时域采样与频域采样
实验2 信号的时域采样与频域采样(讲稿)
实验2 时域采样与频域采样知识要点:(1)时域采样定理和频域采样定理(2)信号的采样方法连续时间信号的采样方法为T ()()s t n f t f t ==,理想采样信号的傅立叶变换可用相应的采样序列的傅立叶变换得到,即ˆ()()j aTX j X e ωω=ΩΩ=,用DFT 近似计算连续信号频谱的方法为()T DFT[()]a X k x n =⋅。
连续谱的离散化方法为在一个周期内对连续频谱进行N 点等间隔采样,即2k k Nπω=,用DFT 计算离散信号频谱的方法为()DFT[()]X k x n =。
(3)用FFT 计算有限长采样序列的傅立叶变换(DFT )(4)连续时间信号的采样点数用公式p s N T F =⨯计算(5)频域采样时,频率分辨率为p F=1,各采样点上的频率为(1)k p f T k =。
(6)FFT 函数的基本用法FFT 函数格式为Xk= fft(xnt,M),其中M 表示FFT 的点数。
实验内容1:时域采样理论的验证(非周期连续信号)给定模拟信号0()sin()()t a x t Ae t u t α-=Ω式中444.128A =,α=,0rad s Ω=。
用DFT (FFT )求该模拟信号的幅频特性,以验证时域采样理论。
选取三种采样频率,即1kHz,300Hz 200Hz s F =,。
观测时间选64p T ms =。
采样点数用公式p s N T F =⨯计算。
设计方法:(1)初始化设置(如观测时间、采样频率、采样间隔等)。
(2)计算时域采样点数。
(3)生成时域抽样信号。
(4)用fft 函数计算频谱。
(5)计算频域采样点上的频率,绘制频谱图。
程序运行结果:(1)采样频率1000Hz s F =nx a (n T )(a) F s =1000Hz,采样点数=645001000(b) DFT[x a (nT)],F s =1000Hz f(Hz)幅度5001000(c) T*DFT[x a (nT)],F s =1000Hz f(Hz)幅度图2-1 采样频率1kHz s F =(2)采样频率300Hz s F =nx a (n T )(a) F s =300Hz,采样点数=19100200300(b) DFT[x a (nT)],F s =300Hz f(Hz)幅度100200300(c) T*DFT[x a (nT)],F s =300Hzf(Hz)幅度图2-2 采样频率300Hz s F =(3)采样频率200Hz s F =nx a (n T )(a) F s =200Hz,采样点数=1350100150200(b) DFT[x a (nT)],F s =200Hzf(Hz)幅度5010015020000.20.40.60.8(c) T*DFT[x a (nT)],F s =200Hz f(Hz)幅度图2-3 采样频率200Hz s F =实验结果分析:时域采样理论的验证程序运行结果如图2-1至2-3所示。
时域采样与频域采样 实验报告
实验二 时域采样与频域采样学校:西南大学 班级:通信工程班一、实验目的时域采样理论与频域采样理论就是数字信号处理中的重要理论。
要求掌握模拟信号采样前后频谱的变化,以及如何选择采样频率才能使采样后的信号不丢失信息;要求掌握频率域采样会引起时域周期化的概念,以及频率域采样定理及其对频域采样点数选择的指导作用。
二、实验原理时域采样定理的要点就是采样频率s Ω必须大于等于模拟信号最高频率的两倍以上,才能使采样信号的频谱不产生频谱混叠。
频域采样定理的要点就是:a) 对信号x(n)的频谱函数X(e j ω)在[0,2π]上等间隔采样N 点,得到2()() , 0,1,2,,1j N k N X k X e k N ωπω===-则N 点IDFT[()N X k ]得到的序列就就是原序列x(n)以N 为周期进行周期延拓后的主值区序列,公式为 ()IDFT[()][()]()N N N N i x n X k x n iN R n ∞=-∞==+∑b) 由上式可知,频域采样点数N 必须大于等于时域离散信号的长度M(即N ≥M),才能使时域不产生混叠,则N 点IDFT[()N X k ]得到的序列()N x n 就就是原序列x(n),即()N x n =x(n)。
如果N>M,()N x n 比原序列尾部多N-M 个零点;如果N<M,z 则()N x n =IDFT[()N X k ]发生了时域混叠失真,而且()N x n 的长度N 也比x(n)的长度M 短,因此。
()N x n 与x(n)不相同。
三、实验程序(1)时域采样理论的验证。
Tp=64/1000;Fs=1000;T=1/Fs;M=Tp*Fs;n=0:M-1;A=444、128;alph=pi*50*2^0、5;omega=pi*50*2^0、5;xnt=A*exp(-alph*n*T)、*sin(omega*n*T);Xk=T*fft(xnt,M);yn='xa(nT)';subplot(3,2,1);tstem(xnt,yn);box on;title('(a) Fs=1000Hz');k=0:M-1;fk=k/Tp;subplot(3,2,2);plot(fk,abs(Xk));title('(a) T*FT[xa(nT)],Fs=1000Hz');xlabel('f(Hz)');ylabel('幅度');axis([0,Fs,0,1、2*max(abs(Xk))])(Fs=300Hz与Fs=200Hz的程序与上面Fs=1000Hz完全相同。
