信号与系统实验报告—连续时间信号

合集下载

连续时间信号实验报告

连续时间信号实验报告

一、实验目的1. 理解连续时间信号的基本概念和特性。

2. 掌握连续时间信号的时域分析方法和基本运算。

3. 学会使用MATLAB软件进行连续时间信号的时域分析和图形绘制。

4. 通过实验加深对连续时间信号理论知识的理解和应用。

二、实验原理连续时间信号是指信号在任意时刻都有确定的取值。

本实验主要涉及以下内容:1. 基本连续时间信号的时域表示,如单位冲激信号、单位阶跃信号、正弦信号等。

2. 连续时间信号的时域运算,如卷积、微分、积分等。

3. 连续时间信号的时域分析方法,如时域波形分析、时域频谱分析等。

三、实验设备1. PC机2. MATLAB软件3. 连续时间信号发生器4. 示波器四、实验内容与步骤1. 基本连续时间信号的时域表示(1)在MATLAB中编写程序,生成单位冲激信号、单位阶跃信号和正弦信号。

(2)绘制这些信号的时域波形图,观察其特性。

2. 连续时间信号的时域运算(1)编写程序,实现两个连续时间信号的卷积运算。

(2)绘制卷积结果的时域波形图,观察其特性。

3. 连续时间信号的时域分析方法(1)编写程序,对连续时间信号进行微分和积分运算。

(2)绘制微分和积分结果的时域波形图,观察其特性。

4. 使用MATLAB进行连续时间信号的时域分析(1)使用MATLAB中的函数进行连续时间信号的时域分析,如fft、ifft、diff、int等。

(2)绘制分析结果的时域波形图和频谱图,观察其特性。

五、实验结果与分析1. 基本连续时间信号的时域表示通过实验,我们成功生成了单位冲激信号、单位阶跃信号和正弦信号,并绘制了它们的时域波形图。

观察波形图,我们可以发现这些信号具有不同的特性,如单位冲激信号具有脉冲性质,单位阶跃信号具有阶跃性质,正弦信号具有周期性质。

2. 连续时间信号的时域运算通过实验,我们成功实现了两个连续时间信号的卷积运算,并绘制了卷积结果的时域波形图。

观察波形图,我们可以发现卷积运算的结果具有以下特性:(1)卷积运算的结果是两个信号的叠加。

信号与系统实验一连续时间信号分析实验报告

信号与系统实验一连续时间信号分析实验报告

实验一 连续时间信号分析一、实验目的(一)掌握使用Matlab 表示连续时间信号1、学会运用Matlab 表示常用连续时间信号的方法2、观察并熟悉常用信号的波形和特性(二)掌握使用Matlab 进行连续时间信号的相关运算1、学会运用Matlab 进行连续时间信号的时移、反褶和尺度变换2、学会运用Matlab 进行连续时间信号微分、积分运算3、学会运用Matlab 进行连续时间信号相加、相乘运算4、学会运用Matlab 进行连续时间信号卷积运算二、实验条件装用Matlab R2015a 的电脑。

三、实验内容1、利用Matlab 命令画出下列连续信号的波形图。

(1))4/3t (2cos π+ 程序:t=-3:0.01:3; ft=2*cos(3*t+pi/4); plot(t,ft)图像:(2))t (u )e 2(t--程序:t=-6:0.01:6; ut=(t>=0);ft=(2-1*exp(-t)).*ut; plot(t,ft)图像:(3))]2()(u )][t (cos 1[--+t u t π 程序:t=-6:0.01:6; ut=(t>=0); ut2=(t>=2);ft=(1+cos(pi*t)).*(ut-ut2); plot(t,ft)图像:2、利用Matlab 命令画出复信号)4/t (j 2e )t (f π+=的实部、虚部、模和辐角。

程序:t=0:0.01:20;ft=2*exp(1j*(t+pi/4));subplot(2,2,1);plot(t,real(ft));title('ʵ²¿');axis([-0.5,20,-2.5,2.5]); subplot(2,2,2);plot(t,imag(ft));title('Ð鲿');axis([-0.5,20,-2.5,2.5]); subplot(2,2,3);plot(t,abs(ft));title('Ä£');axis([-0.5,20,-0.5,2.5]); subplot(2,2,4);plot(t,angle(ft));title('·ø½Ç');axis([-0.5,20,-3.5,3.5]);图像:3、已知信号的波形如下图所示:试用Matlab 命令画出()()()()2332----t f t f t f t f ,,,的波形图。

《信号与系统》课程实验报告

《信号与系统》课程实验报告

《信号与系统》课程实验报告《信号与系统》课程实验报告一图1-1 向量表示法仿真图形2.符号运算表示法若一个连续时间信号可用一个符号表达式来表示,则可用ezplot命令来画出该信号的时域波形。

上例可用下面的命令来实现(在命令窗口中输入,每行结束按回车键)。

t=-10:0.5:10;f=sym('sin((pi/4)*t)');ezplot(f,[-16,16]);仿真图形如下:图1-2 符号运算表示法仿真图形三、实验内容利用MATLAB实现信号的时域表示。

三、实验步骤该仿真提供了7种典型连续时间信号。

用鼠标点击图0-3目录界面中的“仿真一”按钮,进入图1-3。

图1-3 “信号的时域表示”仿真界面图1-3所示的是“信号的时域表示”仿真界面。

界面的主体分为两部分:1) 两个轴组成的坐标平面(横轴是时间,纵轴是信号值);2) 界面右侧的控制框。

控制框里主要有波形选择按钮和“返回目录”按钮,点击各波形选择按钮可选择波形,点击“返回目录”按钮可直接回到目录界面。

图1-4 峰值为8V,频率为0.5Hz,相位为180°的正弦信号图1-4所示的是正弦波的参数设置及显示界面。

在这个界面内提供了三个滑动条,改变滑块的位置,滑块上方实时显示滑块位置代表的数值,对应正弦波的三个参数:幅度、频率、相位;坐标平面内实时地显示随参数变化后的波形。

在七种信号中,除抽样函数信号外,对其它六种波形均提供了参数设置。

矩形波信号、指数函数信号、斜坡信号、阶跃信号、锯齿波信号和抽样函数信号的波形分别如图1-5~图1-10所示。

图1-5 峰值为8V,频率为1Hz,占空比为50%的矩形波信号图1-6 衰减指数为2的指数函数信号图1-7 斜率=1的斜坡信号图1-8 幅度为5V,滞后时间为5秒的阶跃信号图1-9 峰值为8V,频率为0.5Hz的锯齿波信号图1-10 抽样函数信号仿真途中,通过对滑动块的控制修改信号的幅度、频率、相位,观察波形的变化。

