第2章连续型随机变量正态分布
概率论与数理统计教案第2章 随机变量及其分布

概率论与数理统计教学教案 第2章 随机变量及其分布授课序号01教 学 基 本 内 容一.随机变量1. 随机变量:设E 是随机试验,样本空间为S ,如果对随机试验的每一个结果ω,都有一个实数()X ω与之对应,那么把这个定义在S 上的单值实值函数()X X ω=称为随机变量.随机变量一般用大写字母,,X Y Z ,…表示.2.随机变量的两种常见类型:离散型随机变量和连续型随机变量. 二.分布函数1. 分布函数:设X 是一个随机变量,x 是任意实数,称函数{}(),F x P X x x =≤-∞<<∞为随机变量X 的分布函数,显然,()F x 是一个定义在实数域R 上,取值于[0,1]的函数.2.几何意义:在数轴上,将X 看成随机点的坐标,则分布函数()F x 表示随机点X 落在阴影部分(即X x ≤)内的概率,如下图.3.对任意的实数,,()a b c a b <,都有:授课序号02(,)B n p ,其中在二项分(1,)B p X 服从(0-1)分布是二项分布的特例,简记0,1,2,...,其中λ为大于()P λ.在一次试验中出现的概率为(12,kk nnC p p -.)说明:泊松定理表明,泊松分布为二项分布的极限分布,即在试验次数很大,而n np 不太大时,()G p.)说明:几何分布描述的是试验首次成功的次数次才取得第一次成功,前)超几何分布:若随机变量X的分布律为H n N(,,件不合格,从产品中不放回)超几何分布与二项分布之间的区别:超几何分布是不放回抽取,二项分布是放回抽取,因此,二项两个分布之间也有联系,当总体的容量授课序号03(,)U a b .内的任一个子区间()E λ.1,0,xe x λ-⎧->⎪⎨⎪⎩其它.)定理:(指数分布的无记忆性)设随机变量()E λ,则对于任意的正数{}{P X s t t P X >+>=为连续型随机变量,若概率密度为2(,N μσ处取到最大值,并且对于同样长度(iii )当参数μ固定时,σ的值越大,()f x 的图形就越平缓;σ的值越小,()f x 的图形就越尖狭,由此可见参数σ的变化能改变图形的形状,称σ为形状参数.(iv )当参数σ固定时,随着μ值的变化,()f x 图形的形状不改变,位置发生左右平移,由此可见参数μ的变化能改变图形的位置,称μ为位置参数.(4)标准正态分布(0,1)XN(i )概率密度221(),2x x e x ϕπ-=-∞<<∞(ii )分布函数221(),.2t xx e dt x π--∞Φ=-∞<<∞⎰(iii )根据概率密度()x ϕ的对称性,有()1().x x Φ-=-Φ (5)定理:(标准化定理)若2(,)XN μσ,则(0,1).X Z N μσ-=(6)标准化定理的应用:设,,()x a b a b <为任意实数,则(){}{}{}(),X x x x F x P X x P P Z μμμμσσσσ----=≤=≤=≤=Φ{}{}()().a X b b a P a X b P μμμμμσσσσσ-----<≤=<≤=Φ-Φ6.“3σ”法则:设2(,)XN μσ,则{33}(3)(3)2(3)10.997,P X μσμσ-<<+=Φ-Φ-=Φ-≈即正态分布2(,)N μσ的随机变量以99.7%的概率落在以μ为中心、3σ为半径的区间内,落在区间以外的概率非常小,可以忽略不计,这就是“3σ”法则. 三.例题讲解例1.车流中的“时间间隔”是指一辆车通过一个固定地点与下一辆车开始通过该点之间的时间长度.设X 表示在大流量期间,高速公路上相邻两辆车的时间间隔,X 的概率密度描述了高速公路上的交通流量规律,其表达式为:0.15(0.5)0.15,0.5,()0,x e x f x --⎧≥⎪=⎨⎪⎩其它.概率密度()f x 的图形如下图,求时间间隔不大于5秒的概率.例2.设随机变量X 表示桥梁的动力荷载的大小(单位:N ),其概率密度为13,02;()880,x x f x ⎧+≤≤⎪=⎨⎪⎩其它.求:(1)分布函数()F x ;(2)概率{1 1.5}P X ≤≤及{1}P X >.例3.某食品厂生产一种产品,规定其重量的误差不能超过3克,即随机误差X 服从(-3,3)上的均匀分布.现任取出一件产品进行称重,求误差在-1~2之间的概率.例4.设随机变量X 在(1,4)上服从均匀分布,对X 进行三次独立的观察,求至少有两次观察值大于2的概率.例5.设随机变量X 表示某餐馆从开门营业起到第一个顾客到达的等待时间(单位:min ),则X 服从指数分布,其概率密度为0.40.4,0,()0,xex f x -⎧>⎪=⎨⎪⎩其它.求等待至多5分钟的概率以及等待3至4分钟的概率.例6.汽车驾驶员在减速时,对信号灯做出反应所需的时间对于帮助避免追尾碰撞至关重要.有研究表明,驾驶员在行车过程中对信号灯发出制动信号的反应时间服从正态分布,其中μ=1.25秒,σ=0.46秒.求驾驶员的制动反应时间在1秒至1.75秒之间的概率?如果2秒是一个非常长的反应时间,那么实际的制动反应时间超过这个值的概率是多少?例7.设某公司制造绳索的抗断强度服从正态分布,其中μ=300千克,σ=24千克.求常数a ,使抗断强度以不小于95%的概率大于a .授课序号0450。
第二章 随机变量及其分布(第2讲)

