GCMS谱图解析基础

合集下载

GCMS定性分析ppt课件

GCMS定性分析ppt课件

m/z 111 二级质谱图
I0: I1
0.2025
〔Experimental ) =
产物离子二重峰的理论丰度比
I0: I1 (Theoretical)
C5H3O2+ 0.2022
C4H3N2O+ 0.2172
(RI =941) (RI =941)
18
第四节. 高分辨MS定性
常规GC-MS定性分析
气相色谱高效分离和质谱高灵敏定性技术有效的结合。 在混合物定性分析中,GC-MS应用最为广泛、简便、成熟。
度的影响。 色谱条件〔包括程序升温的条件、进样口温度〕对保留指数没有影
响。 保留指数是利用色谱方法进行色谱峰定性的最有力方法
7
各类非极性色谱柱的上的保留指数
化合物 HP-1 PTE 5 SE-54 CPSIL-5CB DB-1 HP-5 SD RSD(%)
α-蒎烯 928 939 β-蒎烯 967 981
元素准确质量
22
气相色谱/高分辨飞行时间质谱联用仪
气相色谱 + 正交加速飞行时间质谱
➢ 可更换EI/CI离子源
➢ 高分辨率

> 7000
➢ 提供准确质量

< 5 ppm
➢ 动态范围宽

> 104
➢ 高速采样

20张图谱/秒
23
有机小分子化合物 GC-HRMS
➢ 成分复杂的混合物
➢ 有些无法完全分离 ➢ 未知成分较多
R2〔DB-Wax) 1988 2135 2220 2227 2271 1355
2287
7 (E)-2,6-二甲基-2,7-辛二烯-1,6-二醇 1362

GCMS气相色谱质谱联用仪基础知识和培训教材

GCMS气相色谱质谱联用仪基础知识和培训教材

(OCI-mode)
2.
玻璃衬管 (Glass Insert)
(PTV-mode)
注意事项-样品气化不完全
❖ 进样口温度过低,将导致高分子量化合物气化不完全 ,并且不能有效转移到色谱柱中。
进样口温度:200℃
进样口温度:300℃
注意事项-样品分解
❖ 进样口温度过高,导致热稳定性差的化合物分解。
进样口温度:280℃
1mL/min 初始柱温:溶剂沸点-10度
溶剂聚焦效应
进样口 溶剂在柱头重新冷凝
初始柱温:溶剂沸点-10度
溶剂聚焦对峰形的影响
色谱柱:Rtx-5 30m×0.25mm×0.25um 进样量:1.0µL 样品:5ug/mL农药混标 (溶剂为正己烷) 柱温程序:150°C to 275°C @ 4°C/min.
如样品有强吸附性,最好不加石英棉。 ・必须使用程序升温方式,初始温度低于溶剂沸点10~20度 ・建议使用高压进样方式 ・不适合气体样品和低沸点溶剂类样品的分析 ・不适合分析在溶剂峰之前出峰的组分
WBI进样口
用于: 宽孔径毛细管柱 填充柱
OCI/PTV进样口
载气 毛细柱
隔垫吹扫出口 分流出口
1.
Column Sleeve/Guide
GCMS气相色谱/质谱联用仪 基础知识和培训教材
第一部分
GCMS基本构成
GCMS : 气相色谱/质谱联用仪
GC:气相色谱(Gas chromatograph) MS:质 谱 (Mass spectrometer )
GC组成
目的 :分离样品组分
载气
样品 进样口 ( 样品气化)
检测器 (FID, MS,···)
什么是不分流进样?(II)

气相色谱原理和分析方法图解

气相色谱原理和分析方法图解

19-1 气相色谱仪
一.GC工作过程
二.气路系统
三.进样系统
四.分离系统
分离系统由色谱柱组成,它是色谱仪的核心部件,其作用 是分离样品。色谱柱主要有两类:填充柱和毛细管柱。 1)填充柱 填充柱由不锈钢或玻璃材料制成,内装固定相, 一般内径为2~4 mm,长1~3m。填充柱的形状有U型和螺旋型 二种。
一.
(2).液体固定相
气液色谱固定相
载体(担体)和固定液组成气液色谱固定相 1. 载体(担体)
(l)对载体的要求 具有足够大的表面积和良好的孔穴结 构,使固定液与试样的接触面较大,能均匀地分布成一薄 膜,但载体表面积不宜太大,否则犹如吸附剂,易造成峰 拖尾;表面呈化学惰性,没有吸附性或吸附性很弱,更不 能与被测物起反应;热稳定性好;形状规则,粒度均匀, 具有一定机械强度。
-.热导检测器 (TCD) 热导检测器 是根据不同的物 质具有不同的热 导系数原理制成 的。热导检测器 由于结构简单, 性能稳定,几乎 对所有物质都有 响应,通用性好, 而且线性范围宽, 价格便宜,因此 是应用最广,最 成熟的一种检测 器。其主要缺点 是灵敏度较低。
2)毛细管柱 毛细管柱又叫空心柱,分为涂壁,多孔层和 涂载体空心柱。涂壁空心柱是将固定液均匀地涂在内径0.l~ 0.5mm的毛细管内壁而成,毛细管材料可以是不锈钢,玻璃或 石英。毛细管色谱柱渗透性好,传质阻力小,而柱子可以做到 长几十米。与填充往相比,其分离效率高(理论塔板数可达 106)、分析速度块、样品用量小,但柱容量低、要求检测器的 灵敏度高,并且制备较难。
二.气固色谱固定相
1.常用的固体吸附剂 主要有强极性的硅胶,弱极性的氧化铝,非 极性的活性炭和特殊作用的分子筛等。使用时, 可根据它们对各种气体的吸附能力不同,选择 最合适的吸附剂 .(见表19-6) 2.人工合成的固定相

