研究生矩阵论

合集下载

华中科技大学研究生矩阵论Matrix2-1

华中科技大学研究生矩阵论Matrix2-1

1
1
(backward identity)
§2.3 最小多项式 (minimal polynomials)
讨论 n 阶矩阵多项式的相关问题: 矩阵多项式(重点是计算) 矩阵的化零多项式(Cayley 定理) 最小多项式 Jordan标准形的应用(简化计算) 相似不变性 Jordan化的方法
n (2) 由 I A 0 知 1 2 n 0
(3) 解方程
( A 0 ) X 0 得通解
x2 x3 xn 0, x1 k

X k (1,0, , 0)T
于是,A关于 0 的特征向量为 X k (1,0, , 0)T , k 0, n-1 从而得T=d/dx的特征向量为 (1, x, , x ) X k , k 0.
背景:求基{i,i=1~n}, 使得 T(1 2 … n) = (1 2 …n)
1. {1 2 … n} 线性无关
1 2 n
2. L{i}是不变子空间: Ti=ii
一、变换T的特征值与特征向量
(I T )( ) O (T I )( ) O
定理2.5 (存在定理) 在复数域上,每个方阵A都相似于 一个Jordan阵JA。 含义: Jordan 矩阵可以作为相似标准形。 惟一性:Jordan 子块的集合惟一。 A相似于B JA 相似于JB
4 方阵A的Jordan 标准形的求法
目标:求可逆矩阵P和Jordan矩阵JA ,使AP=PJA 分析方法: 在定理 2.5 的基础上逆向分析矩阵JA和P的构成。 求法与步骤:
例1 求Pn[x]上微分变换d/dx的特征值与特征向量。

研究生矩阵论复习提纲(全)

研究生矩阵论复习提纲(全)

1矩阵的基本知识正规矩阵:实对称阵,实反对称阵,实正交矩阵,hermite 矩阵,反hermite 矩阵,酉矩阵2.1矩阵的特征值与特征向量2.2矩阵的相似对角化2.3矩阵的Jordan 标准型1、不变因子、初等因子、行列式因子的定义2、Jordan 标准型的求法:初等变换法、行列式因子法3、相似变换矩阵的求法:J=P-1AP→AP=PJ,k i j 的形式、二项式系数4、相似对角化的条件:r 重根需对应r 特征向量,否则不能对角化2.4hamilton-cayley 定理()()()0,det =-=A A I n ϕλλϕ则,用此公式简化矩阵运算2.5矩阵的酉相似1、smit 正交化,shur 分解2、酉矩阵的定义,正规矩阵的定义,酉相似定义,酉相似对角化及充要条件3、酉对角化步骤4、正定hermite 的性质A=GG H3.1矩阵的三个基本分解1、满秩分解:只能是行变换A=FG2、方阵的Jordan 分解、shur 分解3.2矩阵的三角分解1、三角分解的定义及可逆矩阵的三角分解条件,不可逆矩阵也是可以三角分解的2、Doolittle、crout、LDR 分解的形式、正定hermite 矩阵的cholesky 分解3.3矩阵的QR 分解1、householder 变换(1)取记住复数向量的模为sqrt(x hx)αe1Hx 则,2uu 1H 令(3)αe1x αe1x u 取2x α1H=-=--==)()(2、利用householder 变换求矩阵的QR 分解Q=H1H2H3...Hn-13、矩阵奇异值分解的一般步骤4.1向量范数和矩阵范数的定义∑==ni ix x 115.0122⎪⎭⎫ ⎝⎛=∑=ni i x x pni p i px x11⎪⎭⎫⎝⎛=∑=ix xmax =∞∑∑===ni nj ijm a A 111()AA a A H n i n j ij Ftr 5.0112=⎪⎪⎭⎫ ⎝⎛=∑∑==ijm a n A max ⋅=∞∑=≤≤=ni ij nj a A 111max 最大列模和∑=≤≤∞=nj ij ni a A 11max 最大行模和H AA A ==12σA 的最大奇异值谱半径与范数的关系:()AA ≤ρ4.2矩阵级数,矩阵幂级数,收敛性()1-∞=-=∑A I A k k,当级数∑∞=0k kA收敛时即()1<A ρ4.3矩阵函数:几个常用的矩阵函数∑∞==0!k kAk A e ()()120!121sin +∞=∑+-=k k kAk A ()()kk k Ak A 20!21cos ∑∞=-=()()()10111ln +∞=∑+-=+k K kAk A 矩阵函数值的计算方法:1、Hamilton-cayley 定理或零化多项式进行求解2、Jordan 分解:()100-∞=∞=⎪⎭⎫⎝⎛==∑∑P J a P A a A f k k k k kk ()()()100-∞=∞=⎪⎭⎫⎝⎛==∑∑P Jt a P At a At f K k k k kk 3、待定系数法矩阵函数()A f 的特征值对应()i f λ5、矩阵的特征值界的估计∞≤m A λ()∞+≤m HA A 5.0ReλHA A -≤5.0Im λ矩阵特征值的分布区域:圆盘定理,行和列盖尔圆特征值的隔离()~1ii ii R R a z αα-+≤-()x R max 1=λ,()x R n min =λ6、广义逆矩阵P l l l I Q X r ⎥⎦⎤⎢⎣⎡=222112{1}广义逆的求法⎥⎦⎤⎢⎣⎡0nm I I A 初等变换→⎪⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛0000Q P I r。