引入随机变量和分布函数,在随机现象与数 学分析之间搭起了桥梁。
学习内容
§2.1 随机变量 §2.2 离散型随机变量及其分布 §2.3 随机变量的分布函数 §2.4 连续型随机变量及其分布 §2.5 随机变量函数的分布
引言
连续型随机变量(random variables of continuous type)
四、几种重要的连续型分布 均匀分1. 布均的匀实分际布背景是: 并概f ( x率且)随=与取⎪⎩⎪⎨⎧机0b这值−1变a个在量小(其x ∈X它区a取[a,,间bb值)] 的在中是 记长区一 为任度个间意成概X(小正~率aU区比密,[ab间度。,)b上内]函,的数.
利用分布函数与概率密度函数之间的关系,可以求得服从均匀 分布的随机变量 X 的分布函数
f
(x)
=
⎪⎧ ⎨
1 3
,
⎪⎩0 ,
0≤ x≤3 其它
∫ ∫ 所求概率 P{0 ≤ X ≤ 2}=
2 f (x )dx =
0
2 0
1 3
dx
=
2 3
四、几种重要的连续型分布
2.指数分布
定义: 若随机变量X的概率密度函数
X
~
f
(
x)
=
⎧λ
⎨
e−λ
x
⎩0
x>0 x≤0
称 X 服从参数为λ的指数分布,记为X~E(λ) (λ>0),
学习内容
§2.1 随机变量 §2.2 离散型随机变量及其分布 §2.3 随机变量的分布函数 §2.4 连续型随机变量及其分布 §2.5 随机变量函数的分布
引言
§2.2节学习的分布律对于非离散型型随 机变量失效
第二章随机变量及其分一、基本要求、重点与难点

第二章随机变量及其分一、基本要求、重点与难点(一)基本要求1.理解随机变量的概念。
2.掌握离散型随机变量和连续型随机变理的描述方法。
3.理解分布列与概率密度的概念及其性质。
4.理解分布函数的概念及性质。
5.会应用概率分布计算有关事件的概率。
6.掌握二项分布、泊松分布、均匀分布、正态分布和指数分布。
7.会求简单随机变量函数的分布。
(二)重点1.离散型随机变量的分布列和分布函数的概念及性质。
2.连续型随机变量的密度函数和分布函数的概念及性质。
3.掌握二项分布、泊松分布、均匀分布、正态分布和指数分布。
4.随机变量的一些简单函数的概率分布的求法。
(三)难点1.离散型随机变量的分布列与分布函数的关系。
2.连续型随机变量的密度函数与分布函数的关系。
3.随机变量函数的分布的计算。
二、重点内容简介§1 随机变量的概念及分类定义定义在样本空间Ω上的一个实值函数X=X(ω),使随机试验的每一个结果ω都可用一个实数X(ω)来表示,且实数X满足1)X是由ω唯一确定;2)对于任意给定的实数x,事件{X≤x}都是有概率的,则称X为一随机变量,一般用大写字母X,Y,Z等表示。
引入随机变量后,随机事件就可以通过随机变量来表示,这样,我们就把对事件的研究转化为对随机变量的研究。
随机变量一般可分为离散型和非离散型两大类。
非离散型又可分为连续型和混合型。
由于在实际工作中我们经常遇到的是离散型和连续型的随机变量,因此一般情况下我们仅讨论这两个类型的随机变量。
§2 随机变量的分布函数及其性质定义 设X 为一随机变量,x 是任意实数,称函数 F(x)=P(X ≤x) (-∞<x<+∞) 为随机变量X 的分布函数。
分布函数是一个以全体实数为其定义域,以事件{ω|∞<X(ω)≤∞}的概率为函数值的一个实值函数。
分布函数具有以下的基本性质: 1) 0≤F(x )≤1;2) F(x )是非减函数; 3) F(x )是右连续的; 4)lim ()0,lim ()1;x x F x F x →−∞→+∞==设随机变量X 的分布函数为F(x ),则可用F(x )来表示下列概率:(1) ()();(2) ()(0);(3) ()1()1();(4) ()1()1(0);(5) ()()()()(0);(6) (||)()()()(0)();P X a F a P X a F a P X a P X a F a P X a P X a F a P X a P X a P X a F a F a P X a P a X a P X a P X a F a F a ≤=<=−>=−≤=−≥=−<=−−==≤−<=−−<=−<<=<−≤−=−−−§ 3 离散型随机变量1 定义定义 如果随机变量X (ω)所有可能取值是有限个或可列多个,则称X (ω)为离散型随机变量(discrete random variable )简写作d .r .v .。
第二章概率论与数理统计