GCMS的主要构造及基本原理

GCMS的主要构造及基本原理

GCMS的主要构造及基本原理GC/MS的主要构造及基本原理&维护保养了解气相色谱质谱联用仪的主要构造及基本原理1.1 整体概述气相色谱质谱联用仪可以分成两大部分GC&MS.简单的说GC是把混合物分离成单一物质,而MS就是对着单一物质经行检测。

GC中主要包括气路系统,进样系统,温度控制系统,分离系统;MS中主要包括就是离子源,质量分析器,检测器。

下面这幅就是一台气相色谱质谱联用仪主要组成部件。

1.2.GC部分1.2.1 概述气相色谱仪是气相色谱法为基础而设计的仪器,气相色谱是以气相色谱柱为分离基础,样品进入进样器后载气传送,到达色谱柱的分离,分离后样品由柱中流出后到达检测器,然后排空。

气相色谱仪整体系统由以下方面组成:1).载气供输系统(A)2).进样系统(B)3).柱分离系统(C) 整个GC中最重要的一个4).控温系统(D)1.2.2.载气供输系统1.2.2.1 概述参考下图,我们能够大致了解下载气供输系统的构造.a -压缩气体, 纯度>99.999%(这一点绝对重要,如果不纯将影响到仪器维护以及日常测试中多个方面建), 常用的气体有He Ar N2 H2;b -减压阀, GC/MS输出压力0.5~0.7MPa;c -开关;d -气体纯化管, 可去除少量O2、CO2、CxHy、卤代烃等.在这一块维护保养中,我们也一直米人去动过它,上次整机维护的时候厂商说我们这个还能用也就米换,个人建议一年换一次纯化管为好。

1.2.2.2载气的选择在一个方法开发的时候,其中考虑的一个因素就是选择使用何种气体作为我们仪器运行的一个载气。

在选择在载气的时候我们一般考虑以下几个方面a.检测器下面列出了不同的检测器对载气的基本要求。

根据上表你就可以根据你所用仪器的一个检测器进行选择,在我们GC-MS中常用的也就He,H2,N2b.柱效从图上我们可以看出N2和Ar变化最大, 在较高的流速下得到最高的HETP;He 和H2曲线较平坦, 即使较高的流速也能得到较低的HETP;所以推荐使用He和H2;按照理论塔高度越低,理论塔板数越多越好所以一般我们选择HE,H2c.安全性主要考虑的还是氢气。

GCGCMS

GCGCMS

• 质谱法:
将不同质量的离子按质荷比(m/z)的大小 顺序收集和记录下来,得到质谱图,用质谱 图进行定性、定量分析及结构分析的方法
第三部分:气质联用基础知识
2. GC-MS 常用术语
第三部分:气质联用基础知识
GCMS常用术语
总离子流图(TIC)
TIC和MC(质量色谱图)
第三部分:气质联用基础知识
+ H
[M+1]
样品分子
第三部分:气质联用基础知识
正化学电离(PCI)
首先电离反应气分子 容易产生准分子离子
样品分子主要由质子转移电离 用于确定分子量

+
CH4 C2H5
C2H4
+ MH
M
PCI spectrum 硬酯酸甲酯 M.W. 298
第三部分:气质联用基础知识
EI和 PCI的比较
Hyphenated technology of GC-MS
介绍内容:
GC-MS主要由三部分组成: 1、色谱部分
2、质谱部分 3、数据处理系统
第一部分:气相色谱基础知识
什么是气相色谱
-------基于时间的差别进行分离

