800元给予8折优惠,超过800元的部分给予6折优惠.促销期间,小红和她母亲分别看中一件商品,若各自单独付款,则应分别付款480元和520元;若合并付款,则她们总共只需付款多少元.参考答案一.选择题(共8小题,满分40分)1.解:居民生活用水的收费标准是2.5元/立方米,当用水量为x(立方米)时,收取水费为y(元).对于这一问题中2.5为常量,x为自变量,y为因变量.故选:D.2.解:A、对于自变量x的每一个值,y不是有唯一的值与它对应,所以y不是x的函数,故A符合题意;B、对于自变量x的每一个值,y都有唯一的值与它对应,所以y是x的函数,故B不符合题意;C、对于自变量x的每一个值,y都有唯一的值与它对应,所以y是x的函数,故C不符合题意;D、对于自变量x的每一个值,y都有唯一的值与它对应,所以y是x的函数,故D不符合题意;故选:A.3.解:A、燃烧10分钟后变短了4cm,可得每分钟燃烧=0.4cm,故不正确,不合题意;B、点燃的蜡烛每分钟燃烧的长度一定,长22cm的蜡烛,点燃10分钟,变短了4cm,设点燃x分钟后,还剩ycm,y与x的关系式为y=22﹣0.4x,故不正确,不合题意;C、第23分钟时,蜡烛还剩y=22﹣0.4×23=12.8cm,故正确,符合题意;D、第51分钟时,蜡烛还剩y=22﹣0.4×51=1.6cm,故不正确,不合题意;故选:C.4.解:由题意可知,火车的长度是150米,故选项A不合题意;在BC段,所用的时间是5秒,路程是150米,则速度是30米/秒,故选项B符合题意;整个火车都在隧道内的时间是:35﹣5﹣5=25(秒),选项C不合题意;隧道长是:35×30﹣150=900(米),故选项D不合题意.故选:B.5.解;A.由表格可知,当h=70cm时,t=1.59s,故A不符合题意;B.由表格可知,h由10cm增加20cm,t减小1.23;h由20cm增加30cm,t减小0.15,故B不符合题意;C.随着h逐渐升高,t逐渐变小,故C不符合题意;D.随着h逐渐升高,小车的时间减少,小车的速度逐渐加快,故D正确;故选:D.6.解:由题意得:S=x(x+3)=x2+3x,∴S与x满足的函数关系是:S=x2+3x,故选:C.7.解:根据表格数据可知,函数的解析式为y=7x+6,当x=﹣5时,y=7×(﹣5)+6=﹣29.故选:B.8.解:A.由横坐标看出,小明修车时间为20﹣5=15(分钟),故本选项不符合题意;B.由纵坐标看出,小明家离学校的距离2100米,故本选项不合题意;C.由横坐标看出,小明修好车后花了30﹣20=10(分钟)到达学校,故本选项不合题意;D.小明修好车后骑行到学校的平均速度是:(2100﹣1000)÷10=110(米/分钟),故本选项符合题意;故选:D.二.填空题(共6小题,满分30分)9.解:超过100面部分每面收费(70﹣50)÷(150﹣100)=0.4(元),故答案为:0.4.10.解:(1)由图象可知,工作时间与加工零件总数成正比例,故答案为:正;(2)李师傅加工零件的速度为每小时30个,则加工270个零件需要的时间为:270÷30=9(小时),故答案为:9.11.解:小涵骑车的速度=1500÷(6﹣1)=300(米/分钟).十字路口与小涵家的距离=1500﹣300×2=900(米).故答案为:900米.12.解:小红妈妈每天的上下班的费用分别为5元,即每天10元,10天后花费100元,第22次乘坐地铁时,价格给予8折优惠,此时花费5×0.8=4(元),故答案为:4.13.解:设该公司从沂南到南昌快寄樱桃的费用为y(元),所寄樱桃为x(kg),当x>1时,y=6+22+(x﹣1)×10=10x+18,把x=2.5代入y=10x+18,得y=10×2.5+18=25+18=43,故这次快寄的费用是43元.故答案为:4314.解:当R在PN上运动时,面积y不断在增大,当到达点P时,面积开始不变,到达Q后面积不断减小,由图2可知:当x=4时,点R与点P重合,PN=4,当x=10时,点R与点Q重合,PQ=10﹣4=6,所以矩形PQMN的面积为:4×6=24,所以三角形MNR的最大面积是24÷2=12.故答案为:12.三.解答题(共6小题,满分50分)15.解:(1)易拉罐底面半径和用铝量的关系,易拉罐底面半径为自变量,用铝量为因变量.(2)当底面半径为2.4cm时,易拉罐的用铝量为5.6cm3.(3)易拉罐底面半径为2.8cm时比较合适,因为此时用铝较少,成本低.(4)当易拉罐底面半径在1.6~2.8cm变化时,用铝量随半径的增大而减小,当易拉罐底面半径在2.8~4.0cm间变化时,用铝量随半径的增大而增大.16.解:(1)由题意可得:xy=3,则y=(x>0);(2)∵一个矩形的周长为6,∴x+y=3,∴x+=3,整理得:x2﹣3x+3=0,∵b2﹣4ac=9﹣12=﹣3<0,∴矩形的周长不可能是6;所以圆圆的说法不对.∵一个矩形的周长为10,∴x+y=5,∴x+=5,整理得:x2﹣5x+3=0,∵b2﹣4ac=25﹣12=13>0,∴矩形的周长可能是10,所以方方的说法对.17.解:(1)自变量是销量,因变量是销售额,故答案为:销量,销售额;(2)根据表格的数据得y=3x,故答案为:y=3x;(3)当x=50时,y=3×50=150(元),答:当酥梨销量为50千克时,销售额是150元.18.解:(1)自变量x的取值范围是0≤x≤23;(2)当x=18时,则y的值是12;故答案为:12;(3);(4)由图象可知,当18≤x<23时,当x的值逐渐变大时,函数值y随着x的变大而减小.19.解:(1)当用水12吨时,缴水费为2×12=24元,当用水18吨时,缴水费为24+2.5×(18﹣12)=24+15=39元,∵45元>39元,∴5月份的用水量超过18吨,设5月份的用水量为x吨,根据题意得,39+(x﹣18)×3=45,解得x=20;(2)根据(1),当所缴水费为20元时,∵20<24,∴用水20÷2=10吨,当所缴水费为30元时,∵24<30<39,∴设用水为x,则24+(x﹣12)×2.5=30,解得x=14.4,所以,该用户的月用水量应该控制在10~14.4吨之间;(3)①m≤12吨时,所缴水费为2m元,②12<m≤18吨时,所缴水费为2×12+(m﹣12)×2.5=(2.5m﹣6)元,③m>18吨时,所缴水费为2×12+2.5×(18﹣12)+(m﹣18)×3=(3m﹣15)元.20.解:由题意知付款480元,实际标价为480或480×=600元,付款520元,实际标价为520×=650元,①当小红买标价为480元,她母亲买标价为650元时,总买标价480+650=1130元,应付款:800×0.8+(1130﹣800)×0.6=838元.②当小红买标价为600元,她母亲买标价为650元时,总买标价600+650=1250元,应付款:800×0.8+(1250﹣800)×0.6=910元.答:她们总共只需付款838元或910元.。

北师大版七年级下册数学第三章测试卷及答案共4套

北师大版七年级下册数学第三章测试卷及答案共4套

第三章 变量之间的关系单元测试一、选一选,看完四个选项后再做决定呀!(每小题3分,共30分)1.李老师骑车外出办事,离校不久便接到学校到他返校的紧急电话,李老师急忙赶回学校.下面四个图象中,描述李老师与学校距离的图象是( )2.已知变量x ,y 满足下面的关系x … -3 -2 -1 1 2 3 … y…11.53-3-1.5-1…则x ,y 之间用关系式表示为( ) A.y =x3B.y =-3x C.y =-x 3D.y =3x 3.某同学从学校走回家,在路上遇到两个同学,一块儿去文化宫玩了会儿,然后回家,下列象能刻画这位同学所剩路程与时间的变化关系的是( )4.地表以下的岩层温度y 随着所处深度x 的变化而变化,在某个地点y 与x 的关系可以由公式2035+=x y 来表示,则y 随x 的增大而( ) A.增大 B.减小 C.不变 D.以上答案都不对5.某校办工厂今年前5个月生产某种产品总量(件)与时间(月)的关系如图1所示,则对于该厂生产这种产品的说法正确的是( )A.1月至3月生产总量逐月增加,4,5两月生产总量逐月减少B.1月至3月生产总量逐月增加,4,5两月均产总量与3月持平C.1月至3月生产总量逐月增加,4,5两月均停止生产D.1月至3月生产总量不变,4,5两月均停止生产6.如图2是反映两个变量关系的图,下列的四个情境比较合适该图的是( ) A.一杯热水放在桌子上,它的水温与时间的关系 B.一辆汽车从起动到匀速行驶,速度与时间的关系C.一架飞机从起飞到降落的速度与时间的关系D.踢出的足球的速度与时间的关系A .B .C .D .图2 图37.如图3,射线l甲,l乙分别表示甲、乙两名运动员在自行车比赛中所走路程与时间的关系,则图中显示的他们行进的速度关系是()A.甲比乙快B.乙比甲快C.甲、乙同速D.不一定8.在利用太阳能热水器来加热水的过程中,热水器里的水温随所晒时间的长短而变化,这个问题中因变量是()A.太阳光强弱B.水的温度C.所晒时间D.热水器9.长方形的周长为24厘米,其中一边为x(其中0>x),面积为y平方厘米,则这样的长方形中y与x的关系可以写为()A.2xy= B.()212xy-= C.()xxy⋅-=12 D.()xy-=12210如果每盒圆珠笔有12支,售价18元,用y(元)表示圆珠笔的售价,x表示圆珠笔的支数,那么y与x之间的关系应该是()A.y=12xB.y=18xC.y=23x D.y=32x二、填一填,要相信自己的能力!(每小题3分,共30分)1.某种储蓄的月利率是0.2%,存入100元本金后,则本息和y(元)与所存月数x之间的关系式为____(不考虑利息税).2.如果一个三角形的底边固定,高发生变化时,面积也随之发生改变.现已知底边长为10,则高从3变化到10时,三角形的面积变化范围是____.3.汽车开始行驶时,油箱中有油40升,如果每小时耗油5升,则油箱内余油量y(升)与行驶时间x(小时)的关系式为____,该汽车最多可行驶____小时.4.某公司销售部门发现,该公司的销售收入随销售量的变化而变化,其中是自变量,是因变量。

