实验二 时域采样与频域采样及MATLAB程序知识讲解
MATLAB实训时域和频域
实训报告
课程名称MATLAB实训报告名称时域和频域学院电子
班级
学号
学生姓名
实验目的:
1、熟悉并学会使用MATLAB的可视化界面环境;
2、熟悉并学会MATLAB的程序设计;
3、了解一阶系统和二阶系统相对于阶跃信号输入的时域和频域特性;实验过程:
在进入系统后,会出现如下图
一阶系统时域
T=2时的曲线
T=1.6时的曲线
T=1时的曲线
T=0.4时的曲线
汇总得下图
由图得,T越大,反应速度越快一阶系统的频域
取T=0.3时的曲线
T=1时的曲线
T=5时的曲线
汇总:T值取得越大,其零极点分布越靠右二阶系统的时域
ζ=0.2,Wn=1时曲线
ζ=0.707,Wn=1时曲线
ζ=1,Wn=10时曲线
ζ=2,Wn=10时曲线
二阶系统,ζ越大,系统反应越慢,在0,707附近最佳二阶系统的频域
Wn=10不变,改变ζ的值
ζ=1时曲线
ζ=0.707时曲线
ζ= 1.5时曲线
Wn=5时曲线
Wn=2时曲线
Wn=1时曲线
当ζ不变时,Wn越大,零极点分布图为一条竖直线
体会
通过学习MATLAB我又一次锻炼了自己的思维.它学起来得心应手也让我明白了学习一门语言(c语言)对学习其他语言的帮助指导作用.同时,它也加强了我
理论联系实际的能力.这是一个专业课的基础工具,学好它是必要的.。
时域采样与频域采样
实验二:时域采样与频域采样一、实验目的:时域采样理论与频域采样理论是数字信号处理中的重要理论。
要求掌握模拟信号采样前后频谱的变化,以及如何选择采样频率才能使采样后的信号不丢失信息;要求掌握频率域采样会引起时域周期化的概念,以及频率域采样定理及其对频域采样点数选择的指导作用。
二、实验原理与方法:1、时域采样定理的要点:1)对模拟信号)(t x a 以间隔T 进行时域等间隔理想采样,形成的采样信号的频谱)(ˆΩj X 是原模拟信号频谱()a X j Ω以采样角频率s Ω(T s /2π=Ω)为周期进行周期延拓。
公式为:)](ˆ[)(ˆt x FT j X a a=Ω )(1∑∞-∞=Ω-Ω=n s a jn j X T 2)采样频率s Ω必须大于等于模拟信号最高频率的两倍以上,才能使采样信号的 频谱不产生频谱混叠。
利用计算机计算上式并不方便,下面我们导出另外一个公式,以便用计算机上进行实验。
理想采样信号)(ˆt xa 和模拟信号)(t x a 之间的关系为 ∑∞-∞=-=n a a nT t t x t x)()()(ˆδ 对上式进行傅立叶变换,得到:dt e nT t t x j X t j n a a Ω-∞∞-∞-∞=⎰∑-=Ω])()([)(ˆδdt e nT t t x t j n a Ω-∞-∞=∞∞-∑⎰-)()( δ=在上式的积分号内只有当nT t =时,才有非零值,因此∑∞-∞=Ω-=Ωn nT j aae nT xj X )()(ˆ上式中,在数值上)(nT x a =)(n x ,再将T Ω=ω代入,得到:∑∞-∞=-=Ωn nj aen x j X ω)()(ˆ上式的右边就是序列的傅立叶变换)(ωj e X ,即T j a e X j X Ω==Ωωω)()(ˆ 上式说明理想采样信号的傅立叶变换可用相应的采样序列的傅立叶变换得到,只要将自变量ω用T Ω代替即可。
2、频域采样定理的要点:a) 对信号x(n)的频谱函数X(e j ω)在[0,2π]上等间隔采样N 点,得到2()() , 0,1,2,,1j N k NX k X e k N ωπω===-L则N 点IDFT[()N X k ]得到的序列就是原序列x(n)以N 为周期进行周期延拓后的主值区序列,公式为:()IDFT[()][()]()N N N N i x n X k x n iN R n ∞=-∞==+∑b) 由上式可知,频域采样点数N 必须大于等于时域离散信号的长度M(即N≥M),才能使时域不产生混叠,则N 点IDFT[()N X k ]得到的序列()N x n 就是原序列x(n),即()N x n =x(n)。
实验二利用matlab进行时域分析
实验二利用matlab进行时域分析在本实验中,我们将使用MATLAB来进行时域分析。
时域分析是指对信号的时间范围内的波形进行分析。
总的来说,它是一种非常实用的分析方法,因为它允许我们对信号进行详细的观察和研究。
在此之前,建议你先了解一些MATLAB的基础知识,比如如何在MATLAB中载入数据、如何绘制图形等等。
我们假设你已经掌握了这些基础知识,并已经准备好开始这个实验。
在MATLAB中,有许多内置函数可用于分析时间域信号。
下面仅介绍几个常用的函数。
1. plot函数使用plot函数可以绘制信号波形。
在MATLAB中,我们可以载入所需的数据,然后使用“plot”函数将数据绘制成波形。
例如,以下代码绘制了一个简单的余弦波:```t = 0:0.01:pi;y = cos(t);plot(t,y);```在这个例子中,我们使用“t”来表示时间,它的范围是从0到π,步长为0.01。
我们还设置了一个“y”向量,它是根据时间向量计算得出的余弦函数值。
最后,我们使用“plot”函数将时间和信号值绘制成波形。
2. fft函数使用FFT函数可以将时域信号转换为频域信号。
MATLAB中的fft函数可以帮助我们计算信号的傅里叶变换,进而分析信号的频谱。
以下是示例代码:```Fs = 1000;t = 0:1/Fs:1-1/Fs;x = sin(2*pi*100*t) + sin(2*pi*200*t);N = length(x);X = fft(x)/N;f = Fs*(0:N/2-1)/N;plot(f,2*abs(X(1:N/2)));```在这个例子中,我们首先定义采样率“Fs”,取样时间“t”,并定义一个包含100和200Hz正弦波的信号“x”。
然后,我们使用“fft”函数计算信号“x”的傅里叶变换。
“N”是“x”的长度,而“X”是计算出的FFT系数。
最后,我们使用“plot”函数将傅里叶变换的振幅绘制成图形。
时域采样与频域采样
实验二:时域采样与频域采样一、实验目的:时域采样理论与频域采样理论是数字信号处理中的重要理论。
要求掌握模拟信号采样前后频谱的变化,以及如何选择采样频率才能使采样后的信号不丢失信息;要求掌握频率域采样会引起时域周期化的概念,以及频率域采样定理及其对频域采样点数选择的指导作用。
二、实验原理与方法:1、时域采样定理的要点:1)对模拟信号)(t x a 以间隔T 进行时域等间隔理想采样,形成的采样信号的频谱)(ˆΩj X 是原模拟信号频谱()a X j Ω以采样角频率s Ω(T s /2π=Ω)为周期进行周期延拓。
公式为:)](ˆ[)(ˆt x FT j X a a=Ω )(1∑∞-∞=Ω-Ω=n s a jn j X T 2)采样频率s Ω必须大于等于模拟信号最高频率的两倍以上,才能使采样信号的 频谱不产生频谱混叠。
利用计算机计算上式并不方便,下面我们导出另外一个公式,以便用计算机上进行实验。
理想采样信号)(ˆt xa 和模拟信号)(t x a 之间的关系为 ∑∞-∞=-=n a a nT t t x t x)()()(ˆδ 对上式进行傅立叶变换,得到:dt e nT t t x j X t j n a a Ω-∞∞-∞-∞=⎰∑-=Ω])()([)(ˆδdt e nT t t x t j n a Ω-∞-∞=∞∞-∑⎰-)()( δ=在上式的积分号内只有当nT t =时,才有非零值,因此∑∞-∞=Ω-=Ωn nT j aae nT xj X )()(ˆ上式中,在数值上)(nT x a =)(n x ,再将T Ω=ω代入,得到:∑∞-∞=-=Ωn nj aen x j X ω)()(ˆ上式的右边就是序列的傅立叶变换)(ωj e X ,即T j a e X j X Ω==Ωωω)()(ˆ 上式说明理想采样信号的傅立叶变换可用相应的采样序列的傅立叶变换得到,只要将自变量ω用T Ω代替即可。