气相色谱(GC) 是一种把混合物分离成单个组 分的实验技术,它被用来对样品组分进行鉴定和 定量测定。
样品本身性质的差异,决定了离 子化的方式不能有万能的离子源,离 子源的类型也是多种多样。
第二部分:质谱基础知识
离子源
——将待分析样品电离,得到带有样品信息的离子
固体样品 液体样品 气体样品
转化成固体
转化成溶液
转化成气体
根据待分析物 的化学性质
根据待分析物 的化学性质

GCMS基础理论

GCMS基础理论

BP-10
HR-10
Rtx-1701
SPB-1701
CP Sil 19 CB
Rtx-200
CP Sil 43 CB
HR-225
Rtx-225
BP-20
HR-20M
ALLOY-CW
StabilwaxDA
Stabilwax
Nukol
Supecolwax-10 Carbowax 20M
CP Wax 58 CB, FFAP-CB
Porous Layer Open Tubular
多孔层开口柱
Wall Coated Open Tubular
管壁涂渍开口柱
毛细管柱管材
熔融石英 – 合成高纯石英
外表面涂覆聚酰亚胺 内表面经化学处理
不锈钢
用于高温分析 最不易断裂 内表面经特殊处理
固定相
大多数固定相为聚合物
聚硅氧烷(Polysiloxanes, silicones) 聚乙二醇(Polyethylene glycols, PEG)
每天都要进行老化吗?
视仪器基线情况,确定是否需要老化以及老化时间。
色谱柱分离效率评价
色谱柱效率:峰尖
评价:理论板高(HETP)、理论塔板数(N) 对策:将Van Deemter 各因素优化
选择性:峰的分离度
评价:分离因子或分离度 对策:选择极性相当的固定相
峰的对称性:吸附现象
评价:拖尾因子 对策:色谱柱进一步老化
MS基础知识
MS流程图
样品
进样系统
GC进样 直接进样
离子源 真空系统
质量分析器
检测器 数据处理
直接进样方式 DI
为什麽MS需要高真空
❖ 提供足够的平均自由程 ❖ 提供无碰撞的离子轨道 ❖ 减少离子-分子反应 ❖ 减少背景干扰 ❖ 延长灯丝寿命 ❖ 消除放电 ❖ 增加灵敏度

gcms原理及图谱分析

gcms原理及图谱分析

gcms原理及图谱分析GCMS原理及图谱分析。

GCMS(Gas Chromatography-Mass Spectrometry)是一种常用的分析技术,它结合了气相色谱和质谱两种分析方法,能够对样品中的化合物进行高效、高灵敏度的分析。

本文将对GCMS的原理及图谱分析进行介绍。

GCMS的原理。

GCMS的原理主要包括样品的挥发性化合物通过气相色谱分离,然后进入质谱进行离子化和质谱分析。

首先,样品通过气相色谱柱进行分离,不同化合物在柱上停留时间不同,通过柱温程序升温,分离出不同化合物。

然后,化合物进入质谱离子源,经过电子轰击或化学离子化产生离子,质谱对这些离子进行分析,得到质谱图谱。

GCMS图谱分析。

GCMS图谱是GCMS分析的结果,通过对图谱的解析可以得到样品中的化合物信息。

GCMS图谱主要包括质谱图和色谱图两部分。

质谱图是通过质谱仪获得的,它显示了不同离子的相对丰度,通过对质谱图的解析可以得到化合物的分子量和结构信息。

色谱图是通过气相色谱获得的,它显示了不同化合物在柱上的停留时间,通过对色谱图的解析可以得到化合物的相对含量和纯度信息。

GCMS图谱分析的步骤主要包括,首先,对质谱图进行解析,确定主要的离子峰和相对丰度,推断化合物的分子量和结构;其次,对色谱图进行解析,确定不同化合物的保留时间,推断化合物的相对含量和纯度;最后,将质谱图和色谱图进行对比,确认化合物的结构和含量。

GCMS图谱分析的应用。

GCMS图谱分析广泛应用于食品安全、环境监测、药物分析等领域。

在食品安全领域,GCMS图谱分析可以对食品中的农药残留、添加剂、食品成分等进行分析,保障食品安全。

在环境监测领域,GCMS图谱分析可以对大气、水体、土壤中的有机污染物进行分析,保护环境。

在药物分析领域,GCMS图谱分析可以对药物中的成分、杂质进行分析,保障药物质量。

总结。

GCMS是一种高效、高灵敏度的分析技术,它的原理是通过气相色谱和质谱的结合,对样品中的化合物进行分离和分析。

GCMS分析方法

GCMS分析方法

质谱分析方法质谱仪种类很多,不同类型的质谱仪的主要差别在于离子源。

离子源的不同决定了对被测样品的不同要求,同时所得到信息也不同。

质谱仪的分辨率也非常重要,高分辨质谱仪可以给出化合物的组成式,这对于未知物定性就是至关重要的。

因此,在进行质谱分析前,要根据样品状况与分析要求选择合适的质谱仪。

目前,有机质谱仪主要有两大类:气相色谱-质谱联用仪与液相色谱-质谱联用仪,现就这两类仪器的分析方法叙述如下:GC-MS分析方法GC-MS分析条件的选择在GC-MS分析中,色谱的分离与质谱数据的采集就是同时进行的。