数字信处理实验二时域采样和频域采样
数字信处理实验二时域采样和频域采样YUKI was compiled on the morning of December 16, 2020实验二-时域采样和频域采样一、实验目的时域采样理论与频域采样理论是数字信号处理中的重要理论。
要求掌握模拟信号采样前后频谱的变化,以及如何选择采样频率才能使采样后的信号不丢失信息;要求掌握频率域采样会引起时域周期化的概念,以及频率域采样定理及其对频域采样点数选择的指导作用。
二、实验原理及方法1、时域采样定理的要点:a)对模拟信号)(t x a 以间隔T 进行时域等间隔理想采样,形成的采样信号的频谱)(ˆΩj X是原模拟信号频谱()a X j Ω以采样角频率s Ω(T s /2π=Ω)为周期进行周期延拓 b)采样频率s Ω必须大于等于模拟信号最高频率的两倍以上,才能使采样信号的频谱不产生频谱混叠。
利用计算机计算上式并不方便,下面我们导出另外一个公式,以便用计算机上进行实验。
2、频域采样定理的要点:a)对信号x(n)的频谱函数X(ej ω)在[0,2π]上等间隔采样N 点则N 点IDFT[()N X k ]得到的序列就是原序列x(n)以N 为周期进行周期延拓后的主值区序列。
三、实验内容及步骤1、时域采样理论的验证程序:clear;clcA=;a=50*sqrt(2)*pi;w0=50*sqrt(2)*pi;Tp=50/1000;F1=1000;F2=300;F3=200;T1=1/F1;T2=1/F2;T3=1/F3;n1=0:Tp*F1-1;n2=0:Tp*F2-1;n3=0:Tp*F3-1;x1=A*exp(-a*n1*T1).*sin(w0*n1*T1);x2=A*exp(-a*n2*T2).*sin(w0*n2*T2);x3=A*exp(-a*n3*T3).*sin(w0*n3*T3);f1=fft(x1,length(n1));f2=fft(x2,length(n2)); % f3=fft(x3,length(n3)); % k1=0:length(f1)-1;fk1=k1/Tp; % k2=0:length(f2)-1;fk2=k2/Tp; % k3=0:length(f3)-1;fk3=k3/Tp; % subplot(3,2,1)stem(n1,x1,'.')title('(a)Fs=1000Hz');xlabel('n');ylabel('x1(n)');subplot(3,2,3)stem(n2,x2,'.')title('(b)Fs=300Hz');xlabel('n');ylabel('x2(n)');subplot(3,2,5)stem(n3,x3,'.')title('(c)Fs=200Hz');xlabel('n');ylabel('x3(n)');subplot(3,2,2)plot(fk1,abs(f1))title('(a) FT[xa(nT)],Fs=1000Hz');xlabel('f(Hz)');ylabel('·ù?è')subplot(3,2,4)plot(fk2,abs(f2))title('(b) FT[xa(nT)],Fs=300Hz');xlabel('f(Hz)');ylabel('·ù?è')subplot(3,2,6)plot(fk3,abs(f3))title('(c) FT[xa(nT)],Fs=200Hz');xlabel('f(Hz)');ylabel('·ù?è')结果分析:由图可见,采样序列的频谱的确是以采样频率为周期对模拟信号频谱的周期延拓。
时域及频域采样定理
时域及频域采样定理
时域采样定理(Nyquist采样定理)和频域采样定理(Shannon采样定理)是两个基本的采样定理,用于指导信号采样和重构的过程。
时域采样定理(Nyquist采样定理):时域采样定理是由哈利·尼奎斯特(Harry Nyquist)在20世纪20年代提出的。
该定理指出,要恢复一个连续时间信号,采样频率必须至少是信号最高频率的两倍。
简而言之,对于最高频率为f的信号,采样频率应该大于2f。
如果采样频率低于2f,那么在重构信号时将会产生混叠现象,导致信号失真。
频域采样定理(Shannon采样定理):频域采样定理是由克劳德·香农(Claude Shannon)在1949年提出的。
该定理表明,如果一个信号在频域上没有频率成分超过一半的采样频率,那么可以通过其离散时间域的采样来完全恢复该信号。
简而言之,对于信号的最高频率为f,采样频率应该大于2f才能完全还原原始信号。
这两个采样定理的要点是:采样频率必须满足一定条件,以避免采样过程中的信息丢失和信号失真。
如果采样频率不满足定理的要求,就会出现混叠效应,导致无法准确地恢复原始信号。
因此,在信号处理和通信系统中,遵循时域采样定理和频域采样定理是非常重要的,以保证信号采样和重构的准确性和有效性。
时域采样与频域采样定理的验证实验
实验一 时域采样与频域采样定理的验证实验1. 实验目的(1) 时域采样理论与频域采样理论是数字信号处理中的重要理论。