例5.设电话总机在某段时间内接收到的呼唤次数服从 5.设电话总机在某段时间内接收到的呼唤次数服从 参数为3的泊松分布。 参数为3的泊松分布。求: 恰好接收到5次呼唤的概率; (1)恰好接收到5次呼唤的概率; 接收到不超过5次呼唤的概率。 (2)接收到不超过5次呼唤的概率。
表示电话总机接收到的呼唤次数, 解:设X表示电话总机接收到的呼唤次数,则 设 表示电话总机接收到的呼唤次数
P{ X
P{ X = 0} = P ( A1 A2 A3 A4 A5 ) = (1-p)5 = 5 p (1 − p ) 4 = 1} = P{ A1 A 2 A 3 A 4 A 5 ∪ A1 A2 A 3 A 4 A 5 ∪ ...
2 P{ X = 2} = P{ A1 A2 A 3 A 4 A 5 ∪ A1 A 2 A3 A 4 A 5 ∪ ... = C5 P 2 (1 − P ) 3
泊松定理设随机变量 泊松定理设随机变量 n~B(n, p), (n=0, 1, 2,…), 定理设随机变量X = 很大, 很小 很小, 且n很大,p很小,记λ=np,则 很大 ,
P{ X = k } ≈
λk
k!
e
−λ
,
k = 0,1,2,...
上题用泊松定理 取λ =np=(400)(0.02)=8, 故 近似地有 P{X≥2}=1- P{X=0}-P {X=1} =1-(1+8)e-8=0.996981. (3) 泊松(Poisson)分布 λ) ) 泊松 分布P(λ 分布
X
1
0
pk
p
1− p
(2)设将试验独立重复进行n次,且在每次试验 中,事件A发生的概率均为p。若用X表示n重贝努 里试验中事件A发生的次数,则称X服从参数为 n,p的二项分布。记作X~B(n,p),其概率分布律 为:
概率论课件第二章

例1. 抛硬币试验中S {H,T}, 样本点H与T不是数量。
例2. 测试灯泡寿命试验, S={e}={t|t≥0},样本点本身 是数量。
定义 : 设随机试验E的样本空间是S,若 X : S R为单值实范数,则称X为随机变量 (random variable, 简记为r.v.) 。
2. 特例: (1,) 是参数为的指数分布. (=1) 3. 伽玛函数的性质: (i) (+1)= ();
1 (iii)( ) . 2
(ii) 对于正整数n, (n+1)=n!;
§5. 随机变量的函数的分布
一、 X为离散型r.v. 例1.设X具有以下的分布律,求Y=(X-1)2分布律: X -1 0 1 2 pk 0.2 0.3 0.1 0.4
(二) 贝努利试验
(二项分布)
定 义 : 设 试 验E只 有 两 个 可 能 结 果 A与 A , 且 P( A ) p ( 0 p 1), 将 试 验E独 立 重 复 地 进 行 n次 , 这 样 的 试 验 称 为 贝 努 利 试 验.
设X是n重贝努利试验中事件A发生的次数, 则X 是一个随机变量, 于是
§4. 连续型随机变量及其概率密度
F(x) , 存在非负函 1.定义 : 对于r.v.X的分布函数 数f(x) , 使对于任意的实数 x, 有
则称X为连续型r.v.f(x)称为X概率密度函数, 简称概率密度. 连续型r.v.的分布函数是连续函数.
F(x ) f(t)dt
x
2.概率密度 f(x)的性质:
25
标准正态分布的上分位点:
设X ~ N(0,1), 若z 满足条件
第2章第4节 连续型随机变量及其概率密度(1)

第 1节 随机变量 第2节 离散型随机变量及其分布律 第3节 随机变量的分布函数第4节 连续型随机变量及其概率密度(1)第5节 随机变量的函数的分布北京邮电大学仅供课堂教学使用·请勿外传黄煜可回顾:随机变量的分类随机变量离散型 非离散型连续型其它离散型随机变量:所取的可能值是有限多个或可列无限多个。
分布律:P{ X xk } pk , k 1, 2,北京邮电大学仅供课堂教学使用·请勿外传黄煜可回顾:随机变量的分类随机变量离散型 非离散型连续型其它连续型随机变量:所取的可能值可以连续地充满某个区间。
对于这种类型的随机变量,不能象离散型随机变量那 样,以指定它取每个值概率的方式,去给出其概率分布,而是通过给出所谓“概率密度函数”的方式。
北京邮电大学仅供课堂教学使用·请勿外传黄煜可定义对于随机变量X,如果存在非负可积函数f(x),使得对任意实数 x有x ,Fxxft dtPXx则称X为连续型随机变量,称f(x)为X的概率密度函数, 简称为概率密度、密度函数(probability density function,常缩写为pdf)。
注记1:连续型随机变量的分布函数一定是R上的连续函数。
注记2:但分布函数在R上连续的随机变量不一定都是连续型的(课外阅读介绍的Cantor分布就是例子)。
北京邮电大学仅供课堂教学使用·请勿外传黄煜可概率密度的性质1。
f (x) 0 非负可积函数F(-∞)=0,F(x)不减 2。
f (x)dx 1 F(+∞)=1【注】这两条性质是判定一个函数f(x)是否为某个随机变量X的f(x)概率密度的充要条件面积为1北京邮电大学x0仅供课堂教学使用·请勿外传黄煜可概率密度的性质1。
f (x) 0 2。
f (x)dx 1 3 对于任意实数 P{ x1 X x2 } x2 f ( x)dxx1, 利用概率密度可确定随机点落在某个范围内的概率北京邮电大学仅供课堂教学使用·请勿外传黄煜可概率密度的性质1。
概率论 2.3(连续型随机变量)