为了使每个组分都得到分离与鉴定,必须设备合适的色谱与质谱分析条件。

色谱条件包括色谱柱类型(填充柱或毛细管柱),固定液种类,汽化温度,载气流量,分流比,温升程序等。

设置的原则就是:一般情况下均使用毛细管柱,极性样品使用极性毛细管柱,非极性样品采用非极性毛细管柱,未知样品可先用中等极性的毛细管柱,试用后再调整。

当然,如果有文献可以参考,就采用文献所用条件。

质谱条件包括电离电压,电子电流,扫描速度,质量范围,这些都要根据样品情况进行设定。

为了保护灯绿与倍增器,在设定质谱条件时,还要设置溶剂去除时间,使溶剂峰通过离子源之后再打开灯绿与倍增器。

在所有的条件确定之后,将样品用微量注射器注入进样口,同时启动色谱与质谱,进行GC-MS分析。

GC-MS数据的采集有机混合物样品用微量注射器由色谱仪进样口注入,经色谱柱分离后进入质谱仪离子原在离子源被电离成离子。

离子经质量分析器,检测器之后即成为质谱仪号并输入计算机。

样品由色谱柱不断地流入离子源,离子由离子源不断的进入分析器并不断的得到质谱,只要没定好分析器扫描的质量范围与扫描时间,计算机就可以采集到一个个的质谱。

如果没有样品进入离子源,计算机采集到的质谱各离子强度均为0。

当有样品过入离子源时,计算机就采集到具有一定离子强度的质谱。

并且计算机可以自动将每个质谱的所有离子强度相加。

GCMS-谱图解析基础

GCMS-谱图解析基础

有机质谱解析第一章导论第一节引言质谱,即质量的谱图,物质的分子在高真空下,经物理作用或化学反应等途径形成带电粒子,某些带电粒了可进一步断裂。

如用电子轰击有机化合物(M),使其产生离子的过程如下:每一离子的质量与所带电荷的比称为质荷比(m/z ,曾用m/e)。

不同质荷比的离子经质量分离器一一分离后,由检测器测定每一离子的质荷比及相对强度,由此得出的谱图称为质谱质谱分析中常用术语和缩写式如下:游离基阳离子,奇电子离子(例如CH4)电子对转移α断裂RαY;与奇电子原子邻接原子的键断裂(不是它们间的键断裂)“A”元素只有一种同位素的元素(氢也归入“A”元素)。

“A+1”元素某种元素,它只含有比最高丰度同位素高1amu 的同位素。

“A+2”元素某种元素,它含有比最高丰度同位素高2 amu的同位素。

A峰元素组成只含有最高丰度同位素的质谱峰。

A+1峰比A峰高一个质量单位的峰。

分子离子(M)失去一个电荷形成的离子,其质荷比相当于该分子的分子量。

碎片离子:分子或分子离子裂解产生的离子。

包括正离子(A+)及游离基离子(A+.)。

同位素离子:元素组成中含有非最高天然丰度同位素的离子。

亚稳离子(m*)离子在质谱仪的无场漂移区中分解而形成的较低质量的离子。

质谱图上反应各离子的质荷比及丰度的峰被称为某离子峰。

基峰:谱图中丰度最高离子的峰绝对丰度:每一离子的丰度占所有离子丰度总和的百分比,记作%∑。

相对丰度:每一离子与丰度最高离子的丰度百分比。

第二章谱图中的离子第一节分子离子分子离子(M+)是质谱图中最有价值的信息,它不但是测定化合物分子量的依据,而且可以推测化合物的分子式,用高分辨质谱可以直接测定化合物的分子式。

