时域采样理论与频域采样定理验证
实验三 时域采样与频域采样
实验二 时域采样与频域采样一 实验内容1 时域采样定理的验证给定模拟信号0()sin()()t a x t Ae t u t α-=Ω,式中,A=444.128,α=,0/rad s Ω=选取三种采样频率,即1s F kH z =,300Hz ,200Hz ,对()a x t 进行理想采样,得到采样序列:0()()sin()()nT a x n x nT Ae nT u nT α-==Ω。
观测时间长度为64p T m s =。
分别绘出三种采样频率得到的序列的幅频特性曲线图,并进行比较。
注:为与课本中幅频特性曲线比较,将纵坐标进行了归一化。
实验结果:由实验结果发现,采样频率为1000HZ 时,时域采样后的频谱函数可以较好的表现出原模拟信号的幅频特性,且是原幅频特性的周期延拓。
当采样频率为300HZ和200HZ时,其频谱函数与原幅频特性相比,有较大的误差,且在fs/2的位置误差最大。
实验分析:理想采样信号的频谱是原模拟信号的频谱沿频率轴,每间隔采样角频率2*pi*fs重复出现一次,并叠加形成的周期函数,所以只有当采样角频率2*pi*fs大于等于原模拟信号的角频率时才不会发生混叠。
2 频域采样定理的验证给定信号:1013()271426n nx n n nothers+≤≤⎧⎪=-≤≤⎨⎪⎩,对()x n的频谱函数()jX eω在[0,2π]上分别等间隔采样16点和32点,得到16()X k和32()X k,再分别对16()X k和32()X k进行IDFT,得到16()x n和32()x n。
分别画出()jX eω、16()X k和32()X k的幅度谱,并绘图显示()x n、16()x n和32()x n的波形,进行对比和分析。
实验结论:由上图分析知,频域采样32点时,其逆变换得到的xn32能较好的还原xn,只是尾部多了几个0而已,而对于频域采样16点时,逆变换之后已经产生较大的误差,不能等效为xn。
时域采样与频域采样
实验二:时域采样与频域采样一、实验目的:时域采样理论与频域采样理论是数字信号处理中的重要理论。
要求掌握模拟信号采样前后频谱的变化,以及如何选择采样频率才能使采样后的信号不丢失信息;要求掌握频率域采样会引起时域周期化的概念,以及频率域采样定理及其对频域采样点数选择的指导作用。
二、实验原理与方法:1、时域采样定理的要点:1)对模拟信号)(t x a 以间隔T 进行时域等间隔理想采样,形成的采样信号的频谱)(ˆΩj X 是原模拟信号频谱()a X j Ω以采样角频率s Ω(T s /2π=Ω)为周期进行周期延拓。
公式为:)](ˆ[)(ˆt x FT j X a a=Ω )(1∑∞-∞=Ω-Ω=n s a jn j X T 2)采样频率s Ω必须大于等于模拟信号最高频率的两倍以上,才能使采样信号的 频谱不产生频谱混叠。
利用计算机计算上式并不方便,下面我们导出另外一个公式,以便用计算机上进行实验。
理想采样信号)(ˆt xa 和模拟信号)(t x a 之间的关系为 ∑∞-∞=-=n a a nT t t x t x)()()(ˆδ 对上式进行傅立叶变换,得到:dt e nT t t x j X t j n a a Ω-∞∞-∞-∞=⎰∑-=Ω])()([)(ˆδdt e nT t t x t j n a Ω-∞-∞=∞∞-∑⎰-)()( δ=在上式的积分号内只有当nT t =时,才有非零值,因此∑∞-∞=Ω-=Ωn nT j aae nT xj X )()(ˆ上式中,在数值上)(nT x a =)(n x ,再将T Ω=ω代入,得到:∑∞-∞=-=Ωn nj aen x j X ω)()(ˆ上式的右边就是序列的傅立叶变换)(ωj e X ,即T j a e X j X Ω==Ωωω)()(ˆ 上式说明理想采样信号的傅立叶变换可用相应的采样序列的傅立叶变换得到,只要将自变量ω用T Ω代替即可。
2、频域采样定理的要点:a) 对信号x(n)的频谱函数X(e j ω)在[0,2π]上等间隔采样N 点,得到2()() , 0,1,2,,1j N k NX k X e k N ωπω===-L则N 点IDFT[()N X k ]得到的序列就是原序列x(n)以N 为周期进行周期延拓后的主值区序列,公式为:()IDFT[()][()]()N N N N i x n X k x n iN R n ∞=-∞==+∑b) 由上式可知,频域采样点数N 必须大于等于时域离散信号的长度M(即N≥M),才能使时域不产生混叠,则N 点IDFT[()N X k ]得到的序列()N x n 就是原序列x(n),即()N x n =x(n)。
时域采样与频域采样实验报告
时域采样与频域采样实验报告一、实验目的:1.理解采样定理的原理和应用;2.掌握时域采样和频域采样的方法和步骤;3.学习使用MATLAB软件进行采样信号的分析和处理。
二、实验原理:采样是指将连续时间信号转换为离散时间信号的过程。
采样过程中,时间轴被分成若干个时间间隔,每个时间间隔内只有一个采样值,即取样点,采样信号的幅度就是该时间间隔内对应连续时间信号的幅度,称为采样值。
时域采样:利用采样定理进行抽样,采样时将模拟信号保持在一个固定状态下,以等间隔时间取样,实现模拟信号的离散化。
时域采样的反变换为恢复成为原连续时间信号,称为重构。
在数字信号中,通过离散时间信号构建模拟信号。
频域采样:首先通过傅里叶变换将时域信号转换到频域,然后在频域对其进行采样,将频域采样结果再进行反傅里叶变换恢复成时域信号。
三、实验内容及步骤:1.时域采样实验①模拟信号的采样:在MATLAB软件中设计一个三角波信号和正弦波信号,并画出其时域图像。
分别设定采样频率为1.5kHz和3kHz,进行采样。
重构时域信号,并画出重构信号的时域图像。
比较原信号和重构信号,在时域和频域上进行对比和分析。
②数字信号的量化:对采集的信号进行量化处理,设量化步长分别为1、2、3。
计算量化误差和信噪比,并作图进行比较分析。
2.频域采样实验设计一个具有3kHz频率的信号,并绘制其频域图像。
设定采样率为10kHz,进行采样,同时对采样信号进行降采样处理。
恢复实验所得到的采样信号,绘制重构后的时域图像,并分析其质量。
四、实验结果与分析:1.时域采样实验:①模拟信号的采样:通过MATLAB软件设计得到的三角波和正弦波信号及其时域图像如下所示:其中,Fs1 = 1.5kHz,Fs2 = 3kHz,信号的采样频率与信号频率的比值应大于2,以保证采样后的信号不失真。
通过采样得到的信号及其重构图像如下所示:可以看出,采样和重构得到的信号与原信号的时域图像是相似的,重构后的信号和原信号之间的误差可以忽略不计。
时域采样与频域采样
实验二:时域采样与频域采样一、实验目的:时域采样理论与频域采样理论是数字信号处理中的重要理论。
要求掌握模拟信号采样前后频谱的变化,以及如何选择采样频率才能使采样后的信号不丢失信息;要求掌握频率域采样会引起时域周期化的概念,以及频率域采样定理及其对频域采样点数选择的指导作用。