研究生矩阵论课后习题答案(全)习题二

研究生矩阵论课后习题答案(全)习题二

习题二1.化下列矩阵为Smith 标准型:(1)222211λλλλλλλλλ⎡⎤-⎢⎥-⎢⎥⎢⎥+-⎣⎦; (2)22220000000(1)00000λλλλλλ⎡⎤⎢⎥-⎢⎥⎢⎥-⎢⎥-⎣⎦; (3)2222232321234353234421λλλλλλλλλλλλλλ⎡⎤+--+-⎢⎥+--+-⎢⎥⎢⎥+---⎣⎦;(4)23014360220620101003312200λλλλλλλλλλλλλλ⎡⎤⎢⎥++⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥---⎣⎦. 解:(1)对矩阵作初等变换133122222222111001100(1)c c r r λλλλλλλλλλλλλλλλλλλλλ+-⎡⎤⎡⎤⎡⎤-⎢⎥⎢⎥⎢⎥-−−−→-−−−→-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥+---+⎣⎦⎣⎦⎣⎦23221311(1)1010000000(1)00(1)c c c c c c r λλλλλλλλλ+--⨯-⎡⎤⎡⎤⎢⎥⎢⎥−−−→-−−−→⎢⎥⎢⎥⎢⎥⎢⎥-++⎣⎦⎣⎦,则该矩阵为Smith 标准型为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+)1(1λλλ; (2)矩阵的各阶行列式因子为44224321()(1),()(1),()(1),()1D D D D λλλλλλλλλλ=-=-=-=,从而不变因子为222341234123()()()()1,()(1),()(1),()(1)()()()D D D d d d d D D D λλλλλλλλλλλλλλλλ===-==-==-故该矩阵的Smith 标准型为2210000(1)0000(1)0000(1)λλλλλλ⎡⎤⎢⎥-⎢⎥⎢⎥-⎢⎥-⎣⎦;(3)对矩阵作初等变换1332212132132222222222242322(2)2(2)323212332212435323443322421221762450110221c c c c r r r r c c c λλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλ-------⎡⎤⎡⎤+--+----⎢⎥⎢⎥+--+-−−−→---⎢⎥⎢⎥⎢⎥⎢⎥+-----⎣⎦⎣⎦⎡⎤-+--++-⎢⎥−−−−→--⎢⎥⎢⎥--⎣⎦3122131211342322(2)3232(1)32(5)(1)27624501100011245001000110010001001000100(1)(c c c r r r r r c c λλλλλλλλλλλλλλλλλλλλλλλλλ---+↔+--⨯-↔⎡⎤-+--++-⎢⎥−−−−−→--⎢⎥⎢⎥⎣⎦⎡⎤-+---++-⎢⎥−−−−→-⎢⎥⎢⎥⎣⎦⎡⎤--+⎢⎥−−−−−→-−−−→-⎢⎥⎢⎥-⎣⎦1)⎡⎤⎢⎥⎢⎥⎢⎥+⎣⎦故该矩阵的Smith 标准型为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+--)1()1(112λλλ; (4)对矩阵作初等变换152323230100014360220002206200020101001010033122003312200c c c c λλλλλλλλλλλλλλλλλλλλλλλλ--⎡⎤⎡⎤⎢⎥⎢⎥+++⎢⎥⎢⎥⎢⎥⎢⎥−−−→⎢⎥⎢⎥----⎢⎥⎢⎥⎢⎥⎢⎥------⎣⎦⎣⎦12213231322000100010002200000020002010100100000100001000c c r r c c c c λλλλλλλλλλλλλλ+-+-⎡⎤⎡⎤⎢⎥⎢⎥+⎢⎥⎢⎥⎢⎥⎢⎥−−−→−−−→⎢⎥⎢⎥---⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦2143145425222000101000000000000000000001000000010010000001r r c c c c c c c c λλλλλλλλλλ--↔-↔⎡⎤⎡⎤⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥⎢⎥−−−→−−−→⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦在最后的形式中,可求得行列式因子3254321()(1),()(1),()()()1D D D D D λλλλλλλλλ=-=-===,于是不变因子为2541234534()()()()()1,()(1),()(1)()()D D d d d d d D D λλλλλλλλλλλλλ=====-==-故该矩阵的Smith 标准形为2100000100000100000(1)00000(1)λλλλ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥-⎣⎦. 2.求下列λ-矩阵的不变因子:(1)210021002λλλ--⎡⎤⎢⎥--⎢⎥⎢⎥-⎣⎦;(2)10010000λαββλαλαββλα+⎡⎤⎢⎥-+⎢⎥⎢⎥+⎢⎥-+⎣⎦; (3)100100015432λλλλ-⎡⎤⎢⎥-⎢⎥⎢⎥-⎢⎥+⎣⎦; (4)0012012012002000λλλλ+⎡⎤⎢⎥+⎢⎥⎢⎥+⎢⎥+⎣⎦. 解:(1)该λ-矩阵的右上角的2阶子式为1,故12()()1,D D λλ==而33()(2)D λλ=-,所以该λ-矩阵的不变因子为2123()()1,()(2)d d d λλλλ===-;(2)当0β=时,由于4243()(),()()D D λλαλλα=+=+,21()()1D D λλ==,故不变因子为12()()1d d λλ==,2234()(),()()d d λλαλλα=+=+当0β≠时,由于224()[()]D λλαβ=++,且该λ-矩阵中右上角的3阶子式为2(),βλα-+且4(2(),())1D βλαλ-+=,则3()1D λ=,故21()()1D D λλ==,所以该λ-矩阵的不变因子为123()()()1,d d d λλλ===224()[()]d λλαβ=++;(3)该λ-矩阵的右上角的3阶子式为1-,故123()()()1,D D D λλλ===而4324()2345D λλλλλ=++++,所以该λ-矩阵的不变因子为123()()()1,d d d λλλ=== 4324()2345d λλλλλ=++++;(4)该λ-矩阵的行列式因子为123()()()1,D D D λλλ===44()(2)D λλ=+,所以该λ-矩阵的不变因子为123()()()1,d d d λλλ===44()(2)d λλ=+.3.求下列λ-矩阵的初等因子:(1)333232212322λλλλλλλλ⎡⎤++⎢⎥--+--+⎣⎦; (2)3223222212122122λλλλλλλλλλ⎡⎤-+--+⎢⎥-+--⎣⎦. 解:(1)该λ-矩阵的行列式因子为212()1,()(1)(1)D D λλλλ==+-,故初等因子为21,(1)λλ+-;(2) 该λ-矩阵的行列式因子为212()1,()(1)(1)D D λλλλλ=-=+-,故不变因子为12()1,()(1)(1),d d λλλλλ=-=+-因此,初等因子为1,1,1λλλ+--.4.求下列矩阵的Jordan 标准形:(1)131616576687⎡⎤⎢⎥---⎢⎥⎢⎥---⎣⎦;(2)452221111-⎡⎤⎢⎥--⎢⎥⎢⎥--⎣⎦;(3)3732524103-⎡⎤⎢⎥--⎢⎥⎢⎥--⎣⎦; (4)111333222-⎡⎤⎢⎥--⎢⎥⎢⎥--⎣⎦;(5)03318621410⎡⎤⎢⎥-⎢⎥⎢⎥--⎣⎦;(6)1234012300120001⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦. 解:(1)设该矩阵为A ,则210001000(1)(3)E A λλλ⎡⎤⎢⎥-→⎢⎥⎢⎥-+⎣⎦,故A 的初等因子为2(1)(3)λλ-+,则A 的Jordan 标准形为300011001-⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦; (2)设该矩阵为A ,则310001000(1)E A λλ⎡⎤⎢⎥-→⎢⎥⎢⎥-⎣⎦,故A 的初等因子为3(1)λ-,从而A 的Jordan 标准形为110011001⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦;(3)设该矩阵为A ,则210001000(1)(1)E A λλλ⎡⎤⎢⎥-→⎢⎥⎢⎥-+⎣⎦,故A 的初等因子为1,,,i i λλλ-+-从而A 的Jordan 标准形为1000000i i ⎡⎤⎢⎥-⎢⎥⎢⎥⎣⎦; (4)设该矩阵为A ,则21000000E A λλλ⎡⎤⎢⎥-→⎢⎥⎢⎥⎣⎦,故A 的初等因子为2,λλ,从而A 的Jordan 标准形为000001000⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦; (5)设该矩阵为A ,则210001000(1)E A λλλ⎡⎤⎢⎥-→⎢⎥⎢⎥+⎣⎦,故A 的初等因子为2,(1)λλ+,从而A 的Jordan 标准形为000011001⎡⎤⎢⎥-⎢⎥⎢⎥-⎣⎦; (6)设该矩阵为A ,则1234012300120001E A λλλλλ----⎡⎤⎢⎥---⎢⎥-=⎢⎥--⎢⎥-⎣⎦, 该λ-矩阵的各阶行列式因子为123()()()1,D D D λλλ===44()(1)D λλ=-,则不变因子为123()()()1,d d d λλλ===44()(1)d λλ=-,故初等因子为4(1)λ-,则A 的Jordan 标准形为1100011000110001⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦. 5.设矩阵142034043A ⎡⎤⎢⎥=--⎢⎥⎢⎥⎣⎦,求5A .解:矩阵A 的特征多项式为2()(1)(5)A f I A λλλλ=-=--,故A 的特征值为11λ=,235λλ==.属于特征值11λ=的特征向量为1(1,0,0)Tη=,属于235λλ==的特征向量为23(2,1,2),(1,2,1)T Tηη==-.设123121[,,]012021P ηηη⎡⎤⎢⎥==-⎢⎥⎢⎥⎣⎦,100050005⎡⎤⎢⎥Λ=⎢⎥⎢⎥⎣⎦,则1A P P -=Λ.,故4455144441453510354504535A P P -⎡⎤⨯⨯-⎢⎥=Λ=-⨯⨯⎢⎥⎢⎥⨯⨯⎣⎦. 6.设矩阵211212112A --⎡⎤⎢⎥=--⎢⎥⎢⎥-⎣⎦,求A 的Jordan 标准形J ,并求相似变换矩阵P ,使得1P AP J -=.解:(1) 求A 的Jordan 标准形J .221110021201011200(1)I A λλλλλλ-⎡⎤⎡⎤⎢⎥⎢⎥-=-+→-⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦,故其初等因子为21,(1)λλ--,故A 的Jordan 标准形100011001J ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦.(2)求相似变换矩阵P .考虑方程组()0,I A X -=即1231112220,111x x x -⎡⎤⎛⎫⎪⎢⎥-= ⎪⎢⎥ ⎪⎢⎥--⎣⎦⎝⎭解之,得12100,111X X ⎛⎫⎛⎫⎪ ⎪== ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭.其通解为1122k X k X +=1212k k k k ⎛⎫⎪⎪ ⎪-⎝⎭,其中21,k k 为任意常数.考虑方程组1122312111222,111x k x k x k k -⎡⎤⎛⎫⎛⎫ ⎪ ⎪⎢⎥-= ⎪ ⎪⎢⎥ ⎪ ⎪⎢⎥---⎣⎦⎝⎭⎝⎭11212121211111122200021110002k k k k k k k k k --⎡⎤⎡⎤⎢⎥⎢⎥-→-+⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦,故当1220k k -=时,方程组有解.取121,2k k ==,解此方程组,得3001X ⎛⎫⎪= ⎪ ⎪⎝⎭.则相似变换矩阵123100[,,]010111P X X X ⎡⎤⎢⎥==⎢⎥⎢⎥-⎣⎦.7.设矩阵102011010A ⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦,试计算8542234A A A A I -++-. 解: 矩阵A 的特征多项式为3()21A f I A λλλλ=-=-+,由于8542320234(21)()(243710)f λλλλλλλλλ-++-=-++-+,其中532()245914f λλλλλ=+-+-. 且32A A I O -+=,故8542234A A A A I -++-=2348262437100956106134A A I --⎡⎤⎢⎥-+=-⎢⎥⎢⎥-⎣⎦.8.证明:任意可逆矩阵A 的逆矩阵1A -可以表示为A 的多项式. 证明:设矩阵A 的特征多项式为12121()n n n A n n f I A a a a a λλλλλλ---=-=+++++,则12121n n n n n A a A a A a A a I O ---+++++=,即123121()n n n n n A A a A a A a I a I ----++++=-,因为A 可逆,故(1)0nn a A =-≠,则11231211()n n n n nA A a A a A a I a -----=-++++9.设矩阵2113A -⎡⎤=⎢⎥⎣⎦,试计算4321(5668)A A A A I --++-.解: 矩阵A 的特征多项式为2()57A f I A λλλλ=-=-+,则227A A I O -+=,而432225668(57)(1)1λλλλλλλλ-++-=-+-+-,故14321111211(5668)()12113A A A A I A I ----⎡⎤⎡⎤-++-=-==⎢⎥⎢⎥-⎣⎦⎣⎦. 10.已知3阶矩阵A 的三个特征值为1,-1,2,试将2nA 表示为A 的二次式. 解: 矩阵A 的特征多项式为()(1)(1)(2)A f I A λλλλλ=-=-+-,则设22()()n f g a b c λλλλλ=+++,由(1)0,(1)0,(2)0,f f f =-==得21,1,422.n a b c a b c a b c ++=⎧⎪--=⎨⎪++=⎩解之,得2211(21),0,(24)33n n a b c =-==--,因此2222211(21)(24)33n n n A aA bA cI A I =++=---.11.求下列矩阵的最小多项式:(1)311020111-⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦;(2)422575674-⎡⎤⎢⎥--⎢⎥⎢⎥--⎣⎦; (3)n 阶单位阵n I ;(4)n 阶方阵A ,其元素均为1;(5)0123103223013210a a a a a a a a B a a a a a a a a ⎡⎤⎢⎥--⎢⎥=⎢⎥--⎢⎥--⎣⎦. 解:(1) 设311020111A -⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,则 231110002002011100(2)I A λλλλλλ--⎡⎤⎡⎤⎢⎥⎢⎥-=-→-⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦,故该矩阵的最小多项式为2(2)λ-.(2) 设422575674A -⎡⎤⎢⎥=--⎢⎥⎢⎥--⎣⎦,则 2(2)(511)I A λλλλ-=--+,故该矩阵有三个不同的特征值,因此其最小多项式为2(2)(511)λλλ--+(3) n 阶单位阵n I 的最小多项式为()1m λλ=-. (4) 因为1()n I A n λλλ--=-,又2A nA =,即2A nA O -=,故该矩阵的最小多项式为()n λλ-.(5)因为22222200123[2()]I B a a a a a λλλ-=-++++,而2222200123()2()m a a a a a λλλ=-++++是I B λ-的因子,经检验知()m λ是矩阵B 的最小多项式.。