2、频域采样定理的要点:a) 对信号x(n)的频谱函数X(e j ω)在[0,2π]上等间隔采样N 点,得到2()() , 0,1,2,,1j N k NX k X e k N ωπω===-则N 点IDFT[()N X k ]得到的序列就是原序列x(n)以N 为周期进行周期延拓后的主值区序列,公式为:()IDFT[()][()]()N N N N i x n X k x n iN R n ∞=-∞==+∑b) 由上式可知,频域采样点数N 必须大于等于时域离散信号的长度M(即N≥M),才能使时域不产生混叠,则N 点IDFT[()N X k ]得到的序列()N x n 就是原序列x(n),即()N x n =x(n)。
时、频域采样定理的验证
实验二时、频域采样定理的验证
实验目的
掌握时域采样定理,频域采样定理。
掌握模拟信号采样前后频谱的变化,以及如何选择采样频率才能使采样后的信号不丢失信息;掌握频域采样会引起时域周期化,以及频域采样定理及其对频域采样点数选择的指导作用。
实验内容
1.时域采样理论
的验证
f=1000Hz:
f=300Hz:
f=200Hz:
2.频域采样理论的验证
实验小结
通过本次实验,我巩固了信号在matlab中的运算表示方法、图形输出函数(plot、stem),同时会用软件求fft和ifft,由此验证了时域采样定理,频域采样定理。
通过观察不同平率的模拟信号采样,采样频率如果过低会导致丢失信息;通过频域采样发现它会引起时域周期化。
数字信号处理第三版用MATLAB上机实验
实验二:时域采样与频域采样一、时域采样1.用MATLAB编程如下:%1时域采样序列分析fs=1000A=444.128; a=222.144; w=222.144; ts=64*10^(-3); fs=1000;T=1/fs;n=0:ts/T-1; xn=A*exp((-a)*n/fs).*sin(w*n/fs); Xk=fft(xn);subplot(3,2,1);stem(n,xn);xlabel('n,fs=1000Hz');ylabel('xn');title('xn');subplot(3,2,2);plot(n,abs(Xk));xlabel('k,fs=1000Hz'); title('|X(k)|');%1时域采样序列分析fs=200A=444.128; a=222.144; w=222.144; ts=64*10^(-3); fs=200;T=1/fs;n=0:ts/T-1; xn=A*exp((-a)*n/fs).*sin(w*n/fs);Xk=fft(xn);subplot(3,2,3);stem(n,xn);xlabel('n,fs=200Hz'); ylabel('xn');title('xn');subplot(3,2,4);plot(n,abs(Xk));xlabel('k,fs=200Hz'); title('|X(k)|');%1时域采样序列分析fs=500A=444.128; a=222.144; w=222.144; ts=64*10^(-3); fs=500;T=1/fs;n=0:ts/T-1; xn=A*exp((-a)*n/fs).*sin(w*n/fs); Xk=fft(xn);subplot(3,2,5);stem(n,xn);xlabel('n,fs=500Hz');ylabel('xn');title('xn');subplot(3,2,6);plot(n,abs(Xk));xlabel('k,fs=500Hz'); title('|X(k)|');2.经调试结果如下图:20406080-200200n,fs=1000Hzxnxn2040608005001000k,fs=1000Hz|X (k)|51015-2000200n,fs=200Hzx nxn510150100200k,fs=200Hz |X(k)|10203040-2000200n,fs=500Hzx nxn102030400500k,fs=500Hz|X (k)|实验结果说明:对时域信号采样频率必须大于等于模拟信号频率的两倍以上,才 能使采样信号的频谱不产生混叠.fs=200Hz 时,采样信号的频谱产生了混叠,fs=500Hz 和fs=1000Hz 时,大于模拟信号频率的两倍以上,采样信号的频谱不产生混叠。
实验二时域采样与频域采样及MATLAB程序知识讲解
实验⼆时域采样与频域采样及MATLAB程序知识讲解实验⼆时域采样与频域采样及M A T L A B程序实验⼆时域采样与频域采样⼀实验⽬的1 掌握时域连续信号经理想采样前后的频谱变化,加深对时域采样定理的理解2 理解频率域采样定理,掌握频率域采样点数的选取原则⼆实验原理1 时域采样定理对模拟信号()a x t 以T 进⾏时域等间隔采样,形成的采样信号的频谱()a X j Ω会以采样⾓频率2()s s TπΩΩ=为周期进⾏周期延拓,公式为: 1??()[()]()a a a s n X j FT x t X j jn T +∞=-∞Ω==Ω-Ω∑ 利⽤计算机计算上式并不容易,下⾯导出另外⼀个公式。
理想采样信号?()a xt 和模拟信号()a x t 之间的关系为: ?()()()a a n xt x t t nT δ+∞=-∞=-∑ 对上式进⾏傅⾥叶变换,得到:()[()()()()j t j t a a a n n X j x t t nT e dt x t t nT e dt δδ+∞+∞+∞+∞-Ω-Ω-∞-∞=-∞=-∞Ω=-=-∑∑??在上式的积分号内只有当t nT =时,才有⾮零值,因此:()()jn T aa n X j x nT e +∞-Ω=-∞Ω=∑上式中,在数值上()()a x nT x n =,再将T ω=Ω代⼊,得到:()()()jn j aa T T n X j x n e X e ωωωω+∞-=Ω=Ω=-∞Ω==∑上式说明采样信号的傅⾥叶变换可⽤相应序列的傅⾥叶变换得到,只要将⾃变量ω⽤T Ω代替即可。
2 频域采样定理对信号()x n 的频谱函数()j X e ω在[0,2π]上等间隔采样N 点,得到 2()()j k NX k X e ωπω== 0,1,2,,1k N =-L则有: ()[()][()]()N N N i x n IDFT X k x n iN R n +∞=-∞==+∑即N 点[()]IDFT X k 得到的序列就是原序列()x n 以N 为周期进⾏周期延拓后的主值序列,因此,频率域采样要使时域不发⽣混叠,则频域采样点数N 必须⼤于等于时域离散信号的长度M (即N M ≥)。
信号时域采样频谱分析(matlab)
基于matlab 的时域信号采样及频谱分析一:主要设计方法与步骤:1. 画出连续时间信号0sin()()t u t Ω-at x(t)=Ae 的时域波形及其幅频特性曲线,其中,幅度因子444.128A =,衰减因子222.144a =,模拟角频率0222.144Ω=;2. 对信号()x t 进行采样,得到采样序列0()sin()()ant x n Ae nT u n -=Ω,050n ≤≤,其中,1sT f =为采样间隔,通过改变采样频率可改变T ,画出采样频率分别为200H z ,500Hz ,1000Hz 时的采样序列波形;3. 对不同采样频率下的采样序列进行频谱分析,绘制其幅频和相频曲线,对各频率下采样序列()x n 和()x t 的幅频曲线有无差别,如有差别说明原因;4. 设系统单位抽样响应为5()()h n R n =,求解当输入为()x n 时的系统响应()y n ,画出()x n ,()h n ,()y n 的时域波形及幅频特性曲线,并利用结果验证卷积定理的正确性(此内容将参数设置为444.128A =,222.144a =,0222.144W =,1000fs =); 5. 用FFT 对信号()x n ,()h n ,()y n 进行频谱分析,观察与4中结果有无差别; 6. 由采样序列()x n 恢复出连续时间信号1()x t ,画出其时域波形,对比1()x t 与原来的连续时间信号()x t 的时域波形,计算并记录两者最大误差。