新北师大版七年级数学下册第三章三角形单元测试卷5套及答案42274

新北师大版七年级数学下册第三章三角形单元测试卷5套及答案42274

第三章三角形单元测试卷(一)班级姓名学号得分一、选择题1.一定在△ABC内部的线段是()A.锐角三角形的三条高、三条角平分线、三条中线B.钝角三角形的三条高、三条中线、一条角平分线C.任意三角形的一条中线、二条角平分线、三条高D.直角三角形的三条高、三条角平分线、三条中线2.下列说法中,正确的是()A.一个钝角三角形一定不是等腰三角形,也不是等边三角形B.一个等腰三角形一定是锐角三角形,或直角三角形C.一个直角三角形一定不是等腰三角形,也不是等边三角形D.一个等边三角形一定不是钝角三角形,也不是直角三角形3.如图,在△ABC中,D、E分别为BC上两点,且BD=DE=EC,则图中面积相等的三角形有() A.4对 B.5对 C.6对 D.7对(注意考虑完全,不要漏掉某些情况)4.如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是()A.锐角三角形 B.钝角三角形 C.直角三角形 D.无法确定5.下列各题中给出的三条线段不能组成三角形的是()A.a+1,a+2,a+3(a>0) B.三条线段的比为4∶6∶10C.3cm,8cm,10cm D.3a,5a,2a+1(a>0)6.若等腰三角形的一边是7,另一边是4,则此等腰三角形的周长是()A.18 B.15 C.18或15 D.无法确定7.两根木棒分别为5cm和7cm,要选择第三根木棒,将它们钉成一个三角形,如果第三根木棒长为偶数,那么第三根木棒的取值情况有()种A.3 B.4 C.5 D.68.△ABC的三边a、b、c都是正整数,且满足a≤b≤c,如果b=4,那么这样的三角形共有()个 A.4 B.6 C.8 D.10 9.各边长均为整数的不等边三角形的周长小于13,这样的三角形有()A.1个 B.2个 C.3个 D.4个10.三角形所有外角的和是()A.180° B.360° C.720° D.540°11.锐角三角形中,最大角α的取值范围是()A.0°<α<90°; B.60°<α<180°; C.60°<α<90°; D.60°≤α<90°12.如果三角形的一个外角不大于和它相邻的内角,那么这个三角形为( ) A .锐角或直角三角形; B .钝角或锐角三角形;C .直角三角形; D .钝角或直角三角形13.已知△ABC 中,∠ABC 与∠ACB 的平分线交于点O ,则∠BOC 一定( ) A .小于直角; B .等于直角; C .大于直角; D .大于或等于直角 二、填空题1.如图:(1)AD ⊥BC ,垂足为D ,则AD 是________的高,∠________=∠________=90°;(2)AE 平分∠BAC ,交BC 于点E ,则AE 叫________, ∠________=∠________=21∠________,AH 叫________;(3)若AF =FC ,则△ABC 的中线是________;(4)若BG =GH =HF ,则AG 是________的中线,AH 是________的中线. 2.如图,∠ABC =∠ADC =∠FEC =90°.(1)在△ABC 中,BC 边上的高是________; (2)在△AEC 中,AE 边上的高是________; (3)在△FEC 中,EC 边上的高是________; (4)若AB =CD =3,AE =5,则△AEC 的面积为________. 3.在等腰△ABC 中,如果两边长分别为6cm 、10cm ,则这个等腰三角形的周长为________.4.五段线段长分别为1cm 、2cm 、3cm 、4cm 、5cm ,以其中三条线段为边长共可以组成________个三角形.5.已知三角形的两边长分别为3和10,周长恰好是6的倍数,那么第三边长为________.6.一个等腰三角形的周长为5cm ,如果它的三边长都是整数,那么它的腰长为________cm .7.在△ABC 中,若∠A ∶∠B ∶∠C =5∶2∶3,则∠A =______;∠B =______;∠C =______.8.如图,△ABC 中,∠ABC 、∠ACB 的平分线相交于点I . (1)若∠ABC =70°,∠ACB =50°,则∠BIC =________; (2)若∠ABC +∠ACB =120°,则∠BIC =________; (3)若∠A =60°,则∠BIC =________; (4)若∠A =100°,则∠BIC =________; (5)若∠A =n °,则∠BIC =________. 三、解答题1.在△ABC 中,∠BAC 是钝角. 画出:(1)∠ABC 的平分线;(2)边AC 上的中线; (3)边AC 上的高.2.△ABC 的周长为16cm ,AB =AC ,BC 边上的中线AD 把△ABC 分成周长相等的两个三角形.若BD =3cm ,求AB 的长.3.如图,AB ∥CD ,BC ⊥AB ,若AB =4cm ,212cm =∆ABC S ,求△ABD 中AB 边上的高.4.学校有一块菜地,如下图.现计划从点D 表示的位置(BD ∶DC =2∶1)开始挖一条小水沟,希望小水沟两边的菜地面积相等.有人说:如果D 是BC 的中点的话,由此点D 笔直地挖至点A 就可以了.现在D 不是BC 的中点,问题就无法解决了.但有人认为如果认真研究的话一定能办到.你认为上面两种意见哪一种正确,为什么?5.在直角△ABC 中,∠BAC =90°,如下图所示.作BC 边上的高,图中出现三个直角三角形(3=2×1+1);又作△ABD 中AB 边上的高1DD ,这时图中便出现五个不同的直角三角形(5=2×2+1);按照同样的方法作21D D 、32D D 、……、k k D D 1-.当作出k k D D 1 时,图中共有多少个不同的直角三角形?6.一块三角形优良品种试验田,现引进四个良种进行对比实验,需将这块土地分成面积相等的四块.请你制订出两种以上的划分方案.7.一个三角形的周长为36cm ,三边之比为a ∶b ∶c =2∶3∶4,求a 、b 、c .8.已知△ABC 的周长为48cm ,最大边与最小边之差为14cm ,另一边与最小边之和为25cm ,求△ABC 各边的长.9.已知三角形三边的长分别为:5、10、a -2,求a 的取值范围.10.已知等腰三角形中,AB =AC ,一腰上的中线BD 把这个三角形的周长分成15cm 和6cm 两部分,求这个等腰三角形的底边的长.11.如图,已知△ABC 中,AB =AC ,D 在AC 的延长线上. 求证:BD -BC <AD -AB .12.如图,△ABC 中,D 是AB 上一点. 求证:(1)AB +BC +CA >2CD ;(2)AB +2CD >AC +BC .13.如图,AB ∥CD ,∠BMN 与∠DNM 的平分线相交于点G , (1)完成下面的证明:∵ MG 平分∠BMN ( ), ∴ ∠GMN =21∠BMN ( ),同理∠GNM =21∠DNM .∵ AB ∥CD ( ),∴ ∠BMN +∠DNM =________( ). ∴ ∠GMN +∠GNM =________.∵∠GMN+∠GNM+∠G=________(),∴∠G= ________.∴ MG与NG的位置关系是________.(2)把上面的题设和结论,用文字语言概括为一个命题:_______________________________________________________________.14.已知,如图D是△ABC中BC边延长线上一点,DF⊥AB交AB于F,交AC于E,∠A=46°,∠D=50°.求∠ACB的度数.15.已知,如图△ABC中,三条高AD、BE、CF相交于点O.若∠BAC=60°,求∠BOC的度数.16.已知,如图△ABC中,∠B=65°,∠C=45°,AD是BC边上的高,AE是∠BAC 的平分线.求∠DAE的度数.17.已知,如图CE是△ABC的外角∠ACD的平分线,BE是∠ABC内任一射线,交CE于E.求证:∠EBC<∠ACE.18.画出图形,并完成证明:已知:AD是△ABC的外角∠EAC的平分线,且AD∥BC.求证:∠B=∠C.单元测试卷(一)参考答案:一、1.A ; 2.D ; 3.A ; 4.C ;5.B ; 6.C ; 7.B ; 8.D ; 9.C (提示:边长分别为3、4、5;2、4、5;2、3、4.)10.C ; 11.D ; 12.D ; 13.C ; 二、1.(1)BC 边上,ADB ,ADC ;(2)∠BAC 的角平分线,BAE ,CAE ,BAC ,∠BAF 的角平分线; (3)BF ;(4)△ABH ,△AGF ; 2.(1)AB ; (2)CD ; (3)EF ; (4)7.5; 3.22cm 或26cm ; 4.3; 5.11; 6.2;7.90°,36°,54°;8.(1)120°; (2)120°; (3)120°; (4)140°; (5)290︒+︒n ;三、21.略;2.解法1:AB +BD +DA =DA +AC +CD ,∴ BD =CD ,∵ BD =3cm ,∴ CD =3cm ,BC =6cm ,∵ AB =AC ,∴ AB =5cm . 解法2:△ABD 与△ACD 的周长相等,而AB =AC ,∴ BD =CD , ∴ BC =2BD =6cm ,∴ AB =(16-6)÷2=5cm . 3.212cm =∆ABC S ,∴ 21AB ·BC =12,AB =4,∴ BC =6,∵ AB ∥CD ,∴ △ABD 中AB 边上的高=BC =6cm . 4.后一种意见正确.5.不作垂线,一个直角三角形,即:1=2×0+1,作一条垂线,三个直角三角形,即:3=2×1+1,同理,5=2×2+1,找出相应的规律,当作出k k D D 1-时,图中共有2×k +1,即2k +1个直角三角形. 6.第一种方案:在BC 上取E 、D 、F ,使BE =ED =DF =FC ,连结AE 、AD 、AF ,则△ABE 、△AED 、△ADF 、△AFC 面积相等;第二种方案:取AB 、BC 、CA 的中点D 、E 、F ,连结DE 、EF 、FD ,则△ADF 、△BDE 、△CEF 、△DEF 面积相等.7.设三边长a =2k ,b =3k ,c =4k ,∵ 三角形周长为36,∴ 2k +3k +4k =36,k =4, ∴ a =8cm ,b =12cm ,c =16cm .8.设三角形中最大边为a ,最小边为c ,由已知,a -c =14,b +c =25,a +b +c =48, ∴ a =23cm ,b =16cm ,c =9cm .9.10-5<a -2<10+5,∴ 7<a <17. 10.设AB =AC =2x ,则AD =CD =x ,(1)当AB +AD =15,BC +CD =6时,2x +x =15,∴ x =5,2x =10,∴ BC =6-5=1cm ;(2)当AB +AD =6,BC +CD =15时,2x +x =6,∴ x =2,2x =4,∴ BC =13cm ;经检验,第二种情况不符合三角形的条件,故舍去.11.AD-AB=AC+CD-AB=CD,∵ BD-BC<CD,∴ BD-BC<AD-AB.12.(1)AC+AD>CD,BC+BD>CD,两式相加:AB+BC+CA>2CD.(2)AD+CD>AC,BD+CD>BC,两式相加:AB+2CD>AC+BC.13.(1)已知,角平分线定义,已知,180°,两直线平行同旁内角互补,90°,180°,三角形内角和定理,90°,互相垂直.(2)两平行直线被第三条直线所截,它们的同旁内角的角平分线互相垂直.14.94°; 35.120°; 36.10°;17.∠EBC<∠DCE,而∠DCE=∠ACE,∴∠EBC<∠ACE.18.略.第三章三角形单元测试卷(三)班级姓名学号得分一、选择题(每小题3分,共30分)1.有下列长度的三条线段,能组成三角形的是()A 2,3,4B 1,4,2C 1,2,3D 6,2,32.在下列各组图形中,是全等的图形是()3. 下列条件中,能判断两个直角三角形全等的是()A、一个锐角对应相等B、两个锐角对应相等C、一条边对应相等D、两条边对应相等4.已知:如图,CD⊥AB,BE⊥AC,垂足分别为D、E,BE、CD相交于O点,∠1=∠2.图中全等的三角形共有()A.4对B..3对 C 2对D.1对5.如图所示,某同学把一块三角形玻璃打碎成了三块,现在要到玻店去配一块完全一样的玻璃,那么最省事的办法是()A.带①去B. 带②去C. 带③去D. 带①和②去6.右图中三角形的个数是()A.6 B.7 C.8 D.97.如果两个三角形全等,那么下列结论不正确的是()A.这两个三角形的对应边相等B.这两个三角形都是锐角三角形C.这两个三角形的面积相等D.这两个三角形的周长相等8.在下列四组条件中,能判定△ABC≌△A/B/C/的是()A.AB=A/B/,BC= B/C/,∠A=∠A/B.∠A=∠A/,∠C=∠C/,AC= B/C/C.∠A=∠B/,∠B=∠C/,AB= B/C/D.AB=A/B/,BC= B/C/,△ABC的周长等于△A/B/C/的周长9.下列图中,与左图中的图案完全一致的是()10. 下列判断:①三角形的三个内角中最多有一个钝角,②三角形的三个内角中至少有两个锐角,③有两个内角为500和200的三角形一定是钝角三角形,④直角三角形中两锐角的和为900,其②①③5题CDABEF6题A B C DA B C D E 图4图2 图 3 图4 AC BO 中判断正确的有( )A.1个B.2个C.3个D.4个二、填空题:(每题4分共24分)11、为了使一扇旧木门不变形,木工师傅在木门的背面加钉了一根木条,这样做的道理是 。

北师大版七年级数学下册第三章单元测试题(含答案)

北师大版七年级数学下册第三章单元测试题(含答案)