(精品课件)研究生教材《矩阵理论》PPT演示文档

(精品课件)研究生教材《矩阵理论》PPT演示文档

列和第
行, x ( x1 , x2 ,, xn ) ,则有
( 2) ( n)
Ax x1 A x2 A xn A
这就是说,矩阵乘一个列向量,其结果是将该矩 阵的列向量进行线性组合,组合系数即是该列向量 的对应系数。 若令 y ( y1 , y2 ,, ym ), 则有:
yA y1 A(1) x2 A( 2) xm A( m)
其余元素均为0的矩阵。借助这些矩阵,任意 矩阵 A aij , 均能唯一地表示成: A
m n
n ij ij

a E .
i 1 j 1
m
对矩阵乘法的表达,可以利用下述性质:
Eij Ekl jk Eil ,1 i, j, k , l n,
其中 jk 是Kronecker符号,即当
.函数与极限
5
【定义1.1.4 】 一个 一个
m p
pn
p
矩阵 B bij
m n
矩阵 C cij , 其中


矩阵 A aij

的乘积是一个
cij aik bkj ,1 i m,1 j n.
j 1
★矩阵的乘法有下述性质: (M1)结合律:( AB)C A( BC);
并将其分块成
P Q1P2 ,
P 11 P P 21
.函数与极限
P 12 P22
26
其中
P 11 , P 12 , P 21 , P 22
分别为
r1 r2 ,
r1 ( p r2 ), ( p r1 ) r2 , ( p r1 ) ( p r2 )
A( E pq Eqp ) (aii Eii E pq aii Eii Eqp ) a pp E pq aqq Eqp ;

#研究生矩阵论第1讲 线性空间

#研究生矩阵论第1讲 线性空间

矩阵论1、意义随着科学技术的发展,古典的线性代数知识己不能满足现代科技的需要,矩阵的理论和方法业巳成为现代科技领域必不可少的工具.有人认为:“科学计算实质就是矩阵的计算”.这句话概括了矩阵理论和方法的重要性及其使用的广泛性.因此,学习和掌握矩阵的基本理论和方法,对于理、工科研究生来说是必不可少的数学工具.2、内容《矩阵论》和工科《线性代数》课程在研究矩阵的内容上有较大的差异:线性代数:研究行列式、矩阵的四则运算(加、减、乘、求逆 ) 以及第一类初等变换 (非正交的)、对角标准形 (含二次型) 以及n阶线性方程组的解等基本内容.矩阵论:研究矩阵的几何理论(线性空间、线性算子、内积空间等)、第二和第三类初等变换(正交的)、分析运算(矩阵微积分和级数)、矩阵的范数和条件数、广义逆和分解、若尔当标准形以及几类特殊矩阵和特殊运算等,内容十分丰富.3、方法在研究的方法上,矩阵论和线性代数也有很大的不同:线性代数:引入概念直观,着重计算.矩阵论:着重从几何理论的角度引入矩阵的许多概念和运算,把矩阵看成是线性空间上线性算子的一种数量表示.深刻理解它们对将来正确处理实际问题有很大的作用.第1讲 线性空间内容: 1.线性空间的概念;2.基变换和坐标变换;3.子空间和维数定理;4.线性空间的同构线性空间和线性变换是矩阵分析中经常用到的两个极其重要的概念,也是通常几何空间概念的推广和抽象,线性空间是某类客观事物从量的方面的一个抽象.§1 线性空间的概念1. 群,环,域代数学是用符号代替数(或其它)来研究数(或其它)的运算性质和规律的学科,简称代数.代数运算:假定对于集A 中的任意元素a 和集B 中的任意元素b ,按某一法则和集C 中唯一确定的元素c 对应,则称这个对应为A 、B 的一个(二元)代数运算.代数系统:指一个集A 满足某些代数运算的系统.1.1群定义1.1 设V 是一个非空集合,在集合V 的元素之间定义了一种代数运算,叫做加法,记为“+”.即,对V 中给定的一个法则,对于V 中任意元素βα,,在V 中都有惟一的一个元ν和他们对应,称ν为βα,的和,记为βαν+=.若在“+”下,满足下列四个条件,则称V 为一个群.1)V 在“+”下是封闭的.即,若,,V ∈βα有 V ∈+βα;2) V 在“+”下是可结合的.即,)()(γβαγβα++=++ ,V ∈γ;3)在V 中有一个元e ,若,V ∈β有 βββ=+=+e e ;e 称为单位元;4)对于,V ∈β有 e =+=+αββα.称α为β的逆元.注:对V 任意元素βα,,都有αββα+=+,则称V 为交换群或阿贝尔群.1.2 环定义1.2 设V 是一个非空集合,在集合V 的元素之间定义了两种代数运算,分别叫做加法、乘法,记为“+”和“*”.即,对V 中给定的一个法则,对于V 中任意元素α,β,在V 中都有惟一的一个元ν和他们对应,称ν为α,β的和和积,记为βαν+=(βαν*=).满足下列三个条件,则称V 为一个环. 1)V 在“+”下是阿贝尔群;2) V 在“*”下是可结合的.即,)()(νβανβα**=**;3)乘法对加法满足左、右分配律,即对于V 中任意元素α,β,ν,有 βνανβαν**)(*+=+,νβνανβα*+*=*+)(.注:对V 任意元素βα,,都有αββα*=*,则称V 为交换环.1.3 域定义 1.3 设V 满足环的条件,且在对“加法”群中去除单位元的集合对于“乘法”满足交换群的条件,则称V 为域.例:有理数集对于通常的数的加法和乘法运算构成域,称之为有理数域.最常见的数域有有理数域Q 、实数域R 、复数域C .实数域和复数域是工程上较常用的两个数域.此外,还有其它很多数域.如{}.,2)2(Q b a b a Q ∈+=,不难验证,)2(Q 对实数四则运算封闭的,所以)2(Q 也是一个数域.而整数集合Z 就不是数域. 数域有一个简单性质,即所有的数域都包含有理数域作为它的一部分.特别,每个数域都包含整数0和1. 2. 线性空间定义 1.4 设V 是一个非空集合,P 是一个数域.在集合V 的元素之间定义了一种代数运算,叫做加法,记为“+”:即,给出了一个法则对于V 中任意元素βα,,在V 中都有惟一的一个元ν和他们对应,称ν为βα,的和,记为βαν+=.在数域P 和集合V 的元素之间还定义了一种代数运算,称为数量乘法(数乘),记为“∙”:即,对于数域P 中任一数k 和V 中任一元α,在V 中都有惟一的一个元δ和它们对应,称δ为k 和α的数乘,记为αδ∙=k .如果加法和数乘这两种运算在V 中是封闭的,且满足如下八条规则:⑴ 交换律αββα+=+;⑵ 结合律)()(γβαγβα++=++ ,V ∈γ;⑶ V V ∈∃∈∀0,α,有αα=+0,(0称为零元素);⑷ V V ∈∃∈∀βα,,有 0=+βα,(β称为的α负元素,记为α-); ⑸ P V ∈∈∀1,α,有 αα=∙1;⑹ αα∙=∙∙)()(kl l k ,P l k ∈,;⑺ ααα∙+∙=∙+l k l k )(;⑻ βαβα∙+∙=+∙k k k )(,则称集合V 为数域P 上的线性空间.当数域P 为实数域时,V 就称为实线性空间;P 为复数域,V 就称为复线性空间.例 1.按通常向量的加法和数乘运算,由全体实n 维向量组成的集合,在实数域R 上构成一个实线性空间,记为n R ;由全体复n 维向量组成的集合,在复数域C 上构成—个复线性空间,记为n C .例 2.按照矩阵的加法及数和矩阵的乘法,由数域P 上的元素构成的全体n m ⨯矩阵所成的集合,在数域P 上构成一个线性空间,记为n m P ⨯.而其中秩为)0(>r r 的全体矩阵所成的集合rR 则不构成线性空间,为什么?(事实上,零矩阵r R O ∉).例3.按通常意义的函数加法和数乘函数,闭区间[]b a ,上的连续函数的全体所成的集合,构成线性空间[]b a C ,.例4. 设+R ={全体正实数},其“加法”及“数乘”运算定义为xy y x =+, k x x k = 。