二:详细程序及仿真波形分析1.连续时间信号()x t 及其200/500/1000Hz Hz Hz 频率抽样信号函数()x n % 绘制信号x(n)的幅度谱和相位谱 clcclear all close alln=0:50 % 定义序列的长度是50A=input('请入A 的值A:') % 设置信号的有关参数 a=input('请入a 的值a:')w0=input('请入w0的值w0:') T1=0.005 T2=0.002 T3=0.001 T0=0.001x=A*exp(-a*n*T0).*sin(w0*n*T0) y1=A*exp(-a*n*T1).*sin(w0*n*T1) y2=A*exp(-a*n*T2).*sin(w0*n*T2) y3=A*exp(-a*n*T3).*sin(w0*n*T3) close allsubplot(2,1,1)stem(n,x) % 绘制x(n)的图形 grid ontitle('离散时间信号') subplot(2,1,2) plot(n,x) grid ontitle('连续时间信号')05101520253035404550离散时间信号5101520253035404550-50050100150连续时间信号figure(2)subplot(3,1,1) stem(n,y1) grid ontitle('200Hz 理想采样信号序列') subplot(3,1,2) stem(n,y2) grid ontitle('500Hz 连续时间信号') subplot(3,1,3) stem(n,y3)grid ontitle('1000Hz 连续时间信号')5101520253035404550200Hz 理想采样信号序列05101520253035404550500Hz 连续时间信号051015202530354045501000Hz 连续时间信号k=-25:25W=(pi/12.5)*k w=W/piY1=y1*exp(-j*pi/12.5).^(n'*k) figure (3) subplot(2,1,1) plot(w,abs(Y1)) gridxlabel('w') ylabel('幅度')title('200Hz 理想采样信号序列的幅度谱') axis([-2 2 0 1000]) subplot(2,1,2) plot(w,angle(Y1)) gridxlabel('w') ylabel('幅角')title('200Hz 理想采样信号序列的相位谱')-2-1.5-1-0.500.51 1.5205001000w幅度-2.5-2-1.5-1-0.50.511.52-4-2024w幅角200Hz 理想采样信号序列的相位谱Y2=y2*(exp(-j*pi/12.5)).^(n'*k) figure (4) subplot(2,1,1) plot(w,abs(Y2)) gridxlabel('w') ylabel('幅度')title('500Hz 理想采样信号序列的幅度谱') axis([-2 2 0 1000]) subplot(2,1,2) plot(w,angle(Y2)) gridxlabel('w') ylabel('幅角')title('500Hz 理想采样信号序列的相位谱')-2-1.5-1-0.500.51 1.5205001000w幅度-2.5-2-1.5-1-0.50.511.52-4-2024w幅角500Hz 理想采样信号序列的相位谱Y3=y3*(exp(-j*pi/12.5)).^(n'*k) figure (5) subplot(2,1,1) plot(w,abs(Y3)) gridxlabel('w') ylabel('幅度')title('1000Hz 理想采样信号序列的幅度谱') axis([-2 2 0 1000]) subplot(2,1,2) plot(w,angle(Y3)) gridxlabel('w') ylabel('幅角')title('1000Hz 理想采样信号序列的相位谱')-2-1.5-1-0.500.51 1.5205001000w幅度-2.5-2-1.5-1-0.50.511.52-4-2024w幅角1000Hz 理想采样信号序列的相位谱分析:采样频率为1000Hz 时没有失真,500Hz 时有横线,产生失真,200Hz 时横线加长,失真加大。
时域采样与频域采样i
文电072-1班200790511115 张雪倩试验二:时域采样与频域采样实验目的时域采样理论与频域采样理论是数字信号处理中的重要理论。
掌握模拟信号采样前后频谱的变化,以及如何选择采样频率才能使采样前后的信号不丢失信息;要求掌握频率域采样会引起时域周期化的概念,以及频率域采样定理及其对采样点数选择的指导作用。
实验原理与方法频域采样的要点是:(1)对信号的频谱函数在上等间隔采样N点,得到:k=0,1,2,..,N-1则N点的得到的序列就是原序列以N为周期进行周期延拓后的主值区序列,公式为:(2)由上式可知,频域采样点数N必须大于等于时域离散信号长度M(即N),才能使时域不产生混叠,则N点得到的序列就是原序列,即。
如果N>M,比原序列尾部多N-M个零点;如果N<M,则发生了时域混叠失真,而且的长度N也比的长度M短,因此,与不相同。
在数字信号处理的应用中,只要涉及时域或者频域采样,都必须服从这两个采样理论的要点。
对此上面叙述的时域采样原理和频域采样原理,得到一个有用的结论:这两个采样理论具有对偶性,即“时域采样频谱周期延拓,频域采样时域信号周期延拓”。
实验内容与步骤(2)频域采样理论的验证。
给定信号如下:编写程序分别对频域函数在区间上等间隔采样32点和16点,得到和:在分别对和进行32点和16点IFFT,得到和:分别画出、和的幅度谱,并绘图显示、和的波形,进行对比和分析,验证总结频域采样理论。
用MA TLAB编写程序和输出图形如下:(1)xa=1:14;xb=13:-1:1;xn=[xa,xb];figure(1)subplot(211)stem(0:26,xn,'.');xk=fft(xn,1024);k=0:1023;wk=2*k/1024;subplot(212)plot(abs(xk));对xn序列进行傅里叶变换,采样1024点(2)figure(2)x16k=xk(1,1:64:1024);x16n=ifft(x16k,16);subplot(211);stem(0:15,x16n,'.');subplot(212)stem(0:15,abs(x16k),'.');(3)x32k=xk(1,1:32:1024);x32n=ifft(x32k,32);subplot(211);stem(0:31,x32n,'.');subplot(212);stem(0:31,abs(x32k),'.');xn=1:10;a=1:14;xb=13:-1:1;subplot(231)stem(0:26,xn,'.');xk=fft(xn,1024);subplot(232)plot(abs(xk));x16k=xk(1,1:64:1024);x16n=ifft(x16k,16);subplot(233);stem(0:15,x16n,'.');subplot(234)stem(0:15,abs(x16k),'.');x32k=xk(1,1:32:1024);x32n=ifft(x32k,32);subplot(235);stem(0:31,x32n,'.');subplot(236);stem(0:31,abs(x32k),'.');32点采样时,采样点数为N=32,时域信号的长度M=27,,时域不产生混叠;16点采样时,采样点数为N=16,N<M,发生了时域混叠失真。
时域采样与频域分析
实验二:时域采样与频域分析一、实验原理与方法1、时域采样定理:(a )对模拟信号)(t x a 以间隔T 进行时域等间隔理想采样,形成的采样信号的频谱)(Ωj X )是原模拟信号频谱)(ωj X a 以采样角频率)2(s s π=ΩΩ为周期进行周期延拓。
公式为:[]∑∞-∞=Ω-Ω==Ωn s a a a jn j X T t x FT j X )(1)()()) (b )采样频率s Ω必须大于等于模拟信号最高频率的两倍以上,才能使采样信号的频谱不产生频谱混叠。
