等比数列及其前n项和学案
等比数列的前n项和教案
等比数列的前n项和教案教案标题:等比数列的前n项和教案教学目标:1. 理解等比数列的概念和性质。
2. 掌握等比数列的通项公式和前n项和公式。
3. 能够运用所学知识解决实际问题。
教学重点:1. 掌握等比数列的通项公式和前n项和公式。
2. 能够灵活运用所学知识解决实际问题。
教学难点:能够灵活运用所学知识解决实际问题。
教学准备:1. 教师准备:教案、教学课件、黑板、粉笔、计算器等。
2. 学生准备:教材、笔、纸等。
教学过程:一、导入(5分钟)1. 教师通过提问复习上节课所学的等差数列的概念和性质。
2. 引入等比数列的概念,与等差数列进行对比,激发学生对等比数列的兴趣。
二、概念讲解与示例分析(15分钟)1. 教师讲解等比数列的概念,并通过具体的数列示例进行说明。
2. 引导学生观察等比数列的特点,如相邻两项的比值相等等。
3. 通过多个实例,帮助学生理解等比数列的通项公式和前n项和公式的推导过程。
三、讲解通项公式和前n项和公式的推导过程(15分钟)1. 教师详细讲解等比数列的通项公式和前n项和公式的推导过程。
2. 引导学生思考推导过程中的关键步骤和思路,帮助他们理解公式的来源和意义。
3. 提醒学生注意公式中的各个符号的含义,并对公式进行解读。
四、练习与巩固(20分钟)1. 教师出示一些练习题,要求学生运用所学知识计算等比数列的前n项和。
2. 学生个别或小组完成练习题,教师巡回指导和辅导。
3. 部分学生上台讲解解题思路和方法,促进学生之间的合作与交流。
五、拓展与应用(10分钟)1. 教师出示一些实际问题,要求学生运用等比数列的前n项和公式解决问题。
2. 学生个别或小组完成应用题,教师巡回指导和辅导。
3. 部分学生上台讲解解题思路和方法,鼓励学生发表自己的观点和见解。
六、归纳总结与作业布置(5分钟)1. 教师与学生一起归纳总结等比数列的通项公式和前n项和公式的关键点。
2. 布置作业:要求学生完成课后练习册中的相关习题,并预习下节课内容。
等比数列及前n项和教案
等比数列及前n项和教案【篇一:《等比数列的前n项和》教学案例设计】《等比数列的前n项和》教学案例设计一、设计思想1、设计理念本课的教学设计基于“人人都能获得必要得数学”即平等性的考虑,坚持面向全体学生,努力设计“适合学生发展得数学教育”,体现“人人学数学”,“不同的人学不同的数学”的理念。
教学中强调“培养学生情感、态度与价值观”的重要性,注重引导学生主动地进行探索,从而帮助学生树立正确的数学观,但又与教师的设计问题与活动的引导密切结合,强调“活动”的内化,即在头脑中实现必要的重构或认知结构的重组,从而引起真正的数学思维,提高思维的效益。
通过联系学生的生活实际使其真正感到数学是有意义的,一方面培养学生的社会意识,明确肯定“日常数学”的合理性等,另一方面,再调动学生生活经验的同时,又应努力帮助他们清楚地去熟悉生活经验并上升到“学校数学”的必要性。
2、设计背景传统的数学作业单调枯燥,脱离生活和学生实际,不利于学生个性和能力的发展。
在新课程标准的理念下,重新认识作业的意义和价值,突破传统,改变现状,树立正确的作业观,创新作业方式,激发兴趣,发展学生数学素质,既注重基础知识的巩固,更要注重学生思维和能力的发展,既要创新又要保证其科学有效,使学生在做作业的过程中体验快乐、形成能力、学会合作、体验自主。
3、教材的地位与作用本节教材在学生学习过等比数列的概念与性质的基础上,学习等比数列n前项和公式,能用等比数列的前n项和公式解决相关求和问题。
探索公式的推导、体会错位相减法以及分类讨论的思想方法。
本节内容基础知识和基本技能非常重要,涉及的数学思想、方法较为丰富,因此是重点内容之一。
本设计是第一课时的教学内容。
二、学习目标⑴知识与技能掌握等比数列的前n项和公式,能用等比数列的前n项和公式解决相关问题。
⑵过程与方法通过等比数列的前n项和公式的推导过程,体会错位相减法以及分类讨论的思想方法。
⑶情感、态度与价值观通过对等比数列的学习,发展数学应用意识,逐步认识数学的科学价值、应用价值,发展数学的理性思维。
《等比数列的前n项和》教学设计(精选8篇)
《等比数列的前n项和》教学设计(精选8篇)《等比数列的前n项和》教学设计(精选8篇)作为一名默默奉献的教育工作者,常常要写一份优秀的教学设计,借助教学设计可以提高教学质量,收到预期的教学效果。
教学设计应该怎么写才好呢?下面是小编收集整理的《等比数列的前n项和》教学设计,欢迎阅读,希望大家能够喜欢。
《等比数列的前n项和》教学设计篇1一、教材分析1、从在教材中的地位与作用来看《等比数列的前n项和》是数列这一章中的一个重要内容,从教材的编写顺序上来看,等比数列的前n项和是第一章“数列”第六节的内容,它是“等差数列的前n项和”与“等比数列”内容的延续、与前面学习的函数等知识也有着密切的联系。
就知识的应用价值上来看,它不仅在现实生活中有着广泛的实际应用,如储蓄、分期付款的有关计算等等,而且公式推导过程中所渗透的类比、化归、分类讨论、整体变换和方程等思想方法,都是学生今后学习和工作中必备的数学素养。
就内容的人文价值上来看,等比数列的前n项和公式的探究与推导需要学生观察、分析、归纳、猜想,有助于培养学生的创新思维和探索精神,是培养学生应用意识和数学能力的良好载体。
2、从学生认知角度来看从学生的思维特点看,很容易把本节内容与等差数列前n项和从公式的形成、特点等方面进行类比,这是积极因素,应因势利导、不利因素是:本节公式的推导与等差数列前n项和公式的推导有着本质的不同,这对学生的思维是一个突破,另外,对于q=1这一特殊情况,学生往往容易忽视,尤其是在后面使用的过程中容易出错。
3、学情分析教学对象是刚进入高二的学生,虽然具有一定的分析问题和解决问题的能力,逻辑思维能力也初步形成,但对问题的分析缺乏深刻性和严谨性。
4、重点、难点教学重点:公式的推导、公式的特点和公式的运用、教学难点:公式的推导方法和公式的灵活运用、公式推导所使用的“错位相减法”是高中数学数列求和方法中最常用的方法之一,它蕴含了重要的数学思想,所以既是重点也是难点。
等比数列的前n项和(导学案)
5.3.2等比数列的前n 项和(课堂案)一预习检测:1.已知等比数列{}n a , 2,21==q a ,求这个数列前n 项和n S 。
2.求等比数列2,-4,8,-16,的前10项和10S 。
二.课内探究:例1 已知等比数列{}n a ,21,21,81===n a q a ,求这个数列前n 项和n S变式练习:1. 已知等比数列{}n a 的公比21=q ,18=a ,求这个数列前8项和8S 。
2. 已知等比数列{}n a ,3103,384a a ==- ,求这个数列前10项的和10S3. 已知正项递减等比数列{}n a 为,1073=+a a ,1682=a a ,求S 8的值。
例2.求和:9 + 99 + 999 + … +999999个n变式练习1.求数列0.5,0.55,0.555……前n 项的和。
※2.求2(1)(a 2)()n a a n -+-++-的和。
3.某工厂去年1月份的产值为a 元,且月平均增长率为P(P>0),求这个工厂去年全年产值的总和。
例3.(应用)1. 已知数列{}n a 的前n 项和公式为321n n S =⨯-,求出数列的通项公式,并判断这个数列是否是等比数列。
2.等比数列{}n a 的前n 项和n S =48 ,前2n 项和n S 2=60 ,则前3n 项和为n S 3等于多少?对应练习:等比数列{a n }中,===302010,30,10S S S 则 .5.3.2等比数列的前n 项和(课后作业)1.已知各项均为正数的等比数列{a n }的前4项和为15,且a 5=3a 3+4a 1,则a 3=( )A .16B .8C .4D .22.等比数列{a n }前n 项和为n S =3n +r , 则r 等于( ).A . -1 B. 0 C. 1 D.33.已知数列{a n }是公比为21的等比数列,若+1a 4a +…+97a =100, 则+3a 6a +…+99a 的值是( )。
等比数列的前n项和公式学案
等比数列的前n 项和公式学案教学过程一.复习回顾(1) 等比数列定义: (2)等比数列通项公式:二.探索与研究:采用印度国际象棋发明者的故事,你能计算出国际象棋盘中的麦粒数吗? 即求 636264228421+++++= s三.公式的一般推导:设n n n a a a a a S +++++=-1321四.公式应用例1:求相应的等比数列 的前n 项和S n (1) 1a =3,q=2,n=6 (2)1a =4,q=3, =108.(3)求数列231,,,,...x x x 的前n 项和S n .例2:我国古代也给出了一个无穷递减等比数列,记载在《庄子·天下篇》中:“一尺之棰,日取其半,万世不竭。
”这段话从另一个方面反映古人对无穷等比数列的思考。
(《庄子·天下篇》中问题的改编)(1)若截去了5天,共截取木棰多少尺?(2)从第三天到第六天共截取木棰多少尺?{}n a n a【变式】已知是等比数列 (1)当时,求其前n 项和 (2)当 时,求其前n 项和 (3)当 时,求其前n 项和例3:已知在等比数列 中 , 求 .五.课堂小结(1)已知数列是否为等比数列(2)注意q 是否等于1,如不确定,要分q=1和q ≠1两种情况讨论(3)注意求和公式是 ,不要和通项公式中的 混淆(4)错位相消求前n 项和)…1)(1(1)...1( (121211)121111321----++++-=-++++=++++=+++++=n n n n nn n q q q q q q q q a q a q a q a a a a a a a S 联想因式分解 ∴==--=++++++===---①①1111213212312代入又即由等比的性质,由定义,n n nn n n n n n q a a q a S a S q a a a a a a q a a a a a a⎪⎩⎪⎨⎧≠--=--==)1(11)1(1111q q q a a qq a a q na S n n n n q 1-n q {}n a n n a b 2=n T n T nT ()*N n ∈()*N n ∈12-=n n a b {}n a 9133=S 93646=S n a ()*N n ∈13-=n n a b七.课后作业1.书面作业(1)变式(2)完成小结中的两种推导过程2.研究性作业请同学们课后收集相关资料查一查其他推导等比数列前n项和公式的方法,整理为数学小论文,相互交流。