华中科技大学研究生矩阵论课件

华中科技大学研究生矩阵论课件

子空间的“和”为“直和”的充要–条件 :
定理1·8 设W=W1+W2,则下列各条等价:
(1)
W=W1W2
(2)
X W,X=X 1+X2的表
是惟一的
(3) W中零向量的表示是惟一的
(4)
dim W =dimW1+dimW2
.
26
例1
P12 eg18
例2 设在Rn×n中,子空间
W 1={A AT =A } , W2={B BT= –B }, 证明Rn×n=W1W2。
线性空间的一般性的观点:
线性空间的一般形式:
V(F),元素被统称为向量:, ,,
线性空间的简单性质(共性):
定理1 . 1:V(F)具有性质:
(1) V(F)中的零元素是惟一的。
(2) V(F)中任何元素的负元素是惟一的。
(3)数零和零元素的性质: 数0 0=0,k0=0,k =0 =0 或k=0
例3 子空间W的“直和补子空间”
.
27
1·2 内积空间
主题:定义内积的概念,借助于内积建立线性 空间的度量关系。
一、 欧氏空间和酉空间 1 几何空间中度量关系的定义基础 2 内积的定义 定义1·7 (P13) :要点 • 内积(,)是二元运算:Vn(F) F • (,)的公理性质 • (,)是任何满足定义的运算。 • 讨论(,1+2), (,k)
(II);{ 2 1 0 1 0 0 0 0 }
0
0
1
0
3
1
0
3
1. 求从基(I)到基(II)的过渡矩阵C。
2. 求向量 7 3 在基(II)的坐标Y。
1
2
§1.1 五、 子空间
概述:线性空间Vn(F)中,向量集合V可 以有集合的运算和关系: Wi V, W1W2, W1W2, 问题: 这些关系或运算的结果是否仍然为 线性空间 ?