2、频域采样定理:公式为:[])()()()(n R iN n x k X IDFT n x N i N N N ⎥⎦⎤⎢⎣⎡+==∑∞-∞=。
由公式可知,频域采样点数N 必须大于等于时域离散信号的长度M(即N ≥M),才能使时域不产生混叠,则N 点[])(k X IDFT N 得到的序列()N x n 就是原序列)(n x ,即)()(n x n x N =。
二、实验内容1、时域采样理论的验证。
给定模拟信号式中A =,α=502π,0Ω=502πrad/s ,它的幅频特性曲线如图图)(t x a 的幅频特性曲线现用DFT(FFT)求该模拟信号的幅频特性,以验证时域采样理论。
按照)(t x a 的幅频特性曲线,选取三种采样频率,即s F =1k Hz ,300Hz ,200Hz 。
观测时间选ms T p 50=。
为使用DFT ,首先用下面公式产生时域离散信号,对三种采样频率,采样序列按顺序用)(1n x ,)(2n x ,)(3n x 表示。
因为采样频率不同,得到的)(1n x ,)(2n x ,)(3n x 的长度不同,长度(点数) 用公式s p F T N ⨯=计算。
选FFT 的变换点数为M=64,序列长度不够64的尾部加零。
式中k 代表的频率为k Mk πω2=。
要求:编写实验程序,计算)(1n x 、)(2n x 和)(3n x 的幅度特性,并绘图显示。
实验二时域采样和频域采样讲课教案
一、实验目的时域采样理论与频域采样理论是数字信号处理中的重要理论。
要求掌握模拟信号采样前后频谱的变化,以及如何选择采样频率才能使采样后的信号不丢失信息;要求掌握频率域采样会引起时域周期化的概念,以及频率域采样定理及其对频域采样点数选择的指导作用。
二、实验原理及方法1、时域采样定理的要点:a)对模拟信号)(t x a 以间隔T 进行时域等间隔理想采样,形成的采样信号的频谱)(ˆΩj X 是原模拟信号频谱()aX j Ω以采样角频率s Ω(T s /2π=Ω)为周期进行周期延拓。
公式为:)](ˆ[)(ˆt x FT j X a a=Ω )(1∑∞-∞=Ω-Ω=n s a jn j X T b)采样频率s Ω必须大于等于模拟信号最高频率的两倍以上,才能使采样信号的频谱不产生频谱混叠。
利用计算机计算上式并不方便,下面我们导出另外一个公式,以便用计算机上进行实验。
理想采样信号)(ˆt xa 和模拟信号)(t x a 之间的关系为: ∑∞-∞=-=n a a nT t t x t x)()()(ˆδ 对上式进行傅立叶变换,得到:dt e nT t t x j X t j n a a Ω-∞∞-∞-∞=⎰∑-=Ω])()([)(ˆδ dt e nT t t x t j n a Ω-∞-∞=∞∞-∑⎰-)()( δ=在上式的积分号内只有当nT t =时,才有非零值,因此:∑∞-∞=Ω-=Ωn nT j aae nT xj X )()(ˆ上式中,在数值上)(nT x a =)(n x ,再将T Ω=ω代入,得到:∑∞-∞=-=Ωn nj aen x j X ω)()(ˆ上式的右边就是序列的傅立叶变换)(ωj e X ,即 T j a e X j X Ω==Ωωω)()(ˆ 上式说明理想采样信号的傅立叶变换可用相应的采样序列的傅立叶变换得到,只要将自变量ω用T Ω代替即可。
2、频域采样定理的要点:a)对信号x(n)的频谱函数X(ej ω)在[0,2π]上等间隔采样N 点,得到2()() , 0,1,2,,1j N k NX k X e k N ωπω===-L则N 点IDFT[()N X k ]得到的序列就是原序列x(n)以N 为周期进行周期延拓后的主值区序列,公式为:()IDFT[()][()]()N N N N i x n X k x n iN R n ∞=-∞==+∑b)由上式可知,频域采样点数N 必须大于等于时域离散信号的长度M(即N ≥M),才能使时域不产生混叠,则N 点IDFT[()N X k ]得到的序列()N x n 就是原序列x(n),即()N x n =x(n)。
时域采样与频域采样
实验二:时域采样与频域采样一、实验目的:时域采样理论与频域采样理论是数字信号处理中的重要理论。
要求掌握模拟信号采样前后频谱的变化,以及如何选择采样频率才能使采样后的信号不丢失信息;要求掌握频率域采样会引起时域周期化的概念,以及频率域采样定理及其对频域采样点数选择的指导作用。
二、实验原理与方法:1、时域采样定理的要点:1)对模拟信号)(t x a 以间隔T 进行时域等间隔理想采样,形成的采样信号的频谱)(ˆΩj X 是原模拟信号频谱()aX j Ω以采样角频率s Ω(T s /2π=Ω)为周期进行周期延拓。
公式为:)](ˆ[)(ˆt x FT j X a a=Ω )(1∑∞-∞=Ω-Ω=n s a jn j X T 2)采样频率s Ω必须大于等于模拟信号最高频率的两倍以上,才能使采样信号的 频谱不产生频谱混叠。
利用计算机计算上式并不方便,下面我们导出另外一个公式,以便用计算机上进行实验。
理想采样信号)(ˆt xa 和模拟信号)(t x a 之间的关系为 ∑∞-∞=-=n a a nT t t x t x)()()(ˆδ 对上式进行傅立叶变换,得到:dt e nT t t x j X t j n a a Ω-∞∞-∞-∞=⎰∑-=Ω])()([)(ˆδdt e nT t t x t j n a Ω-∞-∞=∞∞-∑⎰-)()( δ=在上式的积分号内只有当nT t =时,才有非零值,因此∑∞-∞=Ω-=Ωn nT j aae nT xj X )()(ˆ上式中,在数值上)(nT x a =)(n x ,再将T Ω=ω代入,得到:∑∞-∞=-=Ωn nj aen x j X ω)()(ˆ上式的右边就是序列的傅立叶变换)(ωj e X ,即T j a e X j X Ω==Ωωω)()(ˆ 上式说明理想采样信号的傅立叶变换可用相应的采样序列的傅立叶变换得到,只要将自变量ω用T Ω代替即可。
2、频域采样定理的要点:a) 对信号x(n)的频谱函数X(e j ω)在[0,2π]上等间隔采样N 点,得到2()(), 0,1,2,,1j N k NX k X e k N ωπω===-则N 点IDFT[()N X k ]得到的序列就是原序列x(n)以N 为周期进行周期延拓后的主值区序列,公式为: ()I D F T [()][()]N N N Ni x n X k x n i N R n∞=-∞==+∑ b) 由上式可知,频域采样点数N 必须大于等于时域离散信号的长度M(即N≥M),才能使时域不产生混叠,则N 点IDFT[()N X k ]得到的序列()N x n 就是原序列x(n),即()N x n =x(n)。
时域采样和频域采样
一、实验目的时域采样理论与频域采样理论是数字信号处理中的重要理论.要求掌握模拟信号采样前后频谱的变化,以与如何选择采样频率才能使采样后的信号不丢失信息;要求掌握频率域采样会引起时域周期化的概念,以与频率域采样定理与其对频域采样点数选择的指导作用.二、实验原理与方法时域采样定理的要点是:a.对模拟信号)(t x a 以间隔T 进行时域等间隔理想采样,形成的采样信号的频谱)(ˆΩj X是原模拟信号频谱()a X j Ω以采样角频率s Ω〔T s /2π=Ω〕为周期进行周期延拓.公式为: )](ˆ[)(ˆt x FT j X a a =Ω )(1∑∞-∞=Ω-Ω=n s a jn j X T b.采样频率s Ω必须大于等于模拟信号最高频率的两倍以上,才能使采样信号的频谱不产生频谱混叠.利用计算机计算上式并不方便,下面我们导出另外一个公式,以便用计算机上进行实验.理想采样信号)(ˆt xa 和模拟信号)(t x a 之间的关系为: 对上式进行傅立叶变换,得到:在上式的积分号内只有当nT t =时,才有非零值,因此:上式中,在数值上)(nT x a =)(n x ,再将T Ω=ω代入,得到:上式的右边就是序列的傅立叶变换)(ωj e X ,即 T j a e X j X Ω==Ωωω)()(ˆ上式说明理想采样信号的傅立叶变换可用相应的采样序列的傅立叶变换得到,只要将自变量ω用T Ω代替即可.