第三章变量之间的关系一.选择题1.如果用总长为60m的篱笆围成一个长方形场地,设长方形的面积为S(m2)周长为p(m),一边长为a(m),那么S、p、a中,常量是()A.a B.p C.S D.p,a2.弹簧挂上物体后伸长,已知一弹簧的长度y(cm)与所挂物体的质量m(kg)之间的关系如下表:所挂物体的质量m/kg012345弹簧的长度y/cm1012.51517.52022.5下列说法错误的是()A.在没挂物体时,弹簧的长度为10cmB.弹簧的长度随所挂物体的质量的变化而变化,弹簧的长度是自变量,所挂物体的质量是因变量C.弹簧的长度y(cm)与所挂物体的质量m(kg)之间的关系可用关系式y=2.5m+10来表示D.在弹簧能承受的范围内,当所挂物体的质量为4kg时,弹簧的长度为20cm3.某复印的收费y(元)与复印页数x(页)的关系如下表:则()x(页)1002004001000…y(元)4080160400…A.B.C.y=10x D.y=4x4.某商场自行车存放处每周的存车量为5000辆次,其中变速车存车费是每辆一次1元,普通车存车费为每辆一次0.5元,若普通车存车量为x辆次,存车的总收入为y元,则y与x之间的关系式是()A.y=0.5x+5000B.y=0.5x+2500C.y=﹣0.5x+5000D.y=﹣0.5x+25005.(2018春•岐山县期末)如图所示,长方形的长和宽分别为8cm和6cm,剪去一个长为xcm(0<x<8)的小长方形(阴影部分)后,余下另一个长方形的面积S(cm2)与x(cm)的关系式可表示为()A .s =6xB .s =8(6﹣x )C .s =6(8﹣x )D .s =8x6.均匀地向一个容器注水,最后将容器注满.在注水过程中,水的高度h 随时间t 的变化规律如图所示,这个容器的形状可能是()A .B .C .D .7.有一天,兔子和乌龟赛跑.比赛开始后,兔子飞快地奔跑,乌龟缓慢的爬行.不一会儿,乌龟就被远远的甩在了后面.兔子想:“这比赛也太轻松了,不如先睡一会儿.”而乌龟一刻不停地继续爬行.当兔子醒来跑到终点时,发现乌龟已经到达了终点.正确反映这则寓言故事的大致图象是()A .B .C .D .8.小刚从家去学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车匀速行驶一段时间后到达学校,小刚从家到学校行驶路程s (单位:m )与时间t (单位:min )之间函数关系的大致图象是()A .B .C.D.9.如图是自动测温仪记录的图象,它反映了齐齐哈尔市的春季某天气温T如何随时间t的变化而变化,下列从图象中得到的信息正确的是()A.0点时气温达到最低B.最低气温是零下4℃C.0点到14点之间气温持续上升D.最高气温是8℃10.如图,在物理课上,老师将挂在弹簧测力计下端的铁块浸没于水中,然后缓慢匀速向上提起,直至铁块完全露出水面一定高度,则下图能反映弹簧测力计的读数y(单位:N)与铁块被提起的高度x(单位:cm)之间的函数关系的大致图象是()A.B.C.D.11.小明和小华是同班同学,也是邻居,某日早晨,小明7:40先出发去学校,走了一段后,在途中停下吃了早餐,后来发现上学时间快到了,就跑步到学校;小华离家后直接乘公交汽车到了学校.如图是他们从家到学校已走的路程s(米)和所用时间t(分钟)的关系图.则下列说法中错误的是()A.小明吃早餐用时5分钟B.小华到学校的平均速度是240米/分C.小明跑步的平均速度是100米/分D.小华到学校的时间是7:55评卷人得分二.填空题12.同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的函数表达式是y=x+32.若某一温度的摄氏度数值与华氏度数值恰好相等,则此温度的摄氏度数为℃.13.如图,在△ABC中,∠C=90°,AC=8,BC=6,D点在AC上运动,设AD长为x,△BCD的面积y,则y与x之间的函数表达式为.14.甲、乙两人在一条笔直的道路上相向而行,甲骑自行车从A地到B地,乙驾车从B地到A地,他们分别以不同的速度匀速行驶,已知甲先出发6分钟后,乙才出发,在整个过程中,甲、乙两人的距离y(千米)与甲出发的时间x(分)之间的关系如图所示,当乙到达终点A时,甲还需分钟到达终点B.15.某日小明步行,小颖骑车,他们同时从小颖家出发,以各自的速度匀速到公园去,小颖先到并停留了8分钟,发现相机忘在了家里,于是沿原路以同样的速度回家去取,已知小明的步行速度为180米/分钟,他们各自距离出发点的路程y与出发时间x之间的关系图象如图所示,则当小明到达公园的时候小颖离家米.16.如图①,在矩形ABCD中,动点P从A出发,以相同的速度,沿A→B→C→D→A方向运动到点A 处停止.设点P运动的路程为x,△PAB面积为y,如果y与x的函数图象如图②所示,则矩形ABCD .的面积为17.如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段.BP的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则△ABC的面积是评卷人三.解答题18.某公交车每月的支出费用为4000元,每月的乘车人数x(人)与每月利润(利润=收入费用﹣支出费用)y(元)的变化关系如下表所示答案及解析1.【分析】根据篱笆的总长确定,即可得到周长、一边长及面积中的变量.【解答】解:根据题意长方形的周长p=60m,所以常量是p,故选:B.2.【分析】因为表中的数据主要涉及到弹簧的长度和所挂物体的重量,所以反映了所挂物体的质量和弹簧的长度之间的关系,所挂物体的质量是自变量;弹簧的长度是因变量;由已知表格得到弹簧的长度是y=10+2.5m,质量为mkg,y弹簧长度;弹簧的长度有一定范围,不能超过.【解答】解:A.在没挂物体时,弹簧的长度为10cm,根据图表,当质量m=0时,y=10,故此选项正确,不符合题意;B、反映了所挂物体的质量和弹簧的长度之间的关系,所挂物体的质量是自变量;弹簧的长度是因变量,故此选项错误,符合题意;C、当物体的质量为mkg时,弹簧的长度是y=12+2.5m,故此选项正确,不符合题意;D、由C中y=10+2.5m,m=4,解得y=20,在弹簧的弹性范围内,故此选项正确,不符合题意;故选:B.3.【分析】待定系数法设一次函数关系式,把任意两点代入,求得相应的函数解析式,看其余点的坐标是否适合即可.【解答】解:设解析式为y=kx+b(k≠0),则,解得,故y=0.4x;故选:B.4.【分析】根据题意可以写出题目中的函数解关系式,从而可以解答本题.【解答】解:由题意可得,y=0.5x+(5000﹣x)×1=﹣0.5x+5000,故选:C.5.【分析】直接利用已知表示出新矩形的长,进而得出其面积.【解答】解:∵长方形的长和宽分别为8cm和6cm,剪去一个长为xcm(0<x<8)的小长方形(阴影部分)后,∴余下另一个长方形的面积S(cm2)与x(cm)的关系式可表示为:s=6(8﹣x).故选:C.6.【分析】根据每一段函数图象的倾斜程度,反映了水面上升速度的快慢,再观察容器的粗细,作出判断.【解答】解:注水量一定,从图中可以看出,OA上升较快,AB上升较慢,BC上升最快,由此可知这个容器下面容积较大,中间容积最大,上面容积最小,故选:D.7.【分析】根据题意得出兔子和乌龟的图象进行解答即可.【解答】解:乌龟运动的图象是一条直线,兔子运动的图象路程先增大,而后不变,再增大,并且乌龟所用时间最短,故选:D.8.【分析】根据小刚行驶的路程与时间的关系,确定出图象即可.【解答】解:根据题意得:小刚从家到学校行驶路程s(单位:m)与时间t(单位:min)之间函数关系的大致图象是故选:B.9.【分析】根据齐齐哈尔市某一天内的气温变化图,分析变化趋势和具体数值,即可求出答案.【解答】解:A、由函数图象知4时气温达到最低,此选项错误;B、最低气温是零下3℃,此选项错误;C、4点到14点之间气温持续上升,此选项错误;D、最高气温是8℃,此选项正确;故选:D.10.【分析】根据题意,利用分类讨论的数学思想可以解答本题.【解答】解:由题意可知,F浮=G,浮力不变,故此过程中弹簧的度数不变,铁块露出水面以前,F拉+当铁块慢慢露出水面开始,浮力减小,则拉力增加,当铁块完全露出水面后,拉力等于重力,故选:D.11.【分析】根据函数图象中各拐点的实际意义求解可得.【解答】解:A、小明吃早餐用时13﹣8=5分钟,此选项正确;B、小华到学校的平均速度是1200÷(13﹣8)=240(米/分),此选项正确;C、小明跑步的平均速度是(1200﹣500)÷(20﹣13)=100(米/分),此选项正确;D、小华到学校的时间是7:53,此选项错误;故选:D.二.填空题(共6小题,满分24分,每小题4分)12.【分析】根据题意得x+32=x,解方程即可求得x的值.【解答】解:根据题意得x+32=x,解得x=﹣40.故答案是:﹣40.13.【分析】根据三角形的面积=×底×高,结合BC=6,CD=(8﹣x),即可得到,△BCD的面积y与AD的长之间的函数表达式.【解答】解:根据题意得:CD的长为:8﹣x,则y=×6(8﹣x)=24﹣3x,即y与x之间的函数表达式为:y=24﹣3x.14.【分析】根据路程与时间的关系,可得甲乙的速度,根据相遇前甲行驶的路程除以乙行驶的速度,可得乙到达A站需要的时间,根据相遇前乙行驶的路程除以甲行驶的速度,可得甲到达B站需要的时间,再根据有理数的减法,可得答案.【解答】解:由纵坐标看出甲先行驶了1千米,由横坐标看出甲行驶1千米用了6分钟,甲的速度是1÷6=千米/分钟,由纵坐标看出AB两地的距离是16千米,设乙的速度是x千米/分钟,由题意,得10x+16×=16,解得x=千米/分钟,相遇后乙到达A站还需(16×)÷=2分钟,相遇后甲到达B站还需(10×)÷=80分钟,当乙到达终点A时,甲还需80﹣2=78分钟到达终点B,故答案为:78.15.【分析】先根据题意求得两人在第20分钟相遇时小明的路程为3600米,再根据小颖先到并停留了8分钟且往返速度相等得出小颖的速度及公园距离小颖家的距离,进一步求解可得.【解答】解:由题意知,小颖去往公园耗时10分钟,且停留8分钟,∴小颖原路返回时间为第18分钟,∵小颖往返速度相等,∴小颖返回到达时刻为第28分钟,由小明的速度为180米/分钟知,两人在第20分钟相遇时,小明的路程为20×180=3600(米),∴小颖的速度为3600÷(28﹣20)=450(米/分钟),则公园距离小颖家的距离为450×10=4500(米),∴小明到达公园的时刻为第4500÷180=25(分钟),则当小明到达公园的时候小颖离家450×(28﹣25)=1350(米),故答案为:1350.16.【分析】根据图象②得出AB、BC的长度,再求出面积即可.【解答】解:从图象②和已知可知:AB=4,BC=10﹣4=6,所以矩形ABCD的面积是4×6=24,故答案为:24.17.【分析】根据图象可知点P在BC上运动时,此时BP不断增大,而从C向A运动时,BP先变小后变大,从而可求出BC与AC的长度.【解答】解:根据图象可知点P在BC上运动时,此时BP不断增大,由图象可知:点P从B向C运动时,BP的最大值为5,即BC=5,由于M是曲线部分的最低点,∴此时BP最小,即BP⊥AC,BP=4,∴由勾股定理可知:PC=3,由于图象的曲线部分是轴对称图形,∴PA=3,∴AC=6,∴△ABC的面积为:×4×6=12故答案为:12三.解答题(共6小题,满分60分,每小题10分)18.【分析】(1)直接利用常量与变量的定义分析得出答案;(2)直接利用表中数据分析得出答案;(3)利用由表中数据可知,每月的乘车人数每增加500人,每月的利润可增加1000元,进而得出答案;(4)由(3)得出当利润为5000元时乘客人数,即可得出答案.【解答】解:(1)在这个变化过程中,每月的乘车人数x是自变量,每月的利润y是因变量;故答案为每月的乘车人数x,每月的利润y;(2)观察表中数据可知,每月乘客量达到观察表中数据可知,每月乘客量达到2000人以上时,该公交车才不会亏损;故答案为2000;(3)由表中数据可知,每月的乘车人数每增加500人,每月的利润可增加1000元,当每月的乘车人数为2000人时,每月利润为0元,则当每月乘车人数为3500人时,每月利润为3000元;(4)由表中数据可知,每月的乘车人数每增加500人,每月的利润可增加1000元,当每月的乘车人数为2000人时,每月利润为0元,则当每月利润为5000元时,每月乘车人数为4500人,故答案为4500.19.【分析】(1)由表格可知,开始油箱中的油为50L,每行驶100km,油量减少8L,由此填空;(2)由表格可知,开始油箱中的油为50L,每行驶100km,油量减少8L,据此可得Q与s的关系式;(3)把Q=26代入函数关系式求得相应的s值即可.【解答】解:(1)由表格中的数据可知,该轿车油箱的容量为50L,行驶150km时,油箱剩余油量为:50﹣×8=38(L).故答案是:50;38;(2)由表格可知,开始油箱中的油为50L,每行驶100km,油量减少8L,据此可得Q与s的关系式为Q=50﹣0.08s;故答案是:Q=50﹣0.08s;(3)令Q=26,得s=300.答:A,B两地之间的距离为300km.20.【分析】(1)直接利用自变量以及因变量的定义分析得出答案;(2)直接利用B两站之间距离A站8km处出发,向C站匀速前进,他骑车的速度是16.5km/小时,进而得出离A站的路程;(3)利用出发时间为1小时,进而得出答案.【解答】解:(1)骑车的时间是自变量,所走的路程是因变量;(2)∵小明骑车的速度是16.5km/小时,∴离A站的路程为:y=16.5x+8;(3)当x=1时,y=16.5+8=24.5<26,可知上午9时小明还没有经过B站.21.【分析】(1)依据点P运动的路程为x,△ABP的面积为y,即可得到自变量和因变量;(2)依据函数图象,即可得到点P运动的路程x=4时,△ABP的面积;(3)根据图象得出BC的长,以及此时三角形ABP面积,利用三角形面积公式求出AB的长即可;由函数图象得出DC的长,利用梯形面积公式求出梯形ABCD面积即可.【解答】解:(1)∵点P运动的路程为x,△ABP的面积为y,∴自变量为x,因变量为y,故答案为:x,y;(2)由图可得,当点P运动的路程x=4时,△ABP的面积为y=16,故答案为:16;(3)根据图象得:BC=4,此时△ABP为16,∴AB•BC=16,即×AB×4=16,解得:AB=8;由图象得:DC=9﹣4=5,=×BC×(DC+AB)=×4×(5+8)=26.则S梯形ABCD22.【分析】(1)根据图象变化确定a秒时,P点位置,利用面积求a;(2)P、Q两点的函数关系式都是在运动6秒的基础上得到的,因此注意在总时间内减去6秒.(3)以(2)为基础可知,两个点相距3cm分为相遇前相距或相遇后相距,因此由(2)可列方程.【解答】解:(1)由图象可知,当点P在BC上运动时,△APD的面积保持不变,则a秒时,点P在AB上.∴AP=6则a=6(2)由(1)6秒后点P变速,则点P已行的路程为y1=6+2(x﹣6)=2x﹣6∵Q点路程总长为34cm,第6秒时已经走12cm,点Q还剩的路程为y2=34﹣12﹣=(3)当P、Q两点相遇前相距3cm时,﹣(2x﹣6)=3解得x=10当P、Q两点相遇后相距3cm时(2x﹣6)﹣()=3解得x=∴当t=10或时,P、Q两点相距3cm23.【分析】(1)因为y轴表示路程,起点是家,终点是学校,故小明家到学校的路程是1500米;(2)与x轴平行的线段表示路程没有变化,观察图象分析其对应时间即可.(3)共行驶的路程=小明家到学校的距离+折回书店的路程×2.(4)观察图象分析每一时段所行路程,然后计算出各时段的速度进行比较即可.【解答】解:(1)∵y轴表示路程,起点是家,终点是学校,∴小明家到学校的路程是1500米.(2)由图象可知:小明在书店停留了4分钟.(3)1500+600×2=2700(米)即:本次上学途中,小明一共行驶了2700米.一共用了14分钟.(4)折回之前的速度=1200÷6=200(米/分)折回书店时的速度=(1200﹣600)÷2=300(米/分),从书店到学校的速度=(1500﹣600)÷2=450(米/分)经过比较可知:小明在从书店到学校的时候速度最快即:在整个上学的途中从12分钟到14分钟小明骑车速度最快,最快的速度是450米/分。