二、实验原理与方法:1、时域采样定理的要点:1)对模拟信号)(t x a 以间隔T 进行时域等间隔理想采样,形成的采样信号的频谱)(ˆΩj X 是原模拟信号频谱()a X j Ω以采样角频率s Ω(T s /2π=Ω)为周期进行周期延拓。
公式为:)](ˆ[)(ˆt x FT j X a a=Ω )(1∑∞-∞=Ω-Ω=n s a jn j X T 2)采样频率s Ω必须大于等于模拟信号最高频率的两倍以上,才能使采样信号的 频谱不产生频谱混叠。
利用计算机计算上式并不方便,下面我们导出另外一个公式,以便用计算机上进行实验。
理想采样信号)(ˆt xa 和模拟信号)(t x a 之间的关系为 ∑∞-∞=-=n a a nT t t x t x)()()(ˆδ 对上式进行傅立叶变换,得到:dt e nT t t x j X t j n a a Ω-∞∞-∞-∞=⎰∑-=Ω])()([)(ˆδdt e nT t t x t j n a Ω-∞-∞=∞∞-∑⎰-)()( δ=在上式的积分号内只有当nT t =时,才有非零值,因此∑∞-∞=Ω-=Ωn nT j aae nT xj X )()(ˆ上式中,在数值上)(nT x a =)(n x ,再将T Ω=ω代入,得到:∑∞-∞=-=Ωn nj aen x j X ω)()(ˆ上式的右边就是序列的傅立叶变换)(ωj e X ,即T j a e X j X Ω==Ωωω)()(ˆ 上式说明理想采样信号的傅立叶变换可用相应的采样序列的傅立叶变换得到,只要将自变量ω用T Ω代替即可。
2、频域采样定理的要点:a) 对信号x(n)的频谱函数X(e j ω)在[0,2π]上等间隔采样N 点,得到2()() , 0,1,2,,1j N k NX k X e k N ωπω===-则N 点IDFT[()N X k ]得到的序列就是原序列x(n)以N 为周期进行周期延拓后的主值区序列,公式为:()IDFT[()][()]()N N N N i x n X k x n iN R n ∞=-∞==+∑b) 由上式可知,频域采样点数N 必须大于等于时域离散信号的长度M(即N≥M),才能使时域不产生混叠,则N 点IDFT[()N X k ]得到的序列()N x n 就是原序列x(n),即()N x n =x(n)。
时域采样与频域采样
实验二:时域采样与频域采样一、实验目的:时域采样理论与频域采样理论是数字信号处理中的重要理论。
要求掌握模拟信号采样前后频谱的变化,以及如何选择采样频率才能使采样后的信号不丢失信息;要求掌握频率域采样会引起时域周期化的概念,以及频率域采样定理及其对频域采样点数选择的指导作用。
二、实验原理与方法:1、时域采样定理的要点:1)对模拟信号)(t x a 以间隔T 进行时域等间隔理想采样,形成的采样信号的频谱)(ˆΩj X 是原模拟信号频谱()a X j Ω以采样角频率s Ω(T s /2π=Ω)为周期进行周期延拓。
公式为:)](ˆ[)(ˆt x FT j X a a=Ω )(1∑∞-∞=Ω-Ω=n s a jn j X T 2)采样频率s Ω必须大于等于模拟信号最高频率的两倍以上,才能使采样信号的 频谱不产生频谱混叠。
利用计算机计算上式并不方便,下面我们导出另外一个公式,以便用计算机上进行实验。
理想采样信号)(ˆt xa 和模拟信号)(t x a 之间的关系为 ∑∞-∞=-=n a a nT t t x t x)()()(ˆδ 对上式进行傅立叶变换,得到:dt e nT t t x j X t j n a a Ω-∞∞-∞-∞=⎰∑-=Ω])()([)(ˆδdt e nT t t x t j n a Ω-∞-∞=∞∞-∑⎰-)()( δ=在上式的积分号内只有当nT t =时,才有非零值,因此∑∞-∞=Ω-=Ωn nT j aae nT xj X )()(ˆ上式中,在数值上)(nT x a =)(n x ,再将T Ω=ω代入,得到:∑∞-∞=-=Ωn nj aen x j X ω)()(ˆ上式的右边就是序列的傅立叶变换)(ωj e X ,即T j a e X j X Ω==Ωωω)()(ˆ 上式说明理想采样信号的傅立叶变换可用相应的采样序列的傅立叶变换得到,只要将自变量ω用T Ω代替即可。
2、频域采样定理的要点:a) 对信号x(n)的频谱函数X(e j ω)在[0,2π]上等间隔采样N 点,得到2()() , 0,1,2,,1j N k NX k X e k N ωπω===-L则N 点IDFT[()N X k ]得到的序列就是原序列x(n)以N 为周期进行周期延拓后的主值区序列,公式为:()IDFT[()][()]()N N N N i x n X k x n iN R n ∞=-∞==+∑b) 由上式可知,频域采样点数N 必须大于等于时域离散信号的长度M(即N≥M),才能使时域不产生混叠,则N 点IDFT[()N X k ]得到的序列()N x n 就是原序列x(n),即()N x n =x(n)。
时、频域采样定理的验证
实验二时、频域采样定理的验证
实验目的
掌握时域采样定理,频域采样定理。
掌握模拟信号采样前后频谱的变化,以及如何选择采样频率才能使采样后的信号不丢失信息;掌握频域采样会引起时域周期化,以及频域采样定理及其对频域采样点数选择的指导作用。
实验内容
1.时域采样理论
的验证
f=1000Hz:
f=300Hz:
f=200Hz:
2.频域采样理论的验证
实验小结
通过本次实验,我巩固了信号在matlab中的运算表示方法、图形输出函数(plot、stem),同时会用软件求fft和ifft,由此验证了时域采样定理,频域采样定理。
通过观察不同平率的模拟信号采样,采样频率如果过低会导致丢失信息;通过频域采样发现它会引起时域周期化。
实验二-时域采样与频域采样及MATLAB程序
实验二时域采样与频域采样一实验目的1掌握时域连续信号经理想采样前后的频谱变化,加深对时域采样定理的理解2理解频率域采样定理,掌握频率域采样点数的选取原则二实验原理1时域采样定理对模拟信号“)以T进行时域等间隔采样,形成的釆样信号的频谱XJJQ)会以采样角频率2 (Q,=芋)为周期进行周期延拓,公式为:利用计算机计算上式并不容易,下面导出另外一个公式。
理想采样信号念⑴和模拟信号暫⑴之间的关系为:£(『)= %(0工郭-切n—x对上式进行傅里叶变换,得到:+30 -f-QQX a(jn)=匚[%(『)£ 刃-£ 匚心⑴d(t-nT)e-iai dtZI--«川―00在上式的积分号内只有当时,才有非零值,因此:X a(j^=^x a{nT)e-^T上式中,在数值上£(〃)= □),再将co=QT代入,得到:匕(山)=f兀何厂筲必丁= X(严)|亠勿上式说明采样信号的傅里叶变换可用相应序列的傅里叶变换得到,只要将自变量Q用代替即可。
2频域采样定理对信号x(n)的频谱函数X(e®在[0, 2刃上等间隔采样N点,得到X 伙)= X(严)“k = 0,l,2,..・,N — l则有:x N(n) = IDFT[X伙)h =[乞如iN)]恥)00即N点1DFT[X伙)]得到的序列就是原序列x(n)以N为周期进行周期延拓后的主值序列, 因此,频率域采样要使时域不发生混叠,则频域采样点数N必须大于等于时域离散信号的长度M (即N >M ),在满足频率域采样定理的条件下,心(")就是原序列.丫⑺)。