x
a
[ x由概率密度求分布函数]
5.F ( x) f ( x)(x为f ( x)的连续点 ).[由分布函数求概率密度]
由性质5在f(x)的连续点x 处有
F ( x Δ x) F ( x) f ( x) lim Δ x 0 Δx P( x X x Δ x) lim . Δ x 0 Δx
2.3.2 常用连续分布
【补充例】 (等待时间)公共汽车每10分钟按时
通过一车站,一乘客随机到达车站.求他等车时
间不超过3分钟的概率. 解 设X表示他等车时间(以分计),则X是 一个随机变量,且 X ~ U (0,10). X的概率密度为
1 , 0 x 10, f ( x ) 10 其 它. 0,
这两条性质是判定一 个函数 f(x)是否为某 个随机变量 X的概率 牛顿-莱布 尼兹公式 密度函数的充要条件 .
[确定待定参数]
b
3.P{a X b} 1 f ( x)dx F (b) F (a); [求概率]
4.F ( x)
f ( x)
f (t )odt( x );
解: (1) 由
f ( x ) d x 1, 得
3 2 3 3 0
1
f ( x )dx C (9 x )dx 2C (9 x 2 )dx
x3 3 2C (9 x ) |0 36 C 3
2.3.1 连续型随机变量及其概率密度
即 有C 1
3 0
所求概率为 P{ X 3}
3 f ( x )dx , 10
2.3.2 常用连续分布
【例2.12】设随机变量 X在(2,5)上服从均匀分布,
概率论与数理统计第二章随机变量及其分布

设随机变量X服从参数为 分布,即 例2.3.1.设随机变量 服从参数为 的0-1分布 即: 设随机变量 服从参数为0.3的 分布 X P 0 1 ,求X的分布函数 求 的分布函数 的分布函数.
i
0.3 0.7
解:(1) 当x<0时,F(x)=P{X≤x}= 时
∑P{X = x }=0 (2)当0≤x<1时,F(x)=P{X≤x}= ∑P{X = x } =P{x=0}=0.3 当 时 (3)当1≤x时,F(x)=P{X≤x}= ∑P{X = x } 当 时
xi ≤x xi ≤x i xi ≤x i
=P{X=0}+P{X=1}=1 F(x) 分布函数图形如下 1 0.3 0 1 x
3.离散型随机变量 的分布函数的性质 离散型随机变量X的分布函数的性质 离散型随机变量 (1)分布函数是分段函数 分段区间是由 的取值点划分成的 分布函数是分段函数,分段区间是由 分布函数是分段函数 分段区间是由X的取值点划分成的 左闭右开区间; 左闭右开区间 (2)函数值从 到1逐段递增 图形上表现为阶梯形跳跃递增 函数值从0到 逐段递增 图形上表现为阶梯形跳跃递增; 逐段递增,图形上表现为阶梯形跳跃递增 函数值从 (3)函数值跳跃高度是 取值区间中新增加点的对应概率值 函数值跳跃高度是x取值区间中新增加点的对应概率值 函数值跳跃高度是 取值区间中新增加点的对应概率值; F(x) (4)分布函数是右连续的 分布函数是右连续的; 分布函数是右连续的 1 (5) P{X=xi}=F(xi)-F(xi-0) 0.3
记为 X~B(n,p)
m P X = m) = Cn pm(1− p)n−m (
m=0,1,2,...,n
随机变量X所服从的分布称为二项分布,n为实验次数 注:(1)随机变量 所服从的分布称为二项分布 为实验次数 随机变量 所服从的分布称为二项分布 为实验次数; (2)该实验模型称为 次独立重复实验模型或 重Bernoulli实验模型 该实验模型称为n次独立重复实验模型或 实验模型; 该实验模型称为 次独立重复实验模型或n重 实验模型 (3)若A和Ac是n重Bernoulli实验的两个对立结果 成功”可以指二 若 和 实验的两个对立结果,“成功 重 实验的两个对立结果 成功” 者中任意一个,p是 成功”的概率 者中任意一个 是“成功”的概率. 例如:一批产品的合格率为 有放回地抽取 有放回地抽取4次 每次一件 每次一件, 例如 一批产品的合格率为0.8,有放回地抽取 次,每次一件 取得合格 一批产品的合格率为 品件数X,以及取得不合格品件数 服从分布为二项分布 品件数 以及取得不合格品件数Y服从分布为二项分布 以及取得不合格品件数 服从分布为二项分布, X对应的实验次数为 对应的实验次数为n=4, “成功”即取得合格品的概率为 成功” 对应的实验次数为 成功 即取得合格品的概率为p=0.8,
概率论与数理统计第二章