南航研究生矩阵论复习讲义

南航研究生矩阵论复习讲义

1.线性空间、维数、基与坐标第一章线性空间与内积空间(1)线性空间V 中存在加法和数乘运算,且加法和数乘运算满足8个条件;(2)线性空间V 中线性无关向量的最大个数n 称为V 的维数,记为dim (V ) = n ;V 中任意n 个线性无关向量称为V 的一组基;(3)如果是线性空间V 中的n 个线性无关向量,且V 中任一向量都可由其线性表示,则是V 的一组基且dim (V ) = n ;n ααα,,,21 n ααα,,,21(4)设是线性空间V 的一组基,是V 的n 个向量,则存在n 阶方阵T ,使得n εεε,,,21 n ',,','21εεε ,),,,()',,','(2121T n n εεεεεε =当且仅当T 可逆时,也是V 的一组基;n ',,','21εεε.2211n n x x x εεεα+++= (5)设是线性空间V 的基,则向量α在这组基下的坐标是如下线性组合的系数向量:n εεε,,,21 T n x x x ),,,(212.线性子空间(1)设V 是线性空间,W 是V 的非空子集,则W 是V 的子空间的充分必要条件是;,,,P W k W k ∈+⇒∈∀∈∀βααβα(3)设与是线性空间V 的两组向量,则的充分必要条件是与等价;s ααα,,,21 t βββ,,,21 ),,,(),,,(2121t s L L βββααα =s ααα,,,21 t βββ,,,21 (2)设是线性空间V 的一组向量,则W 是V 的子空间;s ααα,,,21 },P |{),,(221121∈+++==i s s s k k k k L W αααααα);,,,(rank )),,,dim(L(42121s s αααααα =)((5)设V 1, V 2是线性空间V 的两个子空间,则V 1∩V 2和V 1 +V 2也是V 的子空间;(6)如果V 1和V 2是线性空间V 的有限维子空间,则).(dim )(dim )(dim )(dim 212121V V V V V V ∩++=+3.直和的判别法(1)V 1 + V 2中任意向量的分解式唯一;};0{21=V V ∩(3)).dim()dim()dim(2121V V V V +=+(4)(2)V 1+ V 2中零向量的表法唯一;4.内积空间(1)内积是一种代数运算,满足共轭对称性,左侧可加性和齐次性以及非负性;;),(:Cauchy )2(βαβα≤不等式;:)3(βαβα+≤+三角不等式(4)线性无关的充分必要条件是Gram 矩阵非奇异;m ααα,,,21 ()mm i j m G ×=),(),,,(21ααααα (5)线性无关向量组一定可以标准正交化.5.标准正交基的性质(1)有限维内积空间V 的标准正交基一定存在;(2)有限维内积空间V 的任意一组标准正交向量可扩充为V 的一组标准正交基;(3)设是内积空间V 的一组标准正交基,且则n εεε,,,21 ,,1111n n n n y y x x εεβεεα++=++= .),(1∑===ni i i Hy x x y βα6.常见内积空间;),(,)1(1∑====ni i i Hn y x x y y x C V 内积;内积dx x g x f g f b a C V ba )()(),(],,[)2(∫==).(tr ),(,)3(A B B A C V Hn m ==×内积第二章线性映射与线性变换1.线性变换的定义设V 是数域P 的线性空间,A是V 到自身的一个映射,如果则称A是V 的线性变换.P ,),()(,),()()(∈∈∀=∈∀+=+kVkk VαααβαβαβαAA AAA2.线性变换的性质. ,, ,,的线性变换也是则的线性变换,是如果VkP kVAABB ABA+∈(1)设是线性空间V 的一组基,A 是V 的线性变换,则n εεε,,,21 ⎪⎪⎩⎪⎪⎨⎧+++=+++=+++=nnn n n n n n n n a a a a a a a a a εεεεεεεεεεεε 22112222112212211111)()()(A A A 3.线性变换的矩阵表示;),,,(),,,(2121A n n εεεεεε =A 即(2)n 维线性空间的线性变换与n 阶矩阵一一对应;(3)同一个线性变换在不同基下的矩阵一定相似.4.线性变换的值域与核设A 是n 维线性空间V 的线性变换,是V 的一组基,A 在这组基下的矩阵是A ,则n εεε,,,21 (1)A 的核为};0)(|{)Ker(=∈=ααA A V };|)({)(V R ∈=ααA A (2)A 的值域为));(,),(),(()(321n L R εεεA A A A =)((4)dim(R (A )) = rank( A );(5)dim(R (A )) + dim(Ker(A )) = n .5.矩阵A 可对角化的充分必要条件(1)A 有n 个线性无关的特征向量;(2)设A 的全部互异特征值为,则r λλλ,,,21 ;)dim()dim()dim(21n V V V r =+++λλλ (3)A 的每一个特征值的几何重数等于代数重数;(4)A 的初等因子都是一次式;(5)A 的最小多项式m (λ) 没有重零点.6.酉变换和酉矩阵设A 是n 维酉空间V 的线性变换,则下列命题等价:(1)A 是酉变换,即;),())(),((βαβα=A A ,)()2(αα=A ;V ∈∀α的一组标准正交基,则是如果V n εεε,,,)3(21 )(,),(),(21n εεεA A A 的一组标准正交基;也是V (4)A 在V 的标准正交基下的矩阵是酉矩阵.(1)存在数字矩阵P 与Q ,使得;)(Q B I P A I −=−λλ(2)它们的特征矩阵λI -A 和λI -B 相抵;(4)它们有相同的行列式因子;1.数字矩阵A 与B 相似的条件第三章λ矩阵与矩阵的Jordan 标准形(5)它们有相同的初等因子.(3)它们有相同的不变因子;2. 矩阵的最小多项式(1)矩阵A 的最小多项式m (λ) 能整除A 的任一化零多项式;(2)矩阵A 的最小多项式能整除特征多项式f (λ);(3)是A 的特征值的充分必要条件是;0λ0)(0=λm (4)相似的矩阵具有相同的最小多项式;(5)矩阵A 的最小多项式为其最后一个不变因子.3.矩阵的不变因子、行列式因子和初等因子的求法(1)化λI -A 为Smith 标准形:)),(,),(),(diag(21λλλλn d d d A I ≅−则是A 的n 个不变因子;)(,),(),(21λλλn d d d ⎪⎪⎩⎪⎪⎨⎧===),()()()(),()()(),()(2121211λλλλλλλλλn n d d d D d d D d D (2)令则是A 的n 个行列式因子;)(,),(),(21λλλn D D D(3)将矩阵A 的不变因子进行标准分解,则全体一次因式的方幂)(,),(),(21λλλn d d d sn s n n )(,,)(,)(2121λλλλλλ−−− 即为A 的全部初等因子.4.Jordan 标准形的求法(1)求矩阵A 的初等因子;)(,,)(,)(2121sn s n n λλλλλλ−−− ).,,,(diag 21s J J J J =(3)A 的Jordan 标准形为(2)对A 的每个初等因子构造Jordan 块:in i )(λλ−;1001i i n n i i i i J ×⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎝⎛=λλλ第四章矩阵的因子分解1.满秩分解设m ×n 矩阵A 的秩为r≥1,则存在m ×r 列满秩矩阵B和r ×n 行满秩矩阵C,使得A = BC.2.三角分解(1)LU分解:设A 的各阶顺序主子式非零,则存在唯一的单位下三角矩阵L 和上三角矩阵U,使得A = LU.3.QR 分解(1)设A 是n 阶非奇异实矩阵,则存在酉矩阵Q 和非奇异上三角矩阵R ,使得A = QR ;(2)LDU 分解:设A 的各阶顺序主子式非零,则存在唯一的单位下三角矩阵L ,单位上三角矩阵U 和对角矩阵D = diag(d 1,d 2,…,d n ),使得A = LDU ,并且.,,2,)()(,1111n k A A d a d k k k =ΔΔ==−(2)设A 是m ×n 列满秩矩阵,则存在m ×n 列正交规范矩阵Q 和n 阶非奇异上三角矩阵R ,使得A = QR ;4.Schur 定理(正交分解)(1)设A 是n 阶复矩阵,则存在n 阶酉矩阵U 和n阶上三角矩阵R ,使得U H AU = R ;.,行满秩矩阵是列正交规范矩阵是其中n r R r m Q ××(3)设A 是矩阵且,则A 有分解式:n m ×,QR A =0)(rank >=r A (2)设A 是n 阶实矩阵,则存在n 阶正交矩阵Q 和n 阶块上三角矩阵R ,使得Q T AQ = R .5.奇异值分解.,,),,,(diag 11的正奇异值是且其中A r r σσσσ =Σ设A 是m ×n 实(复)矩阵,且rank (A ) = r ,则存在m 阶正交(酉)矩阵V 和n 阶正交(酉)矩阵U ,使得,000000⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛Σ=⎟⎟⎠⎞⎜⎜⎝⎛Σ=AU V AU V H T6.正规矩阵的性质(1)n 阶矩阵A 酉相似于对角矩阵的充分必要条件为A 是正规矩阵;(2)设A, B 均为n 阶正规矩阵且AB =BA,则存在n 阶酉矩阵U,使得U H AU与U H BU同时为对角矩阵;(3)若A是正规矩阵,则A 的属于不同特征值的特征向量正交;(4)若A是正规矩阵,则A 的奇异值是A 的特征值的模.第五章Hermite矩阵与正定矩阵1.Hermite矩阵的性质(1) 如果A 是Hermite矩阵,则对正整数k,A k也是Hermite矩阵;(2) 如果A 是可逆Hermite矩阵,则A-1是Hermite矩阵;(3) 若A, B 是Hermite矩阵,则AB 是Hermite矩阵的充分必要条件是AB = BA;(4) 若A 是Hermite矩阵,则对任意方阵S,S H AS 也是Hermite矩阵;(5)设A 为n 阶Hermite 矩阵,则A 的所有特征值全是实数;(6)设A 为n 阶Hermite 矩阵,则A 的属于不同特征值的特征向量互相正交;(7)A 为n 阶Hermite 矩阵的充分必要条件是存在酉矩阵U 使得),,,,(diag 21n H AU U λλλ =Λ=.,,,21均为实数其中n λλλ2. Hermite 矩阵正定的判别方法(1) A 的n 个特征值均为正数;(2) 存在n 阶可逆矩阵P ,使得P HAP = I ;(3) 存在n 阶可逆矩阵Q ,使得A = Q H Q ;(4) 存在n 阶可逆Hermite 矩阵S ,使得A = S 2;(5)A 的顺序主子式均为正数,即;,,1,0)(n k A k =>Δ(6)A 的所有主子式全大于零.3.正定矩阵的性质则其特征值为阶正定矩阵是设,,,,,21n n A λλλ 是正定矩阵;1)1(−A ;0,)2(>×AQ Q m n Q H 则列满秩矩阵是任一如果;,,2,1,)tr(;0)3(n i A A i =>>λ(4) 设A ,B 均为n 阶Hermite 矩阵,且B > 0,则存在可逆矩阵P ,使得.),,,,(diag 21I BP P AP P Hn H ==λλλ4. Hermite 矩阵半正定的判别方法(1)A 的n 个特征值均为非负数;;0002⎟⎟⎠⎞⎜⎜⎝⎛=r H I AP P P n 使得阶可逆矩阵)存在(;)3(Q Q A Q r H=使得的矩阵存在秩为;,Hermite 42S A S n r =使得矩阵阶的)存在秩为((5)A 的所有主子式均非负.5.矩阵不等式;0)1(≥−⇔≥B A B A ;,)2(Bx x Ax x C x B A H H n ≥∈∀⇔≥有都有阶可逆矩阵对任意P n B A B A ⇔>≥)()4();(BP P AP P BP P AP P H H H H >≥则设),,,(diag ),,,(diag )3(11n n b b B a a A ==);,,2,1)(()(n i b a b a B A B A i i i i =>≥⇔>≥(5)设A , B 均为n 阶Hermite 矩阵且A ≥0, B >0,则;1)(1≤⇔≥−AB A B ρ;1)(1<⇔>−AB A B ρ(6)设A 是n 阶Hermite 矩阵,则;)()(max min I A A I A λλ≤≤(8)设A , B 均为n 阶Hermite 矩阵,且AB = BA ,则;022B A B A ≥⇒≥≥;022B A B A >⇒>>.0,0,0)10(≥=≥≥AC CA AC C A 则且设;0,0,0)9(>=>>AC CA AC C A 则且设(7)设A 是Hermite 非负定矩阵,则A ≤tr(A ) I ;第六章范数与极限1.向量范数;2)2(21122⎟⎟⎠⎞⎜⎜⎝⎛=−∑=ni ix x 范数;1)1(11∑==−ni i x x 范数;max )3(1i ni x x ≤≤∞=−∞范数.1,)4(11>⎟⎟⎠⎞⎜⎜⎝⎛=−∑=p x xp pni pi p范数2.矩阵范数;||max 1)1(111∑=≤≤=−mi ij nj a A 范数;)]([2)2(21max 2A A A Hλ=−范数;||max )3(111Hnj ij mi Aa A ==−∞∑=≤≤∞范数().)(||)4(2121112A A tr a A F H m i nj ij F=⎟⎟⎠⎞⎜⎜⎝⎛=−∑∑==范数3.矩阵范数与向量范数的联系,则且设∞=∈×,2,1p CA nm .max 1p x p Ax A p==;)1(p ppB AAB≤;)2(22B A AB F ≤.)3(2F FB A AB≤4.矩阵范数的相容性则且设,,,2,1,,F p CB CA kn nm ∞=∈∈××;)3(p pppA UAVAVUA===;)1(p pTpHA AA==;)2(222A A A H=5.矩阵范数的性质.)4(122∞≤A A A 则是酉矩阵和设,,2,,F p V U CA nm =∈×6.矩阵的谱半径;)(,,)1(A A CC A nn nn ≤⋅∈××ρ有上的任一相容矩阵范数则对设;)(,,0,)2(ερε+≤⋅>∀∈××A A CCA nn nn 使得上存在相容矩阵范数在则设.,)(,)3(R A CR A CA nn nn <⋅<∈××使得存在相容矩阵范数上的充分必要条件是在则设ρ7.矩阵序列与矩阵级数;0lim lim lim )1()()()(=−⇔=⇔=∞→∞→∞→A Aa a A Ak k ij k ijk k k ;,;,发散则如果绝对收敛则如果的收敛半径为设级数∑∑∑∞=∞=∞=><0)(,)()2(k kk k kkk kk A c R A A cR A R z c ρρ;0lim 1)()3(0=⇔<⇔∞→∞=∑kk k kA A Aρ收敛矩阵幂级数.,1,)4(1可逆则的相容矩阵范数且上是,是非奇异矩阵设E A E A CCE CA nn nn nn +<⋅∈∈−×××1.加号逆的定义;1A AGA =)(;2G GAG =)(;)(3AG AG T=)(.)(4GA GA T=)(设A ∈R m ×n ,则G =A +的充分必要条件是:第八章广义逆矩阵2.加号逆在方程组中的应用;)1(b b AA b Ax ==+相容的充要条件是方程组则其通解是相容若,)2(b Ax =是则其最小二乘解的通式不相容若,)4(b Ax =;,)3(是其极小范数解则相容若b A x b Ax +==;,)(nR y y A A I b A x ∈∀−+=++;,)(nR y y A A I b A x ∈∀−+=++.,)5(b A x b Ax +==则其极小最小二乘解是不相容若3.加号逆在矩阵方程中的应用;C B CB AA =++(1)矩阵方程AXB = C 有解的充分必要条件是.,Y AYBB A Y CB A X ∀−+=++++(2)如果AXB = C 有解,则其通解是4.加号逆的计算;)(,)1(1TT A A A A A −+=则列满秩若;)(,)2(1−+=T T AA A A A 则行满秩若(3)设A 的满秩分解为A = BC ,则.)()(11TTT TB B B CC C B C A −−+++==。