如果N>M,则g(”)比原序列x(〃)尾部多N —M个零点,反之,时域发生混叠,x N(n)与x(n)不等。
对比时域采样定理与频域采样定理,可以得到这样的结论:两个定理具有对偶性,即“时域采样,频谱周期延拓;频域釆样,时域信号周期延拓”。
在数字信号处理中,都必须服从这二个定理。
时域及频域采样定理
时域及频域采样定理
时域采样定理(Nyquist定理)表示:在连续时间信号的采样
过程中,为了准确地重构原始信号,采样的频率必须大于等于原始信号最高频率的两倍。
频域采样定理表示:在连续频谱信号的采样过程中,为了准确地还原原始频谱,采样的时间间隔必须小于等于原始信号的最小周期。
时域采样定理保证了信号在采样和重构过程中不存在混叠现象,即采样频率大于等于原始信号最高频率的两倍,可以完整地还原原始信号。
频域采样定理保证了在频谱分析中,通过对信号进行采样得到的频谱能准确地表示原始频谱。
时域及频域采样定理
时域及频域采样定理
时域采样定理(Nyquist采样定理)和频域采样定理(Shannon采样定理)是两个基本的采样定理,用于指导信号采样和重构的过程。
时域采样定理(Nyquist采样定理):时域采样定理是由哈利·尼奎斯特(Harry Nyquist)在20世纪20年代提出的。
该定理指出,要恢复一个连续时间信号,采样频率必须至少是信号最高频率的两倍。
简而言之,对于最高频率为f的信号,采样频率应该大于2f。
如果采样频率低于2f,那么在重构信号时将会产生混叠现象,导致信号失真。
频域采样定理(Shannon采样定理):频域采样定理是由克劳德·香农(Claude Shannon)在1949年提出的。
该定理表明,如果一个信号在频域上没有频率成分超过一半的采样频率,那么可以通过其离散时间域的采样来完全恢复该信号。
简而言之,对于信号的最高频率为f,采样频率应该大于2f才能完全还原原始信号。
这两个采样定理的要点是:采样频率必须满足一定条件,以避免采样过程中的信息丢失和信号失真。
如果采样频率不满足定理的要求,就会出现混叠效应,导致无法准确地恢复原始信号。
因此,在信号处理和通信系统中,遵循时域采样定理和频域采样定理是非常重要的,以保证信号采样和重构的准确性和有效性。
验证时域采样定理和频域采样定理—
课程设计报告课程名称数字信号课程设计系别:专业班级:学号:姓名:课程题目:验证时域采样定理和频域采样定理完成日期:2013年5月23日指导老师:2013年5 月23 日验证时域采样定理和频域采样定理摘要数字信号处理是将信号以数字方式表示并处理的理论和技术。
数字信号处理与模拟信号处理是信号处理的子集。
数字信号处理的目的是对真实世界的连续模拟信号进行测量或滤波。
因此在进行数字信号处理之前需要将信号从模拟域转换到数字域,这通常通过模数转换器实现。
而数字信号处理的输出经常也要变换到模拟域,这是通过数模转换器实现的。
编制Matlab程序,完成以下功能,对给定模拟信号进行时域采样,观察不同采样频率对采样信号频谱的影响,验证时域采样定理;对给定序列进行傅里叶变换,并在频域进行采样,观察不同采样点数对恢复序列的影响,验证频域采样定理;绘制相关信号的波形。
关键字:时域采样,频域采样,数字信号处理,matlab目录一、摘要 (4)二、绪论 (6)三、方案 (6)1.验证时域采样定理 (6)2.详细程序及仿真波形分析 (7)3.频域采样理论的验证 (15)4.频域采样定理程序 (16)5.频域采样定理信号波形 (17)四、结论 (17)致谢 (18)参考文献 (18)一、绪论数字信号处理是将信号以数字方式表示并处理的理论和技术。
数字信号处理与模拟信号处理是信号处理的子集。
数字信号处理的目的是对真实世界的连续模拟信号进行测量或滤波。
因此在进行数字信号处理之前需要将信号从模拟域转换到数字域,这通常通过模数转换器实现。
而数字信号处理的输出经常也要变换到模拟域,这是通过数模转换器实现的。
编制Matlab程序,完成以下功能,对给定模拟信号进行时域采样,观察不同采样频率对采样信号频谱的影响,验证时域采样定理;对给定序列进行傅里叶变换,并在频域进行采样,观察不同采样点数对恢复序列的影响,验证频域采样定理;绘制相关信号的波形。
二、方案1.验证时域采样定理基本要求:①掌握数字信号处理的基本概念、基本理论和基本方法;②学会 MATLAB 的使用,掌握 MATLAB 的程序设计方法;③学会用 MATLAB 对信号进行分析和处理;④信号的各参数需由键盘输入,输入不同参数即可得不同的x(t) 和x(n);⑤撰写课程设计论文,用数字信号处理基本理论分析结果。
时域采样与频域采样
实验二:时域采样与频域采样一、实验目的:时域采样理论与频域采样理论是数字信号处理中的重要理论。
要求掌握模拟信号采样前后频谱的变化,以及如何选择采样频率才能使采样后的信号不丢失信息;要求掌握频率域采样会引起时域周期化的概念,以及频率域采样定理及其对频域采样点数选择的指导作用。
二、实验原理与方法:1、时域采样定理的要点:1)对模拟信号)(t x a 以间隔T 进行时域等间隔理想采样,形成的采样信号的频谱)(ˆΩj X 是原模拟信号频谱()a X j Ω以采样角频率s Ω(T s /2π=Ω)为周期进行周期延拓。
公式为:)](ˆ[)(ˆt x FT j X a a=Ω )(1∑∞-∞=Ω-Ω=n s a jn j X T 2)采样频率s Ω必须大于等于模拟信号最高频率的两倍以上,才能使采样信号的 频谱不产生频谱混叠。
利用计算机计算上式并不方便,下面我们导出另外一个公式,以便用计算机上进行实验。
理想采样信号)(ˆt xa 和模拟信号)(t x a 之间的关系为 ∑∞-∞=-=n a a nT t t x t x)()()(ˆδ 对上式进行傅立叶变换,得到:dt e nT t t x j X t j n a a Ω-∞∞-∞-∞=⎰∑-=Ω])()([)(ˆδdt e nT t t x t j n a Ω-∞-∞=∞∞-∑⎰-)()( δ=在上式的积分号内只有当nT t =时,才有非零值,因此∑∞-∞=Ω-=Ωn nT j aae nT xj X )()(ˆ上式中,在数值上)(nT x a =)(n x ,再将T Ω=ω代入,得到:∑∞-∞=-=Ωn nj aen x j X ω)()(ˆ上式的右边就是序列的傅立叶变换)(ωj e X ,即T j a e X j X Ω==Ωωω)()(ˆ 上式说明理想采样信号的傅立叶变换可用相应的采样序列的傅立叶变换得到,只要将自变量ω用T Ω代替即可。
2、频域采样定理的要点:a) 对信号x(n)的频谱函数X(e j ω)在[0,2π]上等间隔采样N 点,得到2()() , 0,1,2,,1j N k NX k X e k N ωπω===-则N 点IDFT[()N X k ]得到的序列就是原序列x(n)以N 为周期进行周期延拓后的主值区序列,公式为:()IDFT[()][()]()N N N N i x n X k x n iN R n ∞=-∞==+∑b) 由上式可知,频域采样点数N 必须大于等于时域离散信号的长度M(即N ≥M),才能使时域不产生混叠,则N 点IDFT[()N X k ]得到的序列()N x n 就是原序列x(n),即()N x n =x(n)。