《等比数列的前 n 项和》 学历案
《等比数列的前 n 项和》学历案一、学习目标1、理解等比数列前 n 项和公式的推导过程,掌握等比数列前 n 项和公式。
2、能够运用等比数列前 n 项和公式解决简单的实际问题。
3、体会从特殊到一般、分类讨论、转化与化归等数学思想方法。
二、学习重难点1、重点(1)等比数列前 n 项和公式的推导及应用。
(2)等比数列前 n 项和公式的特点及应用条件。
2、难点(1)错位相减法推导等比数列前 n 项和公式。
(2)对 q = 1 和q ≠ 1 两种情况的讨论及综合应用。
三、知识回顾1、等比数列的定义:如果一个数列从第 2 项起,每一项与它的前一项的比等于同一个常数,那么这个数列叫做等比数列。
这个常数叫做等比数列的公比,通常用字母 q 表示(q ≠ 0)。
2、等比数列的通项公式:\(a_n = a_1 q^{n 1}\)(\(n ∈N^\)),其中\(a_1\)为首项,\(q\)为公比。
四、新课导入我们已经知道了等比数列的定义和通项公式,那么如何求等比数列的前 n 项和呢?这就是我们今天要学习的内容。
例如,一个等比数列\(\{ a_n\}\),首项\(a_1 = 1\),公比\(q = 2\),求它的前\(n\)项和\(S_n\)。
五、公式推导1、当\(q = 1\)时,等比数列\(\{ a_n\}\)为常数列,\(a_n = a_1\),则前\(n\)项和\(S_n = na_1\)。
2、当\(q ≠ 1\)时,我们来推导等比数列的前\(n\)项和公式。
设等比数列\(\{ a_n\}\)的首项为\(a_1\),公比为\(q\),前\(n\)项和为\(S_n\)。
\(S_n = a_1 + a_2 + a_3 +… + a_n\)\(S_n = a_1 + a_1q + a_1q^2 +… + a_1q^{n 1}\)①\(qS_n = a_1q + a_1q^2 + a_1q^3 +… + a_1q^n\)②①②得:\\begin{align}S_n qS_n&=a_1 a_1q^n\\(1 q)S_n&=a_1(1 q^n)\\S_n&=\frac{a_1(1 q^n)}{1 q}\end{align}\综上,等比数列的前\(n\)项和公式为:\(S_n =\begin{cases}na_1, & q = 1\\\frac{a_1(1 q^n)}{1 q},&q ≠ 1\end{cases}\)六、公式理解1、当\(q = 1\)时,\(S_n = na_1\),这是一个关于\(n\)的一次函数。
等比数列前n项和公式教案
等比数列前n项和公式教案一、教学目标1. 让学生理解等比数列的概念,掌握等比数列的基本性质。
2. 引导学生通过观察、分析、归纳等比数列前n项和的公式。
3. 培养学生的逻辑思维能力,提高学生解决实际问题的能力。
二、教学内容1. 等比数列的概念及基本性质。
2. 等比数列前n项和的公式推导。
3. 等比数列前n项和公式的应用。
三、教学重点与难点1. 教学重点:等比数列前n项和公式的推导及应用。
2. 教学难点:等比数列前n项和公式的理解与运用。
四、教学方法1. 采用问题驱动法,引导学生主动探究等比数列前n项和的公式。
2. 运用案例分析法,让学生通过具体例子体会等比数列前n项和公式的应用。
3. 采用小组讨论法,培养学生的团队协作能力。
五、教学过程1. 导入:回顾等差数列的前n项和公式,引出等比数列前n项和公式的探究。
2. 新课:介绍等比数列的概念及基本性质,引导学生观察等比数列的前n项和的特点。
3. 推导:引导学生通过观察、分析等比数列的前n项和,归纳出等比数列前n项和的公式。
4. 巩固:通过例题讲解,让学生掌握等比数列前n项和的公式的应用。
5. 拓展:引导学生思考等比数列前n项和公式的推广应用,提高学生的思维能力。
6. 总结:对本节课的内容进行总结,强调等比数列前n项和公式的关键点。
7. 作业:布置相关练习题,巩固所学知识。
六、教学评估1. 课堂提问:通过提问了解学生对等比数列概念和性质的理解程度,以及学生对等比数列前n项和公式的掌握情况。
2. 练习题:布置课后练习题,检验学生对等比数列前n项和公式的应用能力。
3. 小组讨论:观察学生在小组讨论中的表现,评估学生对等比数列前n项和公式的理解深度和团队合作能力。
七、教学反思1. 教师总结:本节课结束后,教师应总结自己在教学过程中的优点和不足,如教学方法、课堂组织等。
2. 学生反馈:收集学生对等比数列前n项和公式的学习反馈,了解学生的掌握情况,为后续教学提供参考。
等比数列的前n项和公式 学案(含答案)
第四章 数列4.3.2 等比数列的前n 项和公式学案一、学习目标1. 理解等比数列的前n 项和公式的推导方法;2. 掌握等比数列的前n 项和公式并能运用公式解决一些简单问题. 二、基础梳理1.等比数列的前n 项和公式:当1q ≠时, ()11(1)1n n a q S q q-=≠-或1(1)1n n a a qS q q-=≠-. 2.等比数列的前n 项和的性质(1)当q =1时,n m s m s n =,当1q ≠±时,11nn mm s q s q-=-. (2)m n n m m n n m s s q s s q s +=+=+.(3)设s 偶与s 奇分别是偶数项的和与奇数项的和,若项数为2n ,则s q s =偶奇,若项数为2n +1,则1s a q s -=奇偶.(4)当1q ≠-时,连续m 项的和(232m m m m m s s s s s --⋅⋅⋅,,,)仍成等比数列,公比为2m q m ≥,,注意:连续m 项的和必须非零才能成立. 三、巩固练习1.已知数列{}n a 的前n 项和21n S n =+,正项等比数列{}n b 满足1134,1b a b a ==+,则使61n b S +≥成立的n 的最大值为( ) A.5B.6C.7D.82.已知数列{}n a 为等比数列,11a =,2q =,且第m 项至第()n m n <项的和为112,则m n +的值为( ) A.11B.12C.13D.143.记n S 为数列{}n a 的前n 项和,已知{}n a 和{}n S k - (k 为常数)均为等比数列,则k 的值可能为( )A.1aB.2aC.3aD.13a a +4.5个数依次组成等比数列,且公比为2-,则其中奇数项和与偶数项和的比值为( ) A.2120-B.2-C.2110-D.215-5.已知n S 是等比数列{}n a 的前 n 项和,若存在*m ∈N ,满足22519,1m m mm S a m S a m +==-,则数列{}n a 的公比为( ) A.2-B.2C.3-D.36.已知等比数列{}n a 的公比2q =,前100项的和10090S =,则246100a a a a ++++=( )A.15B.30C.45D.607.(多选)已知等比数列{}n a 的公比为q ,其前n 项的积为n T ,且满足11a >,9910010a a ->,99100101a a -<-,则以下结论正确的是( ) A.01q << B.9910110a a -<C.100T 的值是n T 中最大的D.使1n T >成立的最大正整数数n 的值为1988. (多选)设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,并满足条件11a >,201920201a a ⋅>,20192020101a a -<-,则下列结论中正确的是( ) A.20192020S S <B.2019202110S S ⋅-<C.2019T 是数列{}n T 中的最大值D.数列{}n T 无最大值答案以及解析1.答案:D解析:设等比数列{}n b 的公比为q , 由题意可知当2n ≥时,121n n n a S S n -=-=-; 当1n =时,112a S ==,2,1,21,2,n n a n n =⎧∴=⎨-≥⎩213412,18b b a b q ∴==+==. 0n b >,2,2n n q b ∴=∴=,66264b ∴==,2651n ∴≥+,8n ∴≤,∴n 的最大值为8,故选D.2.答案:B解析:由已知,得()()11121121121212n m -⨯-⨯--=--,即()11422127m n m --+⋅-=⨯,则14122217m n m --+⎧=⎨-=⎩,解得57m n =⎧⎨=⎩,所以12m n +=,故选B. 3.答案:C解析:若公比1q =,则{}1,n n S k na k S k -=--不可能为等比数列,因此1q ≠,此时1111111n nn a q a q S k a k k q q q ⎛⎫---=-=+- ⎪---⎝⎭,只需101a k q -=-即可.A 选项,{}1n S a -的首项为0,不满足题意;B 选项, 1211011a a a q q q ⎛⎫-=-=⎪--⎝⎭,即211300124q q q ⎛⎫-=⇒-+= ⎪-⎝⎭不成立;C 选项,21311011a a a q q q ⎛⎫-=-= ⎪--⎝⎭,即23210101q q q q -=⇒-+=-,该方程必然有解,成立;D 选项,()2113111011a a a a q q q ⎛⎫-+=--= ⎪--⎝⎭,即()221101001q q q q q q--=⇒-+=⇒=-,不成立. 4.答案:C解析:由题意可设这5个数分别为,2,4,8,16a a a a a --,其中0a ≠,故奇数项和与偶数项和的比值为416212810a a a a a ++=---,故选C.5.