连续时间信号与系统的频域分析报告

连续时间信号与系统的频域分析报告

连续时间信号与系统的频域分析报告1. 引言连续时间信号与系统的频域分析是信号与系统理论中的重要分支,通过将信号和系统转换到频域,可以更好地理解和分析信号的频谱特性。

本报告将对连续时间信号与系统的频域分析进行详细介绍,并通过实例进行说明。

2. 连续时间信号的频域表示连续时间信号可以通过傅里叶变换将其转换到频域。

傅里叶变换将信号分解成一系列不同频率的正弦和余弦波的和。

具体来说,对于连续时间信号x(t),其傅里叶变换表示为X(ω),其中ω表示频率。

3. 连续时间系统的频域表示连续时间系统可以通过频域中的频率响应来描述。

频率响应是系统对不同频率输入信号的响应情况。

通过系统函数H(ω)可以计算系统的频率响应。

系统函数是频域中系统输出与输入之比的函数,也可以通过傅里叶变换来表示。

4. 连续时间信号的频域分析频域分析可以帮助我们更好地理解信号的频谱特性。

通过频域分析,我们可以获取信号的频率成分、频谱特性以及信号与系统之间的关系。

常用的频域分析方法包括功率谱密度估计、谱线估计等。

5. 连续时间系统的频域分析频域分析也可以用于系统的性能评估和系统设计。

通过分析系统的频响特性,我们可以了解系统在不同频率下的增益和相位变化情况,进而可以对系统进行优化和设计。

6. 实例分析以音频信号的频域分析为例,我们可以通过对音频信号进行傅里叶变换,将其转换到频域。

通过频域分析,我们可以获取音频信号的频谱图,从而了解音频信号的频率成分和频率能量分布情况。

进一步,我们可以对音频信号进行系统设计和处理,比如对音乐进行均衡、滤波等操作。

7. 结论连续时间信号与系统的频域分析是信号与系统理论中重要的内容,通过对信号和系统进行频域分析,可以更好地理解和分析信号的频谱特性。

频域分析也可以用于系统的性能评估和系统设计,对于音频信号的处理和优化具有重要意义。

总结:通过本报告,我们了解了连续时间信号与系统的频域分析的基本原理和方法。

频域分析可以帮助我们更好地理解信号的频谱特性和系统的频响特性,对系统设计和信号处理具有重要意义。

信号与系统实验报告连续时间信号的时域分析

信号与系统实验报告连续时间信号的时域分析

信号与系统实验报告连续时间信号的时域分析实验目的:通过对连续时间信号的时域分析,进一步加深对信号的理解和掌握时域分析的方法和技巧。

实验原理:连续时间信号在时域上可以用其函数形式表示。

通常所说的时域分析即指对该函数形式进行各种数学性质的分析,如:波形特征、奇偶性、对称性、周期性等等。

实验设备:计算机、MATLAB软件。

实验步骤:1. 打开MATLAB软件,新建空白文件,在文件中输入以下代码:t = -10:0.01:10;y = sin(t);subplot(2,1,1);xlabel('t'),ylabel('y');title('原始信号');grid on;plot(-t,-y);2. 点击运行,得到以下结果:图1 连续时间正弦信号及其翻折信号3. 对上述代码进行说明:t表示时间变量,取值范围为-10到10,以0.01为步长。

y表示信号变量,为sin(t)。

subplot(2,1,1)表示将画布分为两个部分,第一个部分为上部分。

plot(t,y)表示绘制t变量与y变量之间的图形。

xlabel('t')表示将x轴标注为t。

title('翻折信号')表示将图形命名为翻折信号。

4. 分别观察原始信号和翻折信号,并进行分析。

原始信号是一条正弦波,周期为2π。

该信号的奇偶性、对称性、周期性均为偶函数。

实验结论:本实验通过对连续时间信号的时域分析,掌握了分析信号的方法和技巧,并同时对信号的奇偶性、对称性、周期性等属性有了更深入的了解,为以后更深入的信号分析工作奠定了基础。

信号与系统实验报告连续时间信号的时域分析

信号与系统实验报告连续时间信号的时域分析

连续时间信号的时域分析一、 实验目的1、 掌握连续时间信号时域运算的基本方法;2、 掌握相关格式的调用格式及作用;3、 掌握连续信号的基本运算;4、 掌握利用计算机进行卷积的运算的原理和方法;5、 熟悉连续信号卷积运算函数conv 的应用;二、 实验原理信号的基本运算包括信号的相加(减)和相乘(除。

信号的时域变换包括信号的平移、翻转、倒相尺度变换等,由以下公式所描述:1、 相加(减):12(t)f (t)f (t)f =±2、 乘:12f(t)f (t)f (t)=⨯3、 延时或平移:0f(t)f(t t )→-,0t 0>时右移,0t 0<时左移4、 翻转:→f(t)f(-t)5、 尺度变换:()()f t f at →,1a >时尺度缩小,1a <时尺度放大,0a <时还必须包含翻转6、 标量相乘:()()f t af t →7、 倒相:()()f t f t →-8、 微分:()()df t f t dt→ 9、 积分:()()tf t f d ττ-∞→⎰10、 卷积:12()()*()f t f t f t =三、 验证性实验1、 连续信号的相加>> clear all;>> t=0:0.0001:3;>> b=3;>> t0=1;u=stepfun(t,t0);>> n=length(t);>>fori=1:nu(i)=b*u(i)*(t(i)-t0);end>> y=sin(2*pi*t);>> f=y+u;>>plot(t,f);>>xlabel('时间(t)');ylabel('幅值f(t)');title('连续信号的相加');2、 连续信号的相乘>> clear all;>>t=0:0.0001:5;>>b=3;>>t0=1;u=stepfun(t,t0);>>n=length(t);>>for i=1:n>>u(i)=b*u(i)*(t(i)-t0);>>end>>y=sin(2*pi*t);>> f=y.*u;>>plot(t,f)>>xlabel(‘时间(t)’);ylabel(‘幅值f(t)’);title(‘连续信号的相乘’);3、 移位>> clear all;>> t=0:0.0001:2;>> y=sin(2*pi*t);>> y1=sin(2*pi*(t-0.2));>>plot(t,y,'-',t,y1,'--')4、 尺度变换>> clear all;>>t=0:0.0001:1;>>a=2;>>y=sin(2*pi*t);>>y1=sin(2*a*pi*t);>>subplot(2,1,1);>>plot(t,y);>>ylabel('y(t)');xlabel('t');>> title('尺度变换');>>subplot(2,1,2)>>plot(t,y1);>>ylabel('y1(t)');xlabel('t');四、 设计性实验1、 已知信号1f (t)(t 4)[U(t)U(t 4)]=-+--,2(t)sin(2t)f π=,用MATLAB 绘出下列信号的时域波形。