时域采样和频域采样
一、实验目的时域采样理论与频域采样理论是数字信号处理中的重要理论.要求掌握模拟信号采样前后频谱的变化,以与如何选择采样频率才能使采样后的信号不丢失信息;要求掌握频率域采样会引起时域周期化的概念,以与频率域采样定理与其对频域采样点数选择的指导作用.二、实验原理与方法时域采样定理的要点是:a.对模拟信号)(t x a 以间隔T 进行时域等间隔理想采样,形成的采样信号的频谱)(ˆΩj X是原模拟信号频谱()a X j Ω以采样角频率s Ω〔T s /2π=Ω〕为周期进行周期延拓.公式为: )](ˆ[)(ˆt x FT j X a a =Ω )(1∑∞-∞=Ω-Ω=n s a jn j X T b.采样频率s Ω必须大于等于模拟信号最高频率的两倍以上,才能使采样信号的频谱不产生频谱混叠.利用计算机计算上式并不方便,下面我们导出另外一个公式,以便用计算机上进行实验.理想采样信号)(ˆt xa 和模拟信号)(t x a 之间的关系为: 对上式进行傅立叶变换,得到:在上式的积分号内只有当nT t =时,才有非零值,因此:上式中,在数值上)(nT x a =)(n x ,再将T Ω=ω代入,得到:上式的右边就是序列的傅立叶变换)(ωj e X ,即 T j a e X j X Ω==Ωωω)()(ˆ上式说明理想采样信号的傅立叶变换可用相应的采样序列的傅立叶变换得到,只要将自变量ω用T Ω代替即可.频域采样定理的要点是:a) 对信号x<n>的频谱函数X<e j ω>在[0,2π]上等间隔采样N 点,得到则N 点IDFT[()N X k ]得到的序列就是原序列x<n>以N 为周期进行周期延拓后的主值区序列,公式为:b) 由上式可知,频域采样点数N 必须大于等于时域离散信号的长度M<即N ≥M>,才能使时域不产生混叠,则N 点IDFT[()N X k ]得到的序列()N x n 就是原序列x<n>,即()N x n =x<n>.如果N>M,()N x n 比原序列尾部多N-M 个零点;如果N<M,z 则()N x n =IDFT[()N X k ]发生了时域混叠失真,而且()N x n 的长度N 也比x<n>的长度M 短,因此.()N x n 与x<n>不相同.在数字信号处理的应用中,只要涉与时域或者频域采样,都必须服从这两个采样理论的要点. 对比上面叙述的时域采样原理和频域采样原理,得到一个有用的结论,这两个采样理论具有对偶性:"时域采样频谱周期延拓,频域采样时域信号周期延拓〞.因此放在一起进行实验.三、 实验内容与步骤〔1〕时域采样理论的验证给定模拟信号,)()sin()(0t u t Ae t x t a Ω=-α式中A =444.128,α=502π,0Ω=502πrad/s,它的幅频特性曲线如图图)(t x a 的幅频特性曲线现用DFT<FFT>求该模拟信号的幅频特性,以验证时域采样理论.安照)(t x a 的幅频特性曲线,选取三种采样频率,即s F =1k Hz ,300Hz ,200Hz .观测时间选ms T p 50=.为使用DFT,首先用下面公式产生时域离散信号,对三种采样频率,采样序列按顺序用)(1n x ,)(2n x ,)(3n x 表示.因为采样频率不同,得到的)(1n x ,)(2n x ,)(3n x 的长度不同, 长度〔点数〕用公式s p F T N ⨯=计算.选FFT 的变换点数为M=64,序列长度不够64的尾部加零.X <k >=FFT[x <n >] , k =0,1,2,3,-----,M -1式中k 代表的频率为 k Mk πω2=. 要求: 编写实验程序,计算)(1n x 、)(2n x 和)(3n x 的幅度特性,并绘图显示.观察分析频谱混叠失真.〔2〕频域采样理论的验证给定信号如下:编写程序分别对频谱函数()FT[()]j X e x n ω=在区间]2,0[π上等间隔采样32和16点,得到)()(1632k X k X 和:再分别对)()(1632k X k X 和进行32点和16点IFFT,得到)()(1632n x n x 和:分别画出()j X e ω、)()(1632k X k X 和的幅度谱,并绘图显示x <n>、)()(1632n x n x 和的波形,进行对比和分析,验证总结频域采样理论.提示:频域采样用以下方法容易变程序实现.1〕直接调用MATLAB函数fft计算就得到在的32点频率域采样2〕抽取的偶数点即可得到在的16点频率域采样,即.3〕当然也可以按照频域采样理论,先将信号x<n>以16为周期进行周期延拓,取其主值区〔16点〕,再对其进行16点DFT<FFT>,得到的就是在的16点频率域采样 .四、实验程序1 时域采样理论的验证程序清单% 时域采样理论验证程序exp2a.mTp=64/1000; %观察时间Tp=64微秒%产生M长采样序列x<n>% Fs=1000;T=1/Fs;Fs=1000;T=1/Fs;M=Tp*Fs;n=0:M-1;A=444.128;alph=pi*50*2^0.5;omega=pi*50*2^0.5;xnt=A*exp<-alph*n*T>.*sin<omega*n*T>;Xk=T*fft<xnt,M>; %M点FFT[xnt>]yn='xa<nT>';subplot<3,2,1>;tstem<xnt,yn>; %调用自编绘图函数tstem绘制序列图box on;title<'<a> Fs=1000Hz'>;k=0:M-1;fk=k/Tp;subplot<3,2,2>;plot<fk,abs<Xk>>;title<'<a> T*FT[xa<nT>],Fs=1000Hz'>;xlabel<'f<Hz>'>;ylabel<'幅度'>;axis<[0,Fs,0,1.2*max<abs<Xk>>]>%=================================================% Fs=300Hz和Fs=200Hz的程序与上面Fs=1000Hz完全相同.2 频域采样理论的验证程序清单%频域采样理论验证程序exp2b.mM=27;N=32;n=0:M;%产生M长三角波序列x<n>xa=0:floor<M/2>; xb= ceil<M/2>-1:-1:0; xn=[xa,xb];Xk=fft<xn,1024>; %1024点FFT[x<n>], 用于近似序列x<n>的TFX32k=fft<xn,32> ;%32点FFT[x<n>]x32n=ifft<X32k>; %32点IFFT[X32<k>]得到x32<n>X16k=X32k<1:2:N>; %隔点抽取X32k得到X16<K>x16n=ifft<X16k,N/2>; %16点IFFT[X16<k>]得到x16<n>subplot<3,2,2>;stem<n,xn,'.'