一、分子离子的形成分子失去一个电子后形成分子离子。

一般来讲,从分子中失去的电子应该是分子中束缚最弱的电子,如双键或叁键的π电子,杂原子上的非键电子。

失去电子的难易顺序为:杂原子> C = C > C —C > C —H易难分子离子的丰度主要取决于其稳定性和分子电离所需要的能量。

苯系物的GCMS法分析PPT课件

苯系物的GCMS法分析PPT课件

利用质量色谱图分开重叠峰 (a) 总离子流色谱图 (b) 以m/z91所作的质量色谱图 (c) 以m/z136所作的质量色谱图
谱库检索
GC-MS最主要的定性方式是谱库检索。
由总离子色谱图可以得到任一组分的质谱图, 得到质谱图后可以通过计算机在数据库中检索, 检索结果以匹配度大小顺序排列出可能的化合 物名称、分子式、分子量和结构式等。使用者 可以根据检索结果和其它的信息,对未知物进 行定性分析。
实验步骤
开机 待真空度达到要求后,手动检峰,自动
调谐 设定实验条件 进样分析 数据处理
写在最后
经常不断地学习,你就什么都知道。你知道得越多,你就越有力量 Study Constantly, And You Will Know Everything. The More
You Know, The More Powerful You Will Be
Thank You
在别人的演说中思考,在自己的故事里成长
Thinking In Other People‘S Speeches,Growing Up In Your Own Story
讲师:XXXXXX XX年XX月XX日
缺点
对未知样品定性能力较差
高效分离混合 物的特点
GC
高分辨率地鉴定 化合物的特点
MS
GC/MS
联用后的优势
气相色谱仪是质谱法理想的进样器
质谱仪作为气相色谱法的检测器,灵敏度高于 气相色谱的通用检测器(TCD、FID)
定性参数增加、结果可靠。
GC-MS分析条件的选择
色谱条件:色谱柱类型(填充柱或毛细 管柱),固定液种类,汽化温度,载气 流量,分流比,柱温等;
质谱仪
(一)、真空系统: 2级真空:机械泵和涡轮分子泵 机械泵把真空降到一定水平后启动涡轮分子泵 (二)、进样系统: 色谱进样或直接进样 (三)、离子源

岛津GC-MS基础知识

岛津GC-MS基础知识

h2
5
毛细管柱管材
z 熔融石英 – 合成高纯石英
y 外表面涂覆聚酰亚胺 y 内表面经化学处理
z 不锈钢
y 用于高温分析 y 最不易断裂 y 内表面经特殊处理
h2 6
固定相
z 大多数固定相为聚合物
z WCOT 毛细管柱:
y 聚甲基硅氧烷(Polysiloxanes, silicones) y 聚乙二醇(Polyethylene glycols, PEG)
RR S i OS i RR
RR S i OS i RR
温度稳定性更好
e.g. DB-5ms Rtx-5ms BPX-5
h2
9
固定液流失
100 °C
300 °C 270 °C
300 °C for 12 min Bleed
0
2
4
6
8

22
24
h3
0
- 固定相 聚乙二醇
H OC H 2 C H 2 OH
检测器 信号处理器
GC组成
目的 :分离样品组分
载气
样品 进样口 ( 样品气化)
检测器 (FID, MS,···)
色谱柱 ( 分离 )
4
h5 氦气:高纯,99.999%
载气
GC进样口
• 分流/不分流进样口(SPL) • 填充柱进样口(WBI) • 冷柱头进样口(OCI) • 程序升温进样口(PTV)
50% dimethyl50% diphenyl polysiloxane
Polyethylene glycol (PEG)
J&W
DB-1 DB-5 DB-17
DB-Wax
SGE
BP-1 BP-5 BP-17

GCMS分析方法

GCMS分析方法

质谱分析方法质谱仪种类很多,不同类型的质谱仪的主要差别在于离子源。

离子源的不同决定了对被测样品的不同要求,同时所得到信息也不同。

质谱仪的分辨率也非常重要,高分辨质谱仪可以给出化合物的组成式,这对于未知物定性就是至关重要的。

因此,在进行质谱分析前,要根据样品状况与分析要求选择合适的质谱仪。

目前,有机质谱仪主要有两大类:气相色谱-质谱联用仪与液相色谱-质谱联用仪,现就这两类仪器的分析方法叙述如下:GC-MS分析方法GC-MS分析条件的选择在GC-MS分析中,色谱的分离与质谱数据的采集就是同时进行的。