1 ,max= 2
4. 渐近线 以X轴为渐进线
5. 曲线的变化规律
设X~ N ( , ) ,
2
X的分布函数是
1 F ( x) 2
x
(t ) 2 22Fra bibliotekedt , x
标准正态分布
0, 1 的正态分布称为标准正态分布.
若随机变量X的概率分布为: P(X=1)=p,0<p<1 P(X=0)=1-p=q 则称X服从参数为p的两点分布.
二项分布
例4 设射手每一次击中目标的概率为p,现连续 射击n次,求恰好击中次数X 的概率分布.
若随机变量X的概率分布为
Pn (k ) P( X k)C p (1 p)
k n k
3. F(x+0)=F(x)
例1:设随机变量X的分布函数为
a be x , x 0 F ( x) x0 0 ,
求常数a, b及概率 P( X 2)
2.2
离散型随机变量的概率分布
定义1 :设xk(k=1,2, …)是离散型随机变量X 所取的一切可能值,pk是X取 xk值的概率,称
0
1 8
1
a
2
2a
Pk
(1)求常数a ; (2) P( X 1), P(2 X 0), P( X 2)
例2 在五件产品中有两件次品,从中任取出两 件。用随机变量X表示其中的次品数,求X的分 布律和分布函数.
X
P
0
0.3
1
0.6
2
0.1
1.0 0.9
0 0.3 F ( x) 0.9 1.0
均匀分布
医学统计学(第2章)正态分布

dx
(2-18) )
F(X)
p(a〈x〈b)
0 12.00 14.50 17.00 19.50 22.00 24.50 27.00 29.50 32.00
正态分布曲线下面积的含义
1.表示变量值(x)在a-b区间变量值所占 1.表示变量值 表示变量值( 全部(总体)变量值的比例或概率 比例或概率(p)。 全部(总体)变量值的比例或概率(p)。 2变量值在整个曲线下的面积为100%,或 变量值在整个曲线下的面积为100%,或 出现的概率为1 出现的概率为1。
第五节 医学参考值范围的制定
一、概念 医学参考值是指包括绝大多数“ 医学参考值是指包括绝大多数“正 常人” 的各种生理及生化指标常数, 常人 ” 的各种生理及生化指标常数 , 也 称正常值。 称正常值。 正常值是指在一定范围内波动的值, 正常值是指在一定范围内波动的值, 医学上常用95% 医学上常用95%的范围作为判定正常或 异常的参考标准。 异常的参考标准。
二、 标准正态分布
1.标准正态分布及标准化变量值(u) 标准正态分布及标准化变量值( ) 标准正态分布及标准化变量值 任何正态分布的X值通过 值转换后,称为标 任何正态分布的 值通过u值转换后 称为标 准化的正态分布, 准化的正态分布,即u ~N( µ=0 , σ2=1) ( ) 概率密度函数为: 。概率密度函数为: 2
Φ(−u) 表示从-∞到- u值对应曲线范围 表示从- 值分布比例。 内X值分布比例。
例1: :
Φ(u = −1) = 0.1587 Φ(µ =1) =1− Φ(u = −1)
=1− 0.1587 = 0.8413
例2:标准正态变量值u=(-1,1)和u= 标准正态变量值u=( 1.96,1.96)区间内面积各为多少? ( -1.96,1.96)区间内面积各为多少?
第二章 随机变量及其分布第一节 随机变量及其分布函数讲解

Copyright © 2006 NJUFE
正态分布的概率计算公式:设 ~N (, 2 ),
P( a) (
a
); x2 ) ( x1 );
P( x1 x2 ) (
c P( c) 1 ( ); c c P( c) 2 ( ) ( ); c c P( c) ( ) ( ) 1.
P ( a b) F (b) F ( a )
f ( x)dx;
a
b
若f(x)在x0处连续,则F ( x0 ) f ( x0 )。
连续型随机变量与离散型随机变量的区别: 1) 连续型随机变量没有分布律; 2) 连续型随机变量取个别值的概率为零,即
P( x0 ) 0,x0 (, )。
二、随机变量的分布函数及其基本性质
定义2.2 (教材 p 47)
设
是随机变量,x 是任意实数,称函数 F ( x) P( x), x 为 的分布函数。
对于任意两实数
x1,x2, x1 x2,有
P( x1 x2 ) P( x2 ) P( x1 ) F ( x2 ) F ( x1 )
5. 几何分布 定义2.6( 若离散型随机变量
的分布律为
P( k ) p(1 p)k 1,k 1 , 2, 0 p 1
则称 服从参数为p的几何分布。 第三节、连续型随机变量 一、连续型随机变量的概念 定义2.7(教材 51) 设F(x) 为随机变量 使对一切实数x,都有
pk P( xk ), k 1 , 2,
为 的分布律(概率分布)。
北京工业大学《概率论与数理统计》课件 第2章 连续性随机变量