研究生数学研究:线性代数与矩阵论

研究生数学研究:线性代数与矩阵论

研究生数学研究:线性代数与矩阵论导论研究生阶段是对数学学科的深入研究和专业发展的重要时期。

在数学领域中,线性代数与矩阵论是一门基础而广泛应用的学科,被广泛用于解决各种实际问题以及其他数学领域的研究中。

什么是线性代数与矩阵论?线性代数与矩阵论是研究向量空间和线性变换的数学学科。

它研究线性方程组以及线性方程组在向量空间中的几何解释。

同时,矩阵论是线性代数的一个重要分支,它主要关注矩阵的代数性质和运算。

线性代数的基础概念在学习线性代数之前,我们首先需要了解一些基础概念。

首先,线性代数是研究向量空间的学科,而向量是具有大小和方向的量。

在二维空间中,向量可以用一个二维坐标表示。

在三维空间中,向量可以用一个三维坐标表示。

此外,线性代数还涉及向量的加法和乘法运算,以及向量之间的点积和叉积等运算。

向量空间向量空间是线性代数的核心概念之一。

一个向量空间是具有一组基础向量的集合,它包含了所有由这些基础向量线性组合而成的向量。

线性代数通过研究向量空间的性质和结构来解决线性方程组和线性变换等问题。

线性方程组线性方程组是线性代数中的重要问题之一。

一个线性方程组由一组线性方程组成,其中未知量的系数是实数或复数。

解线性方程组的问题可以转化为在对应的向量空间中寻找特定的向量或空间。

线性方程组的求解方法解线性方程组的方法有很多种,包括高斯消元法、矩阵法和向量法等。

其中,高斯消元法是一种非常常用和基础的方法,它通过进行一系列的行变换将线性方程组转化为简化的行阶梯形式,从而求解方程组的解。

线性变换线性变换是线性代数中的重要概念之一。

一个线性变换是指将一个向量空间映射到另一个向量空间的映射,它保持向量空间的线性性质。

线性变换可以用矩阵表示,其中矩阵的每一列对应于向量空间中的一个基向量。

线性变换的应用线性变换在实际问题中有广泛的应用。

例如,线性变换可以用于图像处理和计算机图形学中的空间变换,也可以用于信号处理和通信系统中的数据编码和解码,还可以用于机器学习和统计学中的数据分析和模型建立等。

研究生矩阵论考点精要

研究生矩阵论考点精要

⎪⎩⎪⎨⎧=--=-=-⎪⎩⎪⎨⎧=+==0)2()(0)(,231213321211p A I p p A I p A I p Ap p p Ap p Ap 即8223)()23104()()()(2234-+--+++=÷λλλψλλλλλλψλg g 得1、求下列矩阵的Jordan 标准型和所用相似变化矩阵:⎪⎪⎪⎭⎫ ⎝⎛--=304021101A ,首先用特征向量法求出Jordan 矩阵J=⎪⎪⎪⎭⎫⎝⎛2111,设相似变换矩阵为P=(p 1 p 2 p 3),由 可见p 1,p 3是A 的对应特征值1和2的特征向量,而p 2由求解非齐次线性方程组(I-A)x=-p 1得到,特征值1和2的2特征向量分别为p 1=(1,-1,2)T ,p 3=(0,1,0)T 。

求解方程(I-A )x=-p 1,得到x 的通解,x=(-0.5,-0.5,0)T ,取k=1,得p 2=(0,-1,1)T ,故所用相似变换矩阵P=(p 1,p 2,p 3)2、已知矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=201034011A ,计算(1)A 7-A 3-19A 4+28A 3+6A-4I ,(2)A -1(3)A 100:(1),算出)(λψ=det (A I -λ),令4-62819--)(3437λλλλλλ++=g ,用由哈密顿凯莱定理)(A ψ=O ,于是g (A )=I A A 82232-+-;(2)、由)(A ψ=A 3-4A 2+5A-2I=O 得I I A A A =+-)]54(21[2,故A -1可算出。

(3),设0122100)()(b b b q +++=λλλψλλ,注意到0)1()1()2(='==ψψψ,分别将λ=2和λ=1代入上式,再对上式求导数将λ=1代入,解出b 0,b 1,b 2故A 100可算出。

3、各类范数总结范数,称为向量,设1),,,(x 1121∑===nk k Tn x ξξξξ ,范数,称为向量,设∞==k kT n x ξξξξmax ),,,(x 121范数,向量,设p )(),,,(x 1121∑===nk ppk pTn xξξξξ ,范数,称为矩阵,设1111)(m a A a A nj ijni m n n ij ∑∑==⨯==范数,称为矩阵,设F aA a A nj ijni F n n ij 211)(∑∑==⨯==,范数,称为矩阵,设∞⨯==∞m a n A a A ij ji m n n ij ,max )( 范数,称为矩阵,设1max )(1ij jn n ij a A a A ==⨯,范数,称为矩阵,设2)(12λ==⨯A a A n n ij (1λ为A H A 最大特征值)。