信号与系统实验报告—连续时间信号

信号与系统实验报告—连续时间信号

信号与系统实验报告—连续时间信号实验名称:连续时间信号一、实验目的1、熟悉Matlab编程工具的应用;2、掌握利用Matlab进行连续时间信号的绘制、分析和处理。

二、实验原理连续时间信号是指在时间轴上连续存在的信号。

连续时间信号可以用数学函数来描述,并且它们是时间变量t的函数,其幅度可以是任意实数或复数。

连续时间信号可以由物理系统中的物理量得到,比如声音信号、图像信号等。

对于一个连续时间信号x(t),可以对它进行各种变换,如平移、伸缩、反转等,这些操作可以用函数来表示。

其中,平移信号可以用x(t - a)表示,伸缩信号可以用x(at)表示,反转信号可以用x(-t)表示。

另外,通过利用傅里叶变换可以分析连续时间信号的频率构成,了解信号的频域特性,其傅里叶变换公式为:F(jω) = ∫[ -∞ , ∞ ] f(t) · e^(-jωt) · dt其中,F(jω)为信号在频域上的变换值,因此,我们可以通过傅里叶变换来分析信号在频域上的性质。

三、实验内容2、使用Matlab对信号进行平移、伸缩、反转等处理;3、使用Matlab对信号进行傅里叶变换,分析信号的频域特性。

四、实验步骤1、绘制信号首先,我们需要确定信号的形式和表示方法,根据实验要求选择不同的信号进行绘制。

在此以正弦信号为例,使用Matlab中的plot函数绘制正弦函数图形:t = 0: 0.01: 10;x = sin (2* pi* t);plot(t, x);xlabel('Time / s');title('Continuous sinusoidal signal');对信号进行平移、伸缩、反转处理也是十分简单的,只需要在信号函数上添加对应的变换操作即可。

以下是对信号进行平移、伸缩、反转处理的Matlab代码:3、进行傅里叶变换及频域分析Y = fft (x);P2 = abs (Y/L);P1(2:end-1) = 2* P1(2:end-1);title ('Single-Sided Amplitude Spectrum of x(t)');ylabel ('|P1(f)|');根据得到的频域分析结果,我们可以得出连续时间信号的功率、频率等特性。

信号与系统实验报告

信号与系统实验报告

信号与系统实验报告一、信号的时域基本运算1.连续时间信号的时域基本运算两实验之一实验分析:输出信号值就等于两输入信号相加(乘)。

由于b=2,故平移量为2时,实际是右移1,符合平移性质。

两实验之二心得体会:时域中的基本运算具有连续性,当输入信号为连续时,输出信号也为连续。

平移,伸缩变化都会导致输出结果相对应的平移伸缩。

2.离散时间信号的时域基本运算两实验之一实验分析:输出信号的值是对应输入信号在每个n值所对应的运算值,当进行拉伸变化后,n值数量不会变,但范围会拉伸所输入的拉伸系数。

两实验之二心得体会:离散时间信号可以看做对连续时间信号的采样,而得到的输出信号值,也可以看成是连续信号所得之后的采样值。

二、连续信号卷积与系统的时域分析1.连续信号卷积积分两实验之一实验分析:当两相互卷积函数为冲激函数时,所卷积得到的也是一个冲激函数,且该函数的冲激t值为函数x,函数y冲激t值之和。

两实验之二心得体会:连续卷积函数每个t值所对应的卷积和可以看成其中一个在k值取得的函数与另外一个函数相乘得到的一个分量函数,并一直移动k值直至最后,最后累和出来的最终函数便是所得到的卷积函数。

3.RC电路时域积分两实验之一实验分析:全响应结果正好等于零状态响应与零输入响应之和。

两实验之二心得体会:具体学习了零状态,零输入,全响应过程的状态及变化,与之前所学的电路知识联系在一起了。

三、离散信号卷积与系统的时域分析1.离散信号卷积求和两实验之一实验分析:输出结果的n值是输入结果的k号与另一个n-k的累和两实验之二心得体会:直观地观察到卷积和的产生,可以看成连续卷积的采样形式,从这个方面去想,更能深入地理解卷积以及采样的知识。

2.离散差分方程求解两实验之一实验分析:其零状态响应序列为0 0 4 5 7.5,零输入响应序列为2 4 5 5.5 5.75,全状态响应序列为2 4 9 10.5 13.25,即全状态=零输入+零状态。

两实验之二心得体会:求差分方程时,可以根据全状态响应是由零输入输入以及零状态相加所得,分开来求,同时也加深了自己对差分方程的求解问题的理解。

信号与系统实验报告—连续时间信号

信号与系统实验报告—连续时间信号

实验一 连续时间信号§1.1 表示信号的基本MATLAB 函数目的学习连续时间信号和离散时间信号在MATLAB 中的表示。

相关知识1.离散时间信号的表示通常,信号用一个行向量或一个列向量表示。

在MATLAB 中全部向量都从1开始编号,如y(1)是向量y 的第1个元素。

如果这些编号与你的应用不能对应,可以创建另外一标号向量与信号编号保持一致。

例如,为了表示离散时间信号⎩⎨⎧≤≤-=n n n n x 其余 033 2][ 首先利用冒号运算符对][n x 的非零样本定义标号向量,然后再定义向量x ,表示在这些时间编号每一点的信号值>> n=[-3:3];>> x=2*n;如果要在一个更宽的范围内检查信号,就需拓宽n和x。

例如如要在5-n画≤5≤出这个信号,可以拓宽标号向量n,然后将这些附加的元素加到向量x上,如>> n=[-5:5];>> x=[0 0 x 0 0];>> stem(n,x);如果要大大扩展信号的范围,可利用zeros函数。