2.3.3 常见的连续型随机变量的概率密度函数
△ 均匀分布 △ 指数分布 △ 正态分布
1. 均匀分布 (Uniform) 若随机变量 X 的概率密度为
则称 X 服从区间[a, b]上的均匀分布,记作 X ~U[a, b]。(注: 有时也记作X~U(a, b) )
若X ~ U[a, b],则对于满足 a≤c≤d≤b 的 c 和 d,总有
例2.3.4 假设某地区成年男性的身高(单位: cm) X~N(170,7.692), 求该地区成年男性的身 高超过175 cm的概率。
解 根据假设X~N(170 ,7.692), μ=170, a=175, σ= 7.69。由(2.3.15) 式的后一式,得
小结
本讲首先介绍连续型随机变量、直方图、 概率密度函数及其性质;然后介绍三种常用的 连续型随机变量:均匀分布,指数分布和正态 分布;给出了三种分布应用的例子。
概率密度曲线可用来准确地刻画 X 的概率 分布情况。
2.3. 2 概率密度函数 定义2.3.1 若存在非负可积函数 f(x), 使
随机变量X落入任意区间(a, b]的概率
则称 X为连续型随机变量,f(x)为X的概率密 度函数,简称概率密度或密度。
对概率密度的进一步解释: 若 x 是 f(x) 的连续点,则有
且 f (μ+c) ≤ f (μ), f (μ-c)≤ f (μ). 故 f(x)以 x=μ为对称轴,并在 x =μ处达到最大 值
对
当 x→ ∞时,f(x) → 0。 这说明:曲线 f(x) 向左右伸展时,越来越贴 近 x 轴。即 f (x) 以 x 轴为渐近线。
对
可以证明: x =μσ
为 y = f (x) 曲线的两个拐点的横坐标。
讲连续型随机变量分布及随机变量的函数的分布

,.第七讲连续型随机变量(续)及 随机变量的函数的分布3. 三种重要的连续型随机变量 (1)均匀分布设连续型随机变量X 具有概率密度)5.4(,,0,,1)(⎪⎩⎪⎨⎧<<-=其它b x a ab x f则称X 在区间(a,b)上服从均匀分布, 记为X~U(a,b).X 的分布函数为)6.4(.,1,,,,0)(⎪⎪⎩⎪⎪⎨⎧≥<≤--<=b x b x a a b a x a x x F(2)指数分布设连续型随机变量X 的概率密度为)7.4(,,0,0,e1)(/⎪⎩⎪⎨⎧>=-其它x x f x θθ其中θ>0为常数, 则称X 服从参数为θ的指数分布.容易得到X 的分布函数为第二章 随机变量及其分布§4 连续型随机变量 及其概率密度1=2,.)8.4(.,0,0,1)(/⎩⎨⎧>-=-其它x e x F x θ如X 服从指数分布, 则任给s,t>0, 有 P{X>s+t | X > s}=P{X > t} (4.9)事实上}.{e ee )(1)(1}{}{}{)}(){(}|{//)(t X P s F t s F s X P t s X P s X P s X t s X P s X t s X P t s t s >===-+-=>+>=>>⋂+>=>+>--+-θθθ性质(4.9)称为无记忆性.指数分布在可靠性理论和排队论中有广泛的运用.(3)正态分布设连续型随机变量X 的概率密度为)10.4(,,e21)(222)(∞<<-∞=--x x f x σμσπ其中μ,σ(σ>0)为常数, 则称X 服从参数为μ,σ的正态分布或高斯(Gauss)分布, 记为X~N(μ,2σ).显然f(x)≥0, 下面来证明1d )(=⎰+∞∞-x x f令t x =-σμ/)(, 得到f (x )的图形:,.dx edx et x 22)(2222121-∞+∞---∞+∞-⎰⎰=πσπσμ.1d 21d 21)11.4(π2d d e,,d d ,de 22)(20222/)(22/2222222======⎰⎰⎰⎰⎰⎰⎰∞∞--∞∞---∞-+∞∞-+∞∞-+-∞∞--x ex e r r I u t e I t I t x r u ttπσπθσμπ于是得转换为极坐标则有记f(x)具有的性质:(1).曲线关于x=μ对称. 这表明对于任意h>0有P{μ-h<X ≤μ}=P{μ<X ≤μ+h}.(2).当x=μ时取到最大值.π21)(σμ=f x 离μ越远, f(x)的值越小. 这表明对于同样长度的区间, 当区间离μ越远, X 落在这个区间上的概率越小。
人教版高中数学第二章2.4正态分布

归纳升华
解答此类题目的关键在于将待求的问题向(μ-σ,μ +σ),(μ-2σ,μ+2σ),(μ-3σ,μ+3σ)这三个区间进行
转化,然后利用上述区间的概率求出相应概率,在此过程 中依然会用到化归思想及数形结合思想.
[变式训练] 某年级的一次信息技术测验成绩近似 服从正态分布 N(70,102),如果规定低于 60 分为不及格, 求:
归纳升华 1.充分利用正态曲线的对称性和曲线与 x 轴之间面积 为 1. 2.熟记 P(μ-σ<X≤μ+σ),P(μ-2σ<X≤μ+2σ), P(μ-3σ<X≤μ+3σ)的值.
3.注意概率值的求解转化:
(1)P(X<a)=1-P(X≥a);
(2)P(X<μ-a)=P(X≥μ+a);
1-P(μ-b<X<μ+b)
得 σ=4.
故该正态分布的概率密度函数是 φμ,σ(x)=4 12πe- 3x22 ,
x∈(-∞,+∞). 答案:φμ,σ(x)=4 12πe-x322,x∈(-∞,+∞)
类型 2 利用正态曲线的对称性求概率
[典例 2] 在一次测试中,测量结果 X 服从正态分布 N(2,σ 2)(σ>0),若 X 在(0,2)内取值的概率为 0.2,求:
解答。听课时关键应该弄清楚老师讲解问题的思路。
三、听问题。
对于自己预习中不懂的内容,上课时要重点把握。在听讲中要特别注意老师和课本中是怎么解释的。如果老师在讲课中一带而过,并没有详细解答, 大家要及时地把它们记下来,下课再向老师请教。
四、听方法。
在课堂上不仅要听老师讲课的结论而且要认真关注老师分析、解决问题的方法。比如上语文课学习汉字,一般都是遵循着“形”、“音”、“义”
第2章 6.1 连续型随机变量 6.2 正态分布