北师大版七年级下册数学-第三章综合检测试卷

北师大版七年级下册数学-第三章综合检测试卷

第三章综合检测试卷(满分:120分)一、选择题(每小题3分,共30分)1.地表以下岩层的温度随着所处深度的变化而变化,这个问题中的因变量是( B ) A .地表 B .岩层的温度 C .所处深度D .时间2.下面的表格列出了一次实验的统计数据,表示将皮球从高处落下时,皮球第一次弹跳高度b 与下降高度d 的关系,下面能表示这种关系的式子是( C )d 50 80 100 150 b25405075A .b =d 2B .b =2dC .b =d2D .b =d +253.如图是九年级某考生做的水滴入一个玻璃容器的示意图(滴水速度保持不变),能正确反映容器中水的高度h 与时间t 之间对应关系的大致图象是( D )4.如图,梯形的上底长、下底长分别是x 、y ,高是6,面积是24,则y 与x 之间的关系式是( A )A .y =-x +8B .y =-x +4C .y =x -8D .y =x -45.在一个数值转换机中(如图),当输入x =-5时,y =( B )A .26B .-13C .-24D .76.足球比赛时,守门员的脚踢出去的球的高度h随时间t变化而变化,下列各图中,能表示h与t的关系的是(A)7.弹簧挂上物体后会伸长(在允许挂物质量范围内),测得一弹簧的长度y(cm)与所挂物体的质量x(kg)间有下表的关系,下列说法不正确的是(A)x/kg01234 5y/cm1010.51111.51212.5A.弹簧不挂重物时的长度为8 cmB.x与y都是变量,且x是自变量,y是因变量C.物体质量每增加1 kg,弹簧长度y增加0.5 cmD.所挂物体质量为7 kg时,弹簧长度为13.5 cm8.小明从家到学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校.小明从家到学校行驶路程s(m)与时间t(min)的大致图象是(C)9.如图,在边长为2的正方形ABCD中剪去一个边长为1的小正方形EFGD,动点P 从点A出发,沿A→E→F→G→C→B的路线,绕多边形的边匀速运动到点B时停止,则△ABP 的面积S随着时间t变化的大致图象是(B)10.端午节前夕,在东昌湖举行的第七届全民健身运动会龙舟比赛中,甲、乙两队在500米的赛道上,所划行的路程y(m)与时间x (min)之间的关系如图所示,下列说法错误的是( D )A .乙队比甲队提前0.25 min 到达终点B .当乙队划行110 m 时,此时落后甲队15 mC .0.5 min 后,乙队比甲队每分钟快40 mD .自1.5 min 开始,甲队若要与乙队同时到达终点,甲队的速度需要提高到255 m/min 二、填空题(每小题3分,共18分)11.球的体积V 与半径R 之间的表达式是V =43πR 3.这个公式中的常量是 43π ,自变量是 R ,因变量是 V .12.已知卖出苹果数量x 与销售额y 的关系如下表.数量x /千克 1 2 3 4 5 销售额y /元3+0.16+0.29+0.312+0.415+0.5则当卖出苹果数量为10千克时,销售额y 为 31 元.13.某家庭电话月租费为18元,市内通话费每次0.2元(3 min 以内为一次),一个月的话费y (元)与通话次数x (每次都在3 min 以内)之间的关系式是 y =0.2x +18 .14.小娟到批发市场共购买了20支笔,她每月平均用3支笔,剩下的笔的支数y 与她用的月数x 之间的关系可近似地用y =20-3x 来表示,那么她用了2个月后,还剩 14 支笔;用了3个月后,还剩 11 支笔.她的笔 不够用 7个月.(填“够用”或“不够用”)15.如图所示的图象反映的过程是:小明从家去书店,又去学校取信后马上回家,其中x 表示时间,y 表示小明离家的距离,则小明往返一次的平均速度为 4 千米/时.16.某市统计局统计了去年第一季度每月人均GDP的增长情况,并绘制了如图所示的统计图,下列结论:①1月份的人均GDP增长率最高;②2月份的人均GDP比1月份低;③这3个月的人均GDP都在增长.其中正确的结论序号是①③.三、解答题(共72分)17.(6分)下表记录的是某天一昼夜温度变化的数据:时刻/时024681012141618202224温度/℃-3-5-6.5-4047.510851-1-2请根据表格数据回答下列问题:(1)早晨6时和中午12时的温度各是多少?(2)这一天的温差是多少?(3)这一天内温度上升的时段是几时至几时?解:(1)早晨6时的温度是-4 ℃,中午12时的温度是7.5 ℃.(2)10-(-6.5)=16.5(℃).故这一天的温差是16.5 ℃.(3)温度上升的时段是4时至14时.18.(6分)某生物兴趣小组在四天的实验研究中发现:骆驼的体温会随外部环境温度的变化而变化,而且在这四天中每昼夜的体温变化情况相同.他们将一头骆驼前两昼夜的体温变化情况绘制成下图.请根据图象回答:(1)第一天中,在什么时间范围内这头骆驼的体温是上升的?它的体温从最低上升到最高需要多少时间?(2)第三天12时这头骆驼的体温是多少?解:(1)第一天中,从4时到16时这头骆驼的体温是上升的,它的体温从最低上升到最高需要12时.(2)第三天12时这头骆驼的体温是39 ℃.19.(7分)如图表示的是热带风暴从发生到结束的全过程.请结合图象回答下列问题:(1)热带风暴从开始发生到结束共经历了16时;(2)从图象上看,风速在2时到5时内增大的最快,最大风速是54千米/时;(3)风速从开始减小到最终停止,平均每时减小多少千米?解:风速从开始减小到最终停止,平均每时减小:54÷(16-10)=54÷6=9(千米),即风速从开始减小到最终停止,平均每时减小9千米.20.(7分)下表给出了橘农王林去年橘子的销售额(元)与橘子卖出质量(千克)的有关数据:卖出质量/千克123456789销售额/元24681012141618(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)当橘子卖出5千克时,销售额是多少?(3)当橘子卖出50千克时,销售额是多少?解:(1)表中反映了橘子的卖出质量与销售额之间的关系,橘子的卖出质量是自变量,销售额是因变量.(2)由表可知,当橘子卖出5千克时,销售额为10元.(3)由表可知,橘子的单价为2元,当橘子的卖出质量每增加1千克,销售额增加2元,所以当橘子卖出50千克时,销售额为2×50=100(元).21.(8分)我们知道,海拔高度每上升1千米,温度下降6 ℃.某时刻,某地地面温度为20 ℃,设高出地面x千米处的温度为y℃.(1)写出y与x之间的关系式;(2)已知该地某山峰高出地面约500米,这时山顶的温度大约是多少?(3)有一架飞机飞过该地上空,若机舱内仪表显示飞机外面的温度为-34 ℃,求此刻飞机离地面的高度.解:(1)y=20-6x.(2)500米=0.5千米,y=20-6×0.5=17(℃).即这时山顶的温度大约是17 ℃.(3)由题得20-6x=-34,解得x=9.即此刻飞机离地面的高度为9千米.22.(8分)如图,在长方形ABCD中,AB=12 cm,AD=8 cm.点P、Q都从点A同时出发,点P向点B运动,点Q向点D运动,且保持AP=AQ,在这个变化过程中,图中阴影部分的面积也随之变化,当AP由2 cm变到8 cm时,图中阴影部分的面积是增加了,还是减少了?增加或减少了多少平方厘米?解:设AP=x cm(0≤x≤8),S阴=y cm2,则y=12×8-12x2,即y=96-12x2.当AP=2 cm时,S阴=94 cm2;当AP=8 cm时,S阴=64 cm2,94-64=30(cm2).所以当AP由2 cm变到8 cm时,图中阴影部分的面积减少了,减少了30 cm2.23.(8分)如图所示,公路上依次有A、B、C三个汽车站,上午8时,小明骑自行车从A、B两站之间距离A站8 km的点D处出发,向C站匀速前进,他骑车的速度是每时16.5 km.若A、B两站间的路程是26 km,B、C两站间的路程是15 km.(1)在小明所走的路程与骑车用去的时间这两个变量中,哪个是自变量?哪个是因变量?(2)设小明出发x时后,离A站的距离为y km,请写出y与x之间的关系式;(3)小明在上午9时是否已经经过了B站?(4)小明大约在什么时刻能够到达C站?解:(1)骑车用去的时间是自变量,所走的路程是因变量.(2)易知y与x之间的关系式为y=16.5x+8.(3)当x=1时,y=16.5+8=24.5<26,所以上午9时小明还没有经过B站.(4)由题意,得16.5x+8=26+15.解得x=2,则8+2=10,所以小明大约在上午10时到达C站.24.(10分)李大爷按每千克2.1元批发了一批黄瓜到镇上出售,为了方便,他带了一些零钱备用.他先按市场价售出一些后,又降价出售.售出黄瓜千克数x与他手中持有的钱数y元(含备用零钱)的关系如图所示,结合图象回答下列问题:(1)李大爷自带的零钱是多少?(2)降价前他每千克黄瓜出售的价格是多少?(3)卖了几天,黄瓜卖相不好了,随后他按每千克下降1.6元将剩余的黄瓜售完,这时他手中的钱(含备用零钱)是530元,问他一共批发了多少千克黄瓜?(4)请问李大爷是亏了还是赚了?若亏(赚)了,亏(赚)多少钱?解:(1)观察图象,可知李大爷自带的零钱为50元.(2)由图可知,降价前李大爷售出的黄瓜为100千克时,手中持有的钱数为410元,所以降价前他每千克黄瓜出售的价格是410-50100=3.6(元).(3)李大爷降价后售出的黄瓜质量为530-4103.6-1.6=60(千克).100+60=160(千克),所以他一共批发了160千克黄瓜.(4)530-160×2.1-50=144(元).故李大爷赚了,赚144元.25.(12分)如图,正方形ABCD 的边长为6 cm ,动点P 从A 点出发,在正方形的边上由A →B →C →D 运动,设运动的时间为t (s),△APD 的面积为S (cm 2),S 与t 的关系如图所示,请回答下列问题:(1)点P 在AB 上运动的速度为 1 cm/s ,在CD 上运动的速度为 2 cm/s ; (2)求出点P 在CD 上时S 与t 的关系式; (3)当t 为何值时,△APD 的面积为10 cm 2?解:(2)PD =6-2(t -12)=30-2t ,S =12AD ·PD =12×6×(30-2t )=90-6t .(3)由图知,有两种情况.当0≤t ≤6时,S =3t ,即3t =10,t =103.当12≤t ≤15时,S =90-6t ,即90-6t =10,解得t =403,所以当t 为103或403时,△APD 的面积为10 cm 2.。

北师大版数学七下第三章《三角形》单元测试卷及答案(5套)

北师大版数学七下第三章《三角形》单元测试卷及答案(5套)