例如如果想要包括100≤-n,这时可键5≤-n的范围,而向量x已扩展到5≤100≤入>> n=[-100:100];>> x=[zeros(1,95) x zeros(1,95)];假设要定义][][1n n x δ=,]2[][2+=n n x δ,可编程如下>> nx1=[0:10];>> x1=[1 zeros(1,10)];>> nx2=[-5:5];>> x2=[zeros(1,3) 1 zeros(1,7)];>> stem(nx1,x1);>> stem(nx2,x2);2.连续信号的表示①用Symbolic Math Toolbox②用向量表示连续时间信号,这些向量包含了该信号在时间上依次隔开的样本;可用具有任意步长宗量的分号运算符和利用linspace函数。

信号与系统中的连续时间系统分析

信号与系统中的连续时间系统分析

信号与系统中的连续时间系统分析信号与系统是电子工程、自动控制等领域重要的基础学科,与我们日常生活息息相关。

在信号与系统中,连续时间系统分析是其中的重要内容之一。

本文将着重介绍连续时间系统分析的基本概念、方法和应用。

一、连续时间系统的概念连续时间系统是指信号的取样频率大于或等于连续时间信号的变化频率,信号在任意时间均有定义并连续可取值。

连续时间系统包括线性系统和非线性系统两种,其中线性系统是一类常见且具有重要意义的系统。

二、连续时间系统的表示连续时间系统可以通过微分方程或差分方程来表示,其中微分方程常用于描述线性时不变系统,而差分方程常用于描述线性时变系统。

在实际应用中,可以通过拉普拉斯变换或傅里叶变换对连续时间系统进行分析和求解。

三、连续时间系统的性质连续时间系统具有多种性质,包括线性性、时不变性、因果性、稳定性等。

其中线性性是指系统对输入信号的响应是可叠加的,时不变性是指系统的输出与输入之间的关系不随时间的推移而改变。

四、连续时间系统的频域分析连续时间系统的频域分析是通过傅里叶变换来实现的,可以将时域中的信号转换为频域中的频谱。

通过频域分析,我们可以获得系统的幅频特性和相频特性,进一步了解系统对不同频率信号的响应。

五、连续时间系统的时域分析连续时间系统的时域分析是通过微分方程或差分方程来实现的,可以确定系统的时域特性。

通过时域分析,我们可以获得系统的阶数、单位阶跃响应、单位冲激响应等关键信息。

六、连续时间系统的应用连续时间系统的分析在实际应用中具有广泛的应用价值。

例如,在通信系统中,我们需要对信号进行调制、解调、编码、解码等处理,这些过程都需要借助连续时间系统的分析方法。

此外,连续时间系统的分析也在信号处理、图像处理、音频处理等领域有着重要的应用。

结语:连续时间系统分析是信号与系统学科中的重要内容,具有广泛的理论基础和实际应用。

通过深入学习连续时间系统的概念、表示、性质、频域分析、时域分析和应用,我们可以更好地理解和掌握信号与系统的基本原理和方法,为相关领域的研究和应用提供理论指导和技术支持。

信号与系统实验报告一-连续时间信号

信号与系统实验报告一-连续时间信号

实验一 连续时间信号§1.2 连续时间复指数信号 基本题1.对下面信号创建符号表达式()()t t t x ππ2c o s2sin )(= 这两个信号应分别创建,然后用symmul 组合起来。

对于T=4,8和16,利用ezplot 画出320≤≤t 内的信号。

什么是)(t x 的基波周期?x(t) =cos((pi*t)/2)*sin((pi*t)/2)=1/2sin(pi*t) (T=4)若令f1=1 /T1=1/2,很容易得到其基波分量:1/2sin(pi*t)同理可得:x(t)=cos((pi*t)/4)*sin((pi*t)/4)=1/2sin((pi*t)/2) (T=8)其基波分量为1/2sin((pi*t)/2),基频为f1=1/T1=1/4x(t)= cos((pi*t)/8)*sin((pi*t)/8)=1/2sin((pi*t)/4) (T=16)其基波分量为1/2sin((pi*t)/4),基频为f1=1/T1=1/8 中等题2.对下面信号创建一个符号表达式()t e t x at π2cos )(-=对于81,41,21=a ,利用ezplot 确定d t ,d t 为)(t x 最后跨过0.1的时间,将d t 定义为该信号的消失的时间。

利用ezplot 对每一个a 值确定在该信号消失之前,有多少个完整的余弦周期出现,周期数目是否正比于品质因素a T Q 2)2(π=?1)当a=1/2时: x(t)= cos(2*pi*t)/exp(t/2)利用Tool菜单中的data cursor项目可大致确定d t=4.548在该信号消失之前,有个约4(4.5)完整的余弦周期出现,对应的品质因数为6.28。

2)当a=1/4时: x(t)= cos(2*pi*t)/exp(t/4)利用Tool菜单中的data cursor项目可大致确定d t=9.053在该信号消失之前,有个约9完整的余弦周期出现,对应的品质因数为12.57。

信号与系统实验报告

信号与系统实验报告

实验三常见信号的MATLAB表示及运算一、实验目的1. 熟悉常见信号的意义、特性及波形2. 学会使用MATLAB表示信号的方法并绘制信号波形3.掌握使用MATLAB进行信号基本运算的指令4.熟悉用MATLAB实现卷积积分的方法二、实验原理根据MA TLAB的数值计算功能和符号运算功能, 在MATLAB中, 信号有两种表示方法, 一种是用向量来表示, 另一种则是用符号运算的方法。

在采用适当的MATLAB语句表示出信号后, 就可以利用MATLAB中的绘图命令绘制出直观的信号波形了。

1.连续时间信号从严格意义上讲, MATLAB并不能处理连续信号。

在MATLAB中, 是用连续信号在等时间间隔点上的样值来近似表示的, 当取样时间间隔足够小时, 这些离散的样值就能较好地近似出连续信号。

在MATLAB中连续信号可用向量或符号运算功能来表示。

⑴向量表示法对于连续时间信号, 可以用两个行向量f和t来表示, 其中向量t是用形如的命令定义的时间范围向量, 其中, 为信号起始时间, 为终止时间, p为时间间隔。

向量f为连续信号在向量t所定义的时间点上的样值。

⑵符号运算表示法如果一个信号或函数可以用符号表达式来表示, 那么我们就可以用前面介绍的符号函数专用绘图命令ezplot()等函数来绘出信号的波形。

⑶常见信号的MATLAB表示单位阶跃信号单位阶跃信号的定义为:方法一: 调用Heaviside(t)函数首先定义函数Heaviside(t) 的m函数文件,该文件名应与函数名同名即Heaviside.m。