>;box ontitle<'<b> 三角波序列x<n>'>;xlabel<'n'>;ylabel<'x<n>'>;axis<[0,32,0,20]>k=0:1023;wk=2*k/1024; %subplot<3,2,1>;plot<wk,abs<Xk>>;title<'<a>FT[x<n>]'>;xlabel<'\omega/\pi'>;ylabel<'|X<e^j^\omega>|'>;axis<[0,1,0,200]>k=0:N/2-1;subplot<3,2,3>;stem<k,abs<X16k>,'.'>;box ontitle<'<c> 16点频域采样'>;xlabel<'k'>;ylabel<'|X_1_6<k>|'>;axis<[0,8,0,200]>n1=0:N/2-1;subplot<3,2,4>;stem<n1,x16n,'.'>;box ontitle<'<d> 16点IDFT[X_1_6<k>]'>;xlabel<'n'>;ylabel<'x_1_6<n>'>;axis<[0,32,0,20]>k=0:N-1;subplot<3,2,5>;stem<k,abs<X32k>,'.'>;box ontitle<'<e> 32点频域采样'>;xlabel<'k'>;ylabel<'|X_3_2<k>|'>;axis<[0,16,0,200]>n1=0:N-1;subplot<3,2,6>;stem<n1,x32n,'.'>;box ontitle<'<f> 32点IDFT[X_3_2<k>]'>;xlabel<'n'>;ylabel<'x_3_2<n>'>;axis<[0,32,0,20]>五、实验程序运行结果与分析1、时域采样理论的验证程序运行结果exp2a.m如图所示.由图可见,采样序列的频谱的确是以采样频率为周期对模拟信号频谱的周期延拓.当采样频率为1000Hz时频谱混叠很小;当采样频率为300Hz时,在折叠频率150Hz附近频谱混叠很严重;当采样频率为200Hz时,在折叠频率110Hz附近频谱混叠更很严重.图2 时域采样理论的验证程序exp2b.m运行结果如图所示.图该图验证了频域采样理论和频域采样定理.对信号x<n>的频谱函数X<e jω>在[0,2π]上等间X k]得到的序列正是原序列x<n>以16为周期进行周期延拓隔采样N=16时,N点IDFT[()N后的主值区序列:x n与x<n>不相同,如图图<c>和<d>所示.当由于N<M,所以发生了时域混叠失真,因此.()NN=32时,如图图<c>和<d>所示,由于N>M,频域采样定理,所以不存在时域混叠失真,因x n与x<n>相同.此.()N。
数字信号处理--实验三 时域及频域采样定理
学生实验报告开课学院及实验室:电子楼317 2013 年 4 月 8 日N为周期进行周期延拓后的主值区序列,(一) 时域采样定理实验1. 给定模拟信号如下:0()sin()()at a x t Ae t u t -=Ω假设式中A=444.128,250π=a , 2500π=Ωrad/s ,将这些参数代入上式中,对()a x t 进行傅立叶变换,得到()a X j Ω,画出它的幅频特性()~a X jf f,如图3.1所示。
根据该曲线可以选择采样频率。
图3.1()a x t 的幅频特性曲线2. 按照选定的采样频率对模拟信号进行采样,得到时域离散信号()x n :0()()sin()()anT a x n x nT Ae nT u nT ==Ω这里给定采样频率如下:1s f kHz =,300Hz ,200Hz 。
分别用这些采样频率形成时域离散信号,按顺序分别用1()x n 、2()x n 、3()x n 表示。
选择观测时间50p T ms=。
3. 计算()x n 的傅立叶变换()jwX e :100()[()]sin()i i n anT jw j ni n X e FT x n Ae nT e ω--===Ω∑ (3.6)式中,1,2,3i =,分别对应三种采样频率的情况123111(,,)1000300200T s T s T s ===。
采样点数用下式计算:pi i T n T =(3.7)(3.6)式中,ω是连续变量。
为用计算机进行数值计算,改用下式计算:100()[()]sin()i k i k n jw anT jw n M i n X e DFT x n Ae nT e --===Ω∑ (3.8)式中,2k kM πω=,0,1,2,3...k =,1M -;64M =。
可以调用MATLAB 函数fft 计算3.8式。
4. 打印三种采样频率的幅度曲线()~k jw kX e w ,0,1,2,3...k =,1M -;64M =。
数字信号处理上机实验及答案(第三版,第十章)
第十章上机实验数字信号处理是一门理论和实际密切结合的课程,为深入掌握课程内容,最好在学习理论的同时,做习题和上机实验。
上机实验不仅可以帮助读者深入的理解和消化基本理论,而且能锻炼初学者的独立解决问题的能力。
本章在第二版的基础上编写了六个实验,前五个实验属基础理论实验,第六个属应用综合实验。
实验一系统响应及系统稳定性。
实验二时域采样与频域采样。
实验三用FFT对信号作频谱分析。
实验四IIR数字滤波器设计及软件实现。
实验五FIR数字滤波器设计与软件实现实验六应用实验——数字信号处理在双音多频拨号系统中的应用任课教师根据教学进度,安排学生上机进行实验。
建议自学的读者在学习完第一章后作实验一;在学习完第三、四章后作实验二和实验三;实验四IIR数字滤波器设计及软件实现在。
学习完第六章进行;实验五在学习完第七章后进行。
实验六综合实验在学习完第七章或者再后些进行;实验六为综合实验,在学习完本课程后再进行。
10.1 实验一: 系统响应及系统稳定性1.实验目的(1)掌握求系统响应的方法。
(2)掌握时域离散系统的时域特性。
(3)分析、观察及检验系统的稳定性。
2.实验原理与方法在时域中,描写系统特性的方法是差分方程和单位脉冲响应,在频域可以用系统函数描述系统特性。
已知输入信号可以由差分方程、单位脉冲响应或系统函数求出系统对于该输入信号的响应,本实验仅在时域求解。
在计算机上适合用递推法求差分方程的解,最简单的方法是采用MA TLAB语言的工具箱函数filter函数。
也可以用MATLAB语言的工具箱函数conv函数计算输入信号和系统的单位脉冲响应的线性卷积,求出系统的响应。
系统的时域特性指的是系统的线性时不变性质、因果性和稳定性。
重点分析实验系统的稳定性,包括观察系统的暂态响应和稳定响应。
系统的稳定性是指对任意有界的输入信号,系统都能得到有界的系统响应。
或者系统的单位脉冲响应满足绝对可和的条件。
系统的稳定性由其差分方程的系数决定。
数字信号处理课程设计
数字信号处理课程设计(综合实验)班级:电子信息工程1202X姓名:X X学号:1207050227指导教师:XXX设计时间:2014.12.22—2015.1。
4成绩:评实验一时域采样与频域采样定理的验证实验一、设计目的1。