为了使每个组分都得到分离与鉴定,必须设备合适的色谱与质谱分析条件。

色谱条件包括色谱柱类型(填充柱或毛细管柱),固定液种类,汽化温度,载气流量,分流比,温升程序等。

设置的原则就是:一般情况下均使用毛细管柱,极性样品使用极性毛细管柱,非极性样品采用非极性毛细管柱,未知样品可先用中等极性的毛细管柱,试用后再调整。

当然,如果有文献可以参考,就采用文献所用条件。

质谱条件包括电离电压,电子电流,扫描速度,质量范围,这些都要根据样品情况进行设定。

为了保护灯绿与倍增器,在设定质谱条件时,还要设置溶剂去除时间,使溶剂峰通过离子源之后再打开灯绿与倍增器。

在所有的条件确定之后,将样品用微量注射器注入进样口,同时启动色谱与质谱,进行GC-MS分析。

GC-MS数据的采集有机混合物样品用微量注射器由色谱仪进样口注入,经色谱柱分离后进入质谱仪离子原在离子源被电离成离子。

离子经质量分析器,检测器之后即成为质谱仪号并输入计算机。

样品由色谱柱不断地流入离子源,离子由离子源不断的进入分析器并不断的得到质谱,只要没定好分析器扫描的质量范围与扫描时间,计算机就可以采集到一个个的质谱。

如果没有样品进入离子源,计算机采集到的质谱各离子强度均为0。

当有样品过入离子源时,计算机就采集到具有一定离子强度的质谱。

并且计算机可以自动将每个质谱的所有离子强度相加。

GCMS谱图解析基础

GCMS谱图解析基础
为判别分子离子,前人总结了很多经验。在一个纯化合物质谱(不含本底和离子分子反应等产生的附加峰)中,作为一个分子离子必要的但非充分的条件是:
1、它必要是谱图中最高质量的离子
分子失去一个电子,形成分子离子,自然它的质量数(质荷比)应为最高。但是,某些含氧含氮的化合物,如醚,酯,胺、酰胺、氨基酸酯、氰化物等,往往在比母峰多一个质量单位处出现一个峰,称为m+1峰,这是由于分子离子在电离室碰撞过程中捕获一个H而形成的。同样,有些分子易失去一个氢而生成M-1离子,例如,六氢吡啶的M-1峰比M峰要高得多。
芳香环>共轭烯>烯>环状化合物>羰基化合物>醚>酯>胺>酸>醇>高度分支的烃类。
二、分子离子峰的判别。
通常,化合物的分子量用其所含元素的最大丰度质量来计算。假如一个纯化合物的EI质谱图中有分子离子的话,它应该出现在谱图的最高质荷比区,但是,质谱图上质荷比最高的离子不一定就是分子离子,仍需进一步检验确定,以便排除各种干扰。
“A”
S
32
100
33
0.80
34
4.4
“A+2”
Cl
35
100
37
32.5
“A+2”
Br
79
100
81
98.0
“A+2”
I
127
100
“A”
①and Gove(1971)。
②1.1±0.02,取决于来源。
二、重同位素峰丰度的近似计算法。
“A+2”·元素,
这类元素包括氧、硅、硫、氯和溴。除氧以外,其他元素的重同位素丰度都较高,如果有机物含有硅、硫、氯和溴,则分子离子区出现的同位素峰的强度可由二项式的展开式来计算。

GCMS

GCMS

一、实验目的1. 掌握GC-MS工作的基本原理。

2. 了解GC-MS仪的基本构造,熟悉软件的使用。

3. 了解运用GC-MS仪分析样品的基本过程,掌握利用质谱标准图库检索进行色谱峰定性的方法。

二、实验原理气相色谱法(gas chromatography, GC)是一种应用非常广泛的分离手段,它是以惰性气体作为流动相的柱色谱法,其分离原理是基于样品中的组分在两相间分配上的差异。

气相色谱法虽然可以将复杂混合物中的各个组分分离开,但其定性能力较差,通常只是利用组分的保留特性来定性,这在欲定性的组分完全未知或无法获得组分的标准样品时,对组分定性分析就十分困难了。

随着质谱(mass spectrometry, MS)、红外光谱及核磁共振等定性分析手段的发展,目前主要采用在线的联用技术,即将色谱法与其它定性或结构分析手段直接联机,来解决色谱定性困难的问题。