频域采样定理的要点是:a) 对信号x<n>的频谱函数X<e j ω>在[0,2π]上等间隔采样N 点,得到则N 点IDFT[()N X k ]得到的序列就是原序列x<n>以N 为周期进行周期延拓后的主值区序列,公式为:b) 由上式可知,频域采样点数N 必须大于等于时域离散信号的长度M<即N ≥M>,才能使时域不产生混叠,则N 点IDFT[()N X k ]得到的序列()N x n 就是原序列x<n>,即()N x n =x<n>.如果N>M,()N x n 比原序列尾部多N-M 个零点;如果N<M,z 则()N x n =IDFT[()N X k ]发生了时域混叠失真,而且()N x n 的长度N 也比x<n>的长度M 短,因此.()N x n 与x<n>不相同.在数字信号处理的应用中,只要涉与时域或者频域采样,都必须服从这两个采样理论的要点. 对比上面叙述的时域采样原理和频域采样原理,得到一个有用的结论,这两个采样理论具有对偶性:"时域采样频谱周期延拓,频域采样时域信号周期延拓〞.因此放在一起进行实验.三、 实验内容与步骤〔1〕时域采样理论的验证给定模拟信号,)()sin()(0t u t Ae t x t a Ω=-α式中A =444.128,α=502π,0Ω=502πrad/s,它的幅频特性曲线如图图)(t x a 的幅频特性曲线现用DFT<FFT>求该模拟信号的幅频特性,以验证时域采样理论.安照)(t x a 的幅频特性曲线,选取三种采样频率,即s F =1k Hz ,300Hz ,200Hz .观测时间选ms T p 50=.为使用DFT,首先用下面公式产生时域离散信号,对三种采样频率,采样序列按顺序用)(1n x ,)(2n x ,)(3n x 表示.因为采样频率不同,得到的)(1n x ,)(2n x ,)(3n x 的长度不同, 长度〔点数〕用公式s p F T N ⨯=计算.选FFT 的变换点数为M=64,序列长度不够64的尾部加零.X <k >=FFT[x <n >] , k =0,1,2,3,-----,M -1式中k 代表的频率为 k Mk πω2=. 要求: 编写实验程序,计算)(1n x 、)(2n x 和)(3n x 的幅度特性,并绘图显示.观察分析频谱混叠失真.〔2〕频域采样理论的验证给定信号如下:编写程序分别对频谱函数()FT[()]j X e x n ω=在区间]2,0[π上等间隔采样32和16点,得到)()(1632k X k X 和:再分别对)()(1632k X k X 和进行32点和16点IFFT,得到)()(1632n x n x 和:分别画出()j X e ω、)()(1632k X k X 和的幅度谱,并绘图显示x <n>、)()(1632n x n x 和的波形,进行对比和分析,验证总结频域采样理论.提示:频域采样用以下方法容易变程序实现.1〕直接调用MATLAB函数fft计算就得到在的32点频率域采样2〕抽取的偶数点即可得到在的16点频率域采样,即.3〕当然也可以按照频域采样理论,先将信号x<n>以16为周期进行周期延拓,取其主值区〔16点〕,再对其进行16点DFT<FFT>,得到的就是在的16点频率域采样 .四、实验程序1 时域采样理论的验证程序清单% 时域采样理论验证程序exp2a.mTp=64/1000; %观察时间Tp=64微秒%产生M长采样序列x<n>% Fs=1000;T=1/Fs;Fs=1000;T=1/Fs;M=Tp*Fs;n=0:M-1;A=444.128;alph=pi*50*2^0.5;omega=pi*50*2^0.5;xnt=A*exp<-alph*n*T>.*sin<omega*n*T>;Xk=T*fft<xnt,M>; %M点FFT[xnt>]yn='xa<nT>';subplot<3,2,1>;tstem<xnt,yn>; %调用自编绘图函数tstem绘制序列图box on;title<'<a> Fs=1000Hz'>;k=0:M-1;fk=k/Tp;subplot<3,2,2>;plot<fk,abs<Xk>>;title<'<a> T*FT[xa<nT>],Fs=1000Hz'>;xlabel<'f<Hz>'>;ylabel<'幅度'>;axis<[0,Fs,0,1.2*max<abs<Xk>>]>%=================================================% Fs=300Hz和Fs=200Hz的程序与上面Fs=1000Hz完全相同.2 频域采样理论的验证程序清单%频域采样理论验证程序exp2b.mM=27;N=32;n=0:M;%产生M长三角波序列x<n>xa=0:floor<M/2>; xb= ceil<M/2>-1:-1:0; xn=[xa,xb];Xk=fft<xn,1024>; %1024点FFT[x<n>], 用于近似序列x<n>的TFX32k=fft<xn,32> ;%32点FFT[x<n>]x32n=ifft<X32k>; %32点IFFT[X32<k>]得到x32<n>X16k=X32k<1:2:N>; %隔点抽取X32k得到X16<K>x16n=ifft<X16k,N/2>; %16点IFFT[X16<k>]得到x16<n>subplot<3,2,2>;stem<n,xn,'.'>;box ontitle<'<b> 三角波序列x<n>'>;xlabel<'n'>;ylabel<'x<n>'>;axis<[0,32,0,20]>k=0:1023;wk=2*k/1024; %subplot<3,2,1>;plot<wk,abs<Xk>>;title<'<a>FT[x<n>]'>;xlabel<'\omega/\pi'>;ylabel<'|X<e^j^\omega>|'>;axis<[0,1,0,200]>k=0:N/2-1;subplot<3,2,3>;stem<k,abs<X16k>,'.'>;box ontitle<'<c> 16点频域采样'>;xlabel<'k'>;ylabel<'|X_1_6<k>|'>;axis<[0,8,0,200]>n1=0:N/2-1;subplot<3,2,4>;stem<n1,x16n,'.'>;box ontitle<'<d> 16点IDFT[X_1_6<k>]'>;xlabel<'n'>;ylabel<'x_1_6<n>'>;axis<[0,32,0,20]>k=0:N-1;subplot<3,2,5>;stem<k,abs<X32k>,'.'>;box ontitle<'<e> 32点频域采样'>;xlabel<'k'>;ylabel<'|X_3_2<k>|'>;axis<[0,16,0,200]>n1=0:N-1;subplot<3,2,6>;stem<n1,x32n,'.'>;box ontitle<'<f> 32点IDFT[X_3_2<k>]'>;xlabel<'n'>;ylabel<'x_3_2<n>'>;axis<[0,32,0,20]>五、实验程序运行结果与分析1、时域采样理论的验证程序运行结果exp2a.m如图所示.由图可见,采样序列的频谱的确是以采样频率为周期对模拟信号频谱的周期延拓.当采样频率为1000Hz时频谱混叠很小;当采样频率为300Hz时,在折叠频率150Hz附近频谱混叠很严重;当采样频率为200Hz时,在折叠频率110Hz附近频谱混叠更很严重.图2 时域采样理论的验证程序exp2b.m运行结果如图所示.图该图验证了频域采样理论和频域采样定理.对信号x<n>的频谱函数X<e jω>在[0,2π]上等间X k]得到的序列正是原序列x<n>以16为周期进行周期延拓隔采样N=16时,N点IDFT[()N后的主值区序列:x n与x<n>不相同,如图图<c>和<d>所示.当由于N<M,所以发生了时域混叠失真,因此.()NN=32时,如图图<c>和<d>所示,由于N>M,频域采样定理,所以不存在时域混叠失真,因x n与x<n>相同.此.()N。
【精选】matlab验证频域采样定理 doc资料