要求掌握模拟信号采样前后频谱的变化,以及如何选择采样频率才能使采样后的信号不丢失信息;(2) 要求掌握频率域采样会引起时域周期化的概念,以及频率域采样定理及其对频域采样点数选择的指导作用。
2. 实验原理与方法时域采样定理的要点是:① 对模拟信号()a x t 以T 进行时域等间隔理想采样,形成的采样信号的频谱 会以采样角频率Ωs (Ωs=2π/T )为周期进行周期延拓。
公式为② 采样频率Ωs 必须大于等于模拟信号最高频率的两倍以上,才能使采样信号的频谱不产生频谱混叠。
利用计算机计算上式并不方便,下面我们导出另外一个公式,以便在计算机上进行实验。
理想采样信号 和模拟信号()a x t 之间的关系为:对上式进行傅里叶变换,得到:上式中,在数值上x a (nT)=x(n),再将ω=ΩT 代入,得到:上式的右边就是序列的傅里叶变换,即上式说明采样信号的傅里叶变换可用相应序列的傅里叶变换得到,只要将自变量ω用ΩT 代替即可。
频域采样定理的要点是:① 对信号x(n)的频谱函数在[0,2π]上等间隔采样N 点,得到:ˆ(j )a X Ωa a a s 1ˆˆ(j )FT[()](j j ) k X xt X k T ΩΩΩ∞=-∞==-∑a ˆ()x t a a ˆ()()()n xt x t t nT δ∞=-∞=-∑j a aˆ(j )[()()]e d t n X x t t nT t ΩΩδ∞∞--∞=-∞=-∑⎰j a ()()e d t n x t t nT tΩδ∞∞--∞=-∞-∑⎰=j aaˆ(j )()enTn X x nT ΩΩ∞-=-∞=∑j aˆ(j )(e )TX X ωωΩΩ==j 2π()(e ), 0,1,2,,1N kNX k X k N ωω===-则N 点IDFT [X N (k)]得到的序列就是原序列x(n)以N 为周期进行周期延拓后的主值区序列,公式为② 由上式可知,频域采样点数N 必须大于等于时域离散信号的长度M(即N ≥M),才能使时域不产生混叠,则N 点IDFT [X N (k)]得到的序列x N (n)就是原序列x(n), 即x N (n)=x(n)。
时域采样与频域采样实验心得
时域采样与频域采样实验心得在做时域采样和频域采样实验的过程中,我真是大开眼界,原本以为这只是个简单的技术活,没想到里面的门道可多着呢。
想想吧,时域采样就像你在晚会上抓拍那一瞬间的快乐,瞬息万变的,哪怕是个调皮的小孩跑过也能成了你镜头中的焦点。
我们用的设备,乍一看也许平常,但一旦开始操作,哇,真是神奇。
你会看到数据一层层叠加,像是在看一场精彩的魔术表演,眼花缭乱,心里那个激动啊,简直像喝了十杯咖啡一样。
然后说到频域采样,那简直就是另一番天地。
就像你在KTV里点了一首超喜欢的歌,跟着节奏摇摆。
频域就把这些节奏抽丝剥茧,一层一层分析。
每个频率的成分都像是舞台上的演员,各自闪耀着光芒。
你能感受到,那种分析后的满足感,简直跟解锁了新关卡一样。
有时候在实验室里,大家围着屏幕,一边盯着数据图,一边打趣,真有种“这是我画的”的感觉。
原来我们就是在用这些数据描绘世界,太酷了!有时我会想,实验真的不只是枯燥的技术操作,更多的是一种与数据对话的感觉。
就像在跟朋友聊天,听着他们分享故事,而我则在用我的分析为他们的故事增添色彩。
每当看到波形图的时候,心里总是想:“这就是我捕捉的声音,它们在这里跳动!”真的,满满的成就感油然而生。
每一个参数,每一个调整,都是在为这幅图画上点睛之笔。
这些实验其实还让我们意识到,技术背后是人类智慧的结晶。
就像我们平时讲的,光有理论可不行,实践才是硬道理。
这些繁琐的公式,复杂的计算,经过一番操练,最终化为我们手中的数据,真是让人感慨万千。
想到这里,我有时也会忍不住跟同学们调侃:“没想到我们不仅仅是学生,更是数据的艺术家!”哈哈,大家都笑了,毕竟这种幽默让紧张的气氛变得轻松不少。
实验过程中也会遇到各种挑战,遇到问题时,总会有人会苦恼地说:“这到底是怎么回事?”这时我总会说:“别急,慢慢来,总有办法的!”有时候一番讨论下来,大家的思路逐渐清晰,那种团队合作的感觉真好。
就像在打游戏时,大家齐心协力打怪升级,最终获得丰厚的奖励,大家一起开心得像小孩子一样,真是让人怀念。
第四章3-时域采样与频域采样
抽样间隔(周期) 抽样角频率 抽样频率
T
(s)
wsam=2/T (rad/s)
fsam=1/T (Hz)
例 已知实信号x(t)的最高频率为fm (Hz),试计 算对各信号x(2t), x(t)*x(2t), x(t)x(2t),
x(t)x(2t)抽样不混叠的最小抽样频率。
解:根据信号时域与频域的对应关系得:
F ( jw)
1
f (t) F( jw)
最高频率: fm
wm
w
0 wm
最小抽样频率: 2fm
17
根据信号时域与频域的对应关系及抽样定理得:
f (2t) 1 F( jw )
22
最高频率: 2fm 最小抽样频率: 4fm
根据信号时域卷积与频域的对应关系及抽样定理得:
X (jw)
1 X (j ) T
X (e j )
W sam
ω
0 wm s
W sam
离散序列x[k]频谱与抽样间隔T之间的关系
X ( jw)
wsam 2wm
1
w
wm 0 wm
X (e jwT )
X [ j(w wsam )]
1 X ( jw)
X [ j(w wsam )]
...