研究生矩阵理论知识重点

研究生矩阵理论知识重点

《矩阵理论》知识重点一.概况1.开课学院(系)和学科:理学院数学系2.课程代码:3.课程名称:矩阵理论4.学时/学分:51学时/3学分5.预修课程:线性代数(行列式,矩阵与线性方程组,线性空间F n,欧氏空间R n,特征值与矩阵的对角化,实对称矩阵与二次型), 高等数学(一元微积分,空间解析几何,无穷级数,常微分方程)6.适合专业:全校的机、电、材、管理、生命和物理、力学诸大学科类,以及人文学科等需要的专业(另请参看选课指南)。

7.教材/教学参考书:《矩阵理论》,苏育才、姜翠波、张跃辉编,科学出版社,2006《矩阵分析》, R.A. Horn and C.R. Johnson, Cambridge Press (中译本),杨奇译,机械工业出版社,2005。

《矩理阵论与应用》,陈公宁编,高等教育出版社,1990。

《特殊矩阵》,陈景良,陈向晖,清华大学出版社,2001。

《代数特征值问题》,JH.威尔金森著,石钟慈邓健新译,科学出版社,2001。

二、课程的性质和任务矩阵理论作为一种基本的数学工具,在数学学科与其他科学技术领域诸如数值分析、优化理论、微分方程、概率统计、系统工程等学科都有广泛应用。

电子计算机及计算技术的发展也为矩阵理论的应用开辟了更广阔的前景。

因此,学习和掌握矩阵的基本理论和方法,对于将来从事工程技术工作的工科研究生来说是必不可少的。

通过该门课程的学习,期望学生能深刻地理解矩阵理论的基本知识和数学思想,掌握有关的计算方法及技巧,提高学生的数学素质,提高科研能力,掌握矩阵理论在多元微积分、线性控制系统、微分方程、逼近理论、投入产出分析等领域的许多应用。

三、课程的教学内容和要求矩阵理论的教学内容分为十部分,对不同的内容提出不同的教学要求。

(数字表示供参考的相应的学时数)第一章矩阵代数(复习,2)1 矩阵的运算、矩阵的秩和初等变换、Hermite梯形阵、分块矩阵(2)要求:掌握矩阵的运算及性质,尤其是对矩阵乘法“左行右列”规则的深入理解和融会贯通;熟练掌握利用初等变换求矩阵的秩、Hermite梯形阵等的技巧;理解并掌握分块矩阵的运算技巧与要领。

某211高校研究生课程《矩阵论》

某211高校研究生课程《矩阵论》
通常多项式加法和数与多项式的乘法,构成线性空
间 R[ x]n
例5 集合 V { x x [x 1 ,x 2 ,1 ] T ,x 1 ,x 2 R }不是
一个线性空间。因为加法不封闭。
例6 线性非齐次方程组 Axb 的解集
V { R n | C 1 1 C n r n r , A R m n }
nn,标准基为Eij:(i=1,2…n;j=1,2…n)
第i行第j列的元素为1,其它的都为0。
例1.3.4 在线性空间 P [ x ]3 中,显然
1 1 , 2 x , 3 x 2
是 P [ x ]3 的一组基,此时多项式
3 2 x 4 x 2
在这组基下的坐标就是 (3,2,4)T.
证明 1 1 ,2 ( x 2 ) ,3 ( x 2 ) 2也是 P [ x ]3
取V1 V2的一组基1,,m,把它扩充成
V1的一组基1,,m,1,,n1m,并且
把1,,m也扩充成V2的一组基1,,m,
1,,
n2
,则
V m1 sp (1 , a ,m ,1 n , n 1 m ),
V 2 sp (1 , a ,m ,1 n , n 2 m ),
并 V 1 V 2 s ( 且 1 p , ,m ,1 a , ,n 1 m n , 1 , , n 2 m )
其基可取为 { 1 , i } ,即C中任一复数k=a+bi
(a,bR)都有a+bi=(1,i)( a ),所以(a,b) T即为k的坐
标。
b
例 1.3.2 实数域 R上的线性空间R [x]n中的向量组 1,x, x2 ,… xn-1
是 基底, R [x]n的维数为 n。
例1.3.3 实数域 R上的线性空间 R nn 的维数为

南京航空航天大学研究生课程《矩阵论》内容总结与习题选讲

南京航空航天大学研究生课程《矩阵论》内容总结与习题选讲

《矩阵论》复习提纲与习题选讲Chapter1 线性空间和内积空间内容总结:z 线性空间的定义、基和维数;z 一个向量在一组基下的坐标;z 线性子空间的定义与判断;z 子空间的交z 内积的定义;z 内积空间的定义;z 向量的长度、距离和正交的概念;z Gram-Schmidt 标准正交化过程;z 标准正交基。

习题选讲:1、设表示实数域3]x [R R 上次数小于3的多项式再添上零多项式构成 的线性空间(按通常多项式的加法和数与多项式的乘法)。

(1) 求的维数;并写出的一组基;求在所取基下的坐标;3]x [R 3]x [R 221x x ++ (2) 在中定义3]x [R , ∫−=11)()(),(dx x g x f g f n x R x g x f ][)(),(∈ 证明:上述代数运算是内积;求出的一组标准正交基;3][x R (3)求与之间的距离;221x x ++2x 2x 1+−(4)证明:是的子空间;2][x R 3]x [R (5)写出2[][]3R x R x ∩的维数和一组基;二、 设22R ×是实数域R 上全体22×实矩阵构成的线性空间(按通常矩阵的加 法和数与矩阵的乘法)。

(1) 求22R ×的维数,并写出其一组基;(2) 在(1)所取基下的坐标; ⎥⎦⎤⎢⎣⎡−−3111(3) 设W 是实数域R 上全体22×实对称矩阵构成的线性空间(按通常矩阵的加法和数与矩阵的乘法)。

证明:W 是22R ×的子空间;并写出W 的维数和一组基;(4) 在W 中定义内积, )A B (tr )B ,A (T =W B ,A ∈求出W 的一组标准正交基;(5)求与之间的距离; ⎥⎦⎤⎢⎣⎡0331⎥⎦⎤⎢⎣⎡−1221 (6)设V 是实数域R 上全体22×实上三角矩阵构成的线性空间(按通常矩阵的加法和数与矩阵的乘法)。

证明:V 也是22R ×的子空间;并写出V 的维数和一组基;(7)写出子空间的一组基和维数。

研究生矩阵论

研究生矩阵论

研究生矩阵论矩阵论是数学中一个重要的分支领域,其中包含了丰富而复杂的理论和应用。

研究生矩阵论作为一门专业课程,是研究生阶段数学学习的重要内容之一。

本文将介绍研究生矩阵论的基本概念、主要内容以及其在实际应用中的重要性。

研究生矩阵论主要研究矩阵及其相关性质。

矩阵是由m行n列元素所组成的矩形阵列,常用大写字母表示。

矩阵的运算包括加法、乘法、转置等。

在矩阵的乘法中,两个矩阵相乘的条件是第一个矩阵的列数等于第二个矩阵的行数。

矩阵的转置是将矩阵的行与列互换得到的新矩阵。

矩阵的转置有许多重要的性质和应用。

研究生矩阵论的主要内容包括矩阵的基本运算、矩阵的特征值与特征向量、矩阵的相似、矩阵的对角化等。

研究生矩阵论通过系统地研究这些内容,使学生能够深入理解矩阵的性质和运算法则,为进一步研究和应用奠定基础。

矩阵的特征值与特征向量是研究生矩阵论中的重要内容之一。

特征值是一个数,特征向量是与特征值相对应的非零向量。

矩阵的特征值与特征向量在许多实际问题中有着重要的应用,比如在物理学中,特征值与特征向量可以描述物体的运动状态;在工程学中,特征值与特征向量可以用于分析电路的稳定性。

矩阵的相似是研究生矩阵论中的另一个重要内容。

如果两个矩阵A和B满足存在一个可逆矩阵P,使得P-1AP=B,那么矩阵A和B就是相似矩阵。

相似矩阵具有许多重要的性质和应用,比如可以通过相似变换将矩阵化简为对角矩阵,从而简化问题的求解。

矩阵的对角化是研究生矩阵论中的另一个重要内容。

对于一个n阶方阵A,如果存在一个可逆矩阵P,使得P-1AP=D,其中D是一个对角矩阵,那么矩阵A就可以被对角化。

对角化可以使得矩阵的计算更加简单,从而方便解决实际问题。

研究生矩阵论在实际应用中具有重要的意义。

矩阵论在计算机图形学、信号处理、机器学习等领域中有广泛的应用。

例如,在计算机图形学中,矩阵论可以用于描述图像变换和投影等操作;在信号处理中,矩阵论可以用于矩阵分解和降维等技术;在机器学习中,矩阵论可以用于矩阵求逆和矩阵分解等算法。