时域采样理论与频域采样理论是数字信号处理中的重要理论.要求掌握模拟信号采样前后频谱的变化,以及如何选择采样频率才能使采样后的信号不丢失信息;2. 要求掌握频率域采样会引起时域周期化的概念,以及频率域采样定理及其对频域采样点数选择的指导作用。
二、程序运行结果1。
时域采样定理验证结果:2。
频域采样定理验证结果:三、参数与结果分析1。
时域采样参数与结果分析:对模拟信号()ax t以T进行时域等间隔理想采样,形成的采样信号的频谱会以采样角频率Ωs(Ωs=2π/T)为周期进行周期延拓。
采样频率Ωs必须大于等于模拟信号最高频率的两倍以上,才能使采样信号的频谱不产生频谱混叠。
() ax t的最高截止频率为500HZ,而因为采样频率不同,得到的x1(n)、x2(n)、x3(n)的长度不同。
频谱分布也就不同。
x1(n)、x2(n)、x3(n)分别为采样频率为1000HZ、300HZ、200HZ 时候的采样序列,而进行64点DFT之后通过DFT分析频谱后得实验图中的图,可见在采样频率大于等于1000时采样后的频谱无混叠,采样频率小于1000时频谱出现混叠且在Fs/2处最为严重。
2.频域采样参数与结果分析:对信号x(n)的频谱函数进行N点等间隔采样,进行N 点IDFT[()NXk]得到的序列就是原序列x(n)以N为周期进行周期延拓后的主值区序列。
对于给定的x(n)三角波序列其长度为27点则由频率域采样定理可知当进行32点采样后进应该无混叠而16点采样后进行IFFT得到的x(n)有混叠,由实验的图形可知频域采样定理的正确性.四、思考题如果序列x(n)的长度为M,希望得到其频谱在[0, 2π]上的N点等间隔采样,当N<M 时,如何用一次最少点数的DFT得到该频谱采样?答:通过实验结果可知,可以先对原序列x(n)以N为周期进行周期延拓后取主值区序列,再计算N点DFT则得到N点频域采样。
时域采样及频域采样
实验二:时域采样与频域采样一、实验目的:时域采样理论与频域采样理论是数字信号处理中的重要理论。
要求掌握模拟信号采样前后频谱的变化,以及如何选择采样频率才能使采样后的信号不丢失信息;要求掌握频率域采样会引起时域周期化的概念,以及频率域采样定理及其对频域采样点数选择的指导作用。
二、实验原理与方法:1、时域采样定理的要点:1)对模拟信号)(t x a 以间隔T 进行时域等间隔理想采样,形成的采样信号的频谱)(ˆΩj X 是原模拟信号频谱()a X j Ω以采样角频率s Ω(T s /2π=Ω)为周期进行周期延拓。
公式为:)](ˆ[)(ˆt x FT j X a a=Ω )(1∑∞-∞=Ω-Ω=n s a jn j X T 2)采样频率s Ω必须大于等于模拟信号最高频率的两倍以上,才能使采样信号的 频谱不产生频谱混叠。
利用计算机计算上式并不方便,下面我们导出另外一个公式,以便用计算机上进行实验。
理想采样信号)(ˆt xa 和模拟信号)(t x a 之间的关系为 ∑∞-∞=-=n a a nT t t x t x)()()(ˆδ 对上式进行傅立叶变换,得到:dt e nT t t x j X t j n a a Ω-∞∞-∞-∞=⎰∑-=Ω])()([)(ˆδdt e nT t t x t j n a Ω-∞-∞=∞∞-∑⎰-)()( δ=在上式的积分号内只有当nT t =时,才有非零值,因此∑∞-∞=Ω-=Ωn nT j aae nT xj X )()(ˆ上式中,在数值上)(nT x a =)(n x ,再将T Ω=ω代入,得到:∑∞-∞=-=Ωn nj aen x j X ω)()(ˆ上式的右边就是序列的傅立叶变换)(ωj e X ,即T j a e X j X Ω==Ωωω)()(ˆ 上式说明理想采样信号的傅立叶变换可用相应的采样序列的傅立叶变换得到,只要将自变量ω用T Ω代替即可。
2、频域采样定理的要点:a) 对信号x(n)的频谱函数X(e j ω)在[0,2π]上等间隔采样N 点,得到2()() , 0,1,2,,1j N k NX k X e k N ωπω===-则N 点IDFT[()N X k ]得到的序列就是原序列x(n)以N 为周期进行周期延拓后的主值区序列,公式为:()IDFT[()][()]()N N N N i x n X k x n iN R n ∞=-∞==+∑b) 由上式可知,频域采样点数N 必须大于等于时域离散信号的长度M(即N≥M),才能使时域不产生混叠,则N 点IDFT[()N X k ]得到的序列()N x n 就是原序列x(n),即()N x n =x(n)。
验证时域采样定理和频域采样定理__数字信号处理.doc
恍恍惚惚课程设计报告Fra bibliotek课程名称
系 别:
专业班级:
学 号:
姓 名:
数字信号课程设计
工程技术系
电子信息工程
09XXXXXX7
课程题目: 验证时域采样定理和频域采样定理
完成日期:
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,力根保通据护过生高管产中线工资敷艺料设高试技中卷术资配0料不置试仅技卷可术要以是求解指,决机对吊组电顶在气层进设配行备置继进不电行规保空范护载高高与中中带资资负料料荷试试下卷卷高问总中题体资,配料而置试且时卷可,调保需控障要试各在验类最;管大对路限设习度备题内进到来行位确调。保整在机使管组其路高在敷中正设资常过料工程试况中卷下,安与要全过加,度强并工看且作护尽下关可都于能可管地以路缩正高小常中故工资障作料高;试中对卷资于连料继接试电管卷保口破护处坏进理范行高围整中,核资或对料者定试对值卷某,弯些审扁异核度常与固高校定中对盒资图位料纸置试,.卷保编工护写况层复进防杂行腐设自跨备动接与处地装理线置,弯高尤曲中其半资要径料避标试免高卷错等调误,试高要方中求案资技,料术编试交写5、卷底重电保。要气护管设设装线备备置敷4高、调动设中电试作技资气高,术料课中并中3试、件资且包卷管中料拒含试路调试绝线验敷试卷动槽方设技作、案技术,管以术来架及避等系免多统不项启必方动要式方高,案中为;资解对料决整试高套卷中启突语动然文过停电程机气中。课高因件中此中资,管料电壁试力薄卷高、电中接气资口设料不备试严进卷等行保问调护题试装,工置合作调理并试利且技用进术管行,线过要敷关求设运电技行力术高保。中护线资装缆料置敷试做设卷到原技准则术确:指灵在导活分。。线对对盒于于处调差,试动当过保不程护同中装电高置压中高回资中路料资交试料叉卷试时技卷,术调应问试采题技用,术金作是属为指隔调发板试电进人机行员一隔,变开需压处要器理在组;事在同前发一掌生线握内槽图部内纸故,资障强料时电、,回设需路备要须制进同造行时厂外切家部断出电习具源题高高电中中源资资,料料线试试缆卷卷敷试切设验除完报从毕告而,与采要相用进关高行技中检术资查资料和料试检,卷测并主处且要理了保。解护现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
时域采样和频域采样实验报告
时域采样和频域采样实验报告一、实验目的本次实验旨在掌握时域采样和频域采样的原理、方法和技巧,研究它们在信号处理中的应用。
二、实验原理1. 时域采样时域采样是指将连续时间信号转换为离散时间信号的过程。