北师大版七年级数学下册第三章三角形单元测试卷(一)班级姓名学号得分一、选择题1.一定在△ABC内部的线段是()A.锐角三角形的三条高、三条角平分线、三条中线B.钝角三角形的三条高、三条中线、一条角平分线C.任意三角形的一条中线、二条角平分线、三条高D.直角三角形的三条高、三条角平分线、三条中线2.下列说法中,正确的是()A.一个钝角三角形一定不是等腰三角形,也不是等边三角形B.一个等腰三角形一定是锐角三角形,或直角三角形C.一个直角三角形一定不是等腰三角形,也不是等边三角形D.一个等边三角形一定不是钝角三角形,也不是直角三角形3.如图,在△ABC中,D、E分别为BC上两点,且BD=DE=EC,则图中面积相等的三角形有() A.4对 B.5对 C.6对D.7对(注意考虑完全,不要漏掉某些情况)4.如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是()A.锐角三角形 B.钝角三角形 C.直角三角形 D.无法确定5.下列各题中给出的三条线段不能组成三角形的是()A.a+1,a+2,a+3(a>0) B.三条线段的比为4∶6∶10C.3cm,8cm,10cm D.3a,5a,2a+1(a>0)6.若等腰三角形的一边是7,另一边是4,则此等腰三角形的周长是()A.18 B.15 C.18或15 D.无法确定7.两根木棒分别为5cm和7cm,要选择第三根木棒,将它们钉成一个三角形,如果第三根木棒长为偶数,那么第三根木棒的取值情况有()种A.3 B.4 C.5 D.68.△ABC的三边a、b、c都是正整数,且满足a≤b≤c,如果b=4,那么这样的三角形共有()个 A.4 B.6 C.8 D.109.各边长均为整数的不等边三角形的周长小于13,这样的三角形有()A.1个 B.2个 C.3个 D.4个10.三角形所有外角的和是()A.180° B.360° C.720° D.540°11.锐角三角形中,最大角α的取值范围是()A.0°<α<90°; B.60°<α<180°; C.60°<α<90°; D.60°≤α<90°12.如果三角形的一个外角不大于和它相邻的内角,那么这个三角形为( ) A .锐角或直角三角形; B .钝角或锐角三角形;C .直角三角形; D .钝角或直角三角形13.已知△ABC 中,∠ABC 与∠ACB 的平分线交于点O ,则∠BOC 一定( ) A .小于直角; B .等于直角; C .大于直角; D .大于或等于直角 二、填空题1.如图:(1)AD ⊥BC ,垂足为D ,则AD 是________的高,∠________=∠________=90°; (2)AE 平分∠BAC ,交BC 于点E ,则AE 叫________, ∠________=∠________=21∠________,AH 叫________;(3)若AF =FC ,则△ABC 的中线是________;(4)若BG =GH =HF ,则AG 是________的中线,AH 是________的中线. 2.如图,∠ABC =∠ADC =∠FEC =90°.(1)在△ABC 中,BC 边上的高是________; (2)在△AEC 中,AE 边上的高是________; (3)在△FEC 中,EC 边上的高是________; (4)若AB =CD =3,AE =5,则△AEC 的面积为________. 3.在等腰△ABC 中,如果两边长分别为6cm 、10cm ,则这个等腰三角形的周长为________.4.五段线段长分别为1cm 、2cm 、3cm 、4cm 、5cm ,以其中三条线段为边长共可以组成________个三角形.5.已知三角形的两边长分别为3和10,周长恰好是6的倍数,那么第三边长为________.6.一个等腰三角形的周长为5cm ,如果它的三边长都是整数,那么它的腰长为________cm .7.在△ABC 中,若∠A ∶∠B ∶∠C =5∶2∶3,则∠A =______;∠B =______;∠C =______.8.如图,△ABC 中,∠ABC 、∠ACB 的平分线相交于点I . (1)若∠ABC =70°,∠ACB =50°,则∠BIC =________; (2)若∠ABC +∠ACB =120°,则∠BIC =________; (3)若∠A =60°,则∠BIC =________; (4)若∠A =100°,则∠BIC =________; (5)若∠A =n °,则∠BIC =________. 三、解答题1.在△ABC 中,∠BAC 是钝角. 画出:(1)∠ABC 的平分线; (2)边AC 上的中线; (3)边AC 上的高.2.△ABC 的周长为16cm ,AB =AC ,BC 边上的中线AD 把△ABC 分成周长相等的两个三角形.若BD =3cm ,求AB 的长.3.如图,AB ∥CD ,BC ⊥AB ,若AB =4cm ,212cm =∆ABC S ,求△ABD 中AB 边上的高.4.学校有一块菜地,如下图.现计划从点D 表示的位置(BD ∶DC =2∶1)开始挖一条小水沟,希望小水沟两边的菜地面积相等.有人说:如果D 是BC 的中点的话,由此点D 笔直地挖至点A 就可以了.现在D 不是BC 的中点,问题就无法解决了.但有人认为如果认真研究的话一定能办到.你认为上面两种意见哪一种正确,为什么?5.在直角△ABC 中,∠BAC =90°,如下图所示.作BC 边上的高,图中出现三个直角三角形(3=2×1+1);又作△ABD 中AB 边上的高1DD ,这时图中便出现五个不同的直角三角形(5=2×2+1);按照同样的方法作21D D 、32D D 、……、k k D D 1-.当作出k k D D 1-时,图中共有多少个不同的直角三角形?6.一块三角形优良品种试验田,现引进四个良种进行对比实验,需将这块土地分成面积相等的四块.请你制订出两种以上的划分方案.7.一个三角形的周长为36cm,三边之比为a∶b∶c=2∶3∶4,求a、b、c.8.已知△ABC的周长为48cm,最大边与最小边之差为14cm,另一边与最小边之和为25cm,求△ABC各边的长.9.已知三角形三边的长分别为:5、10、a-2,求a的取值范围.10.已知等腰三角形中,AB=AC,一腰上的中线BD把这个三角形的周长分成15cm和6cm两部分,求这个等腰三角形的底边的长.11.如图,已知△ABC 中,AB =AC ,D 在AC 的延长线上. 求证:BD -BC <AD -AB .12.如图,△ABC 中,D 是AB 上一点. 求证:(1)AB +BC +CA >2CD ;(2)AB +2CD >AC +BC .13.如图,AB ∥CD ,∠BMN 与∠DNM 的平分线相交于点G , (1)完成下面的证明:∵ MG 平分∠BMN ( ),∴ ∠GMN =21∠BMN ( ),同理∠GNM =21∠DNM .∵ AB ∥CD ( ),∴ ∠BMN +∠DNM =________( ). ∴ ∠GMN +∠GNM =________.∵ ∠GMN +∠GNM +∠G =________( ), ∴ ∠G = ________.∴ MG 与NG 的位置关系是________.(2)把上面的题设和结论,用文字语言概括为一个命题:_______________________________________________________________. 14.已知,如图D 是△ABC 中BC 边延长线上一点,DF ⊥AB 交AB 于F ,交AC 于E ,∠A =46°,∠D =50°.求∠ACB 的度数.15.已知,如图△ABC中,三条高AD、BE、CF相交于点O.若∠BAC=60°,求∠BOC的度数.16.已知,如图△ABC中,∠B=65°,∠C=45°,AD是BC边上的高,AE是∠BAC的平分线.求∠DAE的度数.17.已知,如图CE是△ABC的外角∠ACD的平分线,BE是∠ABC内任一射线,交CE于E.求证:∠EBC<∠ACE.18.画出图形,并完成证明:已知:AD 是△ABC 的外角∠EAC 的平分线,且AD ∥BC . 求证:∠B =∠C .单元测试卷(一)参考答案:一、1.A ; 2.D ; 3.A ; 4.C ;5.B ; 6.C ; 7.B ; 8.D ; 9.C (提示:边长分别为3、4、5;2、4、5;2、3、4.)10.C ; 11.D ; 12.D ; 13.C ; 二、1.(1)BC 边上,ADB ,ADC ;(2)∠BAC 的角平分线,BAE ,CAE ,BAC ,∠BAF 的角平分线; (3)BF ;(4)△ABH ,△AGF ; 2.(1)AB ; (2)CD ; (3)EF ; (4)7.5; 3.22cm 或26cm ; 4.3; 5.11; 6.2;7.90°,36°,54°;8.(1)120°; (2)120°; (3)120°; (4)140°; (5)290︒+︒n ;三、21.略;2.解法1:AB +BD +DA =DA +AC +CD ,∴ BD =CD ,∵ BD =3cm ,∴ CD =3cm ,BC =6cm ,∵ AB =AC ,∴ AB =5cm . 解法2:△ABD 与△ACD 的周长相等,而AB =AC ,∴ BD =CD , ∴ BC =2BD =6cm ,∴ AB =(16-6)÷2=5cm .3.212cm =∆ABC S,∴21AB ·BC =12,AB =4,∴ BC =6, ∵ AB ∥CD ,∴ △ABD 中AB 边上的高=BC =6cm . 4.后一种意见正确.5.不作垂线,一个直角三角形,即:1=2×0+1,作一条垂线,三个直角三角形,即:3=2×1+1,同理,5=2×2+1,找出相应的规律,当作出k k D D 1-时,图中共有2×k +1,即2k +1个直角三角形. 6.第一种方案:在BC 上取E 、D 、F ,使BE =ED =DF =FC ,连结AE 、AD 、AF ,则△ABE 、△AED 、△ADF 、△AFC 面积相等;第二种方案:取AB 、BC 、CA 的中点D 、E 、F ,连结DE 、EF 、FD ,则△ADF 、△BDE 、△CEF 、△DEF 面积相等.7.设三边长a=2k,b=3k,c=4k,∵三角形周长为36,∴ 2k+3k+4k=36,k=4,∴ a=8cm,b=12cm,c=16cm.8.设三角形中最大边为a,最小边为c,由已知,a-c=14,b+c=25,a+b+c=48,∴ a=23cm,b=16cm,c=9cm.9.10-5<a-2<10+5,∴ 7<a<17.10.设AB=AC=2x,则AD=CD=x,(1)当AB+AD=15,BC+CD=6时,2x+x=15,∴ x=5,2x=10,∴ BC=6-5=1cm;(2)当AB+AD=6,BC+CD=15时,2x+x=6,∴ x=2,2x=4,∴ BC=13cm;经检验,第二种情况不符合三角形的条件,故舍去.11.AD-AB=AC+CD-AB=CD,∵ BD-BC<CD,∴ BD-BC<AD-AB.12.(1)AC+AD>CD,BC+BD>CD,两式相加:AB+BC+CA>2CD.(2)AD+CD>AC,BD+CD>BC,两式相加:AB+2CD>AC+BC.13.(1)已知,角平分线定义,已知,180°,两直线平行同旁内角互补,90°,180°,三角形内角和定理,90°,互相垂直.(2)两平行直线被第三条直线所截,它们的同旁内角的角平分线互相垂直.14.94°; 35.120°; 36.10°;17.∠EBC<∠DCE,而∠DCE=∠ACE,∴∠EBC<∠ACE.18.略.北师大版七年级数学下册第三章 三角形 单元测试卷(二)班级 姓名 学号 得分一、选择题1.一个三角形的两边长为2和6,第三边为偶数.则这个三角形的周长为 ( )A .10B .12C .14 D.162.在△ABC 中,AB =4a ,BC =14,AC =3a .则a 的取值范围是 ( ) A .a >2 B .2<a <14 C .7<a <14 D .a <14 3.一个三角形的三个内角中,锐角的个数最少为 ( )[ A .0 B .1 C .2 D .34.下面说法错误的是 ( )A .三角形的三条角平分线交于一点B .三角形的三条中线交于一点C .三角形的三条高交于一点D .三角形的三条高所在的直线交于一点5.能将一个三角形分成面积相等的两个三角形的一条线段是 ( ) A .中线 B .角平分线 C .高线 D .三角形的角平分线6.如图5—12,已知∠ACB=90°,CD⊥AB ,垂足是D ,则图中与∠A 相等的角是 ( )A.∠ 1 B .∠ 2 C .∠ B D .∠ 1、∠ 2和∠ B7.点P 是△ABC 内任意一点,则∠APC 与∠B 的大小关系是 ( ) A .∠APC>∠B B .∠APC =∠B C .∠APC <∠B D .不能确定8.已知:a 、b 、c 是△ABC 三边长,且M =(a +b +c)(a +b -c)(a -b -c),那么 ( )A .M >0B .M =0C .M <0D .不能确定9.周长为P 的三角形中,最长边m 的取值范围是 ( )A .23P m P <≤B .23P m P <<C .23P m P ≤< D .23P m P ≤≤10.各边长均为整数且三边各不相等的三角形的周长小于13,这样的三角形个数共有( )A .5个B .4个C .3个D .2个 二、填空题1.五条线段的长分别为1,2,3,4,5,以其中任意三条线段为边长可以________个三角形.2.在△ABC中,AB=6,AC=10,那么BC边的取值范围是________,周长的取值范围是___________.3.一个三角形的三个内角的度数的比是2:2:1,这个三角形是_________三角形.4.一个等腰三角形两边的长分别是15cm和7cm则它的周长是__________.5.在△ABC中,三边长分别为正整数a、b、c,且c≥b≥a>0,如果b=4,则这样的三角形共有_________个.6.直角三角形中,两个锐角的差为40°,则这两个锐角的度数分别为_________.7.在△ABC中,∠A-∠B=30°、∠C=4∠B,则∠C=________.8.如图5—13,在△ABC中,AD⊥BC,GC⊥BC,CF⊥AB,BE⊥AC,垂足分别为D、C、F、E,则_______是△ABC中BC边上的高,_________是△ABC中AB 边上的高,_________是△ABC中AC边上的高,CF是△ABC的高,也是△_______、△_______、△_______、△_________的高.[来9.如图5—14,△ABC的两个外角的平分线相交于点D,如果∠A=50°,那么∠D=_____.10.如图5—15,△ABC中,∠A=60°,∠ABC、∠ACB的平分线BD、CD交于点D,则∠BDC=_____.11.如图5—16,该五角星中,∠A+∠B+∠C+∠D+∠E=________度.12.等腰三角形的周长为24cm,腰长为xcm,则x的取值范围是________.三、解答题1.如图5—17,点B、C、D、E共线,试问图中A、B、C、D、E五点可确定多少个三角形?说明理由.2.如图5—18,∠BAD=∠CAD,则AD是△ABC的角平分线,对吗?说明理由.3.一个飞机零件的形状如图5—19所示,按规定∠A应等于90°,∠B,∠D 应分别是20°和30°,康师傅量得∠BCD=143°,就能断定这个零件不合格,你能说出其中的道理吗?4.如图5—20,在△ABC中,AD是BC边上的中线,△ADC的周长比△ABD的周长多5cm,AB与AC的和为11cm,求AC的长.5.如图5—21,△ABC中,∠B=34°,∠ACB=104°,AD是BC边上的高,AE是∠BAC的平分线,求∠DAE的度数.6.如图5—22,在△ABC中,∠ACB=90°,CD是AB边上的高,AB=13cm,BC=12cm,AC=5cm,求:(1)△ABC的面积;(2)CD的长.7.已知:如图5—23,P是△AB C内任一点,求证:∠BPC>∠A.8.△ABC中,三个内角的度数均为整数,且∠A<∠B<∠C,4∠C=7∠A,求∠A的度数.9.已知:如图5—24,P是△ABC内任一点,求证:AB+AC>BP+PC.10.如图5—25,豫东有四个村庄A、B、C、D.现在要建造一个水塔P.请回答水塔P应建在何位置,才能使它到4村的距离之和最小,说明最节约材料的办法和理由.单元测试卷(二)参考答案:一、1.C 2.B 3.C 4.C 5.A 6.B 7.A 8.C 9.A 10.C二、1.3; 2.32<4<<<BC; 3.锐角(等腰锐角);周长1620,4.cm100;25;7.︒37;5.10;6.︒65和︒8.GAC,,,,;9.︒∆,,∆BFCFACBEFGC∆AD∆CF120;65;10.︒11.︒<x.180; 12.126<三、1.可以确定6个三角形.理由:经过两点可以确定一条线段,而不在同一条直线上的三条线段首尾顺次相接可组成一个三角形,所以图中可以确定6个三角形.2.错误.因为AD虽然是线段,但不符合三角形角平分线定义,这里射线AD是BAC∠的平分线3.假设此零件合格,连接BD,则︒143∠37180CBDCDB;可知+=︒-∠=︒()︒∠4020+CBD∠9030CDB.这与上面的结果不一致,从而知这︒=+=︒-︒个零件不合格.4.∵ AD是BC边上的中线,∴ D为BC的中点,BDCD=.∵ADC∆的周长-ABD∆的周长=5cm∴cm-.=AC5AB又∵cm+,=ABAC11∴cm=.AC85.由三角形内角和定理,得︒=∠+∠+∠180BAC ACB B .∴ ︒=︒-︒-︒=∠4210434180BAC . 又∵ AE 平分∠BAC .∴ ︒=︒⨯=∠=∠21422121BAC BAE .∴ ︒=︒+︒=∠+∠=∠552134BAE B AED . 又∵ ︒=∠+∠90DAE AED ,∴ ︒=︒-︒=∠-︒=∠35559090AED DAE . 6.(1)∵ 在△ABC 中,︒=∠90ACB ,cm AC 5=,cm BC 12=,().3012521212cm BCAC S ABC =⨯⨯=⋅=∴∆[ (2)∵ CD 是AB 边上的高, ∴ CD AB S ABC ⋅=∆21.即CD ⨯⨯=132130.∴ ()cm CD 1360=.7.如图,延长BP 交AC 于D ,∵ A PDC PDC BPC ∠>∠∠>∠,, ∴ A BPC ∠>∠ 8.∵ A C ∠=∠74, ∴ C A ∠=∠74,∴ C B C ∠<∠<∠74.又∵ ︒=∠+∠+∠180C B A , ∴ ︒=∠+∠+∠18074C B C .∴ C B ∠-︒=∠711180,∵ C C C ∠<∠-︒<∠71118074,∴ ︒<∠<︒8470C .又∵ C A ∠=∠74为整数,∴ ∠C 的度数为7的倍数.∴ ︒=∠77C ,∴ ︒=∠=∠4474C A .9.如图,延长BP 交AC 于点D .在△BAD 中,BD AD AB >+, 即:PD BP AD AB +>+. 在△PDC 中,PC DC PD >+.①+②得PC PD BP DC PD AD AB ++>+++, 即PC BP AC AB +>+10.如图,水塔P 应建在线段AC 和线段BD 的交点处.这样的设计将最节省材料.理由:我们不妨任意取一点P ',连结P A '、P B '、P C '、P D '、AB 、BC 、CD 、DA ,∵ 在C P A '∆中,CP AP AC P C P A +=>'+', ① 在D P B '∆中,DP BP BD P D P B +=>'+', ② ①+②得DP CP BP AP P D P C P B P A +++>'+'+'+'. ∵ 点P '是任意的,代表一般性,∴ 线段AC 和BD 的交点处P 到4个村的距离之和最小.北师大版七年级数学下册第三章 三角形 单元测试卷(三)班级 姓名 学号 得分一、选择题(每小题3分,共30分)1. 有下列长度的三条线段,能组成三角形的是( ) A 2,3,4 B 1,4,2 C 1,2,3 D 6,2,32. 在下列各组图形中,是全等的图形是( )3. 下列条件中,能判断两个直角三角形全等的是( ) A 、一个锐角对应相等 B 、两个锐角对应相等C 、一条边对应相等D 、两条边对应相等4.已知:如图,CD ⊥AB ,BE ⊥AC ,垂足分别为D 、E ,BE 、CD 相交于O 点, ∠1=∠2.图中全等的三角形共有 ( ) A .4对 B ..3对 C 2对 D .1对5.如图所示,某同学把一块三角形玻璃打碎成了三块,现在要到玻店去配一块完全一样的玻璃,那么最省事的办法是( )A.带①去B. 带②去C. 带③去D. 带①和②去 6.右图中三角形的个数是( )A.6 B .7 C.8 D .9 7.如果两个三角形全等,那么下列结论不正确的是( )A .这两个三角形的对应边相等B .这两个三角形都是锐角三角形C .这两个三角形的面积相等D .这两个三角形的周长相等 8.在下列四组条件中,能判定△ABC ≌△A /B /C /的是( )A.AB=A /B /,BC= B /C /,∠A=∠A /B.∠A=∠A /,∠C=∠C /,AC= B /C /C.∠A=∠B /,∠B=∠C /,AB= B /C /D.AB=A /B /,BC= B /C /,△ABC 的周长等于△② ① ③ 5题 C D A BEF 6题C图3图4A /B/C /的周长)10. 下列判断:①三角形的三个内角中最多有一个钝角,②三角形的三个内角中至少有两个锐角,③有两个内角为500和200的三角形一定是钝角三角形,④直角三角形中两锐角的和为900,其 中判断正确的有( )A.1个B.2个C.3个D.4个二、填空题:(每题4分共24分)11、为了使一扇旧木门不变形,木工师傅在木门的背面加钉了一根木条,这样做的道理是 。

七年级数学下册第三章测试卷-北师大版(含答案)

七年级数学下册第三章测试卷-北师大版(含答案)