matlab验证频域采样定理实验二 频域采样定理时域采样定理:设x(t)是一个有限时宽的信号,即在m t t >时x(t)=0,若m t T 20>或mt f210<,则x(t)可以唯一地由其频谱样本)(0ωk X ,k= ,2,1,0±± 确定。
下面通过一个例子来验证频域采样定理。
(1) 首先产生一个三角波序列x(n),长度为M=40。
(2) 计算N=64时的X(k)=DFT[x(n)],图示x(n)和X(k)。
(3) 对X(k)在[0,π2]上进行32点抽样,得到X1k =X(2k),k=0,1,…,31。
(4) 求X1k 的32点IDFT ,即x1(n)=IDFT[X1(k)]。
(5) 绘制x1((n))32的波形图。
程序清单如下: M=40;N=64;n=0:M;xa=[0:floor(M/2)];xb=ceil(M/2)-1:-1:0; xn=[xa,xb] Xk=fft(xn,64); X1k=Xk(1:2:N) x1n=ifft(X1k,32); nc=0:4*N/2;xc=x1n(mod(nc,N/2)+1);subplot(3,2,1);stem(n,xn,'.');ylabel('x(n)');title('40 points x(n)') subplot(3,2,2);k1=0:N-1;stem(k1,abs(Xk),'.');ylabel('|X(k)|'); title('64 points DFT[x(n)]')subplot(3,2,3);k2=0:N/2-1;stem(k2,abs(X1k),'.');ylabel('|X1(k)|'); title('get X1(k) from X(k)')subplot(3,2,4);n1=0:N/2-1;stem(n1,x1n,'.');ylabel('x1(n)'); title('32 points IDFT[X(k)]=x1(n)')subplot(3,2,5);stem(nc,xc,'.');ylabel('x1((n))32'); title('periodic x1(n)')程序运行结果如下:x (n )|X (k )||X 1(k )|x 1(n )32 points IDFT[X 2(k)]=x1(n)x 1((n ))32由图看出,在频域[0,π2]上采样点数N=32小于离散信号x(n)的长度M=40,所以产生时域混叠现象,不能由X1(k)恢复出原序列x(n)。
时域采样及频域采样
时域采样及频域采样实验⼆:时域采样与频域采样⼀、实验⽬的:时域采样理论与频域采样理论是数字信号处理中的重要理论。
要求掌握模拟信号采样前后频谱的变化,以及如何选择采样频率才能使采样后的信号不丢失信息;要求掌握频率域采样会引起时域周期化的概念,以及频率域采样定理及其对频域采样点数选择的指导作⽤。
⼆、实验原理与⽅法:1、时域采样定理的要点:1)对模拟信号)(t x a 以间隔T 进⾏时域等间隔理想采样,形成的采样信号的频谱)(?Ωj X 是原模拟信号频谱()a X j Ω以采样⾓频率s Ω(T s /2π=Ω)为周期进⾏周期延拓。
公式为:)](?[)(?t x FT j X a a=Ω )(1∑∞-∞=Ω-Ω=n s a jn j X T 2)采样频率s Ω必须⼤于等于模拟信号最⾼频率的两倍以上,才能使采样信号的频谱不产⽣频谱混叠。
利⽤计算机计算上式并不⽅便,下⾯我们导出另外⼀个公式,以便⽤计算机上进⾏实验。
理想采样信号)(?t xa 和模拟信号)(t x a 之间的关系为 ∑∞-∞=-=n a a nT t t x t x)()()(?δ对上式进⾏傅⽴叶变换,得到:dt e nT t t x j X t j n a a Ω-∞∞-∞-∞=?∑-=Ω])()([)(?δdt e nT t t x t j n a Ω-∞-∞=∞∞-∑-)()( δ=在上式的积分号内只有当nT t =时,才有⾮零值,因此∑∞-∞=Ω-=Ωn nT j aae nT xj X )()(?上式中,在数值上)(nT x a =)(n x ,再将T Ω=ω代⼊,得到:∑∞-∞=-=Ωn nj aen x j X ω)()(?上式的右边就是序列的傅⽴叶变换)(ωj e X ,即T j a e X j X Ω==Ωωω)()(? 上式说明理想采样信号的傅⽴叶变换可⽤相应的采样序列的傅⽴叶变换得到,只要将⾃变量ω⽤T Ω代替即可。
2、频域采样定理的要点:a) 对信号x(n)的频谱函数X(e j ω)在[0,2π]上等间隔采样N 点,得到2()() , 0,1,2,,1j N k NX k X e k N ωπω===-则N 点IDFT[()N X k ]得到的序列就是原序列x(n)以N 为周期进⾏周期延拓后的主值区序列,公式为:()IDFT[()][()]()N N N N i x n X k x n iN R n ∞=-∞==+∑b) 由上式可知,频域采样点数N 必须⼤于等于时域离散信号的长度M(即N≥M),才能使时域不产⽣混叠,则N 点IDFT[()N X k ]得到的序列()N x n 就是原序列x(n),即()N x n =x(n)。
时域采样和频域采样实验报告
时域采样和频域采样实验报告实验报告:时域采样和频域采样引言时域采样和频域采样是数字信号处理领域中常见的两种采样方法。
本次实验旨在通过实际操作,探究时域采样和频域采样的原理和特点,验证理论知识,并加深对数字信号处理的理解。
实验步骤1. 时域采样首先,我们需要准备一段模拟信号作为被采样的原始信号。
可以使用示波器产生一个模拟信号,并通过示波器的输出口连接到一个采样仪器上,如适配器或者数据采集卡。
然后,设置采样频率,即每秒采样的次数。
在采样仪器上设置好相关参数后,开始进行采样。
采样完毕后,可以通过计算机、示波器或其他终端设备将采样得到的信号进行显示和处理。
2. 频域采样频域采样是通过傅里叶变换将时域信号转换为频域信号进行采样。
首先,我们需要将模拟信号输入到示波器上,利用示波器的傅里叶变换功能将信号从时域转换到频域。
然后,设置傅里叶变换的相关参数,如窗函数类型、分辨率等。
在进行傅里叶变换之后,通过示波器或者计算机对频域信号进行显示和处理。
实验结果和讨论通过时域采样和频域采样两种方法,我们可以得到原始信号在不同域中的表示。
时域采样得到的是离散的时间序列数据,在计算机中通常以数组的形式存储;频域采样得到的是离散的频率序列数据,通常也以数组的形式存储。
通过对原始模拟信号和采样得到的信号进行比较,我们可以看到采样过程中可能引入的失真、过采样和欠采样等问题。
时域采样和频域采样的选择取决于具体的应用场景。
时域采样更适合对信号的时域特征进行分析,如波形、振幅、相位等。
频域采样更适合对信号的频域特征进行分析,如频谱、频率成分等。
在实际应用中,可以根据需要对信号进行不同域的采样和处理,以得到更全面和准确的信号信息。
结论通过本次实验,我们深入了解了时域采样和频域采样的原理和特点,并通过实际操作验证了理论知识。
时域采样和频域采样是数字信号处理领域中常见的采样方法,应用广泛。
在实际应用中,我们可以根据需要选择合适的采样方法,并结合相关的信号处理算法,对信号进行分析、处理和应用。
实验二 时域采样与频域采样
实验二 时域采样与频域采样一:实验目的时域采样理论与频域采样理论是数字信号处理中的重要理论。
要求掌握模拟信号采样前后频谱的变化,以及如何选择采样频率才能使采样后的信号不丢失信息;要求掌握频率域采样会引起时域周期化的概念,以及频率域采样定理及其对频域采样点数选择的指导作用二:实验内容与步骤(1)时域采样理论的验证。
给定模拟信号,)()sin()(0t u t Ae t x t a Ω=-α式中A =444.128,α=502π,0Ω=502πrad/s ,它的幅频特性曲线如图10.2.1现用DFT(FFT)求该模拟信号的幅频特性,以验证时域采样理论。
安照)(t x a 的幅频特性曲线,选取三种采样频率,即s F =1k Hz ,300Hz ,200Hz 。
观测时间选ms T p 50=。
为使用DFT ,首先用下面公式产生时域离散信号,对三种采样频率,采样序列按顺序用)(1n x ,)(2n x ,)(3n x 表示。