其原理是在一定时间间隔内对连续时间信号进行采样,得到离散时间信号。
采样定理规定:如果一个连续时间信号没有高于Nyquist频率两倍以上的频率分量,那么它可以通过等间隔采样来完全恢复。
2. 频域采样频域采样是指将连续频率信号转换为离散频率信号的过程。
其原理是对连续频率信号进行傅里叶变换,得到其频谱,并按照一定间隔取出其中若干个点,得到离散频率信号。
三、实验步骤1. 时域采样实验步骤:(1)使用函数发生器产生正弦波信号;(2)将正弦波信号输入示波器,并设置合适的水平和垂直尺度;(3)调整示波器触发方式为单次触发,同时设置触发电平和触发边沿;(4)按下示波器的单次触发按钮,记录采样到的离散时间信号;(5)将离散时间信号输入计算机,并进行处理和分析。
2. 频域采样实验步骤:(1)使用函数发生器产生正弦波信号;(2)将正弦波信号输入示波器,并设置合适的水平和垂直尺度;(3)通过示波器自带的FFT功能,对正弦波信号进行傅里叶变换,并得到其频谱图;(4)选取频谱图中若干个点,记录其幅值和相位信息;(5)将记录的幅值和相位信息输入计算机,并进行处理和分析。
四、实验结果与分析1. 时域采样实验结果与分析:在本次实验中,我们使用函数发生器产生了一个频率为1kHz、幅度为5V的正弦波信号,并将其输入示波器。
通过调整示波器触发方式为单次触发,同时设置触发电平和触发边沿,我们成功地对正弦波信号进行了时域采样,并得到了一组离散时间信号。
将这些离散时间信号输入计算机,并进行处理和分析,我们得到了正弦波信号的时域图像。
2. 频域采样实验结果与分析:在本次实验中,我们使用函数发生器产生了一个频率为1kHz、幅度为5V的正弦波信号,并将其输入示波器。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验4时域采样理论与频域采样定理验证一一、实验目的1时域采样理论与频域采样理论是数字信号处理中的重要理论。
要求掌握模拟信号采样前后频谱的变化,以及如何选择采样频率才能使采样后的信号不丢失信息;要求掌握频率域采样会引起时域周期化的概念,以及频率域采样定理及其对频域采样点数选择的指导作用。
二、实验原理及方法时域采样定理的要点是:(a)对模拟信号)(t x a 以间隔T 进行时域等间隔理想采样,形成的采样信号的频谱)(ˆΩj X是原模拟信号频谱()a X j Ω以采样角频率s Ω(T s/2π=Ω)为周期进行周期延拓。
公式为:)](ˆ[)(ˆt x FT j X a a=Ω )(1∑∞-∞=Ω-Ω=n s a jn j X T (b )采样频率s Ω必须大于等于模拟信号最高频率的两倍以上,才能使采样信号的 频谱不产生频谱混叠。
利用计算机计算上式并不方便,下面我们导出另外一个公式,以便用计算机上进行实验。
理想采样信号)(ˆt xa 和模拟信号)(t x a 之间的关系为: ∑∞-∞=-=n a a nT t t x t x)()()(ˆδ对上式进行傅立叶变换,得到:dt e nT t t x j X t j n a aΩ-∞∞-∞-∞=⎰∑-=Ω])()([)(ˆδdt e nT t t x t j n a Ω-∞-∞=∞∞-∑⎰-)()( δ=课程名称 实验成绩 指导教师 实 验 报 告院系 班级学号 姓名 日期在上式的积分号内只有当nT t =时,才有非零值,因此:∑∞-∞=Ω-=Ωn nT j aae nT xj X )()(ˆ上式中,在数值上)(nT x a =)(n x ,再将T Ω=ω代入,得到:∑∞-∞=-=Ωn nj aen x j X ω)()(ˆ上式的右边就是序列的傅立叶变换)(ωj eX ,即T j a e X j X Ω==Ωωω)()(ˆ上式说明理想采样信号的傅立叶变换可用相应的采样序列的傅立叶变换得到,只要将自变量ω用T Ω代替即可。
频域采样定理的要点是: a) 对信号x(n)的频谱函数X(e jω)在[0,2π]上等间隔采样N 点,得到2()(), 0,1,2,,1j N k NX k X e k N ωπω===-则N 点IDFT[()N X k ]得到的序列就是原序列x(n)以N 为周期进行周期延拓后的主值区序列,公式为:()IDFT[()][()]()N N N Ni x n X k x n iN Rn ∞=-∞==+∑(b)由上式可知,频域采样点数N 必须大于等于时域离散信号的长度M(即N ≥M),才能使时域不产生混叠,则N 点IDFT[()N X k ]得到的序列()N x n 就是原序列x(n),即()N x n =x(n)。
如果N>M ,()N x n 比原序列尾部多N-M 个零点;如果N<M ,z 则()N x n =IDFT[()N X k ]发生了时域混叠失真,而且()N x n 的长度N 也比x(n)的长度M 短,因此。
()N x n 与x(n)不相同。
在数字信号处理的应用中,只要涉及时域或者频域采样,都必须服从这两个采样理论的要点。
对比上面叙述的时域采样原理和频域采样原理,得到一个有用的结论,这两个采样理论具有对偶性:“时域采样频谱周期延拓,频域采样时域信号周期延拓”。
因此放在一起进行实验。
三、实验内容及步骤(1)时域采样理论的验证。
给定模拟信号,)()sin()(0t u t Ae t x ta Ω=-α式中A =444.128,α=502π,0Ω=502πrad/s ,它的幅频特性曲线如图10.2.1图10.2.1 )(t x a 的幅频特性曲线现用DFT(FFT)求该模拟信号的幅频特性,以验证时域采样理论。
安照)(t x a 的幅频特性曲线,选取三种采样频率,即s F =1k Hz ,300Hz ,200Hz 。
观测时间选ms T p 50=。
为使用DFT ,首先用下面公式产生时域离散信号,对三种采样频率,采样序列按顺序用)(1n x ,)(2n x ,)(3n x 表示。
)()sin()()(0nT u nT AenT x n x nTa Ω==-α 因为采样频率不同,得到的)(1n x ,)(2n x ,)(3n x 的长度不同, 长度(点数)用公式s p F T N ⨯=计算。
选FFT 的变换点数为M=64,序列长度不够64的尾部加零。
X (k )=FFT[x (n )] , k =0,1,2,3,-----,M -1 式中k 代表的频率为k Mk πω2=。
要求: 编写实验程序,计算)(1n x 、)(2n x 和)(3n x 的幅度特性,并绘图显示。
观察分析频谱混叠失真。
(2)频域采样理论的验证。
给定信号如下:⎪⎩⎪⎨⎧≤≤-≤≤+=其它02614271301)(n n n n n x编写程序分别对频谱函数()FT[()]j X e x n ω=在区间]2,0[π上等间隔采样32 和16点,得到)()(1632k X k X 和: 32232()(), 0,1,2,31j k X k X e k ωπω===16216()(), 0,1,2,15j k X k X e k ωπω===再分别对)()(1632k X k X 和进行32点和16点IFFT ,得到)()(1632n x n x 和:323232()IFFT[()] , 0,1,2,,31x n X k n == 161616()IFFT[()] , 0,1,2,,15x n X k n ==分别画出()j X e ω、)()(1632k X k X 和的幅度谱,并绘图显示x (n)、)()(1632n x n x 和的波形,进行对比和分析,验证总结频域采样理论。