%定义函数文件,函数名为Heaviside,输入变量为x,输出变量为yfunction y= Heaviside(t)y=(t>0); %定义函数体, 即函数所执行指令%此处定义t>0时y=1,t<=0时y=0, 注意与实际的阶跃信号定义的区别。

方法二: 数值计算法在MATLAB中, 有一个专门用于表示单位阶跃信号的函数, 即stepfun( )函数, 它是用数值计算法表示的单位阶跃函数。

信号与系统实验报告

信号与系统实验报告

信号与系统实验报告实验一,连续时间信号和离散时间信号的时域分析。

本实验旨在通过对连续时间信号和离散时间信号的时域分析,加深对信号与系统的理解。

首先我们将连续时间信号和离散时间信号分别进行采样和重构,然后进行时域分析,得出相应的结论。

实验步骤:1. 连续时间信号的采样和重构。

我们选取了一段正弦信号作为连续时间信号,通过模拟采样和重构的过程,我们得到了采样后的离散时间信号,并将其进行重构,得到了重构后的连续时间信号。

2. 离散时间信号的采样和重构。

同样地,我们选取了一段离散时间信号,进行了模拟采样和重构的过程,得到了采样后的离散时间信号,并将其进行重构,得到了重构后的离散时间信号。

实验结果与分析:1. 连续时间信号的时域分析。

通过对连续时间信号的采样和重构,我们发现在一定条件下,采样后的离散时间信号能够完美地重构成原始的连续时间信号。

这说明连续时间信号的信息是完整的,没有丢失。

2. 离散时间信号的时域分析。

对于离散时间信号的采样和重构,我们也得到了类似的结论,即在一定条件下,采样后的离散时间信号能够完美地重构成原始的离散时间信号。

结论与总结:通过本次实验,我们对连续时间信号和离散时间信号的时域分析有了更深入的了解。

我们明白了采样和重构的过程,并且得出了结论,在一定条件下,采样后的信号能够完美地重构成原始信号。

这对于我们理解信号与系统的基本原理具有重要的意义。

实验二,信号的傅里叶变换。

本实验旨在通过对信号的傅里叶变换,了解信号在频域上的特性,并掌握信号的频谱分析方法。

实验步骤:1. 连续时间信号的傅里叶变换。

我们选取了不同类型的连续时间信号,进行了傅里叶变换,观察并记录了其频谱特性。

2. 离散时间信号的傅里叶变换。

同样地,我们选取了不同类型的离散时间信号,进行了傅里叶变换,观察并记录了其频谱特性。

实验结果与分析:1. 连续时间信号的频谱分析。

通过对连续时间信号的傅里叶变换,我们发现不同类型的信号在频域上有着不同的频谱特性,有些信号的频谱集中在低频段,而有些信号的频谱集中在高频段。

信号与系统实验报告 连续信号的时域描述与运算

信号与系统实验报告 连续信号的时域描述与运算

信号与系统实验报告课程名称:信号与系统实验实验项目名称:连续信号的时域描述与运算专业班级:姓名:学号:完成时间:年月日一、实验目的1.通过绘制典型信号的波形,了解这些信号的基本特征。

2.通过绘制信号运算结果的波形,了解这些信号运算对信号所起的作用。

二、实验原理1.基于MATLAB的信号描述方法如果一个信号在连续时间范围内(除有限个间断点外)有定义,则称该信号为连续时间信号,简称为连续信号。

从严格意义上讲, MATLAB数值计算的方法并不能处理连续信号,但是可利用连续信号在等时间间隔点的采样值来近似表示连续信号,即当采样间隔足够小时,这些离散采样值能够被MATLAB处理,并且能较好地近似表示连续信号。

(1)向量表示法对于连续时间信号f(t),可以定义两个行向量f和t来表示,其中向量t是形如t=t1:Δt:t2的MATLAB命令定义的时间范围向量,t1为信号起始时间,t2为终止时间,Δt为时间间隔;向量f为连续时间信号f(t)在向量t所定义的时间点上的采样值。

(2)符号运算表示法如果信号可以用一个符号表达式来表示,则可用ezplot命令绘制出信号的波形。

2.连续信号的基本运算(1)信号的相加与相乘信号的已知信号f1(t)、f2(t),信号相加和相乘记为f(t)=f1(t)+f2(t)f(t)=f1(t)·f2(t)(2)微分与积分对于连续时间信号,其微分运算是用diff函数来完成的。

其语句格式为:diff(function,’variable’,n);其中function表示需要进行求导运算的信号,或者被赋值的符号表达式;variable为求导运算的独立变量;n为求导的阶数,默认值为求一阶导数。

连续信号的积分运算用int函数来完成。

其语句格式为:int(function,’variable’,a,b);其中function表示被积信号,或者被赋值的符号表达式;variable为积分变量;a,b为积分上、下限,a和b省略时求不定积分。

连续时间系统实验报告(3篇)

连续时间系统实验报告(3篇)

第1篇一、实验目的1. 理解连续时间系统的基本概念和特性。

2. 掌握连续时间系统建模和仿真方法。

3. 熟悉连续时间系统的分析方法。

4. 培养实验操作能力和数据分析能力。

二、实验原理连续时间系统是指系统中各物理量随时间连续变化的系统。

连续时间系统在工程应用中广泛存在,如电路、信号处理、控制系统等。

本实验主要研究连续时间系统的建模、仿真和分析方法。

三、实验仪器与设备1. 连续时间系统实验箱2. 示波器3. 信号发生器4. 信号分析仪5. 计算机及仿真软件(如MATLAB)四、实验内容及步骤1. 连续时间系统建模(1)根据实验要求,选择合适的连续时间系统,如一阶滤波器、二阶滤波器等。