f (t)* f (2t) F( jw) 1 F( jw )
22
最高频率: fm
最小抽样频率: 2fm
根据信号时域与频域的对应关系及抽样定理得:
f (t) f (2t) 1 F( jw)* 1 F( j w )
2
22
1
1 F ( jw)* 1 F( jw )
2
数字信号处理实验二时域采样和频域采样
数字信号处理实验二时域采样和频域采样数字信号处理是一门研究信号的数字化表示、处理和传输的学科。
在数字信号处理中,时域采样和频域采样是两种常用的信号分析方法。
下面我们将对这两种采样方法进行详细介绍和比较。
一、时域采样时域采样是数字信号处理中最基本的采样方法之一。
它通过对连续时间信号进行离散时间采样,将连续时间信号转换为离散时间信号。
时域采样的基本原理是,如果一个连续时间信号f(t)在采样时刻t=kT(k=0,1,2,)上的值f(kT)能够被准确地测量,则可以通过这些采样值重建出原始信号。
时域采样的优点是简单易行,适用于大多数信号的采样。
但是,时域采样也存在一些缺点。
首先,如果信号中含有高于采样率的频率成分,这些高频成分将会被混叠到低频部分,导致信号失真。
这种现象被称为混叠效应。
其次,时域采样需要大量的采样数据才能准确地重建出原始信号,这会占用大量的存储空间和计算资源。
二、频域采样频域采样是一种在频域上对信号进行采样的方法。
它通过对信号进行傅里叶变换,将信号转换到频域,然后对频域中的信号进行采样。
频域采样的基本原理是,如果一个离散时间信号f(n)的傅里叶变换在频域上有有限的带宽,那么频域上的信号可以被认为是无穷多个离散的冲激函数的线性组合。
通过对这些冲激函数的幅度和相位进行采样,可以得到频域采样值。
相比时域采样,频域采样具有一些优点。
首先,频域采样可以避免混叠效应,因为高频成分在频域中可以被准确地表示和处理。
其次,频域采样只需要采样信号的幅度和相位信息,而不必存储大量的采样数据,可以节省存储空间和计算资源。
此外,频域采样还可以用于对信号进行压缩和编码,以便于信号的传输和存储。
然而,频域采样也存在一些缺点。
首先,傅里叶变换需要将信号从时域转换到频域,这需要使用复杂的数学运算和计算。
其次,频域采样的结果通常需要经过逆傅里叶变换才能得到原始信号的离散时间表示,这同样需要复杂的数学运算和计算。
此外,频域采样的结果可能存在频率混叠和泄漏现象,这会影响到重建出的原始信号的质量。
时域采样与频域分析
实验二:时域采样与频域分析一、实验原理与方法1、时域采样定理:(a )对模拟信号)(t x a 以间隔T 进行时域等间隔理想采样,形成的采样信号的频谱)(Ωj X )是原模拟信号频谱)(ωj X a 以采样角频率)2(T s s π=ΩΩ为周期进行周期延拓。
公式为:[]∑∞-∞=Ω-Ω==Ωn s a a a jn j X T t x FT j X )(1)()()) (b )采样频率s Ω必须大于等于模拟信号最高频率的两倍以上,才能使采样信号的频谱不产生频谱混叠。
2、频域采样定理:公式为:[])()()()(n R iN n x k X IDFT n x N i N N N ⎥⎦⎤⎢⎣⎡+==∑∞-∞=。
由公式可知,频域采样点数N 必须大于等于时域离散信号的长度M(即N ≥M),才能使时域不产生混叠,则N 点[])(k X IDFT N 得到的序列()N x n 就是原序列)(n x ,即)()(n x n x N =。
二、实验内容1、时域采样理论的验证。
给定模拟信号)()sin()(0t u t Ae t x t a Ω=-α式中A =444.128,α=502π,0Ω=502πrad/s ,它的幅频特性曲线如图2.1图2.1 )(t x a 的幅频特性曲线现用DFT(FFT)求该模拟信号的幅频特性,以验证时域采样理论。
按照)(t x a 的幅频特性曲线,选取三种采样频率,即s F =1k Hz ,300Hz ,200Hz 。
观测时间选ms T p 50=。
为使用DFT ,首先用下面公式产生时域离散信号,对三种采样频率,采样序列按顺序用)(1n x ,)(2n x ,)(3n x 表示。
)()sin()()(0nT u nT Ae nT x n x nT a Ω==-α因为采样频率不同,得到的)(1n x ,)(2n x ,)(3n x 的长度不同, 长度(点数) 用公式s p F T N ⨯=计算。
DSP实验二时域采样和频域采样实验报告
数字信号处理实验报告实验二时域采样和频域采样班级: 电子信息工程16 姓名:**学号: ********** 2018年 10 月 17 日一、实验目的时域采样理论与频域采样理论是数字信号处理中的重要理论。
要求掌握模拟信号采样前后频谱的变化,以及如何选择采样频率才能使采样后的信号不丢失信息;要求掌握频率域采样会引起时域周期化的概念,以及频率域采样定理及其对频域采样点数选择的指导作用。