气相色谱-质谱联用(GC-MS)是最早实现商品化的色谱联用仪器。

目前,小型台式GC-MS已成为很多实验室的常规配置。

1. 质谱仪的基本结构和功能质谱系统一般由真空系统、进样系统、离子源、质量分析器、检测器和计算机控制与数据处理系统(工作站)等部分组成。

质谱仪的离子源、质量分析器和检测器必须在高真空状态下工作,以减少本底的干扰,避免发生不必要的分子-离子反应。

质谱仪的高真空系统一般由机械泵和扩散泵或涡轮分子泵串联组成。

机械泵作为前级泵将真空抽到10-1-10-2Pa,然后由扩散泵或涡轮分子泵将真空度降至质谱仪工作需要的真空度10-4-10-5Pa。

虽然涡轮分子泵可在十几分钟内将真空度降至工作范围,但一般仍然需要继续平衡2小时左右,充分排除真空体系内存在的诸如水分、空气等杂质以保证仪器工作正常。

气相色谱-质谱联用仪的进样系统由接口和气相色谱组成。

接口的作用是使经气相色谱分离出的各组分依次进入质谱仪的离子源。

接口一般应满足如下要求:(a)不破坏离子源的高真空,也不影响色谱分离的柱效;(b)使色谱分离后的组分尽可能多的进入离子源,流动相尽可能少进入离子源;(c)不改变色谱分离后各组分的组成和结构。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有机质谱解析
第一章导论
第一节引言
质谱,即质量的谱图,物质的分子在高真空下,经物理作用或化学反应等途径形成带电粒子,某些带电粒了可进一步断裂。如用电子轰击有机化合物(M),使其产生离子的过程如下:
每一离子的质量与所带电荷的比称为质荷比(m/z,曾用m/e)。不同质荷比的离子经质量分离器一一分离后,由检测器测定每一离子的质荷比及相对强度,由此得出的谱图称为质谱
S1
O1
C8
C9
13CS1
139
0.5
2
140
25
100
100
100
100
100
141
2.5±0.25
10±1.0ຫໍສະໝຸດ 0.80.08.8
9.9
8.8
142
1.2±0.2
4.8±0.8
4.4
0.2
0.3
0.3
0.1
143
0.1±0.2
0.4±0.8
0.4
第一栏为分子离子峰及同位素峰的质荷此,第二栏为相对丰度,其归一化的结果列于第三栏,根据m+1/m及m+2/m的值可以推测此化合物可能含一个硫原子或者含一至三个氧原子。先假设化合物含一个氧原子。尔后考虑“A+1”元素。如果含一个硫原子,33S的相对丰度为0.8(%),从m/m+1的总量中除去0.8,17O的丰度比仅占0.04(%),可以忽略不计。从m/m+1的总量中除去0.8,可知碳同位素对m+1的贡献为8.2~10.2,那么它可能含8个或9个碳原子,分别计算它们的m+1峰及m+2峰与m峰的比值。填到表中第六七栏。因为分子量为140amu而S1和C9总共为140amu,而有机化合物的组成不可能为C9S。所以推测此化合物含八个炭。C8S1的质量数为128,140-128=12,这样也就排除了含氧的可能,其余下这12amu,应用“A”元素补是,A元素中F、P、碘的原子量大于12,所以分子了式只能为C8H12S。
“A”
S
32
100
33
0.80
34
4.4
“A+2”
Cl
35
100
37
32.5
“A+2”
Br
79
100
81
98.0
“A+2”
I
127
100
“A”
①and Gove(1971)。
②1.1±0.02,取决于来源。
二、重同位素峰丰度的近似计算法。
“A+2”·元素,
这类元素包括氧、硅、硫、氯和溴。除氧以外,其他元素的重同位素丰度都较高,如果有机物含有硅、硫、氯和溴,则分子离子区出现的同位素峰的强度可由二项式的展开式来计算。
2.“A+1”元素
“A+1”元素包括碳、氢和氮。但2H/1H的比例非常小,常常把氢做为A元素,对化合物CwHxNyOE的同位元素峰计算,可用下式。
因为17O及2H相对含量极低,上式可简化为
(m+1)%=[1.1W+0.38Y]%
含有两个以上碳原子的化合物,其m+2峰相对丰度的计算方法为:
3“A”元素
氧原子的A+2同位素相对丰度很低(0.2%),当离子中存在多数个碳原子时,会对m+2
峰产生影响,对于含有W个碳原子及五个氧原子的化合物,其m+2峰的相对丰度的理论便可用下形式计算,
在实际测量中,由于18O含量低,测量误差往往较大。
以上介绍了已知“A+2”元素原子的个数时,如何计算同位素样的样相对强度。反之,通过质谱测定,已知同位素丰度时,也可推测元素的种类及含量,但由于对氧元素的测量误差不易控制。往往在确定了“A+1”元素和其他“A+2”元素之后再计算氧原子数据,也可以否定某些元素的存在。如m+2/m<3%时,即可否定此峰不会Si、S、CL、Br元素。
M-15(.CH3), M-16(O), M-17(.OH,NH3), M-18(H2O),
M-26(CN,HCCH), M-27(CHNH2.CHCH2), M-28(CO,CH2CH2),
M-29(CHO,C2H5), M-30(CH2O,NO), M-31(OCH3,CH2OH),