七年级数学下册第三章测试卷-北师大版(含答案)[时间:100分钟 满分:120分]一、选择题(本大题共6小题,每小题3分,共18分)1.有下列代数式:a ,-7ab ,x+8y ,1b ,x 2+y 2,0,12ab 2c 3.其中是单项式的有 ( )A .6个B .5个C .4个D .3个 2.下列选项中是同类项的是 ( )A .13x 2y 和13x 2B .-abx 2和x 2abC .-ab 和a 2bD .25x 2y 和52xy 2 3.多项式x 5-12y 4+x 2的次数是 ( )A .4B .5C .6D .114.某商店举办促销活动,促销的方法是将原价x 元/件的衣服以(35x-20)元/件出售,则下列说法中,能正确表达该商店促销方法的是 ( )A .原价减去20元后再打6折B .原价打6折后再减去20元C .原价减去20元后再打4折D .原价打4折后再减去20元5.如果a 是任意有理数,那么3a 2+3a-5-3(a-1)-2(a 2-1)的值是 ( )A .负数B .非负数C .正数D .非正数6.图中的各正方形中的四个数之间都有相同的规律,根据这种规律,猜想m 的值是 ( )A .110B .128C .146D .158二、填空题(本大题共6小题,每小题3分,共18分)7.单项式-xy 2的系数是 ,次数为 .8.钢笔每支a 元,铅笔每支b 元,买4支钢笔和3支铅笔共需 元.9.对于有理数a ,b ,定义a ☉b=3a+2b ,则(x+y )☉(x-y )化简后得 .10.已知单项式a m bc 2与-a 3b n c 2是同类项,则代数式m+n 的值是 .11.规定|a bc d |=ad-bc ,若|7 3x 2+52 x 2-3|=33,则x= .234513.用含字母的式子表示.(1)甲数为x,乙数比甲数的2倍小8,则乙数为多少?(2)某影院针对《攀登者》推出了特惠活动:票价为每人40元,团体购票超过15人,票价可享受八折优惠,学校计划组织全体教师观看此影片.若观影人数为a(a>15),则应付票价总额为多少元?14.计算:(1)4(2x-3y)-2(3x-2y+1)+5;(2)-2(3a2-5ab)-[8a2-3(2a-2ab)].15.先化简,再求值:8x2-[2xy-4(y2-2x2-xy)+2y2],其中x=2,y=-1.16.在抗击“新型冠状肺炎病毒”疫情期间,我校甲、乙、丙三名学生给武汉红十字会捐款.已知甲学生捐款x元,乙学生,求甲、乙、丙三的捐款金额比甲学生捐款金额的2倍少12元,丙学生的捐款金额是甲、乙两名学生捐款总金额的23名学生的捐款总金额.17.已知x2+2y2=2020,求2x2+(-x2-2xy+2y2)-2(x2-xy+2y2)的值.四、解答题(本大题共3小题,每小题8分,共24分)18.已知某轮船顺水航行了3 h,逆水航行了2 h.(1)若该轮船在静水中的速度是m km/h,水流的速度是a km/h,则该轮船共航行了多少千米?(2)若该轮船在静水中的速度是80 km/h,水流的速度是3 km/h,则该轮船共航行了多少千米?19.一个两位数,把十位上的数字与个位上的数字对调得到一个新的两位数.试说明原来的两位数与新两位数的和一定是11的倍数.20.有理数a,b,c在数轴上所对应的点的位置如图所示.(1)c+b0,a+c0,b-a0(填“>”“<”或“=”);(2)化简:|b-a|+|a+c|-|c+b|.五、解答题(本大题共2小题,每小题9分,共18分)21.图是用完全相同的木棒搭成的一系列三角形:(1)填写下表:三角形个数 1 2 3 4 …木棒根数…(2)照这样的规律搭下去,搭成n个这样的三角形需要多少根木棒?(3)按这种规律搭成的三角形能否恰好用了2020根木棒?22.某茶具店出售一种茶具.茶壶每只200元,茶杯每个30元,该店开展促销活动,向客户提供两种优惠方案:①买一只茶壶送一个茶杯;②茶壶与茶杯都按定价的90%付款.现某客户到该店购买茶壶20只,茶杯x个(x>20).(1)若该客户按方案①购买,则需付款元,若该客户按方案②购买,则需付款元;(用含x的代数式表示)(2)当x=40时,请通过计算说明选择哪种方案购买较为合算.六、解答题(本大题共12分)23.有这样一道题:“如果代数式5a+3b的值为-4,那么代数式2(a+b)+4(2a+b)的值是多少?”我们可以这样来解:原式=2a+2b+8a+4b=10a+6b.把式子5a+3b=-4两边同乘2,得10a+6b=-8.所以原式=-8.仿照上面的解题方法,回答下面的问题:(1)已知a2+a=5,求2020-a2-a的值;(2)已知a-b+3=0,求3(a-b)2-2a+2b+5的值;(3)已知a2+2ab=-2,ab-b2=-4,求2a2+5ab-b2的值.参考答案1.C2.B3.B4.B5.B6.D7.-138.(4a+3b)9.5x+y10.411.8或-812.-32x6(-1)n2n x n+113.(1)2x-8(2)32a元14.解:(1)4(2x-3y)-2(3x-2y+1)+5=8x-12y-6x+4y-2+5=2x-8y+3.(2)-2(3a2-5ab)-[8a2-3(2a-2ab)]=-6a2+10ab-(8a2-6a+6ab)=-6a2+10ab-8a2+6a-6ab=-14a2+6a+4ab.15.解:8x2-[2xy-4(y2-2x2-xy)+2y2]=8x2-(2xy-4y2+8x2+4xy+2y2)=8x2-(6xy-2y2+8x2)=8x2-6xy+2y2-8x2=-6xy+2y2.当x=2,y=-1时,原式=-6×2×(-1)+2×(-1)2=12+2=14.(x+2x-12)=(2x-8)元, 16.解:根据题意,得乙学生的捐款金额为(2x-12)元,丙学生的捐款金额为23所以甲、乙、丙三名学生的捐款总金额为x+(2x-12)+(2x-8)=(5x-20)元.17.解:2x2+(-x2-2xy+2y2)-2(x2-xy+2y2)=2x2-x2-2xy+2y2-2x2+2xy-4y2=2x2-x2-2x2-2xy+2xy+2y2-4y2=-x2-2y2.由x2+2y2=2020,得-x2-2y2=-2020,所以原式=-2020.则3(m+a)+2(m-a)=3m+3a+2m-2a=(5m+a)km.答:该轮船共航行了(5m+a)km.(2)当m=80,a=3时,5m+a=5×80+3=403(km).答:该轮船共航行了403 km.19.解:设原来的两位数个位上的数字是b,十位上的数字是a,则这个两位数是10a+b;调换位置后的新两位数个位上的数字是a,十位上的数字是b,则新两位数是10b+a.原来的两位数与新两位数的和为(10a+b)+(10b+a)=11b+11a=11(b+a),所以原来的两位数与新两位数的和一定是11的倍数.20.解:(1)<<>(2)原式=b-a+[-(a+c)]-[-(c+b)]=b-a-(a+c)+(c+b)=b-a-a-c+c+b=2b-2a.21.解:(1)填表如下:三角形个数 1 2 3 4 …木棒根数 3 5 7 9 …(2)由题图可知,搭成1个三角形需要3(3=1+2)根木棒;搭成2个三角形需要5(5=1+2×2)根木棒;搭成3个三角形需要7(7=1+2×3)根木棒;搭成4个三角形需要9(9=1+2×4)根木棒;……所以搭成n个这样的三角形需要(1+2n)根木棒.(3)令2020=1+2n,解得n=1009.5.因为n为正整数,所以按这种规律搭成的三角形不能恰好用了2020根木棒.22.解:(1)(30x+3400)(27x+3600)(2)当x=40时,按方案①购买需付款3400+40×30=4600(元);按方案②购买需付款3600+27×40=4680(元).因为4600元<4680元,所以选择方案①购买较为合算.23.解:(1)因为a2+a=5,所以2020-a2-a=2020-(a2+a)=2020-5=2015.(2)因为a-b+3=0,所以a-b=-3,所以3(a-b)2-2a+2b+5=3(a-b)2-2(a-b)+5=3×(-3)2-2×(-3)+5=38.(3)因为a2+2ab=-2,ab-b2=-4,2222。

北师大版七年级数学(下册)第三章测试卷(附参考答案)

北师大版七年级数学(下册)第三章测试卷(附参考答案)

数学七下北师测试卷第三章1.在利用太阳能热水器烧热水的过程中,热水器里的水温会随着太阳照射时间的长短而变化,这个问题中因变量是( )A.水的温度B.太阳光强弱C.太阳照射时间D.热水器的容积2.如图1,图中是某市某天的温度随时间的变化图象,通过观察可知下面说法错误的是( )图1A.这天16点左右温度最高B.这天3点左右温度最低C.这天最高温度与最低温度的差是13℃D.这天21点时温度是30℃B.水费y与用水量x之间的关系为y=2+1.5xC.如果用水10吨,那么应缴15元的水费D.如果缴了20元水费,则这个月用了12吨水4.阳光中学毕业班学生年龄特征如图2所示,则周岁的学生居多.( )图2A.13B.14C.15D.165.“龟兔赛跑”讲述了这样的故事:领先的兔子看着缓慢爬行的乌龟,骄傲起来,睡了一觉.当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点……用s1、s2分别表示乌龟和兔子所行的路程,t为时间,则下列图象中与故事情节相吻合的是( )A.B.C.D.6.变量y随x的变化而变化,可用关系式表示为y=3x+5,下列说法:①x是自变量,y是因变量;②y是变量,它的值与x无关;③用关系式表示的不能用图象表示;④y与x的关系还可以用表格和图象表示.其中说法正确的是( )A.①②B.②③C.①③D.①④7.小颖的父亲饭后出去散步,从家走20分钟到一个离家900米的报亭,看了10分钟报纸后,用15分钟返回家里,用下图中哪幅图能较好刻画小颖父亲离家的时间与距离间的关系( )A.B.C.D.8.地壳的厚度约为8~40km,在地表以下不太深的地方,温度可以按y=3.5x+t计算,其中x 是深度,t是地球表面的温度,y是所达深度的温度.当t=5℃,深度为20km时的温度是( )A.70℃B.75℃C.80℃D.无法确定9.一天,小军和爸爸去登山,已知山脚到山顶的路程为300米,小军先走了一段路程,爸爸才开始出发,图3中两条线段分别表示小军和爸爸离开山脚登山的路程s(米)与登山所用的时间t(分钟)的关系(从爸爸开始登山时计时),根据图象,下列说法错误的是( )图3A.爸爸开始登山时,小军已走了50米B.爸爸走了5分钟,小军仍在爸爸的前面C.小军比爸爸晚到山顶D.爸爸前10分钟登山的速度比小军慢,10分钟后登山的速度比小军快10.经测量,人运动时心跳速率通常和人的年龄有关.如果用x表示一个人的年龄,用y示正常情况下这个人在运动时所能承受的每分钟心跳的最高次数,那么y=0.8(220-x),根据此关系式计算一个18岁的青少年所能承受的每分钟的最高心跳次数是(取整数)( )A.80B.100C.162D.16111.水箱储水20立方米,每小时流量为0.5立方米,随着流水时间的变化,水箱的存水量也随之变化;在这个变化过程中,自变量是,因变量是.若流水时间为t(小时),存水量为Q(立方米)与t的关系式为.12.在大气层中,每升高1米,温度降低0.006℃,如果地面的温度为28℃,则离开地面h(米)的高空气温T(℃)可以表示为.13.定甲、乙两人在一次赛跑中,路程s与时间t的关系如图4所示,那么可以知道这是一次米赛跑.甲、乙两人中先到达终点的是,乙在这次赛跑中的速度约为米/秒.(取整数)图414.某出租车公司规定:出租车收费与行驶路程之间的关系如图5所示,如果小燕乘出租车去学校花去了22元,那么小燕到学校走了千米的路程.图515.1~6个月的婴儿生长发育得非常快,他们的体重y(克)和月龄x(月)间的关系可以用y=a+700x,其中a是婴儿出生时体重.一个婴儿出生时的体重均为4000克,用表格表示如下,在16.洲际弹道导弹的速度会随着时间的变化而变化,某种型号的洲际弹道导弹的速度v(千米/时)与时间t(小时)的关系是:v=1000+50t,现导弹发出小时即将击中目标,此时该导弹的速度为.17.如图6①所示,在长方形ABCD中,动点P从B出发,沿BC,CD,DA运动至点A停止,设点P 运动的路程为x,△ABP的面积为y,如果y关于x的图象如图6②所示,则△ABC的面积是.图6上述问题中,第5排有个座位,第6排有个座位,第n排有个座位.19.A,B两地相距100米,甲、乙两人同时进行跑步练习,他们离A地的距离s(米)与时间t(秒)的关系如图7所示,仔细观察图象后填空:图7甲从地出发,乙从地出发,他们向而行.甲的速度为米/秒,乙的速度为米/秒.甲、乙相遇时距离A地大约多少米?20.某天放学后,小李步行回家,如图8所示,反映了他行走的速度与时间的变化关系.图8((21.如图9,它表示甲、乙两人从同一个地点出发后的情况,到十点时,甲大约走了13千米,根据图象回答:(1)甲是几点钟出发?(2)乙是几点钟出发,到十点时,他大约走了多少千米?(3)到十点为止,哪个人的速度快?(4)两人最终在几点钟相遇?图922.为了加强公民的节水意识,合理利用水资源,各地采用价格调控等手段达到节约用水的目的.某市规定用水收费标准如下:每户每月的用水不超过6立方米时,水费按每立方米a元收费;超过6立方米时,不超过的部分每立方米仍按a元收费,超过的部分每立方(1)求a,c的值,并写出用水不超过6立方米和超过6立方米时,y与x之间的关系式;(2)若该户5月份的用水量为8立方米,求该户5月份的水费是多少元?参考答案1.A2.C3.C4.B5.D6.D7.D8.B9.D10.D11.时间存水量Q=20-0.5t12.T=28-0.006h13.100 甲 814.1315.y=4000+700x16.1025千米/时17.1018.62 65 47+3n19.A 10 12.5解:设相遇时距离A地x米,则,x≈44(米).(2)解:由图象知小李放学后开始加速走,等速度达到5千米/时的时候开始匀速行走,大约过了8分钟,开始减速,直至速度为2.5千米/时,又开始匀速行走,大约过了6分钟又开始减速,4分钟后停止.21.解:根据图象可知:(1)甲8点出发;(2)乙9点出发,到10时他大约走了13千米;(3)到10时为止,乙的速度快;(4)两人最终在12时相遇;22.解:(1)当x≤6时,y=ax;当x>6时,y=6a+c(x-6).当x=5时,y=7.5,所以5a=7.5,所以a=1.5;当x=9时,y=27,所以6a+3c=27,所以c=6,所以y=1.5x(x≤6),y=9+6(x-6)=6x-27(x>6).(2)因为x=8>6,所以y=6×8-27=21(元),所以5月份应交水费21元.。

北师大版七年级下册数学第三章专项测试

北师大版七年级下册数学第三章专项测试

北师大版七年级下册数学第三章专项测试一、选择题1.某科研小组在网上获取了声音在空气中传播的速度与空气温度关系的一些数据如表温度声速则下列说法中错误的是A. 在这个变化过程中,自变量是温度,因变量是声速B. 温度越高,声速越快C. 当空气温度为时,声音在空气中传播可以传播D. 温度每升高,声速增加2.半径是的圆的周长为,下列说法正确的是A. ,是变量,是常量B. 是变量,,是常量C. 是变量,,是常量D. ,是变量,是常量3.星期天晚饭后,小红从家里出发去散步,下图描述了她散步过程中离家的距离米与散步所用的时间分之间的关系,依据图象,下面描述符合小红散步情景的是A. 从家出发,到了一个公共阅报栏,看了一会儿报,就回家了B. 从家里出发,一直散步没有停留,然后回家了C. 从家里出发,散了一会儿步,就找同学去了,分钟后才开始返回D. 从家出发,到了一个公共阅报栏,看了一会报,继续向前走了一段后,然后回家了4.甲以每小时的速度行驶时,他所走的路程与时间之间可用公式来表示,则下列说法正确的是A. 数和,都是变量B. 是常量,数和是变量C. 数是常量,和是变量D. 是常量,数和是变量5.在利用太阳能热水器加热水的过程中,热水器里的水温随所晒时间的长短而变化,这个问题中因变量是A. 太阳光强弱B. 水的温度C. 所晒时间D. 热水器二、填空题(本大题共5小题,共15.0分)6.火车匀速通过隧道时,火车在隧道内的长度米与火车行驶时间秒之间的关系用图象描述如图所示,有下列结论:火车的长度为米;火车的速度为米秒;火车整体都在隧道内的时间为秒;隧道长度为米.其中正确的结论是把你认为正确结论的序号都填上7.、在烧开水时,水温达到就会沸腾,下表是某同学做“观察水的沸腾”实验时所记录的两个变量时间分和温度的数据:在水烧开之前即:,温度与时间的关系式为:_____________________.8.火车匀速通过隧道时,火车在隧道内的长度米与火车行驶时间秒之间的关系用图象描述如图所示有下列结论:火车的速度为米秒;火车的长度为米;火车整体都在隧道内的时间为秒;隧道长度为米。