(2)根据系统特性,确定系统的输入信号和输出信号。

(3)利用实验箱提供的元器件搭建实验电路。

(4)根据元器件参数,推导出系统的传递函数。

2. 连续时间系统仿真(1)利用MATLAB软件,根据推导出的传递函数,建立系统的仿真模型。

(2)设置仿真参数,如采样时间、初始条件等。

(3)运行仿真,观察系统输出波形。

3. 连续时间系统分析(1)分析系统输出波形,观察系统的稳定性和频率响应特性。

(2)根据实验数据,计算系统的幅频特性和相频特性。

(3)分析系统在实际应用中的优缺点。

五、实验结果与分析1. 实验结果(1)根据实验数据和仿真结果,绘制系统输出波形图。

(2)根据实验数据和仿真结果,计算系统的幅频特性和相频特性。

2. 实验分析(1)通过实验和分析,验证了连续时间系统建模和仿真方法的有效性。

(2)分析了系统在实际应用中的优缺点,为实际工程提供了参考。

六、实验结论1. 本实验成功地实现了连续时间系统的建模、仿真和分析。

2. 通过实验,掌握了连续时间系统的基本概念、特性和分析方法。

3. 培养了实验操作能力和数据分析能力。

4. 为今后在实际工程中的应用奠定了基础。

七、实验注意事项1. 实验过程中,注意安全操作,防止触电、短路等事故发生。

2. 实验数据要准确记录,便于后续分析。

连续时间信号与系统的频域分析实验报告(共9篇)

连续时间信号与系统的频域分析实验报告(共9篇)

连续时间信号与系统的频域分析实验报告(共9篇)信号与系统实验五__连续时间信号的频域分析实验名称:连续时间信号的频域分析报告人:姓名班级学号一、实验目的1、熟悉傅里叶变换的性质;2、熟悉常见信号的傅里叶变换;3、了解傅里叶变换的MATLAB实现方法。

二、实验内容及运行结果1、编程实现下列信号的幅度频谱:(1)求出f(t)=u(2t+1)-u(2t-1)的频谱函数F(w);请与f1(t) u(2t+1)-u(2t-1)的频谱函数F1(w)进行比较,说明两者的关系。

%(1)f(t)=u(2t+1)-u(2t-1)与f(t)=u(t+1)-u(t-1) syms t w t1 w1Gt=sym(&#39;Heaviside(2*t+1)-Heaviside(2*t-1)&#39;);Gt1=sym(&#39;Heaviside(t1+1)-Heaviside(t1-1)&#39;);Fw=fourier(Gt,t,w);Fw1=fourier(Gt1,t1,w1);FFw=maple(&#39;convert&#39;,Fw,&#39;piecewise&#39;);FFw1=maple(&#39;convert&#39;,Fw1,&#39;piecewise&#39;);FFP=abs(FFw);FFP1=abs(FFw1);subplot(2,1,1);ezplot(FFP,[-10*pi 10*pi]);axis([-10*pi 10*pi 0 1.5]);subplot(2,1,2);ezplot(FFP1,[-10*pi 10*pi]);grid;axis([-10*pi 10*pi 0 2.2]);不同点:F1(w)的图像在扩展,幅值是F(w)的两倍。

(2)三角脉冲f2(t)=1-|t|;|t|=1;ft=sym(&#39;(1+t)*Heaviside(t+1)-2*t*Heaviside(t)+(t-1)*Heaviside( t-1)&#39;);Fw=fourier(ft);subplot(211)ezplot(abs(Fw)); g2)&#39;);ft=ifourier(Fw,w,t)ft =exp(-4*t)*heaviside(t)-exp(4*t)*heaviside(-t)(2)F(w)=((i*w)+5*i*w-8)/((i*w)+6*i*w+5)syms t wFw=sym(&#39;((i*w)+5*i*w-8)/((i*w)+6*i*w+5)&#39;);ft=ifourier(Fw,w,t)ft =dirac(t)+(2*exp(-5*t)-3*exp(-t))*heaviside(t)三、讨论与总论通过本实验,掌握了信号的傅里叶变换的性质以及方法,对傅里叶变换的性质有进一步的提高。

信号与系统的实验报告(2)

信号与系统的实验报告(2)

信号与系统实验报告——连续时间系统的复频域分析班级:05911101学号:**********姓名:***实验五连续时间系统的复频域分析——1120111487 信息工程(实验班)蒋志科一、实验目的①掌握拉普拉斯变换及其反变换的定义,并掌握MA TLAB 实现方法 ②学习和掌握连续时间系统系统函数的定义及其复频域分析方法③掌握系统零极点的定义,加深理解系统零极点分布与系统特性的关系。

二、实验原理与方法 1、拉普拉斯变换连续时间信号x(t)的拉普拉斯变换定义为:X s =x (t )e −st dt +∞−∞拉普拉斯反变换为:x t =12πj X (s )e st ds σ+j ∞σ−j ∞在MA TLAB 中可以采用符号数学工具箱中的laplace 函数和ilaplace 函数进行拉氏变换和拉氏反变换。

L=laplace(F)符号表达式F 的拉氏变换,F 中时间变量为t ,返回变量为s 的结果表达式。

L=laplace(F,t)用t 替换结果中的变量s 。

F=ilaplace(L)以s 为变量的符号表达式L 的拉氏反变换,返回时间变量t 的结果表达式。

F=ilaplace(L,x)用x 替换结果中的变量t 。

2、连续时间系统的系统函数连续时间系统的系统函数是系统单位冲激响应的拉氏变换H s =ℎ(t )e −st dt +∞−∞此外,连续时间系统的系统函数还可以由系统输入和输出信号的拉氏变换之比得到H s =Y(s)/X(s) 单位冲激响应h(t)反映了系统的固有性质,而H(s)从复频域反映了系统的固有性质。

对于H(s)描述的连续时间系统,其系统函数s 的有理函数H s =b M s M +b M−1s M−1+⋯+b 0a n s n +a n −1s M−1+⋯+a 03、连续时间系统的零极点分析系统的零点指使式H s 的分子多项式为零的点,极点指使分母多项式为零的点,零点使系统的值为零,极点使系统函数的值无穷大。

信号与系统实验报告实验三连续时间LTI系统的频域分析

信号与系统实验报告实验三连续时间LTI系统的频域分析

实验三 连续时间LTI 系统的频域分析一、实验目的1、掌握系统频率响应特性的概念及其物理意义;2、掌握系统频率响应特性的计算方法和特性曲线的绘制方法,理解具有不同频率响应特性的滤波器对信号的滤波作用;3、学习和掌握幅度特性、相位特性以及群延时的物理意义;4、掌握用MATLAB 语言进行系统频响特性分析的方法。

基本要求:掌握LTI 连续和离散时间系统的频域数学模型和频域数学模型的MATLAB 描述方法,深刻理解LTI 系统的频率响应特性的物理意义,理解滤波和滤波器的概念,掌握利用MATLAB 计算和绘制LTI 系统频率响应特性曲线中的编程。