)()sin()()(0nT u nT Ae nT x n x nT a Ω==-α因为采样频率不同,得到的)(1n x ,)(2n x ,)(3n x 的长度不同, 长度(点数)用公式s p F T N ⨯=计算。
选FFT 的变换点数为M=64,序列长度不够64的尾部加零。
X (k )=FFT[x (n )] , k =0,1,2,3,-----,M -1式中k 代表的频率为 k Mk πω2=。
要求: 编写实验程序,计算)(1n x 、)(2n x 和)(3n x 的幅度特性,并绘图显示。
观察分析频谱混叠失真。
时域采样定理代码:Tp=64/1000;Fs=1000;T=1/Fs;M=Tp*Fs;n=0:M-1;A=444.128;alph=pi*50*2^0.5;omega=pi*50*2^0.5;xnt=A*exp(-alph*n*T).*sin(omega*n*T);Xk=T.*fft(xnt,M);yn='xa(nT)';subplot(2,3,1);stem(n,xnt,'.');box on;title('(1) Fs=1000Hz');k=0:M-1;fk=k/Tp;subplot(2,3,4);plot(fk,abs(Xk));title('(2) T*FT[xa(nT)],Fs=1000Hz');xlabel('f(Hz)');ylabel('幅度');axis([0,Fs,0,1.2*max(abs(Xk))])Fs=300;T=1/Fs;M=Tp*Fs;n=0:M-1;A=444.128;alph=pi*50*2^0.5;omega=pi*50*2^0.5;xnt=A*exp(-alph*n*T).*sin(omega*n*T);Xk=T.*fft(xnt,M);yn='xa(nT)';subplot(2,3,2);stem(n,xnt,'.');box on;title('(3) Fs=300Hz');k=0:M-1;fk=k/Tp;subplot(2,3,5);plot(fk,abs(Xk));title('(4) T*FT[xa(nT)],Fs=300Hz'); xlabel('f(Hz)');ylabel('幅度');axis([0,Fs,0,1.2*max(abs(Xk))])Fs=200;T=1/Fs;M=Tp*Fs;n=0:M-1;A=444.128;alph=pi*50*2^0.5;omega=pi*50*2^0.5;xnt=A*exp(-alph*n*T).*sin(omega*n*T); Xk=T.*fft(xnt,M);yn='xa(nT)';subplot(2,3,3);stem(n,xnt,'.');box on;title('(5) Fs=200Hz');k=0:M-1;fk=k/Tp;subplot(2,3,6);plot(fk,abs(Xk));title('(6) T*FT[xa(nT)],Fs=200Hz'); xlabel('f(Hz)');ylabel('幅度');axis([0,Fs,0,1.2*max(abs(Xk))]实验结果:频域采样定理给定信号如下:⎪⎩⎪⎨⎧≤≤-≤≤+=其它02614271301)(n n n n n x编写程序分别对频谱函数()FT[()]j X e x n ω=在区间]2,0[π上等间隔采样32 和16点,得到)()(1632k X k X 和: 32232()() , 0,1,2,31j k X k X e k ωπω=== 16216()() , 0,1,2,15j k X k X e k ωπω===再分别对)()(1632k X k X 和进行32点和16点IFFT ,得到)()(1632n x n x 和:323232()IFFT[()] , 0,1,2,,31x n X k n == 161616()IFFT[()] , 0,1,2,,15x n X k n ==分别画出()j X e ω、)()(1632k X k X 和的幅度谱,并绘图显示x (n)、)()(1632n x n x 和的波形,进行对比和分析,验证总结频域采样理论。
时域采样和频域采样实验报告
时域采样和频域采样实验报告一、实验目的本次实验旨在掌握时域采样和频域采样的原理、方法和技巧,研究它们在信号处理中的应用。
二、实验原理1. 时域采样时域采样是指将连续时间信号转换为离散时间信号的过程。
其原理是在一定时间间隔内对连续时间信号进行采样,得到离散时间信号。
采样定理规定:如果一个连续时间信号没有高于Nyquist频率两倍以上的频率分量,那么它可以通过等间隔采样来完全恢复。
2. 频域采样频域采样是指将连续频率信号转换为离散频率信号的过程。
其原理是对连续频率信号进行傅里叶变换,得到其频谱,并按照一定间隔取出其中若干个点,得到离散频率信号。
三、实验步骤1. 时域采样实验步骤:(1)使用函数发生器产生正弦波信号;(2)将正弦波信号输入示波器,并设置合适的水平和垂直尺度;(3)调整示波器触发方式为单次触发,同时设置触发电平和触发边沿;(4)按下示波器的单次触发按钮,记录采样到的离散时间信号;(5)将离散时间信号输入计算机,并进行处理和分析。
2. 频域采样实验步骤:(1)使用函数发生器产生正弦波信号;(2)将正弦波信号输入示波器,并设置合适的水平和垂直尺度;(3)通过示波器自带的FFT功能,对正弦波信号进行傅里叶变换,并得到其频谱图;(4)选取频谱图中若干个点,记录其幅值和相位信息;(5)将记录的幅值和相位信息输入计算机,并进行处理和分析。
四、实验结果与分析1. 时域采样实验结果与分析:在本次实验中,我们使用函数发生器产生了一个频率为1kHz、幅度为5V的正弦波信号,并将其输入示波器。
通过调整示波器触发方式为单次触发,同时设置触发电平和触发边沿,我们成功地对正弦波信号进行了时域采样,并得到了一组离散时间信号。
将这些离散时间信号输入计算机,并进行处理和分析,我们得到了正弦波信号的时域图像。
2. 频域采样实验结果与分析:在本次实验中,我们使用函数发生器产生了一个频率为1kHz、幅度为5V的正弦波信号,并将其输入示波器。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验二时域采样与频域采样及M A T L A B程序实验二 时域采样与频域采样一 实验目的1 掌握时域连续信号经理想采样前后的频谱变化,加深对时域采样定理的理解2 理解频率域采样定理,掌握频率域采样点数的选取原则二 实验原理1 时域采样定理对模拟信号()a x t 以T 进行时域等间隔采样,形成的采样信号的频谱ˆ()a X j Ω会以采样角频率2()s s TπΩΩ=为周期进行周期延拓,公式为: 1ˆˆ()[()]()a a a s n X j FT x t X j jn T +∞=-∞Ω==Ω-Ω∑ 利用计算机计算上式并不容易,下面导出另外一个公式。
理想采样信号ˆ()a xt 和模拟信号()a x t 之间的关系为: ˆ()()()a a n xt x t t nT δ+∞=-∞=-∑ 对上式进行傅里叶变换,得到:ˆ()[()()()()j t j t a a a n n X j x t t nT e dt x t t nT e dt δδ+∞+∞+∞+∞-Ω-Ω-∞-∞=-∞=-∞Ω=-=-∑∑⎰⎰在上式的积分号内只有当t nT =时,才有非零值,因此:ˆ()()jn T aa n X j x nT e +∞-Ω=-∞Ω=∑上式中,在数值上()()a x nT x n =,再将T ω=Ω代入,得到:ˆ()()()jn j aa T T n X j x n e X e ωωωω+∞-=Ω=Ω=-∞Ω==∑上式说明采样信号的傅里叶变换可用相应序列的傅里叶变换得到,只要将自变量ω用T Ω代替即可。
2 频域采样定理对信号()x n 的频谱函数()j X e ω在[0,2π]上等间隔采样N 点,得到 2()()j k NX k X e ωπω== 0,1,2,,1k N =-L则有: ()[()][()]()N N N i x n IDFT X k x n iN R n +∞=-∞==+∑即N 点[()]IDFT X k 得到的序列就是原序列()x n 以N 为周期进行周期延拓后的主值序列,因此,频率域采样要使时域不发生混叠,则频域采样点数N 必须大于等于时域离散信号的长度M (即N M ≥)。