=( )
A.0.6
B.0.4
C.0.3
D.0.2
(2)在某项测量中,测量结果服从正态分布 N(1,4),求正态总体 X 在(-1,1)
内取值的概率. 【精彩点拨】 (1)根据正态曲线的对称性性质进行求解;(2)题可先求出 X
在(-1,3)内取值的概率,然后由正态曲线关于 x=1 对称知,X 在(-1,1)内取值
上一页
返回首页
下一页
(2)如图 2-6-2 是三个正态分布 X~N(0,0.25),Y~N(0,1),Z~N(0,4)的密度曲 线,则三个随机变量 X,Y,Z 对应的曲线分别是图中的______,______,______.(填 写序号)
图 2-6-2
上一页
返回首页
下一页
(3)如图 2-6-3 所示是一个正态曲线,试根据该图像机变量的均值为________,方差为________.
上一页
返回首页
下一页
[探究共研型]
正态分布的实际应用 探究 1 若某工厂生产的圆柱形零件的外直径 ε~N(4,0.25),那么该圆柱形 零件外直径的均值,标准差分别是什么? 【提示】 零件外直径的均值为 μ=4,标准差 σ=0.5. 探究 2 某工厂生产的圆柱形零件的外直径 ε~N(4,0.25),若零件的外直径 在(3.5,4.5]内的为一等品.试问 1 000 件这种零件中约有多少件一等品? 【提示】 P(3.5<ε≤4.5)=P(μ-σ<ε<μ+σ)=0.683 0,所以 1 000 件产品中 大约有 1 000×0.683 0=683(件)一等品.
阶
阶
段
段
一
三
*§6 正态分布
6.1 连续型随机变量
随机变量的分布函数、连续型

02
偏度是描述数据分布不对称性的量,即三阶中心矩与三阶原点矩的比值。偏度 大于0表示分布右偏,偏度小于0表示分布左偏。
03
峰度是描述数据分布形态陡峭或扁平程度的量,即四阶中心矩与四阶原点矩的 比值。峰度大于3表示分布比正态分布更陡峭,峰度小于3表示分布比正态分布 更扁平。
PART 04
连续型随机变量的应用
用。
PART 03
连续型随机变量的性质
REPORTING
WENKU DESIGN
概率密度函数(PDF)
概率密度函数(PDF)描述了随机变量取值在 某个区间的概率,即密度函数值与该区间长度 之积等于该区间内事件发生的概率。
PDF具有非负性,即对于所有实数x, PDF(x)≥0。
整个实数轴上的概率总和为1,即 ∫∞−∞f(x)dx=1,其中f(x)是随机变量的概率密 度函数。
在模拟连续型随机变量时,蒙特卡洛方法通过产生大 量随机样本,并计算其统计量,来估计随机变量的分
布函数和概率密度函数。
蒙特卡洛方法的优点是简单易行,适用于各种类型的 分布函数,但缺点是精度取决于样本数量,样本数量
越多,精度越高。
逆变换采样法
逆变换采样法是一种基于概率分布的反向抽样方法,即先从均匀分布的随机数中抽取样本,再通过概 率分布的反函数变换得到所需的随机变量。
THANKS
感谢观看
REPORTING
https://
正态分布的实际应用案例
金融领域
正态分布被广泛用于描述金融数据的分布,如股 票价格、收益率等。
自然现象
许多自然现象的分布呈现正态分布特征,如人类 的身高、智商等。
统计学
在统计学中,正态分布是最常用的分布之一,用 于描述数据的集中趋势和离散程度。
第二章2.4正态分布最终版

类型二 正态分布的概率计算
【例2】 设X~N(1,22),求: (1)P(-1<X≤3); (2)P(3<X≤5); (3)P(X≥5). 【分析】 要求随机变量X在某一范围内的概率,只须借 助于正态密度曲线的图象性质及三个特殊区间内取值的概率.
【解】 ∵X~N(1,22),∴μ=1,σ=2. (1)P(-1<X≤3)=P(1-2<X≤1+2)=P(μ-σ<X≤μ+σ)=0.6827. (2)∵P(3<X≤5)=P(-3<X≤-1),
可取任意数,μ 反映随机变量取值的平均水平的特征数,即若 X~N(μ,
σ2),则 E(X)=μ. σ>0 且参数 σ 是衡量随机变量总体波动大小的特征
数,可以用样本的标准差去估计.
2.注意正态函数中两个参数的位置,其中 σ 这个参数在解析式中两次出现,
注意参数的一致性。设随机变量
X
的正态分布密度函数
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3 4 x
观察上面的正态曲线,分析有什么特征?
探究 2:
知识点二 正态分布的性质
1.正态分布的性质 (1)曲线在 x 轴上方,与 x 轴不相交. (2)曲线是单峰的,关于直线 x=μ 对称.
1
(3)曲线在 x=μ 处达到峰值σ 2π .
第二章
随机变量及其分布
2.4 正态分布
[目标] 1.会分析正态分布的意义. 2.能借助正态曲线的图象理解正态曲线的性质及意义. 3.会根据正态曲线的性质求随机变量在某一区间的概率. [重点] 正态曲线的特点及其所表示的意义;
利用正态分布解决实际问题. [难点] 求随机变量在某一区间内的概率.
一、复习引入
《连续型随机变量》课件