研究生矩阵论试题与答案

研究生矩阵论试题与答案

中国矿业大学级硕士研究生课程考试试卷考试科目矩阵论考试时间年月研究生姓名所在院系学号任课教师一(15分)计算 (1) 已知A 可逆,求10d Ate t ⎰(用矩阵A 或其逆矩阵表示); (2)设1234(,,,)Ta a a a =α是给定的常向量,42)(⨯=ij x X 是矩阵变量,求Td()d X αX;(3)设3阶方阵A 的特征多项式为2(6)I A λλλ-=-,且A 可对角化,求kk A A ⎪⎪⎭⎫⎝⎛∞→)(lim ρ。

二(15分)设微分方程组d d (0)xAx t x x ⎧=⎪⎪⎨⎪⎪=⎩,508316203A ⎛⎫ ⎪= ⎪ ⎪--⎝⎭,0111x ⎛⎫ ⎪= ⎪⎪⎝⎭ (1)求A 的最小多项式)(λA m ; (3)求Ate ; (3)求该方程组的解。

三(15分)对下面矛盾方程组b Ax =312312111x x x x x x =⎧⎪++=⎨⎪+=⎩ (1)求A 的满秩分解FG A =; (2)由满秩分解计算+A ;(3)求该方程组的最小2-范数最小二乘解LS x 。

四(10分)设1113A ⎫=⎪⎭求矩阵A 的QR 分解(要求R 的对角元全为正数,方法不限)。

五(10分) 设(0,,2)TnA R n αβαβ=≠∈≥ (1)证明A 的最小多项式是2()tr()m A λλλ=-; (2)求A 的Jordan 形(需要讨论)。

六(10分)设m nrA R ⨯∈,(1)证明rank()n I A A n r +-=-;(2)0Ax =的通解是(),nn x I A A y y R +=-∀∈。

七(10分)证明矩阵2121212311122222224333333644421(1)(1)n n n nn n n n n n ---⎛⎫ ⎪⎪ ⎪ ⎪⎪= ⎪ ⎪⎪⎪ ⎪ ⎪+++⎝⎭A (1)能与对角矩阵相似;(2)特征值全为实数。

八(15分) 设A 是可逆矩阵,11,B A Aαβ-=-=(这里矩阵范数都是算子范数), 如果βα<,证明(1)B 是可逆矩阵;(2)11B αβ-≤-;(3)11()B A βααβ---≤-。

研究生矩阵理论

研究生矩阵理论

.
|| A ||a
返回
证明:
(E A1 A)1 A1b A1b
(E A1 A)1 E A1b
A1 A(E A1 A)1 A1b A1 A(E A1 A)1 x,
返回
第三章
矩阵的分解
返回
§1 矩阵的三角分解
一、n 阶方阵的三角分解
1.上三角矩阵R 的逆 R1 也是上三角矩阵,且对角 元是R 对角元的倒数;
返回
例 1 设 x P n , A P nn,则
nn
|| A ||m1
| aij |
j1 i1
是与向量范数 || • ||1 相容的矩阵范数.
例 2 设 x P n , A P nn,则 || A ||m2 是与 || x ||2
相 容 的 矩 阵 范 数.
返回
定理 1 设 || x ||a 是P n上的向量范数, A P nn ,则
则 称 映 射|| || 为C n上 向 量x的 范 数.
向量范数的性质:
(1) || 0 || 0; (2) x 0时,|| 1 x || 1;
|| x || 返回
(3) 对 任 意x C n, 有|| x |||| x ||;
(4) 对任意x, y C n,有| || x || || y ||||| x y || .
k
xi(k )
ai
(i 1,2,, n)
则称向量序列x(k )收敛于a (a1, a2 ,, an ).
定义 4 lim x(k ) a
k
lim || x(k ) a || 0
k
定理 4 设 || || 是C n上的任一向量范数,则
lim x(k ) a
k

研究生矩阵论总复习重点公式

研究生矩阵论总复习重点公式
x x0 x x1 2 x x1 x x0 2 H 3 ( x ) y0 [1 2 ]( ) y1[1 2 ]( ) x 1 x0 x0 x1 x 0 x1 x1 x0 x x1 2 x x0 2 m0 ( x x0 )( ) m1 ( x x1 )( ) x0 x1 x1 x0
第四章
一、 幂法
1. 定义: 计算主特征值及其对应的特征向量的方法。
yk Axk 1 2. 实用计算公式 mk max yk x y /m k k k
当 k 充分大时,有
( k 1, 2, )
1 mk v1 xk ( yk )
其中 mk 是 yk 绝对值最大的第一个分量.
三、向量与矩阵的范数
1. 常用的向量范数
x 1 x1 x2 xn
2 2 2 x 2 x1 x2 xn
x max xi
1 i n
2. 常用的矩阵范数
4. A max | i ( A) | 谱半径
(矩阵的列范数)
(矩阵的行范数) (矩阵的谱范数)
2. 迭代法的收敛条件 f ( xk ) ( k 0,1, ) 四、牛顿切线法 xk 1 xk f ( xk ) 五、 割线法 f ( xk ) xk 1 xk ( xk xk 1 ) ( k 1, 2, ) f ( xk ) f ( xk 1 )
1 (4) 2 2 R3 ( x ) f ( x ) H 3 ( x ) f ( )( x x0 ) ( x x1 ) 4!
第七章
m 1 m xi i 0 m n xi i 0
一、多项式拟合的正规方程组
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

研究生矩阵论
矩阵论是数学中的一个重要分支,它研究的对象是矩阵及其性质。

研究生在学习矩阵论时,需要深入理解矩阵的基本概念和性质,并掌握一些重要的定理和推论。

本文将介绍研究生矩阵论的一些重要内容,以帮助读者更好地理解和应用矩阵论知识。

矩阵是由数个数按照一定的规律排列成的矩形数组。

矩阵的行和列分别代表其维度。

在矩阵论中,我们通常用大写字母表示矩阵,如A、B、C等。

矩阵中的每个元素用小写字母表示,如a、b、c等。

矩阵的运算包括加法、减法、数乘和矩阵乘法等。

这些运算满足一定的性质,如结合律、分配律等。

矩阵的转置是指将矩阵的行和列互换得到的新矩阵。

转置矩阵的性质有:(A^T)^T = A,(A + B)^T = A^T + B^T,(kA)^T = kA^T,其中A、B是矩阵,k是数。

矩阵的逆是指对于一个可逆方阵A,存在一个方阵B,使得AB = BA = I,其中I是单位矩阵。

如果一个矩阵没有逆矩阵,我们称其为奇异矩阵。

逆矩阵的性质有:(A^T)^{-1} = (A^{-1})^T,(AB)^{-1} = B^{-1}A^{-1},(kA)^{-1} = \frac{1}{k}A^{-1},其中A、B是可逆矩阵,k是非零数。

矩阵的秩是指矩阵中非零行(列)的最大个数。

矩阵的秩具有一些
重要的性质:如果矩阵A的秩为r,则A的任意r阶子式不等于0,而r+1阶子式等于0。

矩阵的特征值和特征向量是矩阵论中的重要概念。

对于一个方阵A,如果存在一个非零向量x,使得Ax = \lambda x,其中\lambda是一个数,那么\lambda称为A的特征值,x称为对应于特征值\lambda的特征向量。

特征值和特征向量具有一些重要的性质:矩阵A和其转置矩阵A^T具有相同的特征值;A的特征值之和等于A 的迹,即矩阵A的所有特征值之和等于A的主对角线上元素之和。

矩阵的相似性是矩阵论中的一个重要概念。

对于两个方阵A和B,如果存在一个可逆矩阵P,使得P^{-1}AP = B,那么我们称A和B 是相似的。

相似矩阵具有一些重要的性质:相似矩阵具有相同的特征值;相似矩阵具有相同的秩。

矩阵论在实际应用中有着广泛的应用。

在物理学、工程学、计算机科学等领域,矩阵论被广泛应用于建模和求解问题。

例如,线性方程组可以用矩阵的形式表示,矩阵论提供了求解线性方程组的方法。

此外,矩阵论还在图论、最优化等领域中有着重要的应用。

矩阵论是研究生数学中的重要内容之一。

通过研究和掌握矩阵论的基本概念、性质和应用,研究生可以在数学和其他学科中有更深入的理解和应用。

希望本文对研究生矩阵论的学习有所帮助。

相关文档
最新文档