在满足频率域采样定理的条件下,()N x n 就是原序列()x n 。
如果N M >,则()N x n 比原序列()x n 尾部多N M -个零点,反之,时域发生混叠,()N x n 与()x n 不等。
对比时域采样定理与频域采样定理,可以得到这样的结论:两个定理具有对偶性,即“时域采样,频谱周期延拓;频域采样,时域信号周期延拓”。
在数字信号处理中,都必须服从这二个定理。
三 实验内容1 时域采样定理的验证给定模拟信号0()sin()()t a x t Ae t u t α-=Ω,式中,A=444.128,α=,0/rad s Ω=,其幅频特性曲线如下图示:f/Hz |x a (j f )|x a (t)的幅频特性曲线选取三种采样频率,即1s F kHz =,300Hz ,200Hz ,对()a x t 进行理想采样,得到采样序列:0()()sin()()nT a x n x nT Ae nT u nT α-==Ω。
观测时间长度为64p T ms =。
分别绘出三种采样频率得到的序列的幅频特性曲线图,并进行比较。
2 频域采样定理的验证给定信号:1013()2714260n n x n nn others+≤≤⎧⎪=-≤≤⎨⎪⎩,对()x n 的频谱函数()j X e ω在 [0,2π]上分别等间隔采样16点和32点,得到16()X k 和32()X k ,再分别对16()X k 和32()X k 进行IDFT ,得到16()x n 和32()x n 。
分别画出()j X e ω、16()X k 和32()X k 的幅度谱,并绘图显示()x n 、16()x n 和32()x n 的波形,进行对比和分析。
四 思考题如果序列()x n 的长度为M ,希望得到其频谱()j X e ω在[0,2π]上N 点等间隔采样,当N M <时,如何用一次最少点数的DFT 得到该频谱采样?五 实验报告及要求1 编写程序,实现上述要求,打印要求显示的图形2 分析比较实验结果,简述由实验得到的主要结论3 简要回答思考题4 附上程序清单和有关曲线%时域采样Tp=128/1000;%观测时间128msFs=1000; T=1/Fs; %采样频率1KHzM=Tp*Fs;%取样点数128点n=0:M-1;t=n*T;A=444.128;alph=pi*50*2^0.5;omega=pi*50*2^0.5;xnt=A*exp(-alph*t).*sin(omega*t);Xk=T*fft(xnt,M); %M=128点FFT[xnt]subplot(4,2,1); plot(n,xnt); xlabel('t');ylabel('xa(t)'); title('原信号波形');k=0:M-1; wk=k/(Tp*Fs); %归一化处理subplot(4,2,2);plot(wk,abs(Xk));title('T*FT[xa(nT)],Fs=1KHz幅频特性');xlabel('w/\pi');ylabel('幅度(H1(jf))');Tp=64/1000;%观测时间64msFs=1000; T=1/Fs; %采样频率1KHzM=Tp*Fs;%取样点数64点n=0:M-1;t=n*T;A=444.128;alph=pi*50*2^0.5;omega=pi*50*2^0.5;xnt=A*exp(-alph*t).*sin(omega*t);Xk=T*fft(xnt,M); %M=64点FFT[xnt]subplot(4,2,3); stem(n,xnt,'.'); xlabel('n');ylabel('xa(nT)'); title('Fs=1KHz采样序列');k=0:M-1; wk=k/(Tp*Fs);subplot(4,2,4);plot(wk,abs(Xk));title('T*FT[xa(nT)],Fs=1KHz幅频特性');xlabel('w/\pi');ylabel('幅度(H1(jf))');Fs=300;T=1/Fs; M=Tp*Fs;n=0:M-1;t=n*T;A=444.128;alph=pi*50*2^0.5;omega=pi*50*2^0.5;xnt=A*exp(-alph*t).*sin(omega*t);Xk=T*fft(xnt,M);subplot(4,2,5); stem(n,xnt,'.'); xlabel('n');ylabel('x2(n)'); title('Fs=300Hz采样序列');k=0:M-1; wk=k/(Tp*Fs);subplot(4,2,6);plot(wk,abs(Xk));title('T*FT[xa(nT)],Fs=300Hz幅频特性');xlabel('w/\pi');ylabel('(H2(jf))');Fs=200;T=1/Fs; M=Tp*Fs;n=0:M-1;t=n*T;A=444.128;alph=pi*50*2^0.5;omega=pi*50*2^0.5;xnt=A*exp(-alph*t).*sin(omega*t);Xk=T*fft(xnt,M);subplot(4,2,7); stem(n,xnt,'.'); xlabel('n');ylabel('x3(n)'); title('Fs=200Hz采样序列');k=0:M-1; wk=k/(Tp*Fs);subplot(4,2,8);plot(wk,abs(Xk));title('T*FT[xa(nT)],Fs=200Hz幅频特性');xlabel('w/\pi');ylabel('(H3(jf))');%频域采样M=27;N=32;n=0:M;xn=(n>=0&n<=13).*(n+1)+(n>=14&n<=26).*(27-n); %产生x(n)Xk=fft(xn,1024); %1024点FFT[x(n)]X32k=fft(xn,32); %32点FFT[x(n)]x32n=ifft(X32k); %32点IFFT[X32(k)]得到x32(n) X16k=X32k(1:2:N); %隔点抽取X32(k)得到X16(k)x16n=ifft(X16k,N/2); %16点IFFT[X16(k)]得到x16(n)k=0:1023;wk=2*k/1024; %连续频谱图的横坐标取值subplot(3,2,1); plot(wk,abs(Xk)); title('FT[x(n)]');xlabel('\omega/\pi');ylabel('|X(e^j^\omega)|');axis([0,1,0,200]);subplot(3,2,2); stem(n,xn,'.'); title('三角波序列x(n)');xlabel('n');ylabel('x(n)');axis([0,32,0,20])k=0:N/2-1; %离散频谱图的横坐标取值subplot(3,2,3);stem(k,abs(X16k),'.');title('16点频域采样');xlabel('k');ylabel('|X_1_6(k)|');axis([0,8,0,200])n1=0:N/2-1;subplot(3,2,4);stem(n1,x16n,'.');title('16IDFT[X_1_6(k)]');xlabel('n');ylabel('x_1_6(n)');axis([0,32,0,20])k=0:N-1; %离散频谱图的横坐标取值subplot(3,2,5);stem(k,abs(X32k),'.');title('32点频域采样');xlabel('k');ylabel('|X_3_2(k)|');axis([0,16,0,200])n1=0:N-1;subplot(3,2,6);stem(n1,x32n,'.');title('32IDFT[X_3_2(k)]');xlabel('n');ylabel('x_3_2(n)');axis([0,32,0,20])。