答案:B解析:设数列{}n a 的公比为 q ,若1q =,则22mmS S =,与题中条件矛盾,故1q ≠.()()21211119,811m m mm m m a q S q q q S a q q--==+=∴=--.2132111518,3,8,21m m m m m a a q m q m q q a a q m --+====∴=∴=∴=-. 6.答案:D 解析:1001210090S a a a =+++=,设1399S a a a =+++,则241002S a a a =+++,100290,30S S S S ∴+==∴=,故24100260a a a S +++==.故选D.7.答案:ABD解析:9910010a a ->,991001a a ∴>,0q ∴>.99100101a a -<-,()()99100110a a ∴--<,又11a >,01q ∴<<.故A 正确.由A 选项的分析可知991a >,10001a <<,2991011001a a a ∴=<,9910110a a ∴-<,1009910099T T a T =<,故B 正确,C 不正确.()()()()99198121981198219799100991001T a a a a a a a a a a a ===>,()()()1991991219819911992198991011001001T a a a a a a a a a a a a ===<,∴使1n T >成立的最大正整数数n 的值为198,故D 正确. 8.答案:AC解析:由题意,得20191a >,202001a <<,所以01q <<,等比数列{}n a 是各项都为正数的递减数列,即122019202010a a a a >>>>>>>.因为2020201920200S S a -=>,所以20192020S S <,故A 正确;因为20191220191S a a a =+++>,所以()()22201920212019201920202021201920192020202120191S S S S a a S S a a S ⋅=⋅++=+⋅+>>,即2019202110S S ⋅->,故B 错误;根据122019202010a a a a >>>>>>>,可知2019T 是数列{}n T 中的最大项,故C 正确,D 错误.故选AC.。
《等比数列的前n项和》(第一课时)教学设计
《等比数列的前n项和》(第一课时)教学设计第一课时:等比数列的前n项和一、教学目标1. 知识与技能:掌握等比数列的概念和性质,了解等比数列的通项公式以及前n项和的计算方法。
2. 过程与方法:通过案例分析和实例演练,引导学生建立等比数列的基本概念和计算方法。
3. 情感态度与价值观:培养学生对数学的兴趣,提高学生的解决问题的能力和思维逻辑能力。
三、教学准备1. 教学内容:等比数列的前n项和。
2. 教学资源:教材、教学课件、实例题材。
3. 教学环境:教室、黑板、投影仪。
4. 学生准备:学生需提前预习并准备好相关课文和课后习题。
四、教学过程1.导入(5分钟)教师可通过引入等比数列的概念及应用案例,引起学生的兴趣,激发学生的求知欲。
2.呈现(15分钟)教师通过教学课件或实例题材,讲解等比数列的概念,并引出等比数列的通项公式和前n项和的计算方法。
重点讲解等比数列前n项和的计算公式,并通过实例进行讲解和演练。
4.练习与讨论(15分钟)教师布置相关练习题,要求学生在课后完成,并组织学生进行解题讨论。
通过练习和讨论,巩固学生所学知识,加深对等比数列前n项和的理解。
5. 拓展与应用(10分钟)教师通过拓展性问题或应用案例,引导学生将所学知识应用于实际问题中,培养学生的数学建模能力。
五、课堂小结(5分钟)教师对本节课的重点知识进行归纳和总结,澄清学生的疑问,为下节课的学习做好铺垫。
六、作业布置布置相关练习题,要求学生完成课后练习,巩固所学知识。
七、教学反思通过本节课的教学设计和实施,学生可以系统地学习到等比数列的前n项和的计算方法,培养了学生的数学思维能力和解决问题的能力。
通过实例演练和讨论,学生的学习兴趣得到了激发,课堂氛围良好。
需要改进的地方是在教学过程中,对于学生的个别问题能够给予更多的帮助和引导,以确保每个学生都能够理解和掌握所学知识。
等比数列前n项和教学教案
等比数列前n项和教学教案一、教学目标1. 让学生理解等比数列的概念,掌握等比数列的通项公式。
2. 引导学生掌握等比数列前n项和的公式,并能灵活运用。
3. 培养学生的逻辑思维能力和数学运算能力。
二、教学重点与难点1. 重点:等比数列的概念,等比数列前n项和的公式。
2. 难点:等比数列前n项和的公式的推导和灵活运用。
三、教学方法1. 采用问题驱动法,引导学生探究等比数列前n项和的公式。
2. 利用多媒体课件,形象直观地展示等比数列前n项和的过程。
3. 运用例题讲解,让学生在实践中掌握等比数列前n项和的运用。
四、教学准备1. 多媒体课件。
2. 教学素材(例题、练习题)。
五、教学过程1. 导入新课1.1 复习等比数列的概念和通项公式。
1.2 提问:等比数列的前n项和能否表示为一个公式?2. 探究等比数列前n项和的公式2.1 引导学生列出等比数列前n项和的表达式。
2.2 引导学生通过观察、分析、归纳等比数列前n项和的公式。
2.3 讲解公式的推导过程,让学生理解并掌握。
3. 例题讲解3.1 选取典型例题,讲解等比数列前n项和的运用。
3.2 引导学生跟着步骤一起解答,加深对公式的理解。
4. 课堂练习4.1 布置少量练习题,让学生巩固所学知识。
4.2 引导学生独立完成练习题,并及时给予解答和指导。
5. 总结与拓展5.1 总结等比数列前n项和的特点和运用。
5.2 提出拓展问题,激发学生进一步学习的兴趣。
6. 课后作业6.1 布置适量作业,让学生进一步巩固等比数列前n项和的知识。
6.2 强调作业的完成质量和时间。
七、教学反思本节课结束后,教师应认真反思教学效果,针对学生的掌握情况,调整教学策略,以提高教学效果。
八、教学评价1. 学生对等比数列前n项和的概念和公式的掌握程度。
2. 学生在练习题中的表现,以及运用等比数列前n项和解决实际问题的能力。
3. 学生对课后作业的完成情况。
九、教学进度安排1. 本节课计划用2课时完成。
等比数列的前n项和公式经典教案
等比数列的前n项和公式【学习目标】1.掌握等比数列的前n项和公式及推导公式的思想方法和过程,能够熟练应用等比数列的前n项和公式解决相关问题,提高应用求解能力.2.通过对等比数列的前n项和公式的推导与应用,使学生掌握错位相减法、方程思想、划归思想等数学思想和方法.3.激情参与,惜时高效,感受数学思维的严谨性.1.“我1.2.Ⅱ.1.2.3.等比通项公式a=n1.设A.C2AC.-31D.331、答案 D解析由8a2+a5=0得8a1q+a1q4=0,∴q=-2,则==-11.【我的疑惑】知识要点归纳:1.等比数列前n项和公式:(1)公式:S n==(q≠1).(q=1).(2)注意:应用该公式时,一定不要忽略q=1的情况.2.若{a n}是等比数列,且公比q≠1,则前n项和S n=(1-q n)=A(q n-1).其中A=.3.推导等比数列前n项和的方法叫法.一般适用于求一个等差数列与一个等比数列对应项积的前n项和.4.等比数列{a n}的前n项和为S n,当公比q≠1时,S n==;当q=1时,S n=.5.等比数列前n项和的性质:(1)连续m项的和(如S m、S2m-S m、S3m-S2m),仍构成数列.(注意:q≠-1或m为奇数)(2)S m+n=S m+q m S n(q为数列{a n}的公比).二、典型范例Ⅰ.质疑探究——质疑解惑、合作探究探究点等比数列的前n项和公式问题1:怎么求等比数列{}n a的前n项和n S?写出公式的推导过程。
S n问题2当=故当(1)(2(3)由(4)是数列求和的一种重要方法。
问题探究一错位相减法求和问题教材中推导等比数列前n项和的方法叫错位相减法.这种求和方法是我们应该掌握的重要方法之一,这种方法的适用范围可以拓展到一个等差数列{a n}与一个等比数列{b n}对应项之积构成的新数列求和.下面是利用错位相减法求数列{}前n项和的步骤和过程,请你补充完整.设S n=+++…+,∴S n=,∴S n-S n=,即S n==∴S n==2-.例1 在等比数列{a n }中,S 3=,S 6=,求a n . 解 由已知S 6≠2S 3,则q ≠1,又S 3=,S 6=, 即①,a 1(1-q 6)1-q =632.②))②÷①得1+q 3=9,∴q =2.可求得a 1=,因此a n =a 1q n -1=2n -2.问题探究二 等比数列前n 项和S n 与函数的关系问题 当公比q =1时,因为a 1≠0,所以S n =na 1,是n 的正比例函数(常数项为0的一次函数).当q =1时,数列S 1,S 2,S 3,…,S n ,…的图象是正比例函数y =a 1x 图象上一些孤立的点.A =,的一个指问题1 证明 =S m +(a =S m +q m S ∴S m +n =S m 1A .48 C .50 2A .C .3.设S n A .11 C .-4.设等比数列{a n }的公比q =2,前n 项和为S n ,则等于( )A .2B .4 C.D.5.已知{a n }是等比数列,a 2=2,a 5=,则a 1a 2+a 2a 3+…+a n a n +1等于 ( )A .16(1-4-n ) B .16(1-2-n )C.(1-4-n )D.(1-2-n )6.设{a n }是由正数组成的等比数列,S n 为其前n 项和,已知a 2a 4=1,S 3=7,则S 5等于( ) A. B. C.D.二、填空题7.等比数列{a n}的前n项和为S n,已知S1,2S2,3S3成等差数列,则{a n}的公比为________.8.