二、实验原理与方法1、时域采样定理的要点a) 对模拟信号)(t x a 以间隔T 进行时域等间隔理想采样,形成的采样信号的频谱)(ˆΩj X 是原模拟信号频谱()aX j Ω以采样角频率s Ω(T s /2π=Ω)为周期进行周期延拓。
公式为:)](ˆ[)(ˆt xFT j X a a =Ω )(1∑∞-∞=Ω-Ω=n s a jn j X T b) 采样频率s Ω必须大于等于模拟信号最高频率的两倍以上,才能使采样信号的频谱不产生频谱混叠。
利用计算机计算上式并不方便,下面我们导出另外一个公式,以便用计算机上进行实验。
理想采样信号)(ˆt x a 和模拟信号)(t x a 之间的关系为: ∑∞-∞=-=n a a nT t t x t x)()()(ˆδ对上式进行傅立叶变换,得到:dt e nT t t x j X t j n a a Ω-∞∞-∞-∞=⎰∑-=Ω])()([)(ˆδ dt e nT t t x t j n a Ω-∞-∞=∞∞-∑⎰-)()( δ=在上式的积分号内只有当nT t =时,才有非零值,因此:∑∞-∞=Ω-=Ωn nT j aae nT xj X )()(ˆ上式中,在数值上)(nT x a =)(n x ,再将T Ω=ω代入,得到:∑∞-∞=-=Ωn nj aen x j X ω)()(ˆ上式的右边就是序列的傅立叶变换)(ωj eX ,即T j a e X j X Ω==Ωωω)()(ˆ上式说明理想采样信号的傅立叶变换可用相应的采样序列的傅立叶变换得到,只要将自变量ω用T Ω代替即可。
时域采样与频域分析
时域采样与频域分析实验二:时域采样与频域分析一、实验原理与方法1、时域采样定理:(a )对模拟信号)(t x a 以间隔T 进行时域等间隔理想采样,形成的采样信号的频谱)(Ωj X )是原模拟信号频谱)(ωj X a 以采样角频率)2(T s s π=ΩΩ为周期进行周期延拓。
公式为:[]∑∞-∞=Ω-Ω==Ωn s a a a jn j X T t x FT j X )(1)()()) (b )采样频率s Ω必须大于等于模拟信号最高频率的两倍以上,才能使采样信号的频谱不产生频谱混叠。
2、频域采样定理:公式为:[])()()()(n R iN n x k X IDFT n x N i N N N ⎥⎦⎤⎢⎣⎡+==∑∞-∞=。
由公式可知,频域采样点数N 必须大于等于时域离散信号的长度M(即N ≥M),才能使时域不产生混叠,则N 点[])(k X IDFT N 得到的序列()N x n 就是原序列)(n x ,即)()(n x n x N =。
二、实验内容1、时域采样理论的验证。
给定模拟信号)()sin()(0t u t Ae t x t a Ω=-α式中A =444.128,α=502π,0Ω=502πrad/s ,它的幅频特性曲线如图2.1图2.1 )(t x a 的幅频特性曲线现用DFT(FFT)求该模拟信号的幅频特性,以验证时域采样理论。
按照)(t x a 的幅频特性曲线,选取三种采样频率,即s F =1k Hz ,300Hz ,200Hz 。
观测时间选ms T p 50=。
为使用DFT ,首先用下面公式产生时域离散信号,对三种采样频率,采样序列按顺序用)(1n x ,)(2n x ,)(3n x 表示。
)()sin()()(0nT u nT Ae nT x n x nT a Ω==-α因为采样频率不同,得到的)(1n x ,)(2n x ,)(3n x 的长度不同, 长度(点数) 用公式s p F T N ⨯=计算。
实验三 时域采样与频域采样
实验三程序代码及实验结果图:(1)时域采样理论的验证。
给定模拟信号,x a t=Ae−αt sinΩ0t u(t),现用DFT(FFT)求该模拟信号的幅频特性,以验证时域采样理论。
按照x a t的幅频特性曲线,选取三种采样频率,即F s=1kHz,300Hz,200Hz。
观测时间选T p=50ms。
要求:编写实验程序,计算x1n、x2n和x3n的幅度特性,并绘图显示,观察分析频谱混叠失真。
实验程序代码及结果如下:Tp=64/1000; %观察时间Tp=64msFs=1000; %采样率1khzT=1/Fs; %采样间隔M=Tp*Fs; %fft给定点数n=0:M-1; %序列从0开始,至少要达到fft的点数%产生模拟信号对应的离散序列x1(n)A=444.128;alph=pi*50*2^0.5;omega=pi*50*2^0.5;xnt=A*exp(-alph*n*T).*sin(omega*n*T);%无需乘u(t),因为序列从0开始Xk=T*fft(xnt,M); %频谱函数n1 =0: (length(xnt)-1); %求出序列长度n2 =0: (length(Xk)-1);subplot(3,2,1); %位置为左上stem(n1,xnt); %时域波形title('时域1000hz采样波形'); %标题fk=n2/Tp; %求出频率subplot(3,2,2); %位置为右上stem(fk,abs(Xk)); %幅频特性曲线title('频域1000hz采样'); %标题%-----------300hz-------------Tp=64/300; %观察时间Tp=64msFs=300; %采样率300hzT=1/Fs; %采样间隔M=Tp*Fs; %fft给定点数n=0:M-1; %序列从0开始,至少要达到fft的点数%产生模拟信号对应的离散序列x1(n)A=444.128;alph=pi*50*2^0.5;omega=pi*50*2^0.5;xnt=A*exp(-alph*n*T).