二、实验原理及方法1 连续时间LTI 系统的频率响应所谓频率特性,也称为频率响应特性,简称频率响应(Frequency response ),是指系统在正弦信号激励下的稳态响应随频率变化的情况,包括响应的幅度随频率的变化情况和响应的相位随频率的变化情况两个方面。

上图中x(t)、y(t)分别为系统的时域激励信号和响应信号,h(t)是系统的单位冲激响应,它们三者之间的关系为:)(*)()(t h t x t y =,由傅里叶变换的时域卷积定理可得到:)()()(ωωωj H j X j Y =3.1或者: )()()(ωωωj X j Y j H =3.2)(ωj H 为系统的频域数学模型,它实际上就是系统的单位冲激响应h(t)的傅里叶变换。

即⎰∞∞--=dt et h j H tj ωω)()( 3.3由于H(j ω)实际上是系统单位冲激响应h(t)的傅里叶变换,如果h(t)是收敛的,或者说是绝对可积(Absolutly integrabel )的话,那么H(j ω)一定存在,而且H(j ω)通常是复数,因此,也可以表示成复数的不同表达形式。

在研究系统的频率响应时,更多的是把它表示成极坐标形式:)()()(ωϕωωj ej H j H = 3.4上式中,)j (ωH 称为幅度频率相应(Magnitude response ),反映信号经过系统之后,信号各频率分量的幅度发生变化的情况,)(ωϕ称为相位特性(Phase response ),反映信号经过系统后,信号各频率分量在相位上发生变换的情况。

信号与系统(连续系统的时域分析)实验报告1

信号与系统(连续系统的时域分析)实验报告1

信号与系统(连续系统的时域分析)实验报告1本次实验内容是关于连续信号和系统的时域分析,我将按照实验操作流程、实验结果、实验分析和实验总结四个方面进行本次实验报告。

实验操作流程:1、根据实验指导书,找到实验需要使用的硬件设备和软件平台。

3、进行连续信号的产生和输入,根据实验指导书中的要求,选择不同的信号类型,改变其频率、振幅、相位等参数。

5、通过实验软件平台对产生的信号和系统进行采样和采集,并进行大量的数据处理和分析。

6、根据实验结论和实验指导书中的要求,编写实验报告。

实验结果:在本次实验中,我成功产生了三种不同类型的连续信号,分别是正弦信号、方波信号和三角波信号,同时我也成功搭建了两种不同类型的连续系统,分别是低通滤波器和高通滤波器,随着不同的输入信号对系统的测试,产生了一系列不同的实验结果。

主要的实验结果如下:首先是正弦信号的生成和输入,通过改变其频率和幅值,观察到了信号的变化过程及其在系统中被处理的效果,在低通滤波器中,信号的频率被截止,经过系统后的信号相比于输入信号更加平滑;在高通滤波器中,信号的低频部分被丢弃,经过系统后的信号比输入信号更加尖锐。

其次是方波信号的生成和输入,由于方波信号富含基频及其谐波,我们可以在低通滤波器中观察到对基频和谐波的处理效果,在低通滤波器中,我们可以观察到基频及其谐波被通过,而高于截止频率的谐波则被丢掉;在高通滤波器中,方波信号的低频部分被丢掉,越高的谐波被通过,产生重音类的声音。

最后是三角波信号的生成和输入,我们发现三角波信号的频率变化相对于方波信号更加平缓,变化更加连续,因此在经过低通滤波器进行处理的时候,我们可以观察到频率更加平滑,而高通滤波器将产生一个类似于单谐波的效果,快速上升和下降的部分被丢掉,产生一个非常平滑的信号。

实验分析:通过本次实验,我们了解了连续信号和系统的时域分析方法,对不同类型的信号和系统有了更深入的了解,同时也提升了我们对实验平台的掌握能力和实际操作的经验。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验一 连续时间信号§1.1 表示信号的基本MATLAB 函数目的学习连续时间信号和离散时间信号在MATLAB 中的表示。

相关知识1.离散时间信号的表示通常,信号用一个行向量或一个列向量表示。

在MATLAB 中全部向量都从1开始编号,如y(1)是向量y 的第1个元素。

如果这些编号与你的应用不能对应,可以创建另外一标号向量与信号编号保持一致。

例如,为了表示离散时间信号⎩⎨⎧≤≤-=n n n n x 其余 033 2][首先利用冒号运算符对][n x 的非零样本定义标号向量,然后再定义向量x ,表示在这些时间编号每一点的信号值>> n=[-3:3];>> x=2*n;如果要在一个更宽的范围内检查信号,就需拓宽n和x。

例如如要在5-n画≤5≤出这个信号,可以拓宽标号向量n,然后将这些附加的元素加到向量x上,如>> n=[-5:5];>> x=[0 0 x 0 0];>> stem(n,x);如果要大大扩展信号的范围,可利用zeros函数。

例如如果想要包括100≤-n,这时可键5≤-n的范围,而向量x已扩展到5≤100≤入>> n=[-100:100];>> x=[zeros(1,95) x zeros(1,95)];假设要定义][][1nnxδ=,]2[][2+=nnxδ,可编程如下>> nx1=[0:10];>> x1=[1 zeros(1,10)];>> nx2=[-5:5];>> x2=[zeros(1,3) 1 zeros(1,7)];>> stem(nx1,x1);>> stem(nx2,x2);2.连续信号的表示①用Symbolic Math T oolbox②用向量表示连续时间信号,这些向量包含了该信号在时间上依次隔开的样本;可用具有任意步长宗量的分号运算符和利用linspace函数。

例如想创建一覆盖区间55≤-t,步长为0.1秒的向量,既可以用t=[-5:0.1:5],或者用≤t=linspace(-5,5,101)。

§1.2 连续时间复指数信号例如:考虑连续时间正弦信号()T t)(=,利用执行sint xπ2>> x=sym('sin(2*pi*t/T)');就创建了MATLAB的符号表达式)(t x。

x的变量是单一的字符串‘t’和‘T’。

函数ezplot用于对一个仅限于一个变量的符号表达式画图,所以必须将)(t x的基波周期设置到某一具体的值。

若想设置T=5,可用subs>> x5=subs(x,5,'T');于是,x5就是()5t xπ=的一个符号表达式。

利用执行)(tsin2>> ezplot(x5,[0,10])可画出x5两个周期的波形,如下图基本题1.对下面信号创建符号表达式()()T t T t t x ππ2cos 2sin )(=这两个信号应分别创建,然后用symmul 组合起来。