设等比数列{a n}的前n项和为S n,若a1=1,S6=4S3,则a4=________.9.若等比数列{a n}中,a1=1,a n=-512,前n项和为S n=-341,则n的值是________.三、解答题10.设等比数列{a n}的前n项和为S n,已知a2=6,6a1+a3=30,求a n和S n.11.在等比数列{a n}中,已知S n=48,S2n=60,求S3n.12.已知等比数列{a n}中,a1=2,a3+2是a2和a4的等差中项.(1)求数列{a n}的通项公式;(2)记13(1)(2)1A.332A.1.1C.103.已知{aA.和5C.4.程和是A.C.5.数列{a n n1n+1n6A.3×44B.3×44+1C.45D.45+16.某企业在今年年初贷款a万元,年利率为γ,从今年年末开始每年偿还一定金额,预计五年内还清,则每年应偿还()A.万元B.万元C.万元D.万元二、填空题7.等比数列{a n}共2n项,其和为-240,且奇数项的和比偶数项的和大80,则公比q=________.8.等比数列{a n}中,前n项和为S n,S3=2,S6=6,则a10+a11+a12=________.9.某工厂月生产总值的平均增长率为q,则该工厂的年平均增长率为________.三、解答题10.在等比数列{a n}中,已知S30=13S10,S10+S30=140,求S20的值.11.利用等比数列前n项和公式证明a n+a n-1b+a n-2b2+…+b n=,其中n∈N*a,b是不为0的常数,且a≠b.12.已知{a n}是以a为首项,q为公比的等比数列,S n为它的前n项和.(1)当S1,S3,S4成等差数列时,求q的值;(2)当S m,S n,S l成等差数列时,求证:对任意自然数k,a m+k,a n+k,a l+k也成等差数列.四、探究与拓展1312≈1.1)过关测试1.D7.8.310.解当a1S n当a1S n11.6312.(1)a n(2)S n13.(1)a课后练习。
等比数列的前n项和教学设计
等比数列的前n项和教学设计等比数列的前n项和教学设计篇1一、教材分析:等比数列的前n项和是高中数学必修五其次章第3.3节的内容。
它是“等差数列的前n项和”与“等比数列”内容的连续。
这局部内容授课时间2课时,本节课作为第一课时,重在讨论等比数列的前n项和公式的推导及简洁应用,教学中注意公式的形成推导过程并充分提醒公式的构造特征和内在联系。
意在培育学生类比分析、分类争论、归纳推理、演绎推理等数学思想。
在高考中占有重要地位。
二、教学目标依据上述教学内容的地位和作用,结合学生的认知水平和年龄特点,确定本节课的教学目标如下:1.学问与技能:理解等比数列的前n项和公式的推导方法;把握等比数列的前n项和公式并能运用公式解决一些简洁问题。
2.过程与方法:通过公式的推导过程,提高学生的建模意识及探究问题、类比分析与解决问题的力量,培育学生从特别到一般的思维方法,渗透方程思想、分类争论思想及转化思想,优化思维品质。
3.情感与态度:通过自主探究,合作沟通,激发学生的求知欲,体验探究的艰辛,体会胜利的喜悦,感受思维的奇异美、构造的对称美、形式的简洁美、数学的严谨美。
三、教学重点和难点重点:等比数列的前项和公式的推导及其简洁应用。
难点:等比数列的前项和公式的推导。
重难点确定的依据:从教材体系来看,它为后继学习供应了学问根底,具有承上启下的作用;从学问本身特点来看,等比数列前n项和公式的推导方法和等差数列的的前n项和公式的推导方法可比性低,无法用类比的方法进展,它需要对等比数列的概念和性质能充分理解并融会贯穿;从学生认知水平来看,学生的探究力量和用数学语言沟通的力量还有待提高。
四、教法学法分析通过创设问题情境,组织学生争论,让学生在尝摸索索中不断地发觉问题,以激发学生的求知欲,并在过程中获得自信念和胜利感。
强调学问的严谨性的同时重学问的形成过程,五、教学过程(一)创设情境,引入新知从故事入手:传奇,波斯国王下令要奖赏国际象棋的创造者,创造者对国王说,在棋盘的第一格内放上一粒麦子,在其次格内放两粒麦子,第三格内放4粒,第四格内放8米,……按这样的规律放满64格棋盘格。
等比数列的前n项和公式学案
等比数列的前n 项和公式(1)教学目标 1.掌握等比数列的前n 项和公式及公式证明思路.2.会用等比数列的前n 项和公式解决有关等比数列前n 项和的一些简单问题.教学重点 1.等比数列的前n 项和公式;2.等比数列的前n 项和公式推导. 教学难点 灵活应用公式解决有关问题. 教学过程 一.复习回顾(1) 等比数列定义: (2) 等比数列通项公式:二.探索与研究:采用印度国际象棋发明者的故事,你能计算出国际象棋盘中的麦粒数吗?即求636264228421+++++= s ①用错项相消法推导结果,两边同乘以公比:② ②-①: 这是一个庞大的数字以小麦千粒重为40g 计算,则麦粒总质量达7000亿吨——国王是拿不出来的。
三、一般公式推导:设n n n a a a a a S +++++=-1321 ① 乘以公比q ,n n n n qa a a a a qS +++++=-132 ②①-②:()n n qa a S q -=-11,1≠q 时:()qq a q aq a q qa a S nn n n --=--=--=11111111=q 时:1na S n = 公式与公式说明:(1)n S n q a ,,,1和n n S q a a ,,,1各已知三个可求第四个,(2)公式推导方法:错位相减法 特点:在等式两端同时乘以公比q 后两式相减。
(3)应用求和公式时1≠q ,必要时应讨论1=q 的情况。
1(1)(1)1n n a q S q q-=≠-1=q 时,)1(1==q na S n(4)另一种表示形式 qq a a S n n --=11(1≠q ) 1=q 时,)1(1==q na S n总结:⎪⎩⎪⎨⎧=≠--=)1()1(1)1(11q na q q q a S n n 或⎪⎩⎪⎨⎧=≠--=)1()1(111q na q q q a a S n n 注意:每一种形式都要区别公比1≠q 和1=q 两种情况。
高考数学(理科)一轮复习等比数列及其前n项和学案含答案
高考数学(理科)一轮复习等比数列及其前n项和学案含答案学案30等比数列及其前n项和导学目标:1理解等比数列的概念2掌握等比数列的通项公式与前n 项和公式3了解等比数列与指数函数的关系4能在具体的问题情境中识别数列的等比关系,并能用等比数列的有关知识解决相应的问题.自主梳理1.等比数列的定义如果一个数列从第2项起,每一项与它的前一项的比等于同一常数(不为零),那么这个数列叫做等比数列,这个常数叫做等比数列的________,通常用字母________表示(q≠0).2.等比数列的通项公式设等比数列{an}的首项为a1,公比为q,则它的通项an=______________3.等比中项:如果在a与b中间插入一个数G,使a,G,b成等比数列,那么G 叫做a与b的等比中项.4.等比数列的常用性质(1)通项公式的推广:an=a•________ (n,∈N*).(2)若{an}为等比数列,且+l=+n (,l,,n∈N*),则__________________________.(3)若{an},{bn}(项数相同)是等比数列,则{λan}(λ≠0),1an,{a2n},{an•bn},anbn仍是等比数列.(4)单调性:a1>0,q>1或a1<00<q<1⇔{an}是________数列;a1>0,0<q<1或a1<0q>1⇔{an}是________数列;q=1⇔{an}是____数列;q<0⇔{an}是________数列..等比数列的前n项和公式等比数列{an}的公比为q (q≠0),其前n项和为Sn,当q=1时,Sn =na1;当q≠1时,Sn=a11-qn1-q=a1qn-1q-1=a1qnq-1-a1q-16.等比数列前n项和的性质公比不为-1的等比数列{an}的前n项和为Sn,则Sn,S2n-Sn,S3n -S2n仍成等比数列,其公比为______.自我检测1.“b=a”是“a、b、成等比数列”的()A.充分不必要条B.必要不充分条.充要条D.既不充分也不必要条2.若数列{an}的前n项和Sn=3n-a,数列{an}为等比数列,则实数a的值是()A.3B.1.0D.-13.(2011•温州月考)设f(n)=2+24+27+…+23n+1 (n∈N*),则f(n)等于()A27(8n-1)B27(8n+1-1)27(8n+2-1)D27(8n+3-1)4.(2011•湖南长郡中学月考)已知等比数列{an}的前三项依次为a-2,a+2,a+8,则an等于()A.8•32nB.8•23n.8•32n-1D.8•23n-1.设{an}是公比为q的等比数列,|q|>1,令bn=an+1 (n=1,2,…),若数列{bn}有连续四项在集合{-3,-23,19,37,82}中,则6q=________探究点一等比数列的基本量运算例 1 已知正项等比数列{an}中,a1a+2a2a6+a3a7=100,a2a4-2a3a+a4a6=36,求数列{an}的通项an和前n项和Sn变式迁移1在等比数列{an}中,a1+an=66,a2•an-1=128,Sn=126,求n和q探究点二等比数列的判定例2 (2011•岳阳月考)已知数列{an}的首项a1=,前n项和为Sn,且Sn+1=2Sn+n+,n∈N*(1)证明数列{an+1}是等比数列;(2)求{an}的通项公式以及Sn变式迁移2设数列{an}的前n项和为Sn,已知a1+2a2+3a3+…+nan=(n-1)Sn+2n(n∈N*).(1)求a2,a3的值;(2)求证:数列{Sn+2}是等比数列.探究点三等比数列性质的应用例 3 (2011•湛江月考)在等比数列{an}中,a1+a2+a3+a4+a=8,且1a1+1a2+1a3+1a4+1a=2,求a3变式迁移3(1)已知等比数列{an}中,有a3a11=4a7,数列{bn}是等差数列,且b7=a7,求b+b9的值;(2)在等比数列{an}中,若a1a2a3a4=1,a13a14a1a16=8,求a41a42a43a44分类讨论思想与整体思想的应用例(12分)设首项为正数的等比数列{an}的前n项和为80,它的前2n项和为6 60,且前n项中数值最大的项为4,求此数列的第2n项.