*sin(omega*n*T);%无需乘u(t),因为序列从0开始Xk=T*fft(xnt,M); %频谱函数n1 =0: (length(xnt)-1); %求出序列长度n2 =0: (length(Xk)-1);subplot(3,2,3); %位置为左中stem(n1,xnt); %时域波形title('时域300hz采样'); 标题fk=n2/Tp; %求出频率subplot(3,2,4); %位置为右中stem(fk,abs(Xk)); %幅频特性曲线title('频域300hz采样'); 标题%-----------200hz-------------Tp=64/200; %观察时间Tp=64msFs=200; %采样率200hzT=1/Fs; %采样间隔M=Tp*Fs; %fft给定点数n=0:M-1; %序列从0开始,至少要达到fft的点数%产生模拟信号对应的离散序列x1(n)A=444.128;alph=pi*50*2^0.5;omega=pi*50*2^0.5;xnt=A*exp(-alph*n*T).*sin(omega*n*T);%无需乘u(t),因为序列从0开始Xk=T*fft(xnt,M); %频谱函数n1 =0: (length(xnt)-1); %求出序列长度n2 =0: (length(Xk)-1);subplot(3,2,5);stem(n1,xnt); %时域波形title('时域200hz采样');fk=n2/Tp;subplot(3,2,6); %位置在右下stem(fk,abs(Xk)); %幅频特性曲线title('频域200hz采样'); %标题(2)频域采样理论的验证。
时域采样和频域采样实验报告
时域采样和频域采样实验报告一、实验目的本次实验旨在掌握时域采样和频域采样的原理、方法和技巧,研究它们在信号处理中的应用。
二、实验原理1. 时域采样时域采样是指将连续时间信号转换为离散时间信号的过程。
其原理是在一定时间间隔内对连续时间信号进行采样,得到离散时间信号。
采样定理规定:如果一个连续时间信号没有高于Nyquist频率两倍以上的频率分量,那么它可以通过等间隔采样来完全恢复。
2. 频域采样频域采样是指将连续频率信号转换为离散频率信号的过程。
其原理是对连续频率信号进行傅里叶变换,得到其频谱,并按照一定间隔取出其中若干个点,得到离散频率信号。
三、实验步骤1. 时域采样实验步骤:(1)使用函数发生器产生正弦波信号;(2)将正弦波信号输入示波器,并设置合适的水平和垂直尺度;(3)调整示波器触发方式为单次触发,同时设置触发电平和触发边沿;(4)按下示波器的单次触发按钮,记录采样到的离散时间信号;(5)将离散时间信号输入计算机,并进行处理和分析。
2. 频域采样实验步骤:(1)使用函数发生器产生正弦波信号;(2)将正弦波信号输入示波器,并设置合适的水平和垂直尺度;(3)通过示波器自带的FFT功能,对正弦波信号进行傅里叶变换,并得到其频谱图;(4)选取频谱图中若干个点,记录其幅值和相位信息;(5)将记录的幅值和相位信息输入计算机,并进行处理和分析。
四、实验结果与分析1. 时域采样实验结果与分析:在本次实验中,我们使用函数发生器产生了一个频率为1kHz、幅度为5V的正弦波信号,并将其输入示波器。
通过调整示波器触发方式为单次触发,同时设置触发电平和触发边沿,我们成功地对正弦波信号进行了时域采样,并得到了一组离散时间信号。
将这些离散时间信号输入计算机,并进行处理和分析,我们得到了正弦波信号的时域图像。
2. 频域采样实验结果与分析:在本次实验中,我们使用函数发生器产生了一个频率为1kHz、幅度为5V的正弦波信号,并将其输入示波器。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验二:时域采样与频域采样一、实验目的:时域采样理论与频域采样理论是数字信号处理中的重要理论。
要求掌握模拟信号采样前后频谱的变化,以及如何选择采样频率才能使采样后的信号不丢失信息;要求掌握频率域采样会引起时域周期化的概念,以及频率域采样定理及其对频域采样点数选择的指导作用。
二、实验原理与方法:1、时域采样定理的要点:1)对模拟信号)(t x a 以间隔T 进行时域等间隔理想采样,形成的采样信号的频谱)(ˆΩj X 是原模拟信号频谱()a X j Ω以采样角频率s Ω(T s /2π=Ω)为周期进行周期延拓。
公式为:)](ˆ[)(ˆt x FT j X a a=Ω )(1∑∞-∞=Ω-Ω=n s a jn j X T 2)采样频率s Ω必须大于等于模拟信号最高频率的两倍以上,才能使采样信号的 频谱不产生频谱混叠。