北师大版七年级数学下册第三章达标测试卷附答案

北师大版七年级数学下册第三章达标测试卷附答案

北师大版七年级数学下册第三章达标测试卷一、选择题(本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合要求的)1.明明从广州给远在上海的爷爷打电话,电话费随着时间的变化而变化,在这个过程中自变量是()A.明明B.电话费C.时间D.爷爷2.已知两个变量之间的关系满足y=-x+2,则当x=-1时,对应的y的值为() A.1 B.3 C.-1 D.-33.如果有12支单价相同的圆珠笔,总价为18元,用y(元)表示圆珠笔的总售价,x(支)表示圆珠笔的数量,那么y与x之间的关系式应该是()A.y=12x B.y=18x C.y=23x D.y=32x4.小明从家出发,外出散步,到一个公共阅报栏前看了一会儿报后,继续散步了一段时间,然后回家.如图描述了小明在散步过程中离家的距离s(m)与散步所用时间t(min)之间的关系.根据图象,下列信息错误..的是()(第4题)A.小明看报用时8 min B.公共阅报栏距小明家200 mC.小明离家最远的距离为400 m D.小明从出发到回家共用时16 min 5.下面的表格列出了一个实验的统计数据,表示将皮球从高处落下时,弹跳高度b与下降高度d的关系,下面能表示这种关系的式子是()d50 80 100 150b25 40 50 75A.b=d2B.b=2d C.b=d2D.b=d+256.一个长方形的周长为24 cm,其中一边长为x cm,面积为y cm2,则y与x的关系式可写为()A.y=x2B.y=(12-x)2C.y=x(12-x) D.y=2(12-x) 7.小王利用计算机设计了一个程序,输入和输出的数据如下表:输入… 1 2 3 4 5 …输出 (1)225310417526…那么,当输入数据8时,输出的数据是()A.861 B.863 C.865 D.8678.“龟兔赛跑”讲述了这样的故事:领先的兔子看着缓慢爬行的乌龟,骄傲起来睡了一觉,当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点.用s表示路程,t表示时间,则与故事情节相吻合的是()A B C D9.如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是() A.乙前4 s行驶的路程为48 mB.在0 s到8 s内甲的速度每秒增加4 mC.两车到第3 s时行驶的路程相等D.在4 s到8 s内甲的速度都大于乙的速度(第9题)(第10题)(第12题)10.已知点P为某个封闭图形边界上一定点,动点M从点P出发,沿其边界顺时针匀速运动一周,设点M的运动时间为x,线段PM的长度为y,表示y与x 的关系图象大致如图所示,则该封闭图形可能是()二、填空题(本题共6小题,每小题3分,共18分)11.已知圆的半径为r,则圆的面积S与半径r之间有如下关系:S=πr2,在这个关系中,变量是__________.12.如图是春季某地一天气温随时间变化的图象,根据图象判断,在这天中,最高温度与最低温度的差是________℃.13.某等腰三角形的周长是50 cm,底边长是x cm,腰长是y cm,则y与x之间的关系式是______________.14.声音在空气中传播的速度y(m/s)与气温x(℃)之间的关系式为y=35x+331.当气温为22 ℃时,某人看到烟花燃放5 s后才听到响声,则此人与燃放的烟花所在地相距__________m.15.某市自来水收费实行阶梯水价,收费标准如下表所示,用户5月份交水费45元,则所用水为__________t.月用水量不超过12 t的部分超过12 t不超过18 t的部分超过18 t的部分收费标准/(元/t) 2.00 2.50 3.0016.火车匀速通过隧道时,火车在隧道内的长度y(m)与火车行驶时间x(s)之间的关系用图象描述如图所示,有下列结论:(第16题)①火车的长度为120 m;②火车的速度为30 m/s;③火车整体都在隧道内的时间为25 s;④隧道长度为750 m.其中,正确的结论是________(把你认为正确结论的序号都填上).三、解答题(本题共6小题,共52分.解答应写出文字说明、证明过程或演算步骤)17.(8分)下表记录的是某天一昼夜温度变化的数据.请根据表格数据回答下列问题:(1)早晨6时和中午12时的温度各是多少?(2)这一天的温差是多少?(3)这一天内温度上升的时段是几时至几时?18.(8分)由于持续高温和连日无雨,某水库的蓄水量随着时间的增加而减少.蓄水量y(万立方米)与干旱时间t(天)之间的关系如图所示,回答下列问题:(1)干旱持续到第10天,水库的蓄水量为________万立方米;(2)若水库的蓄水量小于360万立方米时,将发出严重干旱警报,那么多少天后将发出严重干旱警报?(3)在(2)的条件下,照这样干旱下去,预计再持续多少天,水库将干涸?(第18题) 19.(8分)如图,若三角形ABC的底边BC长为6 cm,高AD为x cm.(第19题)(1)写出三角形的面积y(cm2)与x(cm)之间的关系式;(2)指出关系式中的自变量与因变量;(3)当x=4时,三角形的面积是多少?20.(8分)已知动点P以每秒2 cm的速度沿图甲的边按从B→C→D→E→F→A的路径移动,相应的三角形ABP的面积S与时间t之间的关系如图乙中的图象所示.若AB=6 cm,试回答下列问题:(1)图甲中的BC长是________________cm;(2)图乙中的a=________________;(3)图甲中的图形面积是________________cm2;(4)图乙中的b=________________.(第20题)21.(10分)弹簧挂上物体后会伸长.已知一弹簧的长度(cm)与所挂物体的质量(kg)之间的关系如下表:所挂物体的质量/kg 0 1 2 3 4 5 6 7弹簧的长度/cm 12 12.5 13 13.5 14 14.5 15 15.5(1)当所挂物体的质量为3 kg时,弹簧的长度是__________cm;(2)在弹性限度内如果所挂物体的质量为x kg,弹簧的长度为y cm,根据上表写出y与x的关系式;(3)当所挂物体的质量为5.5 kg时,请求出弹簧的长度;(4)如果弹簧的最大长度为20 cm,那么该弹簧最多能挂质量为多少千克的物体?22.(10分)如图表示的是甲、乙两人从同一地点出发去B地的情况(图中虚线表示甲,实线表示乙),到10时时,甲大约行驶了13 km.根据图象回答:(第22题)(1)甲是几时出发的?(2)乙是几时出发的?到10时时,他大约行驶了多少千米?(3)到10时为止,谁的速度快?(4)两人最终在几时相遇?答案一、1.C 2.B 3.D 4.A 5.C 6.C7.C8.D9.C点拨:A.根据图象可得,乙前4 s的速度不变,为12 m/s,则行驶的路程为12×4=48(m),故A正确;B.根据图象可得,甲的速度从0 m/s均匀增加到32 m/s,则每秒增加328=4(m),故B正确;C.由甲的图象是过原点的线段,可得v=4t(v,t分别表示速度、时间,单位分别为m/s,s),将v=12代入v=4t,得t=3,则3 s前,甲的速度小于乙的速度,所以两车到第3秒时行驶的路程不相等,故C错误;D.在4 s到8 s内甲的图象一直在乙的上方,所以甲的速度都大于乙的速度,故D正确.10.A二、11.r,S12.1013.y=25-1 2x14.1 72115.2016.②③点拨:由图象可得火车的长度是150 m,火车的速度是150÷(35-30)=150÷5=30(m/s),火车整体都在隧道内的时间是35-5×2=25(s),隧道的长度是35×30-150=1 050-150=900(m).三、17.解:(1)早晨6时的温度是-4 ℃,中午12时的温度是7.5 ℃.(2)10-(-6.5)=16.5(℃).答:这一天的温差是16.5 ℃.(3)这一天内温度上升的时段是4时至14时.18.解:(1)1 200(2)(1 500-1 200)÷10=30(万立方米),(1 500-360)÷30=38(天).答:38天后将发出严重干旱警报.(3)1 500÷30-38=12(天).答:预计再持续12天,水库将干涸.19.解:(1)y=12×6x=3x,即y与x之间的关系式为y=3x.(2)在关系式y=3x中,x是自变量,y是因变量.(3)当x=4时,y=3×4=12,即三角形的面积是12 cm2.20.解:(1)8(2)24(3)60(4)1721.解:(1)13.5(2)由表格可知,y与x之间的关系式为y=12+0.5x.(3)当x=5.5时,y=12+0.5×5.5=14.75.答:弹簧的长度为14.75 cm.(4)当y=20时,20=12+0.5x,解得x=16.答:该弹簧最多能挂质量为16 kg的物体.22.解:(1)甲是8时出发的.(2)乙是9时出发的,到10时时,他大约行驶了13 km.(3)乙的速度快.(4)两人最终在12时相遇.。

新北师版初中数学七年级下册第三章检测卷和解析答案(2)

新北师版初中数学七年级下册第三章检测卷和解析答案(2)

第三章检测卷时间:120分钟满分:120分一、选择题(本大题共6小题,每小题3分,满分18分,每小题只有一个正确选项)1.在圆的面积公式S=πr2中,常量为( )A.S B.π C.r D.S和r2.小王在淘宝上花60元钱购买了8斤赣南特产脐橙,若用y表示脐橙的售价,x表示脐橙的斤数,则y与x之间的关系式为( )A.y=8x B.y=60x C.y=215x D.y=152x3.如图是护士统计一位病人的体温变化图,这位病人在16时的体温约是( )A.37.8℃B.38℃C.38.7℃D.39.1℃4.下表列出了一个实验的统计数据,表示将皮球从高处落下时,弹跳高度b与下降高度d的关系,下面能表示这种关系的式子是( )A.b=d2 B.b=2dC .b =d2D .b =d +255.一辆公共汽车从车站开出,加速一段时间后开始匀速行驶,过了一段时间,发现没多少油了,开到加油站加了油,几分钟后,又开始匀速行驶.下面哪一幅图可以近似刻画出该汽车在这段时间内的速度变化情况( )6.星期天,小王去朋友家借书,如图是他离家的距离y (千米)与时间x (分钟)的关系图象.根据图象信息,下列说法正确的是( )A .小王去时的速度大于回家的速度B .小王在朋友家停留了10分钟C .小王去时花的时间少于回家所花的时间D .小王去时走下坡路,回家时走上坡路二、填空题(本大题共6小题,每小题3分,满分18分)7.大家知道,冰层越厚,所承受的压力越大,这其中自变量是__________,因变量是________________.8.1~6个月的婴儿生长发育得非常快,出生体重为4000克的婴儿,他们的体重y (克)和月龄x (月)之间的关系如下表:则6个月大的婴儿的体重约为________.9.如图,图象反映的过程是:小明从家去书店,然后去学校取封信后马上回家,其中x 表示时间,y 表示小明离家的距离,则小明从学校回家的平均速度为________千米/时.10.某梯形上底长、下底长分别是x,y,高是6,面积是24,则y与x之间的关系式是____________.11.根据如图所示的计算程序,若输入的值x=8,则输出的值y为________.第11题图12.火车匀速通过隧道时,火车在隧道内的长度y(米)与火车行驶时间x(秒)之间的关系用图象描述如图所示,则隧道长度为________米.第12题图三、解答题(本大题共5小题,每小题6分,满分30分)13.写出下列各问题的关系式中的常量与变量:(1)时针旋转一周内,旋转的角度n(度)与旋转所需要的时间t(分钟)之间的关系式n=6t;(2)一辆汽车以40千米/时的速度向前匀速直线行驶时,汽车行驶的路程s(千米)与行驶时间t(小时)之间的关系式s=40t.14.要通过驾照考试,学开车的人就必须熟悉交通规则,也要知道路况不良时,使车子停止前进所需的大致距离.(1)上表反映的是哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)说一说这两个变量之间的关系.15.下表记录的是某天一昼夜温度变化的数据:请根据表格数据回答下列问题:(1)早晨6时和中午12时的气温各是多少度?(2)这一天的温差是多少度?(3)这一天内温度上升的时段是几时至几时?16.如图,圆柱的高是4cm,当圆柱底面半径r(cm)变化时,圆柱的体积V(cm3)也随之变化.(1)在这个变化过程中,自变量是________,因变量是________;(2)圆柱的体积V与底面半径r的关系式是____________;(3)当圆柱的底面半径由2cm变化到8cm时,圆柱的体积由________cm3变化到________cm3.17.一辆汽车油箱内有油48升,从某地出发,每行驶1km耗油0.6升,如果设剩油量为y(升),行驶路程为x(km).(1)写出y与x的关系式;(2)这辆汽车行驶35km时,剩油多少升?汽车剩油12升时,求汽车的行驶路程.四、(本大题共3小题,每小题8分,共24分)18.用长为20的铁丝焊接成一个长方形,设长方形的一边长为x,面积为y,随着x的变化,y的值也随之变化.(1)写出y与x之间的关系式,并指出在这个变化过程中,哪个是自变量?哪个是因变量?(2)用表格表示当x从1变化到9时(每次增加1),y的相应值;(3)当x为何值时,y的值最大?19.温度的变化是人们在生活中经常谈论的话题,请你根据下图回答下列问题:(1)上午9时的温度是多少?这一天的最高温度是多少?(2)这一天的温差是多少?从最低温度到最高温度经过了多长时间?(3)在什么时间范围内温度在下降?图中的A点表示的是什么?20.甲、乙两地相距210千米,一辆货车将货物由甲地运至乙地,卸载后返回甲地.若货车距乙地的距离y(千米)与时间t(时)的关系如图所示,根据所提供的信息,回答下列问题:(1)货车在乙地卸货停留了多长时间?(2)货车往返速度,哪个快?返回速度是多少?五、(本大题共2小题,每小题9分,共18分)21.在如图所示的三个图象中,有两个图象能近似地刻画如下a,b两个情境:情境a:小芳离开家不久,发现把作业本忘在家里,于是返回家里找到了作业本再去学校;情境b:小芳从家出发,走了一段路程后,为了赶时间,以更快的速度前进.(1)情境a,b所对应的图象分别是________、________(填写序号);(2)请你为剩下的图象写出一个适合的情境.22.圣诞老人上午8:00从家里出发,骑车去一家超市购物,然后从这家超市回到家中,圣诞老人离家的距离s(千米)和所经过的时间t(分钟)之间的关系如图所示,请根据图象回答问题:(1)圣诞老人去超市途中的速度是多少?回家途中的速度是多少?(2)圣诞老人在超市逗留了多长时间?(3)圣诞老人在来去的途中,离家2千米处的时间是几时几分?六、(本大题共12分)23.某车间的甲、乙两名工人分别同时生产同种零件,他们一天生产零件y(个)与生产时间t(小时)的关系如图所示.(1)根据图象填空:①甲、乙中,________先完成一天的生产任务;在生产过程中,________因机器故障停止生产________小时;②当t=________时,甲、乙所生产的零件个数相等;(2)谁在哪一段时间内的生产速度最快?求该段时间内,他每小时生产零件的个数.参考答案与解析1.B 2.D 3.C 4.C 5.B 6.B7.冰层的厚度 冰层所承受的压力8.8200克 9.6 10.y =-x +8 11.312.900 解析:由折线图可得火车的长度为150米,火车的速度是150÷(35-30)=150÷5=30(米/秒),隧道的长度是35×30-150=1050-150=900(米).13.解:(1)常量为6,变量为n ,t .(3分)(2)常量为40;变量为s ,t .(6分)14.解:(1)速度与停止距离;(1分)速度是自变量,停止距离为因变量.(3分)(2)随着速度的增大,停止距离也逐渐增大.(6分)15.解:(1)6时的气温是-4℃,12时的气温是7.5℃.(2分)(2)10-(-6.5)=16.5(℃),故这一天的温差是16.5℃.(4分)(3)温度上升的时段是4时至14时.(6分)16.解:(1)半径r 体积V (2分)(2)V =4πr 2(4分)(3)16π 256π(6分)17.解:(1)y =-0.6x +48.(2分)(2)当x =35时,y =48-0.6×35=27,∴这辆汽车行驶35km 时,剩油27升.(4分)当y =12时,48-0.6x =12,解得x =60,∴汽车剩油12升时,行驶了60km.(6分)18.解:(1)由题意可知y =x ⎝⎛⎭⎪⎫202-x =x (10-x )=10x -x 2.(2分)其中x 是自变量,y 是因变量.(4分)(2)所填数值依次为9,16,21,24,25,24,21,16,9.(6分)(3)由(2)可知当x 为5时,y 的值最大.(8分)19.解:(1)利用图象得出上午9时的温度是27℃,这一天的最高温度是37℃.(3分)(2)这一天的温差是37-23=14(℃),从最低温度到最高温度经过了15-3=12(小时).(6分)(3)温度下降的时间范围为0时至3时及15时至24时,图中的A 点表示的是21点时的气温.(8分)20.解:(1)∵4.5-3.5=1(小时),∴货车在乙地卸货停留了1小时.(3分)(2)∵7.5-4.5=3<3.5,∴货车返回速度快.(5分)∵210÷3=70(千米/时),∴返回速度是70千米/时.(8分)21.解:(1)③ ①(4分)(2)小芳离开家不久,休息了一会儿,又走回了家.(9分)22.解:(1)由横坐标可知,去超市用了10分钟,从超市返回用了20分钟,由纵坐标可知,家到超市的距离是4千米,(2分)故去超市的速度是4÷10=25(千米/分),从超市返回的速度是4÷20=15(千米/分).(4分) (2)由横坐标可知,在超市逗留的时间是40-10=30(分钟).(6分)(3)去超市的过程中,2÷25=5(分钟),返回的过程中,2÷15=10(分钟),40+10=50(分钟).故圣诞老人在8:05和8:50时离家2千米.(9分)23.解:(1)①甲 甲 3 (3分)②3和193(6分) (2)甲在5~7时的生产速度最快,(8分)∵40-107-5=15,∴他在这段时间内每小时生产零件15个.(12分)。