【答题模板】解设数列{an}的公比为q,若q=1,则Sn=na1,S2n=2na1=2Sn∵S2n=6 60≠2Sn=160,∴q≠1,[2分]由题意得a11-qn1-q=80,①a11-q2n1-q=6 60 ②[4分]将①整体代入②得80(1+qn)=6 60,∴qn=81[6分]将qn=81代入①得a1(1-81)=80(1-q),∴a1=q-1,由a1>0,得q>1,∴数列{an}为递增数列.[8分]∴an=a1qn-1=a1q•qn=81•a1q=4∴a1q=23[10分]与a1=q-1联立可得a1=2,q=3,∴a2n=2×32n-1 (n∈N*).[12分]【突破思维障碍】(1)分类讨论的思想:①利用等比数列前n项和公式时要分公比q=1和q≠1两种情况讨论;②研究等比数列的单调性时应进行讨论:当a1>0,q>1或a1<0,0<q<1时为递增数列;当a1<0,q>1或a1>0,0<q<1时为递减数列;当q<0时为摆动数列;当q=1时为常数列.(2)函数的思想:等比数列的通项公式an=a1qn -1=a1q•qn (q>0且q≠1)常和指数函数相联系.(3)整体思想:应用等比数列前n项和时,常把qn,a11-q当成整体求解.本题条前n项中数值最大的项为4的利用是解决本题的关键,同时将qn和a11-qn1-q的值整体代入求解,简化了运算,体现了整体代换的思想,在解决有关数列求和的题目时应灵活运用.1.等比数列的通项公式、前n项公式分别为an=a1qn-1,Sn =na1,q=1,a11-qn1-q,q≠12.等比数列的判定方法:(1)定义法:即证明an+1an=q (q≠0,n∈N*) (q是与n值无关的常数).(2)中项法:证明一个数列满足a2n+1=an•an+2 (n∈N*且an•an+1•an+2≠0).3.等比数列的性质:(1)an=a•qn-(n,∈N*);(2)若{an}为等比数列,且+l=+n (,l,,n∈N*),则a•al=a•an;(3)设公比不为-1的等比数列{an}的前n项和为Sn,则Sn,S2n-Sn,S3n-S2n仍成等比数列,其公比为qn4.在利用等比数列前n项和公式时,一定要对公比q=1或q≠1作出判断;计算过程中要注意整体代入的思想方法..等差数列与等比数列的关系是:(1)若一个数列既是等差数列,又是等比数列,则此数列是非零常数列;(2)若{an}是等比数列,且an>0,则{lg an}构成等差数列.(满分:7分)一、选择题(每小题分,共2分)1.(2010•辽宁)设{an}是由正数组成的等比数列,Sn为其前n 项和.已知a2a4=1,S3=7,则S等于()A12B314334D1722.(2010•浙江)设Sn为等比数列{an}的前n项和,8a2+a=0,则SS2等于()A.-11B.-8.D.113.在各项都为正数的等比数列{an}中,a1=3,前三项的和S3=21,则a3+a4+a等于()A.33B.72.84D.1894.等比数列{an}前n项的积为Tn,若a3a6a18是一个确定的常数,那么数列T10,T13,T17,T2中也是常数的项是()A.T10B.T13.T17D.T2.(2011•佛模拟)记等比数列{an}的前n项和为Sn,若S3=2,S6=18,则S10S等于()A.-3B..-31D.33题号1234答案二、填空题(每小题4分,共12分)6.设{an}是公比为正数的等比数列,若a1=1,a=16,则数列{an}前7项的和为________.7.(2011•平顶月考)在等比数列{an}中,公比q=2,前99项的和S99=30,则a3+a6+a9+…+a99=________8.(2010•福建)在等比数列{an}中,若公比q=4,且前3项之和等于21,则该数列的通项公式an=________三、解答题(共38分)9.(12分)(2010•陕西)已知{an}是公差不为零的等差数列,a1=1,且a1,a3,a9成等比数列.(1)求数列{an}的通项;(2)求数列{2an}的前n项和Sn10.(12分)(2011•廊坊模拟)已知数列{lg2(an-1)}为等差数列,且a1=3,a2=(1)求证:数列{an-1}是等比数列;(2)求1a2-a1+1a3-a2+…+1an+1-an的值.11.(14分)已知等差数列{an}的首项a1=1,公差d>0,且第2项、第项、第14项分别是等比数列{bn}的第2项、第3项、第4项.(1)求数列{an}与{bn}的通项公式;(2)设数列{n}对n∈N*均有1b1+2b2+…+nbn=an+1成立,求1+2+3+…+2 010答案自主梳理1.公比q2a1•qn-14(1)qn-(2)a•al=a•an(4)递增递减常摆动6qn自我检测1.D2B3B4-9堂活动区例1解题导引(1)在等比数列的通项公式和前n项和公式中共有a1,an,q,n,Sn五个量,知道其中任意三个量,都可以求出其余两个量.解题时,将已知条转化为基本量间的关系,然后利用方程组的思想求解;(2)本例可将所有项都用a1和q表示,转化为关于a1和q的方程组求解;也可利用等比数列的性质转化,两种方法目的都是消元转化.解方法一由已知得:a21q4+2a21q6+a21q8=100,a21q4-2a21q6+a21q8=36①②①-②,得4a21q6=64,∴a21q6=16③代入①,得16q2+2×16+16q2=100解得q2=4或q2=14又数列{an}为正项数列,∴q=2或12当q=2时,可得a1=12,∴an=12×2n-1=2n-2,Sn=12(1-2n)1-2=2n-1-12;当q=12时,可得a1=32∴an=32×12n-1=26-nSn=321-12n1-12=64-26-n方法二∵a1a=a2a4=a23,a2a6=a3a,a3a7=a4a6=a2,由a1a+2a2a6+a3a7=100,a2a4-2a3a+a4a6=36,可得a23+2a3a+a2=100,a23-2a3a+a2=36,即(a3+a)2=100,(a3-a)2=36∴a3+a=10,a3-a=±6解得a3=8,a=2,或a3=2,a=8 当a3=8,a=2时,q2=aa3=28=14∵q>0,∴q=12,由a3=a1q2=8,得a1=32,∴an=32×12n-1=26-nSn=32-26-n×121-12=64-26-n当a3=2,a=8时,q2=82=4,且q>0,∴q=2由a3=a1q2,得a1=24=12∴an=12×2n-1=2n-2Sn=12(2n-1)2-1=2n-1-12变式迁移1解由题意得a2•an-1=a1•an=128,a1+an=66,解得a1=64,an=2或a1=2,an=64若a1=64,an=2,则Sn=a1-anq1-q=64-2q1-q=126,解得q=12,此时,an=2=64•12n-1,∴n=6若a1=2,an=64,则Sn=2-64q1-q=126,∴q=2∴an=64=2•2n-1∴n=6综上n=6,q=2或12例2解题导引(1)证明数列是等比数列的两个基本方法:①an+1an=q (q为与n值无关的常数)(n∈N*).②a2n+1=anan+2 (an≠0,n∈N*).(2)证明数列不是等比数列,可以通过具体的三个连续项不成等比数列证明,也可用反证法.(1)证明由已知Sn+1=2Sn+n+,n∈N*,可得n≥2时,Sn=2Sn-1+n+4,两式相减得Sn+1-Sn=2(Sn-Sn-1)+1,即an+1=2an+1,从而an+1+1=2(an+1),当n=1时,S2=2S1+1+,所以a2+a1=2a1+6,又a1=,所以a2=11,从而a2+1=2(a1+1),故总有an+1+1=2(an+1),n∈N*,又a1=,a1+1≠0,从而an+1+1an+1=2,即数列{an+1}是首项为6,公比为2的等比数列.(2)解由(1)得an+1=6•2n-1,所以an=6•2n-1-1,于是Sn=6•(1-2n)1-2-n=6•2n-n-6变式迁移2(1)解∵a1+2a2+3a3+…+nan=(n-1)Sn+2n(n∈N*),∴当n=1时,a1=2×1=2;当n=2时,a1+2a2=(a1+a2)+4,∴a2=4;当n=3时,a1+2a2+3a3=2(a1+a2+a3)+6,∴a3=8(2)证明∵a1+2a2+3a3+…+nan=(n-1)Sn+2n(n∈N*),①∴当n≥2时,a1+2a2+3a3+…+(n-1)an-1=(n-2)Sn-1+2(n-1).②①-②得nan=(n-1)Sn-(n-2)Sn-1+2=n(Sn-Sn-1)-Sn+2Sn -1+2=nan-Sn+2Sn-1+2∴-Sn+2Sn-1+2=0,即Sn=2Sn-1+2,∴Sn+2=2(Sn-1+2).∵S1+2=4≠0,∴Sn-1+2≠0,∴Sn+2Sn-1+2=2,故{Sn+2}是以4为首项,2为公比的等比数列.例3解题导引在解决等比数列的有关问题时,要注意挖掘隐含条,利用性质,特别是性质“若+n=p+q,则a•an=ap•aq”,可以减少运算量,提高解题速度.