02
对于连续型随机变量的最大值,其概率分布函数为F(x)=1−e−λxtext{F}(x) = 1 - e^{-lambda x}F(x)=1−e−λx,其中λlambdaλ是随机变量的密度函数。
03
对于连续型随机变量的最小值,其概率分布函数为F(x)=1−e−λ(−x)text{F}(x) = 1 - e^{-lambda (-x)}F(x)=1−e−λ(−x)。
THANKS
感谢观看
最大值和最小值在决策分析中的应用
01
在风险管理中,连续型随机变量的最大值和最小值具有重要的应用价 值。
02
通过分析最大值和最小值的概率分布、数学期望和方差,可以帮助决 策者更好地理解潜在的风险和机会,从而做出更明智的决策。
03
在金融领域,连续型随机变量的最大值和最小值可用于评估投资组合 的风险和回报,以及制定风险管理策略。
连续型随机变量的最小值的数学期望 E(Xmin)=−∞∑x=0xP(X<x)text{E}(X_{min}) = infty sum_{x=0} x P(X < x)E(Xmin)=−∞∑x=0xP(X<x)。
连续型随机变量的最小值的方差 Var(Xmin)=−∞∑x=0[x2P(X<x)−E2(Xmin)]text{ Var}(X_{min}) = -infty sum_{x=0} [x^2 P(X < x) E^2(X_{min})]Var(Xmin)=−∞∑x=0[x2P(X<x)− E2(Xmin)]。
03
连续型随机变量的期望和方差
期望的定义和计算
定义
连续型随机变量的期望值是所有可能取值的加权和,其中每个取值的权重等于该 取值出现的概率。
概率论与统计第二章第三节连续型随机变量

x
于是当△x( > 0)充分小时, P{x<X≤x+ △x}≈f(x)△ x。这表明f(x)
本身并非概率,但它的大小却决定了X 落入区间[x ,x+△x]内的概
率的大小.即f(x) 反映了点x 附近所分布的概率的“疏密”程度 ――
连续型随机变量的一个重要特征是:连续型随机变量取任意
一个指定值的概率均为零,即P{X =x0}=0.
例7 若X ~N(0,1) ,当α = 0.10、α = 0.05、α = 0.01 时,分别确定u0,使得P{|X|>u0} = α.
解 P{|X|>u0} = P{X<-u0}+ P{X>u0} = φ(-u0)+1-P{X≤-u0} =1-φ(u0) +1- φ(u0) = 2-2 φ(u0) .
均匀分布的密度函数与分布函数的图形如图.
均匀分布是常见的连续分布之一.例如数值计算中的舍入 误差、在每隔一定时间有一辆班车到来的汽车站上乘客的候车 时间等常被假设服从均匀分布.此外,均匀分布在随机模拟中 亦有广泛应用.
例3 某市每天有两班开往某旅游景点的列车, 发车时间分
别为早上7点30分和8点.设一游客在7 点至8点间任何时刻到达
P{|X|<2}=2Φ(2) -1=2×0.9772-1 = 0.9544
P{|X|<3}=2Φ(3) -1 = 2×0.9987-1 = 0.9974
对于X ~ N (, 2 )
P{| X | 1} P{ X }
=Φ(1)-Φ(-1) = 0.6826
P{| X | 2} P{ 2 X 2 }
(2)
F(x)
x
f (t)dt
当x<0 ,
F
(
x)
x
第二章4随机变量的分布函数

1 2
)
xe 2 f (x) F x 0
x
e
2
2
x 0 x 0
例 5、设随机变量
X 的密度函数为
0 x 1 1 x 2 其它
x f x 2 x 0
试求 X 的分布函数.
x
解: x 0 时, F x 当
( 3 ) F ( ) lim F ( x ) 0 ;
x
F ( ) lim F ( x ) 1
x
( 4 ) F ( x ) 至多有可列个第一类间 处右连续 .
断点,且在间断点
1
F(x)
-1 x
0
1
2
3
0 3
1
2
例1、设随机变量X的分布函数为 F x A Barctgx
0 x 1 1 x 2 其它
x f x 2 x 0
试求 X 的分布函数.
当 x 2 时,
F x
x
f t dt
f t dt f t dt f t dt f t dt
1 2 0 1 2
第二章 第四节 随机 变量的分布函数
§2.4 随机变量的分布函数 本节要点: 分布函数 离散型随机变量的分布函数 连续型随机变量的分布函数
一 分布函数的定义和性质
1 分布函数的定义 定义 设 X 是一个随机变量,x 是任意实数,函数
F ( x ) P{ X x }
x
P { X 3} 1 C5
3
1 10
P { X 4}