M-32(CH3OH,S,O2), M-33(CH3+H2O), M-34(H2S), M-35(CL),
质谱图上反应各离子的质荷比及丰度的峰被称为某离子峰。
基峰:谱图中丰度最高离子的峰
绝对丰度:每一离子的丰度占所有离子丰度总和的百分比,记作%∑。
相对丰度:每一离子与丰度最高离子的丰度百分比。
第二章谱图中的离子
第一节分子离子
分子离子(M+)是质谱图中最有价值的信息,它不但是测定化合物分子量的依据,而且可以推测化合物的分子式,用高分辨质谱可以直接测定化合物的分子式。
为判别分子离子,前人总结了很多经验。在一个纯化合物质谱(不含本底和离子分子反应等产生的附加峰)中,作为一个分子离子必要的但非充分的条件是:
1、它必要是谱图中最高质量的离子
分子失去一个电子,形成分子离子,自然它的质量数(质荷比)应为最高。但是,某些含氧含氮的化合物,如醚,酯,胺、酰胺、氨基酸酯、氰化物等,往往在比母峰多一个质量单位处出现一个峰,称为m+1峰,这是由于分子离子在电离室碰撞过程中捕获一个H而形成的。同样,有些分子易失去一个氢而生成M-1离子,例如,六氢吡啶的M-1峰比M峰要高得多。
式中a:轻同位素相对丰度
b:重同位素相对丰度
n:分子中该元素的原子数目
例如:含一个氯原子的化合物CH3CL,由CH335CL(M=50)及CH337CL(M+2=52)组成,其中35CL与37CL的丰度比为3:1,则上式为
(3+1)1=3+1
CH335CL与CH337CL的丰度比,即m/m+2=3:1
而含三个氯的CHCL3,同位素峰丰度计算如下:
同样,可知含一个溴原子的有机化合物,其m/m+2的丰度比为1:1,含二个溴原子时,m:m+2:m+4=1:2:1。
当化合物含有两种或两种以上“A+2”元素时,先根据上式计算每一种元素的丰度比,而后时它们进行排列组合,例如对于含一个氯原子及两个溴原子的化合物,用3:1含一个(氯原子的丰度比),与1:2:1(含两个溴原子的丰度比)组合,可知它的m:m+2:m+4:m+6 =3:7:5:1。
在实际工作中,情况往往很复杂,例如测量误差会对低丰度元素的计算带来较大影响,使推导出的元素组成有一种以上的可能性,这样,还需结合碎片离子及其他数据综合分析。
此外,由于某些元素的重同位素的存在,质谱图中也会出现某些离子的质荷比高于分子离子的情况。对同位素离子的说名见下节。
2、分子离子必须是奇电子离子
样品分子失去一个电子而被电离成离子,因而分子离子是一个游离基离子,由于带有未成对电子,所以被称为奇电子离子(OE),用符号 表示。例如甲烷的分子离了形成过程如下:
M-36(2H2O,HCL), M-41(C3H5),
对于不易出现分子离子的化合物,可采用其他辅助分析手段。
1、低能电子:通常EI谱的电子轰击能量为70ev,逐步降低轰击电子的能量,可以减少分子的平均内能使其碎断几率相应减少,由此提高分子离子的相对丰度。但需要注意的是,降低轰击电子能量,也就降低了所有离子的绝对丰度,使仪器灵敏度随之下降。能量过低,对辨别分子离子峰同样是不利的。
A峰元素组成只含有最高丰度同位素的质谱峰。
A+1峰比A峰高一个质量单位的峰。
分子离子(M )失去一个电荷形成的离子,其质荷比相当于该分子的分子量。
碎片离子:分子或分子离子裂解产生的离子。包括正离子(A+)及游离基离子(A+.)。
同位素离子:元素组成中含有非最高天然丰度同位素的离子。
亚稳离子(m*)离子在质谱仪的无场漂移区中分解而形成的较低质量的离子。
一、天然元素中同位素的相对丰度
下表中列举了组成有机化合物的常见元素在自然界中存在的同位素及其丰度。这些化合物被分为三类:“A”,只有一个天然丰度的同位素;“A+1”,有两个同位素的元素,其中第二个同位素比丰度最大的同位素重一个质量单位;“A+2”,这类元素含有比丰度最大同位素重二个质量单位的同位素。
3、测定衍生物的质谱:
用化方法把一个化合物转变为适当的衍生物来提高化合物的蒸汽压,从而得到低挥发性化合物的衍生物质谱图,如羧酸,在EI谱上,只能得到[M-COOH]的峰,将羧酸进行甲酯化反应后,得到[M-H+CH3]的峰,进而推测化合物的分子量。
第二节同位素离子
在自然界,很多元素的组成不是单一的。这样,由它们组成的化学纯的有机化合物,由于组成它们的元素不是同位素纯的,只能得到一张混合物的质谱图。其中含有丰度较小的同位素的离子被称为同位素离子。它的丰度与离子中存在该元素的原子数目及该同位素的天然丰度有关,借助这些知识,可以推测分子离子或碎片离子的元素组成。
表2-1常见元素的天然同位素丰度①
元素
A
A+1
A+2
元素类型
质量,%
质量,%
质量,%
H
1
100
2
0.015
“A”
C
12
100
13
1.1①
“A+1”
N
14
100
15
0.37
“A+1”
O
16
100
17
0.04
18
0.20
“A+2”
F
19
100
“A”
Si
28
100
29
5.1
30
3.4
相关文档
最新文档