解由已知得1a1+1a2+1a3+1a4+1a=a1+aa1a+a2+a4a2a4+a3a23=a1+a2+a3+a4+aa23=8a23=2,∴a23=4,∴a3=±2若a3=-2,设数列的公比为q,则-2q2+-2q-2-2q-2q2=8,即1q2+1q+1+q+q2=1q+122+q+122+12=-4此式显然不成立,经验证,a3=2符合题意,故a3=2变式迁移3解(1)∵a3a11=a27=4a7,∵a7≠0,∴a7=4,∴b7=4,∵{bn}为等差数列,∴b+b9=2b7=8(2)a1a2a3a4=a1•a1q•a1q2•a1q3=a41q6=1①a13a14a1a16=a1q12•a1q13•a1q14•a1q1=a41•q4=8②②÷①:a41•q4a41•q6=q48=8ͤq16=2,又a41a42a43a44=a1q40•a1q41•a1q42•a1q43 =a41•q166=a41•q6•q160=(a41•q6)•(q16)10=1•210=1 024后练习区1.B[∵{an}是由正数组成的等比数列,且a2a4=1,∴设{an}的公比为q,则q>0,且a23=1,即a3=1∵S3=7,∴a1+a2+a3=1q2+1q+1=7,即6q2-q-1=0故q=12或q=-13(舍去),∴a1=1q2=4∴S=4(1-12)1-12=8(1-12)=314]2.A[由8a2+a=0,得8a1q+a1q4=0,所以q=-2,则SS2=a1(1+2)a1(1-22)=-11]3.[由题可设等比数列的公比为q,则3(1-q3)1-q=21ͤ1+q+q2=7ͤq2+q-6=0ͤ(q+3)(q-2)=0,根据题意可知q>0,故q=2所以a3+a4+a=q2S3=4×21=84]4.[a3a6a18=a31q2++17=(a1q8)3=a39,即a9为定值,所以下标和为9的倍数的积为定值,可知T17为定值.].D[因为等比数列{an}中有S3=2,S6=18,即S6S3=a1(1-q6)1-qa1(1-q3)1-q=1+q3=182=9,故q=2,从而S10S=a1(1-q10)1-qa1(1-q)1-q=1+q=1+2=33]6.127解析∵公比q4=aa1=16,且q>0,∴q=2,∴S7=1-271-2=12771207解析∵S99=30,即a1(299-1)=30,∵数列a3,a6,a9,…,a99也成等比数列且公比为8,∴a3+a6+a9+…+a99=4a1(1-833)1-8=4a1(299-1)7=47×30=12078.4n-1解析∵等比数列{an}的前3项之和为21,公比q=4,不妨设首项为a1,则a1+a1q+a1q2=a1(1+4+16)=21a1=21,∴a1=1,∴an=1×4n-1=4n-19.解(1)由题设知公差d≠0,由a1=1,a1,a3,a9成等比数列,得1+2d1=1+8d1+2d,…………………………………………………………………………(4分)解得d=1或d=0(舍去).故{an}的通项an=1+(n-1)×1=n……………………………………………………(7分)(2)由(1)知2an=2n,由等比数列前n项和公式,得Sn=2+22+23+…+2n=2(1-2n)1-2=2n+1-2………………………………………………………………………………(12分)10.(1)证明设lg2(an-1)-lg2(an-1-1)=d (n≥2),因为a1=3,a2=,所以d=lg2(a2-1)-lg2(a1-1)=lg24-lg22=1,…………………………………………………………(3分)所以lg2(an-1)=n,所以an-1=2n,所以an-1an-1-1=2 (n≥2),所以{an-1}是以2为首项,2为公比的等比数列.………(6分)(2)解由(1)可得an-1=(a1-1)•2n-1,所以an=2n+1,…………………………………………………………………………(8分)所以1a2-a1+1a3-a2+…+1an+1-an=122-2+123-22+…+12n+1-2n=12+122+…+12n=1-12n………………………………………………………………(12分) 11.解(1)由已知有a2=1+d,a=1+4d,a14=1+13d,∴(1+4d)2=(1+d)(1+13d).解得d=2(d=0舍).……………………………………………………………………(2分)∴an=1+(n-1)•2=2n-1………………………………………………………………(3分)又b2=a2=3,b3=a=9,∴数列{bn}的公比为3,∴bn=3•3n-2=3n-1………………………………………………………………………(6分)(2)由1b1+2b2+…+nbn=an+1得当n≥2时,1b1+2b2+…+n-1bn-1=an两式相减得:当n≥2时,nbn=an+1-an=2……………………………………………(9分)∴n=2bn=2•3n-1 (n≥2).又当n=1时,1b1=a2,∴1=3∴n=3(n=1)2•3n- 1 (n≥2)……………………………………………………………(11分)∴1+2+3+…+2 010=3+6-2×32 0101-3=3+(-3+32 010)=32 010…………………………………………(14分)。
等比数列的前n项和教案
等比数列的前n项和教案【篇一:等比数列前n项和教学设计】《等比数列的前n项和》教案一.教学目标知识与技能目标:理解等比数列的前n项和公式的推导方法;掌握等比数列的前n项和公式并能运用公式解决一些简单问题。
过程与方法目标:通过公式的推导过程,提高学生构造数列的意识及探究、分析与解决问题的能力,体会公式探求过程中从特殊到一般的思维方法,渗透方程思想、分类讨论思想及转化思想。
情感与态度目标:通过经历对公式的探索,激发学生的求知欲,鼓励学生大胆尝试、勇于探索、敢于创新,磨练思维品质,从中获得成功的体验,感受思维的奇异美、结构的对称美、形式的简洁美、数学的严谨美。
二.重点难点教学重点:公式的推导、公式的特点和公式的运用;教学难点:公式的推导方法及公式应用的条件。
三.教学方法利用多媒体辅助教学,采用启发---探讨---建构教学相结合。
四.教具准备教学课件,多媒体五.教学过程(一)创设情境,提出问题故事回放:在古印度,有个名叫西萨的人,发明了国际象棋,当时的印度国王大为赞赏,对他说:我可以满足你的任何要求.西萨说:请给我在棋盘的64个方格上,第1个格子里放1千吨小麦,第2个格子里放2千吨,第3个格子里放3千吨,如此下去,第64个格子放64千吨小麦,请给我这些小麦?(二).师生互动,探究问题问题1:同学们,你们知道西萨要的是多少小麦吗?引导学生写出小麦总数,带着这样的问题,学生会动手算起来,通过计算需要1+2+3+?+64=2080(千吨)结果出来后,国王认为西萨胃口太大,而国库空虚,还是提个简单的要求吧!西萨说:国王,我希望在第1个格子里放1颗麦粒,第2个格子里放2颗,第3个格子里放4颗,如此下去,每个格子放的麦粒数是前一格麦粒数的2倍,请给我这么多的麦粒数?问题2:同学们,你们知道西萨要的是多少粒小麦吗?引导学生写出麦粒总数1?2?22?23?????263,同时告诉学生一个抽象的答案,如果按西萨的要求,这是一个多么巨大的数字啊!它相当于全世界两千多年小麦产量的总和.问题3: 1,2,22,?,263是什么数列?有何特征?应归结为什么数学问题呢?探究一:1?2?22?23?????263,记为s64?1?2?22?23?????263??①式,注意观察每一项的特征,有何联系?(学生会发现,后一项都是前一项的2倍)探究二:如果我们把每一项都乘以2,就变成了它的后一项,①式两边同乘以2则有2s64?2?22?23?????264??②式.比较①、②两式,你有什么发现?经过比较、研究,学生发现:①、②两式有许多相同的项,把两式相减,相同的项就消去了,得到:s64?264?1 ,老师指出:这就是错位相减法,并要求学生纵观全过程。
等比数列的前n项和公式教案
等比数列的前n项和公式经典教案一、教学目标:1. 让学生理解等比数列的概念,掌握等比数列的前n项和的定义。
2. 通过探究等比数列前n项和的公式,培养学生的逻辑思维能力和归纳总结能力。
3. 能够运用等比数列前n项和公式解决实际问题,提高学生的数学应用能力。
二、教学内容:1. 等比数列的概念及其性质。
2. 等比数列的前n项和的定义。
3. 等比数列前n项和公式的探究。
4. 等比数列前n项和公式的应用。
三、教学重点与难点:1. 教学重点:等比数列前n项和公式的推导过程,以及公式的应用。
2. 教学难点:等比数列前n项和公式的理解和运用。
四、教学方法:1. 采用问题驱动法,引导学生自主探究等比数列前n项和公式。
2. 利用多媒体辅助教学,直观展示等比数列前n项和的图形,帮助学生理解。
3. 实例分析法,让学生通过解决实际问题,掌握等比数列前n项和公式的应用。
五、教学过程:1. 引入:回顾等差数列的前n项和公式,引导学生思考等比数列的前n项和能否也有类似的公式。
2. 等比数列的概念复习:回顾等比数列的定义及其性质。
3. 等比数列的前n项和的定义:引导学生理解等比数列前n项和的含义。
4. 探究等比数列前n项和公式:引导学生分组讨论,归纳总结等比数列前n项和公式。
5. 公式验证与应用:利用多媒体展示等比数列前n项和的图形,帮助学生理解公式。
并通过实例分析,让学生掌握公式的应用。
6. 总结与评价:对本节课的内容进行总结,对学生的学习情况进行评价。
7. 作业布置:布置相关练习题,巩固所学知识。
六、教学评估:1. 课堂提问:通过提问了解学生对等比数列概念和前n项和公式的理解程度。
2. 小组讨论:观察学生在小组讨论中的参与程度和思考过程,评估他们的合作能力。
3. 练习题解答:收集学生的练习题答案,评估他们对等比数列前n 项和公式的掌握情况。
七、教学拓展:1. 等比数列的极限:引导学生思考等比数列前n项和的极限值,为后续学习数列极限奠定基础。
(完整版)等比数列的前N项和优秀教案.docx
等比数列的前n 项和一.教材分析1.在教材中的地位和作用在《数列》一章中,《等比数列的前n 项和》是一项重要的基础内容,从知识体系来看,它不仅是《等差数列的前 n 项和》与《等比数列》的顺延,也是前面所学函数的延续,实质是一种特殊的函数。
而且还为后继深入学习提供了知识基础,同时错位相减法是一种重要的数学思想方法,是求解一类混合数列前 n 项和的重要方法,因此,本节具有承上启下的作用。
等比数列的前 n 项和公式的推导过程中蕴涵了基本的数学思想方法,如分类讨论、错位相减等在数列求和问题中时常出现。
在实际问题中也有广泛的应用,如储蓄、分期付款的有关计算。