利用计算机计算上式并不方便,下面我们导出另外一个公式,以便用计算机上进行实验。
理想采样信号)(ˆt xa 和模拟信号)(t x a 之间的关系为 ∑∞-∞=-=n a a nT t t x t x)()()(ˆδ 对上式进行傅立叶变换,得到:dt e nT t t x j X t j n a a Ω-∞∞-∞-∞=⎰∑-=Ω])()([)(ˆδdt e nT t t x t j n a Ω-∞-∞=∞∞-∑⎰-)()( δ=在上式的积分号只有当nT t =时,才有非零值,因此∑∞-∞=Ω-=Ωn nT j aae nT xj X )()(ˆ上式中,在数值上)(nT x a =)(n x ,再将T Ω=ω代入,得到:∑∞-∞=-=Ωn nj aen x j X ω)()(ˆ上式的右边就是序列的傅立叶变换)(ωj e X ,即T j a e X j X Ω==Ωωω)()(ˆ 上式说明理想采样信号的傅立叶变换可用相应的采样序列的傅立叶变换得到,只要将自变量ω用T Ω代替即可。
2、频域采样定理的要点:a) 对信号x(n)的频谱函数X(e j ω)在[0,2π]上等间隔采样N 点,得到2()() , 0,1,2,,1j N k NX k X e k N ωπω===-则N 点IDFT[()N X k ]得到的序列就是原序列x(n)以N 为周期进行周期延拓后的主值区序列,公式为:()IDFT[()][()]()N N N N i x n X k x n iN R n ∞=-∞==+∑b) 由上式可知,频域采样点数N 必须大于等于时域离散信号的长度M(即N≥M),才能使时域不产生混叠,则N 点IDFT[()N X k ]得到的序列()N x n 就是原序列x(n),即()N x n =x(n)。
如果N>M ,()N x n 比原序列尾部多N-M 零点;如果N<M ,z 则()N x n =IDFT[()N X k ]发生了时域混叠失真,而且()N x n 的长度N 也比x(n)的长度M 短,因此。
()N x n 与x(n)不相同。
在数字信号处理的应用中,只要涉及时域或者频域采样,都必须服从这两个采样理论的要点。
对比上面叙述的时域采样原理和频域采样原理,得到一个有用的结论,这两个采样理论具有对偶性:“时域采样频谱周期延拓,频域采样时域信号周期延拓”。
因此放在一起进行实验。
三、实验容及步骤:1、时域采样理论的验证:给定模拟信号,)()sin()(0t u t Ae t x t a Ω=-α式中A =444.128,α=502π,0Ω=502πrad/s ,它的幅频特性曲线如图2.1图2.1 )(t x a 的幅频特性曲线现用DFT(FFT)求该模拟信号的幅频特性,以验证时域采样理论。
安照)(t x a 的幅频特性曲线,选取三种采样频率,即s F =1k Hz ,300Hz ,200Hz 。
观测时间选ms T p 50=。
为使用DFT ,首先用下面公式产生时域离散信号,对三种采样频率,采样序列按顺序用)(1n x ,)(2n x ,)(3n x 表示。
)()sin()()(0nT u nT Ae nT x n x nT a Ω==-α因为采样频率不同,得到的)(1n x ,)(2n x ,)(3n x 的长度不同, 长度(点数)用公式s p F T N ⨯=计算。
选FFT 的变换点数为M=64,序列长度不够64的尾部加零。
X (k )=FFT[x (n )] , k =0,1,2,3,-----,M -1式中k 代表的频率为 k Mk πω2=。
要求: 编写实验程序,计算)(1n x 、)(2n x 和)(3n x 的幅度特性,并绘图显示。
观察分析频谱混叠失真。
2、频域采样理论的验证给定信号如下:⎪⎩⎪⎨⎧≤≤-≤≤+=其它02614271301)(n n n n n x编写程序分别对频谱函数()FT[()]j X e x n ω=在区间]2,0[π上等间隔采样32 和16点,得到)()(1632k X k X 和: 32232()(), 0,1,2,31j k X k X e k ωπω===16216()(), 0,1,2,15j k X k X e k ωπω===再分别对)()(1632k X k X 和进行32点和16点IFFT ,得到)()(1632n x n x 和:323232()IFFT[()] , 0,1,2,,31x n X k n == 161616()IFFT[()] , 0,1,2,,15x n X k n ==分别画出()j X e ω、)()(1632k X k X 和的幅度谱,并绘图显示x (n)、)()(1632n x n x 和的波形,进行对比和分析,验证总结频域采样理论。
提示:频域采样用以下方法容易变程序实现。