对于T=4,8和16,利用ezplot 画出320≤≤t 内的信号。

什么是)(t x 的基波周期?可编程如下:y=sym('sin(2*pi*t/T)');z=sym('cos(2*pi*t/T)');x=y*z;x4=subs(x,4,'T');x8=subs(x,8,'T');x16=subs(x,16,'T');subplot(2,2,1)ezplot(x4,[0,32]);subplot(2,2,2)ezplot(x8,[0,32]);subplot(2,2,3) ezplot(x16,[0,32]) 图如下:上图分别为T=4,T=8,T=16时的波形,由于x(t)即为一个正弦信号,所以所得的图为正弦波形,T 增大,f 变小,故图形变疏。

它们的基波周期为T/2.中等题2.对下面信号创建一个符号表达式()t e t x at π2cos )(-= 对于81,41,21=a ,利用ezplot 确定d t ,d t 为)(t x 最后跨过0.1的时间,将d t 定义为该信号的消失的时间。

利用ezplot 对每一个a 值确定在该信号消失之前,有多少个完整的余弦周期出现,周期数目是否正比于品质因素a T Q 2)2(π=? 程序如下:y=sym('exp(-1*a*t)');z=sym('cos(2*pi*t)');x=y*z;x1=subs(x,1/2,'a'); x2=subs(x,1/4,'a'); x3=subs(x,1/8,'a'); subplot(2,2,1) ezplot(x1,[0,20]) subplot(2,2,2) ezplot(x2,[0,15]) subplot(2,2,3) ezplot(x3,[0,25]) 波形图如下:分析:上图分别为a=1/2,a=1/4,a=1/8时的波形图。

这是指数衰减信号,随着衰减指数a的不同,衰减的速度不同,a=1/2时,消失时间约为4,大概有4个完整的波形;a=1/4时,消失时间约为9,大约有9个完整的波形;a=1/8时,消失时间约为18,大概有18个完整的波形。

可以看出周期数目大致正比于品质因素aT Q 2)2(π=?深入题3.将信号82162)(t j t j e e t x ππ+=的符号表达式存入x 中。

记住:在符号表达式中1-是用‘i ’而不是'j'。

函数ezplot 不能直接画出)(t x 。

因为)(t x 是一个复数信号,实部和虚部分量必须要提取出来,然后分别画出它们。

程序如下:y=sym('exp(i*2*pi*t/16)');z=sym('exp(i*2*pi*t/8)');x=y+z;subplot(2,1,1)ezplot(real(x),[0,25])subplot(2,1,2)ezplot(imag(x),[0,25])图形如下:实部:虚部:4.分别画出在区间32≤n上)(t x的幅值和相位。

思考为什么相位图是不连续的?0≤Fo=0,而F(nw)=1/2(an+jbn),其中:|F(1)|=|F(2)|=(2)/2幅度:相位:因为此信号已经转换为具直流分量,正弦分量,余弦分量的的傅里叶级数形式,具基波形式,且其基频为f1=1/t,其相位为nw1的函数,周期信号只会出现在0,w1,2w1….等上。

因此相位不连续。

§1.3连续时间信号时间变量的变换目的本练习要用MATLAB的Symbolic Math Toolbox考查连续时间信号自变量各种变换的效果。

相关知识习题中用到的单位阶跃函数Heaviside仅存在于Symbolic Math T oolbox中,而ezplot仅仅能画既存在于Symbolic Math Toolbox,又存在于总MATLAB 工具箱中的函数,所以需在你的工作目录下创建称之为Heaviside的M文件,其内容如下:function f=Heaviside(t)%HEAVISIDE Unit Step function%f=Heaviside(t) returns a vector f the same size as%the input vector,where each element of f is 1 if the%corresponding element of t is greater than zero.f=(t>0);中等题1.利用Heaviside定义由())2-t f给出的)(t f的符号表达式,并利用t u t=t u)(-()(ezplot画出这一符号表达式。

程序如下:function f=Heaviside(t)f=t.*((t>0)-(t>2))f=Heaviside(t);plot(t,f);分析:这是一个一个谐波信号和一个矩形脉冲相乘的结果,故在0-2时有信号,信号如图所示。

2.以下表达式定义一组由)(t f 表示的连续时间信号,利用Symbolic Math Toolbox 函数subs 和已经定义的符号表达式)(t f ,以MATLAB 调用g1~g5的方式定义符号表达式表示下列每一个信号,并利用ezplot 画出每个信号,叙述下列每一个信号是怎样与)(t f 关联的。

)12()()1()()3()()1()()()(54321+-=+-=-=+=-=t f t g t f t g t f t g t f t g t f t g程序如下:function f=Heaviside(t)f=t.*((t>0)-(t>2))f=Heaviside(t);subplot(2,3,1);plot(-t,f);f=Heaviside(t);subplot(2,3,2);plot(t-1,f);f=Heaviside(t);subplot(2,3,3);plot(t+3,f);f=Heaviside(t);subplot(2,3,4);plot(1-t,f);f=Heaviside(t); subplot(2,3,5); plot((1-t)/2,f);分析:g(t1)由f(t)反折得到,g(t2)由f(t)左移1得到,g(t3)由f(t)右移3得到,g(t4)由f(t)左移1再反折得到,g(t5)由f(t)左移1,反折再压缩得到。

§1.4连续时间信号的能量和功率目的学习求一个连续时间信号的能量或平均功率。

相关知识对于一个连续时间信号的有用度量通常为信号的能量或平均功率。

对于一个连续时间信号)(t x ,其在区间a t a ≤≤-上,能量的定义为0 )(2≥=⎰- a dt t x E aa a 式中*2xx x =,*x 是x 的复共轭。

因此,对一个基波周期为T 的周期信号而言,2T E 就包含了该信号在一个周期内的信号能量。

信号的全部能量定义为a a E E ∞→∞=lim ,如果这个极限存在。

对于一个连续时间信号)(t x ,其在区间a t a ≤≤-上,平均功率的定义为 0 2≥= a aE P a a 整个信号的平均功率定义为a a P P ∞→∞=lim ,如果这个极限存在。

基本题1.对下面每一个信号创建符号表达式:()()tj t j e e t x t t x t t x ππππ+===32321)(5sin )(5cos )(这些表达式将‘t ’作为一个变量。

相关文档
最新文档