2.教材编排与课时安排提出问题——解决问题——等比数列的前n 项和公式推导——强化公式应用(例题与练习)二.教学目标知识目标:理解并掌握等比数列前n 项和公式的推导过程、公式的特点,在此基础上能初步应用公式解决与之有关的问题。
能力目标:通过启发、引导、分析、类比、归纳,并通过严谨科学的解题思想和解题方法的训练,提高学生的数学素养。
情感目标:通过解决生产实际和社会生活中的实际问题了解社会、认识社会,形成科学的世界观和价值观。
三.教学重点与难点:教学重点:公式的推导、公式的特点和公式的应用。
教学难点:公式的推导方法(“错位相减” )和公式的灵活运用。
四.教学过程:(一)、复习回顾:(1)等比数列及等比数列通项公式。
复习回顾例题1:a n为等比数列,请完成下表除s n外的所有项a1a2a3a4⋯⋯q a n s n127⋯⋯11⋯⋯22241 3⋯⋯3答案如下:a1a2a3a4⋯⋯qa n s n133227⋯⋯33n11111⋯⋯11222232422n3111⋯⋯1133233n2(2)回等差数列前n 和公式的推程,是用什么方法推的。
(二)、情境入:国象棋起源于古代印度 .相国王要国象棋的明者 .个故事大家听?“ 在第一个格子里放上 1 麦粒,第二个格子里放上 2 麦粒,第三个格子里放上 4 麦粒,以此推 .每一个格子里放的麦粒都是前一个格子里放的麦粒的 2 倍.直到第 64 个格子 .我足的麦粒以上述要求 .” 就是国象棋明者向国王提出的要求。
等比数列前n项和(优秀教案)
等比数列前n项和(优秀教案)课题:等比数列的前n项和一教学目标:1.知识与技能目标:1)掌握等比数列求和公式,并能用之解决简单的问题。
2)通过对公式的推导,对学生渗透方程思想、分类讨论思想以及等价转化思想。
2过程与方法目标:通过对公式的推导提高学生研究问题、分析问题、解决问题能力;体会公式探求中从特殊到一般的数学思想,同时渗透如上所说的多种数学思想。
3.情感与态度目标:通过公式的推导与简单应用,激发学生求知欲,鼓励学生大胆尝试,敢于探索、创新的学习品质。
二教学重点:等比数列项前n和公式的推导与简单应用。
三教学难点:等比数列n项和公式的推导。
四教学方法:启发引导,探索发现。
五教学过程:1.创设情境,导入新课:1)复习旧知,铺垫新知:等比数列定义及通项公式;等比数列的项之间有何特点?说明:如此设计目的是在于引导学生发现等比数列各项特点:从第二项起每一项比前一项多乘以q,从而为“错位相减法”求等比数列前n和埋下伏笔。
2)问题情境,引出课题:从前,一个穷人到富人那里去借钱,原以为富人不愿意,哪知富人一口答应了下来,但提出了如下条件:在30天中,富人第一天借给穷人1万元,第二天借给穷人2万元,以后每天所借的钱数都比上一天多一万;但借钱第一天,穷人还1分钱,第二天还2分钱,以后每天所还的钱数都是上一天的两倍,30天后互不相欠。
穷人听后觉得挺划算,但怕上当受骗,所以很为难。
请在座的同学思考一下,帮穷人出个主意.注:师生合作分别给出两个和式:S 1 3 30 ① 230T30122223228229②①学生会求,对②学生知道是等比数列项前n和的问题但却感到不会解!问1:能不能用等差数列求和方法去求?问2:怎么办? 2.师生互动,新课探究:问题1 如何求和: T12222322822930 注:如果学生想不出来,师做必要启发:1)等式右边各项有什么特点? 2)公比是多少?即:从第二项起每一项比前一项多乘以2.3)因此,如果两边232829从而有: T301222222T302222324229230师:如何求T30?注:①学生解出T30,并与S30比较。
等比数列的前n项和教案
等比数列的前n项和教案等比数列的前n项和教案等比数列的前n项和教案1教学目标1掌握等比数列前项和公式,并能运用公式解决简单的问题。
(1)理解公式的推导过程,体会转化的思想;(2)用方程的思想认识等比数列前项和公式,利用公式知三求一;与通项公式结合知三求二;2通过公式的灵活运用,进一步渗透方程的思想,分类讨论的思想,等价转化的思想。
3通过公式推导的教学,对学生进行思维的严谨性的训练,培养他们实事求是的科学态度。
教学建议:教材分析:(1)知识结构:先用错位相减法推出等比数列前项和公式,而后运用公式解决一些问题,并将通项公式与前项和公式结合解决问题,还要用错位相减法求一些数列的前项和。
(2)重点,难点分析:教学重点,难点是等比数列前项和公式的推导与应用。
公式的推导中蕴含了丰富的数学思想,方法(如分类讨论思想,错位相减法等),这些思想方法在其他数列求和问题中多有涉及,所以对等比数列前项和公式的要求,不单是要记住公式,更重要的是掌握推导公式的方法。
等比数列前项和公式是分情况讨论的,在运用中要特别注意和两种情况。
教学建议:(1)本节内容分为两课时,一节为等比数列前项和公式的推导与应用,一节为通项公式与前项和公式的综合运用,另外应补充一节数列求和问题。
(2)等比数列前项和公式的推导是重点内容,引导学生观察实例,发现规律,归纳总结,证明结论。
(3)等比数列前项和公式的推导的其他方法可以给出,提高学生学习的兴趣。
(4)编拟例题时要全面,不要忽略的情况。
(5)通项公式与前项和公式的综合运用涉及五个量,已知其中三个量可求另两个量,但解指数方程难度大。
(6)补充可以化为等差数列,等比数列的数列求和问题。
教学设计示例:课题:等比数列前项和的公式。
教学目标:(1)通过教学使学生掌握等比数列前项和公式的推导过程,并能初步运用这一方法求一些数列的前项和。
(2)通过公式的推导过程,培养学生猜想,分析,综合能力,提高学生的数学素质。
等比数列的前n项和公式经典教案
等比数列的前n项和公式经典教案一、教学目标1. 让学生理解等比数列的概念,掌握等比数列的基本性质。
2. 引导学生通过观察、归纳、推理等方法,探索并证明等比数列的前n项和公式。
3. 培养学生运用等比数列的前n项和公式解决实际问题的能力。
二、教学内容1. 等比数列的概念及基本性质。
2. 等比数列的前n项和公式的探索与证明。
3. 等比数列的前n项和公式的应用。
三、教学重点与难点1. 等比数列的概念及基本性质的理解与运用。
2. 等比数列的前n项和公式的探索与证明。
3. 等比数列的前n项和公式的应用。
四、教学方法1. 采用问题驱动法,引导学生通过观察、归纳、推理等方法探索等比数列的前n项和公式。
2. 运用实例讲解法,让学生在实际问题中体会等比数列的前n项和公式的应用。
3. 利用数形结合法,帮助学生直观地理解等比数列的性质和前n项和公式。
五、教学过程1. 引入:通过讲解现实生活中的等比增长现象,如银行利息、人口增长等,引出等比数列的概念。
2. 讲解等比数列的定义及基本性质,引导学生归纳等比数列的通项公式。
3. 引导学生分组讨论,探索等比数列的前n项和公式,总结并展示各组的探索成果。
4. 讲解等比数列的前n项和公式,并通过实例进行验证。
5. 运用等比数列的前n项和公式解决实际问题,如计算利息、求解等比数列的和等。
6. 总结本节课的主要内容和知识点,布置课后练习题。
注意:这只是一个教案框架,具体的教学内容和过程需要根据实际情况进行调整和补充。
在实际教学过程中,要关注学生的学习反馈,及时调整教学方法和节奏,以确保教学效果。
六、教学评估1. 课堂提问:通过提问了解学生对等比数列概念和性质的理解程度,以及他们是否能够运用前n项和公式解决实际问题。
2. 课后作业:布置相关的习题,要求学生独立完成,以此来检验他们对于等比数列前n项和公式的掌握情况。
3. 小组讨论:观察学生在小组讨论中的表现,了解他们是否能够有效地参与讨论,并与同伴共同解决问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6.3等比数列及其前n 项和考情分析高考中主要在选择题、填空题中考查等比数列的定义、基本运算和性质,在解答题中多与等差数列、函数、不等式等综合考考查基础知识1、等比数列的判定:(1)定义法:*1()n na q q n N a +=∈为非零常数,(2)等比中项法:2*11(0,2)n n n n a a a a n N n -+=≠∈≥且(3)通项公式法:*(,)n n a cq c q n N =∈均为非零常数,(4)1()1n n a S kq k k q=-=≠≠-是常数且q 0且q 1 (5)若{},{}n n a b 均为等比数列,nS 为{}n a 的前n 项和,则1{}(0),{||}{}{()}{}k n n n n n nka k a ma b a a ≠;;;公比不为1的等比数列由相邻两项的差213243{,,}a a a a a a ---,相邻k 项和232{,,}k k k k k S S S S S --仍是等比;由原等比数列中相隔k 项的项从新组成的数列仍等比2、等比数列的性质(1)通项公式:①11n n a a q -=②n m nma q a -= (2)前n 项和公式:111(1)(1)(1)11n n n na q S a a q a q q q q =⎧⎪=--⎨=≠⎪--⎩(3)下脚标性质:若m+n=p+q ,则m n p q a a a a =(4)两个常用技巧:若三个数成等比通常设成,,aa aq q ,若四个数成等比通常设成33,,,a a aq aq q q,方便计算 注意事项1.利用错位相减法推导等比数列的前n 项和: S n =a 1+a 1q +a 1q 2+…+a 1q n -1,同乘q 得:qS n =a 1q +a 1q 2+a 1q 3+…+a 1q n ,两式相减得(1-q )S n =a 1-a 1q n,∴S n =a 1(1-q n)1-q(q ≠1).2.(1)由a n +1=qa n ,q ≠0并不能立即断言{a n }为等比数列,还要验证a 1≠0. (2)在运用等比数列的前n 项和公式时,必须注意对q =1与q ≠1分类讨论,防止因忽略q =1这一特殊情形导致解题失误.3.等比数列的判断方法有:(1)定义法:若a n +1a n =q (q 为非零常数)或a na n -1=q (q 为非零常数且n ≥2且n ∈N *),则{a n }是等比数列.