提示:频域采样用以下方法容易变程序实现。
① 直接调用MATLAB 函数fft 计算3232()FFT[()]X k x n =就得到()j X e ω在]2,0[π的32点频率域采样② 抽取32()X k 的偶数点即可得到()j X e ω在]2,0[π的16点频率域采样16()X k ,即1632()(2) , 0,1,2,,15X k X k k ==。
○3 当然也可以按照频域采样理论,先将信号x (n)以16为周期进行周期延拓,取其主值区(16点),再对其进行16点DFT(FFT),得到的就是()j X e ω在]2,0[π的16点频率域采样16()X k 。
四、思考题如果序列x(n)的长度为M ,希望得到其频谱()j X e ω在]2,0[π上的N 点等间隔采样,当N<M 时, 如何用一次最少点数的DFT 得到该频谱采样?五、实验报告及要求(1) 运行程序,打印要求显示的图形。
(2) 分析比较实验结果,简述由实验得到的主要结论。
(3) 简要回答思考题。
(4) 附上程序清单和有关曲线。
六、程序清单和信号波形1、时域采样理论的验证程序清单:% 时域采样理论验证程序Tp=64/1000; %观察时间Tp=64微秒%产生M长采样序列x(n)% Fs=1000;T=1/Fs;Fs=1000;T=1/Fs;M=Tp*Fs;n=0:M-1;f=n*Fs/M;A=444.128;alph=pi*50*2^0.5;omega=pi*50*2^0.5;xn=A*exp(-alph*n*T).*sin(omega*n*T);Xk=T*fft(xn,M);%M点FFT[xnt)]subplot(3,1,1);plot(f,abs(Xk));xlabel('f/Hz');ylabel('|x1(jf)|');title('x1(n)的幅度特性');%=============================================================== =====%Fs=300HzTp=64/1000; %观察时间Tp=64微秒%产生M长采样序列x(n)% Fs=1000;T=1/Fs;Fs=300;T=1/Fs;M=Tp*Fs;n=0:M-1;f=n*Fs/M;A=444.128;alph=pi*50*2^0.5;omega=pi*50*2^0.5;xn=A*exp(-alph*n*T).*sin(omega*n*T);Xk=T*fft(xn,M);%M点FFT[xnt)]subplot(3,1,1);plot(f,abs(Xk));xlabel('f/Hz');ylabel('|x1(jf)|');title('x1(n)的幅度特性');%=============================================================== =====%Fs=200HzTp=64/1000;Fs=200;T=1/Fs;M=Tp*Fs;n=0:M-1;A=444.128;alph=pi*50*2^0.5;omega=pi*50*2^0.5;xnt=A*exp(-alph*n*T).*sin(omega*n*T);Xk=T*fft(xnt,M);yn='xa(nT)';subplot(3,2,5);tstem(xnt,yn);box on; title('(a) Fs=1000Hz');k=0:M-1;fk=k/Tp;subplot(3,2,6);plot(fk,abs(Xk));title('(a) T*FT[xa(nT)],Fs=1000Hz');xlabel('f(Hz)');ylabel('幅度');axis([0,Fs,0,1.2*max(abs(Xk))]);信号波形:2、频域采样理论的验证程序清单:M=27;N=32;n=0:M;%产生M长三角波序列x(n)xa=0:floor(M/2); xb= ceil(M/2)-1:-1:0; xn=[xa,xb];Xk=fft(xn,1024); %1024点FFT[x(n)], 用于近似序列x(n)的TF X32k=fft(xn,32) ;%32点FFT[x(n)]x32n=ifft(X32k); %32点IFFT[X32(k)]得到x32(n)X16k=X32k(1:2:N); %隔点抽取X32k得到X16(K)x16n=ifft(X16k,N/2); %16点IFFT[X16(k)]得到x16(n)subplot(3,2,2);stem(n,xn,'.');box ontitle('(b) 三角波序列x(n)');xlabel('n');ylabel('x(n)');axis([0,32,0,20]) k=0:1023;wk=2*k/1024; %subplot(3,2,1);plot(wk,abs(Xk));title('(a)FT[x(n)]');xlabel('\omega/\pi');ylabel('|X(e^j^\omega)|');axis([0,1,0,200]) k=0:N/2-1;subplot(3,2,3);stem(k,abs(X16k),'.');box ontitle('(c) 16点频域采样');xlabel('k');ylabel('|X_1_6(k)|');axis([0,8,0,200]) n1=0:N/2-1;subplot(3,2,4);stem(n1,x16n,'.');box ontitle('(d) 16点IDFT[X_1_6(k)]');xlabel('n');ylabel('x_1_6(n)');axis([0,32,0,20]) k=0:N-1;subplot(3,2,5);stem(k,abs(X32k),'.');box ontitle('(e) 32点频域采样');xlabel('k');ylabel('|X_3_2(k)|');axis([0,16,0,200]) n1=0:N-1;subplot(3,2,6);stem(n1,x32n,'.');box ontitle('(f) 32点IDFT[X_3_2(k)]');xlabel('n');ylabel('x_3_2(n)');axis([0,32,0,20])信号波形:思考题简答先对原序列x(n)以N 为周期进行周期延拓后取主值区序列,()[()]()N N i x n x n iN R n ∞=-∞=+∑再计算N 点DFT 则得到N 点频域采样:2()DFT[()] =(), 0,1,2,,1j N N N k NX k x n X e k N ωπω===-七、实验总结1由图可见,采样序列的频谱的确是以采样频率为周期对模拟信号频谱的周期延拓。