(完整版)北师大版七年级数学下册第三章测试题

(完整版)北师大版七年级数学下册第三章测试题

第三章变量之间的关系单元检测题姓名: 学号: 成绩:一、选择题1.骆驼被称为“沙漠之舟”,它的体温随时间的变化而变化,在这一问题中,因变量是( ) A 、沙漠 B 、体温 C 、时间 D 、骆驼2.长方形的周长为24cm ,其中一边为x (其中0>x ),面积为y 2cm ,则这样的长方形中y 与x的关系可以写为( )A 、2x y =B 、()212x y -= C 、()x x y ⋅-=12 D 、()x y -=122 3.地表以下的岩层温度y 随着所处深度x 的变化而变化,在某个地点y 与x 的关系可以由公式2035+=x y 来表示,则y 随x 的增大而( )A 、增大B 、减小C 、不变D 、以上答案都不对4.如图1,射线l 甲,l 乙分别表示甲、乙两名运动员在自行车比赛中所走路程与时间的关系,则他们行进的速度关系是( )A .甲比乙快B .乙比甲快C .甲、乙同速D .不一定5.为节约用水,某冲厕水箱经改造后,当水箱水满后就按一定的速度放掉水箱的一半水,随后立即按一定的速度注水,等水箱的水满后,又立即按一定的速度放掉水箱一半的水.下面的哪一幅图可以大致刻画水箱的存水量V (立方米)与放水或注水的时间T (分钟)之间的关系( )6.某山区今年6月中旬的天气情况是:前5天小雨,后5天暴雨.那么反映该地区某河流水位变化的图象大致是( )7.父亲节,学校“文苑”专栏登出了某同学回忆父亲的小诗:“同辞家门赴车站,别时叮咛语千万,学子满载信心去,老父怀抱希望还.”如果用纵轴y 表示父亲和学子在行进中离家的距离,横轴x 表示离家的时间,那么下面与上述诗意大致相吻的图象是( )图1A.B. C. D. A. B. C. D.8.下面的表格列出了一个实验的统计数据,表示将皮球从高处落下时,弹跳高度b 与下降高度d 的关系,下面能表示这种关系的式子是( )d 50 80 100 150b 25 40 50 75A 、2b d =B 、2d b = C 、2b d = D 、25b d =+ 9.如图是某市一天的温度随时间变化的图象,通过观察可知下列说法错误的是( )A .这天15点时温度最高B .这天3点时温度最低C .这天21点时温度是30 ℃D .这天最高温度与最低温度的差是13 ℃10. 李明骑车上学,一开始以某一速度行进,途中车子发生故障,只好停下修车,车修好后,因怕耽误时间,于是加快了车速.如用s 表示李明离家的距离,t 为时间.在下面给出的表示s 与t 的关系图中,符合上述情况的是( )11.下面说法正确的是( )A .两个变量间的关系只能用关系式表示B .图象不能直观的表示两个变量间的数量关系C .借助表格可以表示出因变量随自变量的变化情况D .以上说法都不对12. 经测量,人运动时心跳速率通常和人的年龄有关.如果用x 表示一个人的年龄,用Y 表示正常情况下这个人在运动时所能承受的每分钟心跳的最高次数,那么Y =0.8(220-x ),根据此关系式计算一个18岁的青少年所能承受的每分钟的最高心跳次数是(取整数)( )A .80B .100C .162D .16113.下面哪副图能表示切土豆的过程切面的面积时间切面的面积时间A B C D二、填空题(每空2分,共30分)14.汽车以60千米/时的速度行驶了t 小时,路程s 随着时间t 的变化而变化,其中______是自变量,______因变量.15.△ABC 的高是3cm ,则面积S 与底边x 间的数量关系可表示为______.16.在圆的面积公式中,______随______变化而变化,______是自变量.切面的面积时间切面的面积时间17.购买单价8.50元的书x 本所要的钱数y =______.18. 某种储蓄的年利率为1.5%,存入1000元本金后,则本息和y (元)与所存年数x 之间的关系式为______,3年后的本息和为______元(此利息要交纳所得税的20%).19. 小明和弟弟进行百米赛跑,小明比弟弟跑得快,如果两人同时起跑,小明肯定赢.如图2所示,现在小明让弟弟先跑______米,直线 ______表示小明的路程与时间的关系,大约______秒时,小明追上了弟弟,弟弟在这次赛跑中的速度是______米/秒.20.如果每盒圆珠笔有12支,售价18元,用y (元)表示圆珠笔的售价,x 表示 圆珠笔的支数,那么y 与x 之间的关系应该是 .三、解答题(每小题10分,共40分)21. 某文具店出售书包和文具盒,书包每个定价30元,文具盒每个定价5元.该店制定了两种优惠方案;①买一个书包赠送一个文具盒;②按总价的9折(总价的90%)付款,某班学生需购买8个书包、文具盒若干(不少于8个),如果设文具盒数x(个),付款数为y(元).(1)分别求出两种优惠方案中y 与x 之间的关系式.(2)购买文具盒多少个时,两种方案付款相同,购买文具盒数大于8时,两种方案中哪一种更省钱?22.如图,它表示甲乙两人从同一个地点出发后的情况。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北师大版七年级数学下册第三章达标检测卷一、选择题(每题3分,共30分)1.在球的体积公式V=43πr3中,下列说法正确的是()A.V,π,r是变量,43是常量B.V,π是变量,43,r是常量C.V,r是变量,43,π是常量D.V是变量,43,π,r是常量2.气温y(℃)随高度x(km)的变化而变化的情况如下表,由表可知,气温y随着高度x的增大而()高度x/km 0 1 2 3 4 5 6 7 8气温y/℃28 22 16 10 4 -2 -8 -14 -20A.升高B.降低C.不变D.以上都不对3.长方形的周长为24 cm,其中一边的长为x(0<x<12)cm,面积为y cm2,则该长方形中y与x的关系式可以写为()A.y=x2B.y=(12-x)2C.y=(12-x)x D.y=2(12-x) 4.小明骑自行车上学,开始以正常速度匀速行驶,但行至途中自行车出了故障,只好停下来修车,车修好后,因怕耽误上课,加快了骑车速度.下面是小明离家后他到学校剩下的路程s关于时间t的图象,那么符合小明行驶情况的图象大致是()5.如图是某市某一天的气温变化图,根据图象,下列说法中错误的是() A.这一天中最高气温是24 ℃B.这一天中最高气温与最低气温的差为16 ℃C.这一天中2时至14时之间的气温在逐渐升高D.这一天中只有14时至24时之间的气温在逐渐降低6.在某次试验中,测得两个变量之间的对应数据如下表:m 1 2 3 4v 0.01 2.9 8.03 15.1则m与v之间的关系式最接近于下列各关系式中的()A.v=2m-2 B.v=m2-1 C.v=3m-3 D.v=m+1 7.星期天,小王去朋友家借书,如图是他离家的距离y(千米)与时间x(分)的关系图象,根据图象信息,下列说法正确的是()A.小王去时的速度大于回家时的速度B.小王在朋友家停留了10分钟C.小王去时所花的时间少于回家时所花的时间D.小王去时走下坡路,回家时走上坡路8.根据图中的程序计算y的值,若输入的x值为3,则输出的y值为() A.-5 B.5C.32D.49.如图是某蓄水池的横断面示意图,分为深水区和浅水区,如果这个蓄水池以固定的流量注水,下面能大致表示水的深度与时间之间的关系的图象是()10.A,B两地相距20 km,甲、乙两人都从A地去B 地,如图,l1和l2分别表示甲、乙两人所走路程s(km)与时间t(h)之间的关系.给出下列说法:①乙晚出发1 h;②乙出发3 h后追上甲;③甲的速度是4 km/h;④乙先到达B地.其中正确的个数是()A.1 B.2 C.3 D.4二、填空题(每题3分,共24分)11.同一温度的华氏度数y()与摄氏度数x(℃)之间的关系式是y=95x+32.如果某一温度的摄氏度数是25 ℃,那么它的华氏度数是________.12.小雨画了一个边长为3 cm的正方形,如果将正方形的边长增加x cm,那么面积的增加值y(cm2)与边长的增加值x(cm)之间的关系式为______________.13.如图是甲、乙两名运动员在自行车比赛中所行路程与时间的关系图象,则甲的速度________乙的速度(用“大于”“等于”或“小于”填空).14.经研究发现,高度每升高1 km,温度会下降6 ℃.若某火山喷出的岩浆温度高达2 010 ℃,那么距离火山口200 km的高空温度将达到________℃. 15.某下岗职工购进一批货物到集贸市场零售,已知卖出的货物质量x(kg)与售价y(元)的关系如下表:质量x/kg 1 2 3 4 5售价y/元2+0.1 4+0.2 6+0.3 8+0.4 10+0.5 则用x表示y的式子是____________.16.声音在空气中传播的速度y(m/s)与气温x(℃)之间的关系式为y=35x+331.当x=22 ℃时,某人看到烟花燃放5 s后才听到声音,则此人与燃放烟花所在地的距离为________m.17.小明早晨从家骑车到学校,先上坡,后下坡,行驶情况如图所示,如果返回时上、下坡的速度与去学校时上、下坡的速度相同,那么小明从学校骑车回家用的时间是________.18.如图①,在长方形MNPQ中,动点R从点N出发,沿N→P→Q→M方向运动至点M处停止.在这个变化过程中,变量x表示点R运动的路程,变量y表示△MNR的面积,图②表示变量y随x的变化情况,则当y=9时,点R 所在的边是____________.三、解答题(19~21题每题10分,其余每题12分,共66分)19.为了解某种品牌汽车的耗油量,我们对这种车在高速公路上做了耗油试验,并把试验的数据记录下来,制成下表.汽车行驶时间t/h 0 1 2 3 …油箱剩余油量Q/L 50 42 34 26 …(1)根据上表的数据,请你直接写出Q与t之间的关系式.(2)汽车行驶5 h后,油箱中的剩余油量是多少?20.如图表示某市2019年6月份某一天的气温随时间变化的情况,请观察此图回答下列问题:(1)这天的最高气温是多少摄氏度?(2)这天共有多少时的气温在31 ℃以上?(3)这天什么时间范围内气温在上升?(4)请你预测一下,次日凌晨1时的气温大约是多少摄氏度?21.如图是甲骑自行车与乙骑摩托车分别从A,B两地向C地(A,B,C地在同一路线上)行驶过程中离B地的距离与行驶时间的关系图,请你根据图象回答下列问题:(1)A,B两地哪个距C地近?近多少?(2)甲、乙两人谁出发时间早?早多长时间?(3)甲、乙两人在途中行驶的平均速度分别为多少?22.如图,在△ABC中,底边BC=8 cm,当△ABC的高AD由小到大变化时,三角形的面积发生了变化.(1)在这个变化过程中,自变量、因变量分别是什么?(2)若三角形的高为x(cm),那么该三角形的面积y(cm2)与x的关系式是什么?(3)当x=2时,y的值是多少?23.弹簧挂上物体后会伸长.已知一弹簧的长度(cm)与所挂物体的质量(kg)之间的关系如下表:所挂物体的质量/kg 0 1 2 3 4 5 6 7弹簧的长度/cm 12 12.5 13 13.5 14 14.5 15 15.5(1)当所挂物体的质量为3 kg时,弹簧的长度是________;(2)在弹性限度内如果所挂物体的质量为x kg,弹簧的长度为y cm,根据上表写出y与x的关系式;(3)当所挂物体的质量为5.5 kg时,请求出弹簧的长度;(4)如果弹簧的最大长度为20 cm,那么该弹簧最多能挂质量为多少的物体?24.小明用的练习本可以到甲超市购买,也可以到乙超市购买.已知两超市的标价都是每本1元,但甲超市的优惠条件是购买10本以上,从第11本开始按标价的70%卖;乙超市的优惠条件是每本都按标价的85%卖.(1)当小明要买20本时,到哪家超市购买较省钱?(2)写出在甲超市购买,总价y甲(元)与购买本数x(本)(x>10)的关系式.(3)小明现有24元,最多可以买多少本练习本?答案一、1.C 2.B 3.C 4.D5.D点拨:由题图可知,这一天中气温在逐渐降低的时段有0时至2时和14时至24时,故选D.6.B7.B8.B9.C10.C点拨:①③④正确,②应为乙出发2 h后追上甲.二、11.77 点拨:将x=25代入关系式可得y=95×25+32=45+32=77,故它的华氏度数是77 .12.y=x2+6x点拨:边长为3 cm的正方形的面积是9 cm2,边长为(x+3)cm 的正方形的面积为(3+x)2 cm2,所以面积的增加值y=(3+x)2-9=x2+6x. 13.大于14.81015.y=2.1x16.1 72117.37.2 min点拨:由题图可知,去学校时上坡速度为3 600÷18=200(m/min),下坡速度为(9 600-3 600)÷(30-18)=500(m/min),返回途中,上、下坡的路程与去时刚好相反,所用时间为3 600÷500+(9 600-3 600)÷200=37.2(min).18.PN边或QM边三、19.解:(1)Q=50-8t.(2)当t=5时,Q=50-8×5=10.答:汽车行驶5 h后,油箱中的剩余油量是10 L.点拨:变量的求值方法:已知自变量,利用关系式求因变量的值,实际上就是求代数式的值;已知因变量,利用关系式求自变量的值,实际上是求方程的根.20.解:(1)37 ℃.(2)9 h.(3)3时至15时.(4)25 ℃(答案不唯一,合理即可).21.解:(1)A地距C地近,近20 km.(2)甲出发时间早,早2 h.(3)甲的平均速度:(80-20)÷6=10(km/h),乙的平均速度:80÷(4-2)=40(km/h).答:甲的平均速度为10 km/h,乙的平均速度为40 km/h. 22.解:(1)自变量:三角形的高,因变量:三角形的面积.(2)y=12×8·x=4x.(3)当x=2时,y=4×2=8.23.解:(1)13.5 cm(2)由表格可知,y与x之间的关系式为y=12+0.5x.(3)当x=5.5时,y=12+0.5×5.5=14.75,即弹簧的长度为14.75 cm.(4)当y=20时,20=12+0.5x,解得x=16,故该弹簧最多能挂16 kg的物体.24.解:(1)买20本时,在甲超市购买需用10×1+10×1×70%=17(元),在乙超市购买需用20×1×85%=17(元),所以买20本到两家超市买价钱一样.(2)y甲=10×1+(x-10)×1×70%=0.7x+3(x>10).(3)由题知在乙超市购买,总价y乙(元)与购买本数x(本)的关系式为y乙=x×1×85%=17 20x.所以当y甲=24时,24=0.7x+3,x=30;当y乙=24时,24=1720x,x≈28.所以拿24元最多可以买30本练习本(在甲超市购买).。

相关文档
最新文档