① 直接调用MATLAB 函数fft 计算3232()FFT[()]X k x n =就得到()j X e ω在]2,0[π的32点频率域采样② 抽取32()X k 的偶数点即可得到()j X e ω在]2,0[π的16点频率域采样16()X k ,即1632()(2) , 0,1,2,,15X k X k k ==。
○3 当然也可以按照频域采样理论,先将信号x(n)以16为周期进行周期延拓,取其主值区(16点),再对其进行16点DFT(FFT),得到的就是()j X e ω在]2,0[π的16点频率域采样16()X k 。
四.实验程序:实验一:%========================close all;clear all;clc;Tp=64/1000; %观察时间Tp=64微秒%产生M长采样序列x(n)% Fs=1000;T=1/Fs;Fs=1000;T=1/Fs;M=Tp*Fs;n=0:M-1;A=444.128;alph=pi*50*2^0.5;omega=pi*50*2^0.5;xnt=A*exp(-alph*n*T).*sin(omega*n*T);Xk=T*fft(xnt,M); %M点FFT[xnt)]yn='xa(nT)';subplot(3,2,1);tstem(xnt,yn); %调用自编绘图函数tstem绘制序列图box on;title('(a) Fs=1000Hz');k=0:M-1;fk=k/Tp;subplot(3,2,2);plot(fk,abs(Xk));title('(a) T*FT[xa(nT)],Fs=1000Hz'); xlabel('f(Hz)');ylabel('幅度');axis([0,Fs,0,1.2*max(abs(Xk))])%========================% Fs=300Hz和 Fs=200Hz的程序与上面Fs=1000Hz完全相同。
实验结果分析:由图可见,采样序列的频谱的确是以采样频率为周期对模拟信号频谱的周期延拓。
当采样频率为1000Hz时频谱混叠很小;当采样频率为300Hz时,在折叠频率150Hz附近频谱混叠很严重;当采样频率为200Hz时,在折叠频率110Hz附近频谱混叠更很严重。
由实验图像可以看出,时域非周期对应着频域连续。
对连续时间函数对采样使其离散化处理时,必须满足时域采样定理的要求,否则,必将引起频域的混叠。
要满足要求信号的最高频率Fc不能采样频率的一半(Fs/2),不满足时域采样定理,频率将会在ω=π附近或者f=Fs/2混叠而且混叠得最严重。
实验二:%========================close all;clear all;clc;M=27;N=32;n=0:M;%产生M长三角波序列x(n)xa=0:floor(M/2); xb= ceil(M/2)-1:-1:0; xn=[xa,xb];Xk=fft(xn,1024); %1024点FFT[x(n)], 用于近似序列x(n)的TFX32k=fft(xn,32) ;%32点FFT[x(n)]x32n=ifft(X32k); %32点IFFT[X32(k)]得到x32(n)X16k=X32k(1:2:N); %隔点抽取X32k得到X16(K)x16n=ifft(X16k,N/2); %16点IFFT[X16(k)]得到x16(n)subplot(3,2,2);stem(n,xn,'.');box ontitle('(b) 三角波序列x(n)');xlabel('n');ylabel('x(n)');axis([0,32,0,20])k=0:1023;wk=2*k/1024;subplot(3,2,1);plot(wk,abs(Xk));title('(a)FT[x(n)]');xlabel('\omega/\pi');ylabel('|X(e^j^\omega)|');axis([0,1,0,200])k=0:N/2-1;subplot(3,2,3);stem(k,abs(X16k),'.');box ontitle('(c) 16点频域采样');xlabel('k');ylabel('|X_1_6(k)|');axis([0,8,0,200])n1=0:N/2-1;subplot(3,2,4);stem(n1,x16n,'.');box ontitle('(d) 16点IDFT[X_1_6(k)]');xlabel('n');ylabel('x_1_6(n)');axis([0,32,0,20])k=0:N-1;subplot(3,2,5);stem(k,abs(X32k),'.');box ontitle('(e) 32点频域采样');xlabel('k');ylabel('|X_3_2(k)|');axis([0,16,0,200])n1=0:N-1;subplot(3,2,6);stem(n1,x32n,'.');box ontitle('(f) 32点IDFT[X_3_2(k)]');xlabel('n');ylabel('x_3_2(n)');axis([0,32,0,20])实验结果分析:该图验证了频域采样理论和频域采样定理。