(2)中项公式法:在数列{a n }中,a n ≠0且a 2n +1=a n ·a n +2(n ∈N *),则数列{a n }是等比数列.(3)通项公式法:若数列通项公式可写成a n =c ·q n (c ,q 均是不为0的常数,n ∈N *),则{a n }是等比数列. 题型一 等比数列基本量的计算【例1】设S n 为数列{a n }的前n 项和.已知S 3=7,a 1+3,3a 2,a 3+4构成等差数列.(1)求a 2的值;(2)若{a n }是等比数列,且a n +1<a n (n ∈N *),试求S n 的表达式. 解:(1)由已知得:⎩⎪⎨⎪⎧a 1+a 2+a 3=7,(a 1+3)+(a 3+4)2=3a 2.∴a 2=2.(2)设数列{a n }的公比为q ,由a 2=2,可得a 1=2q ,a 3=2q . 又S 3=7,可知2q +2+2q =7,即2q 2-5q +2=0, 解得q 1=12,q 2=2(舍去,a n +1<a n (n ∈N *)).∵q =12,∴a 1=4.故数列{a n }的前n 项和S n =8-23-n (n ∈N *).【变式1】 等比数列{a n }满足:a 1+a 6=11,a 3·a 4=329,且公比q ∈(0,1). (1)求数列{a n }的通项公式;(2)若该数列前n 项和S n =21,求n 的值. 解 (1)∵a 3·a 4=a 1·a 6=329, 又a 1+a 6=11,故a 1,a 6看作方程x 2-11x +329=0的两根, 又q ∈(0,1)∴a 1=323,a 6=13, ∴q 5=a 6a 1=132,∴q =12,∴a n =323·⎝ ⎛⎭⎪⎫12n -1=13·⎝ ⎛⎭⎪⎫12n -6. (2)由(1)知S n =643⎝ ⎛⎭⎪⎫1-12n =21,解得n =6.题型二 等比数列的判定或证明【例2】已知数列{a n }满足a 1=1,a 2=2,a n +2=a n +a n +12,n ∈N *. (1)令b n =a n +1-a n ,证明:{b n }是等比数列; (2)求{a n }的通项公式. (1)证明 b 1=a 2-a 1=1.当n ≥2时,b n =a n +1-a n =a n -1+a n 2-a n =-12(a n -a n -1)=-12b n -1, ∴{b n }是以1为首项,-12为公比的等比数列. (2)解 由(1)知b n =a n +1-a n =⎝ ⎛⎭⎪⎫-12n -1,当n ≥2时,a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=1+1+⎝ ⎛⎭⎪⎫-12+…+⎝ ⎛⎭⎪⎫-12n -2=1+1-⎝ ⎛⎭⎪⎫-12n -11-⎝ ⎛⎭⎪⎫-12=1+23⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫-12n -1 =53-23⎝ ⎛⎭⎪⎫-12n -1.当n =1时,53-23⎝ ⎛⎭⎪⎫-121-1=1=a 1,∴a n =53-23⎝ ⎛⎭⎪⎫-12n -1(n ∈N *).【变式2】设d 为非零实数,a n =1n [C 1n d +2C 2n d 2+…+(n -1)C n -1n d n -1+n C n n d n](n ∈N *).(1)写出a 1,a 2,a 3并判断{a n }是否为等比数列.若是,给出证明;若不是,说明理由;(2)设b n =nda n (n ∈N *),求数列{b n }的前n 项和S n . 解 (1)由已知可得a 1=d ,a 2=d (1+d ),a 3=d (1+d )2. 当n ≥2,k ≥1时,k n C k n =C k -1n -1,因此a n =∑nk =1k n C k n d k =∑n k =1C k -1n -1d k =d ∑n -1k =0C k n -1d k =d (d +1)n -1. 由此可见,当d ≠-1时,{a n }是以d 为首项,d +1为公比的等比数列; 当d =-1时,a 1=-1,a n =0(n ≥2),此时{a n }不是等比数列. (2)由(1)可知,a n =d (d +1)n -1,从而b n =nd 2(d +1)n -1S n =d 2[1+2(d +1)+3(d +1)2+…+(n -1)(d +1)n -2+n (d +1)n -1].① 当d =-1时,S n =d 2=1.当d ≠-1时,①式两边同乘d +1得(d +1)S n =d 2[(d +1)+2(d +1)2+…+(n -1)(d +1)n -1+n (d +1)n ].②①,②式相减可得-dS n =d 2[1+(d +1)+(d +1)2+…+(d +1)n -1-n (d +1)n ] =d 2⎣⎢⎡⎦⎥⎤(d +1)n-1d-n (d +1)n .化简即得S n =(d +1)n (nd -1)+1. 综上,S n =(d +1)n (nd -1)+1.题型三 等比数列的性质及应用【例3】已知公差不为0的等差数列{a n }的首项a 1为a (a ∈R ),且1a 1,1a 2,1a 4成等比数列.(1)求数列{a n }的通项公式;(2)对n ∈N *,试比较1a 2+1a 22+1a 23+…+1a 2n 与1a 1的大小.解:(1)设等差数列{a n }的公差为d ,由题意可知(1a 2)2=1a 1·1a4, 即(a 1+d )2=a 1(a 1+3d ), 从而a 1d =d 2, 因为d ≠0,所以d =a 1=a . 故通项公式a n =na .(2)记T n =1a 2+1a 22+…+1a 2n, 因为a 2n =2n a ,所以T n =1a (12+122+…+12n )=1a ·12[1-(12)n ]1-12=1a [1-(12)n]. 从而,当a >0时,T n <1a 1;当a <0时,T n >1a 1.【变式3】在等比数列{a n }中,若a 1=12,a 4=-4,则公比q =________;|a 1|+|a 2|+…+|a n |=________.解析 设等比数列{a n }的公比为q ,则a 4=a 1q 3,代入数据解得q 3=-8,所以q =-2;等比数列{|a n |}的公比为|q |=2,则|a n |=12×2n -1,所以|a 1|+|a 2|+|a 3|+…+|a n |=12(1+2+22+…+2n -1)=12(2n -1)=2n -1-12. 答案 -2 2n -1-12 重难点突破【例4】成等差数列的三个正数的和等于15,并且这三个数分别加上2、5、13后成为等比数列{b n }中的b 3、b 4、b 5. (1)求数列{b n }的通项公式; (2)数列{b n }的前n 项和为S n ,求证:数列⎩⎨⎧⎭⎬⎫S n +54是等比数列. [解析] (1)解 设成等差数列的三个正数分别为a -d ,a ,a +d . 依题意,得a -d +a +a +d =15,解得a =5 所以{b n }中的b 3,b 4,b 5依次为7-d,10,18+d . 依题意,由(7-d )(18+d )=100,解得 d =2或d =-13(舍去). 故{b n }的第3项为5,公比为2, 由b 3=b 1·22,即5=b 1·22, 解得b 1=54.所以{b n }是以54为首项,2为公比的等比数列,其通项公式为 b n =54·2n -1=5·2n -3(2)证明 数列{b n }的前n 项和S n =54(1-2n)1-2=5·2n -2-54,即S n +54=5·2n -2所以S 1+54=52,S n +1+54S n +54=5·2n -15·2n -2=2因此⎩⎨⎧⎭⎬⎫S n +54是以52为首项,公比为2的等比数列.巩固提高1. 公比为2的等比数列{a n }的各项都是正数,且a 2a 12=16,则a 5=( )A. 1B. 2C. 4D. 8答案:A解析:∵a 2a 12=16,∴a 27=16,∴a 7=4=a 5×22,∴a 5=1.2.已知等比数列{a n }的前n 项和为S n ,a 3=32,S 3=92,则公比q =( )A. 1或-12 B. -12 C. 1 D. -1或12答案:A解析:设数列的公比为q ,∵a 3=32,S 3=92,∴a 1q 2=32,a 1(1+q +q 2)=92.两式相除得1+q +q 2q 2=3,即2q 2-q -1=0. ∴q =1或q =-12.3.在各项均为正数的等比数列{a n }中,a 1=3,前三项的和S 3=21,则a 3+a 4+a 5的值为( )A. 33B. 72C. 84D. 189 答案:C解析:由题意可知该等比数列的公比q ≠1,故可由S 3=3×(1-q 3)1-q =21,得q 3-7q +6=0,解得q =2或q =-3(舍去).所以a 3+a 4+a 5=3×(22+23+24)=84,故选C.4.已知数列{a n }满足a 1=1,a n +1·a n =2n (n ∈N *),则a 10=( )A. 64B. 32C. 16D. 8 答案:B解析:∵a n +1a n =2n ,∴a n +2·a n +1=2n +1,两式相除得a n +2a n=2.∵a 1=1.∴a 1,a 3,a 5,a 7,a 9构成以1为首项,以2为公比的等比数列,∴a 9=16.又a 10·a 9=29,∴a 10=25=32.5.设{a n }是由正数组成的等比数列,S n 为其前n 项和.已知a 2·a 4=1,S 3=7,则S 5=( )A. 334 B. 314 C. 172 D. 152答案:B解析:依题意知,a 21q 4=1,又a 1>0,q >0,则a 1=1q 2.又S 3=a 1(1+q +q 2)=7,于是有(1q +3)(1q -2)=0,因此有q =12,所以S 5=4(1-125)1-12=314,选B.。