石油原油管道长输管道阴极保护的方法和条件

合集下载

油气管道防腐蚀阴极保护方案 油气管道强制电流阴极保护工作原理

油气管道防腐蚀阴极保护方案 油气管道强制电流阴极保护工作原理

油气管道防腐蚀阴极保护方案油气管道强制电流阴极保护工作原理河南汇龙合金材料有限公司导致油气管道出现腐蚀的因素大致分为两种,原油中硫的成分越来越高,使得油气管道内出现了较多的硫沉淀化合物,再加之油气管道底部的二氧化硫会和油气管道材质中的铁元素发生化学反应,生成硫酸亚铁化合物,该化合物又会水解成为游离酸以及其氧化物。

同时游离酸也会和油气管道中的铁元素发生化学反应,形成新的硫酸亚铁。

此时,硫酸亚铁又会发生水解反应。

从而直接加重油气管道的腐蚀程度。

原油里面通常都会包含水和氧气,众所周知,氧气会和水中的轻负离子发生化学反应,形成氢氧根离子,而氢氧根离子也会和油气管道材质中的铁元素发生化学反应,从而让管道出现了腐蚀的现象。

当油气管道材质中的铁元素处于电解质溶液当中的时候,由于它表面存在着电化学的不均匀性,从而形成一个腐蚀原电池。

该原电池当中的阳极会发生腐蚀,放出电子,同时铁离子进入电解质溶液当中。

阴极发生相应的化学反应,析出氢气以及铁的化合物,但是铁元素本身是不会发生腐蚀的。

因此,为有效地防止油气管道发生腐蚀,就可以利用某一种缓蚀剂,让铁元素的表面都处于阴极状态,从而让其抑制原电池阳极上的铁元素释放出电子。

目前,在油气管道当中,最为常见的一种防腐技术是:强制电流阴极保护技术。

它的工作原理是:在油气管道的回路当中接入一个直流电源,借助电源的阳极,把直流电通入油气管道的金属表面,进而使被保护的金属变成阴极,同时对该金属进行有效地保护。

目前,由于我国大多数管道腐蚀原因是H2SCO2和Cl-的存在,目前阴极型缓蚀剂和混合型缓蚀剂应用较广泛。

所谓的“阴极型缓蚀剂”,也就是:抑制电化学阴极反应的一种化学药剂,它包括:锌的碳酸盐、磷酸盐等等。

阴极型缓蚀剂在油气管道中实现的原理是:与油气管道中的水或者是铁元素表面的阴极区发生化学反应,让形成的沉淀化合物逐渐变为一层薄膜,随着缓蚀剂不断的在阴极区发生化学反应,这种薄膜的厚度就会慢慢增加。

石油、天然气管道阴极保护设计的基本条件分析

石油、天然气管道阴极保护设计的基本条件分析

石油、天然气管道阴极保护设计的基本条件分析发表时间:2018-11-17T14:51:20.740Z 来源:《基层建设》2018年第29期作者:丁昱森[导读] 摘要:文章在分析目前石油和天然气管道所采用的阴极保护方法的原理基础上,分析不同的阴极保护方法各自的优缺点和适用范围,并针对其不同的原理阐述其阴极保护设计的基本条件,以供参考。

中国石油天然气股份有限公司管道郑州输油气分公司河南省郑州市 450000摘要:文章在分析目前石油和天然气管道所采用的阴极保护方法的原理基础上,分析不同的阴极保护方法各自的优缺点和适用范围,并针对其不同的原理阐述其阴极保护设计的基本条件,以供参考。

关键词:石油、天然气管道;阴极保护设计;基本条件1引言由于管道的长距离敷设以及长时间的石油和天然气输送过程中,不同地区土壤中还有的腐蚀成分不同,会对管道造成不同程度的腐蚀,并且以电化学腐蚀为主,也是导致管道发生损坏并产生泄露的最主要原因。

目前石油和天然气管道通常采用钢质金属管道,为预防其发生电化学腐蚀,通常采用阴极保护的措施,此方式也是目前比较经济且防电化学腐蚀效果较好、能够有效延长管道寿命的方法。

2阴极保护方法的原理2.1强制电流保护法此方法属于阴极保护方法中的一种,其主要原理就是在管道上进行阴极电流的施加,这样就会使得管道的表面比阴极极化且表现为管道的电极电位向负方向发展,从而确保管道进入免蚀电位区。

按照此原理,只要当管道上施加的阴极电流足够大,就会降低管道表面金属失去电子而变成离子的速度,提高管道表面的离子得到电子并还原成原子的速度,如果后者的速度比前者大蚀,就起到对金属管道的防腐蚀保护作用,防止其发生电化学腐蚀。

2.2牺牲阳极保护法此方法是石油、天然气管道防止电化学腐蚀最常用的阴极保护方法中的一种,就是将比管道金属更活泼的金属作为电极与金属管道进行连接,由于二者的电位不同,所以在连接时就会产生一定的电位差,而表现为管道的电位更低成为阴极,进而在地下土壤中发生电化学腐蚀时则会优先对更为活泼的金属即阳极造成腐蚀,较低电位的金属就会由于腐蚀而不断被消耗,成为付出代价的牺牲体,从而对金属管道起到保护作用,确保其金属免蚀区,所以此方法被称之为牺牲阳极保护法。

关于长输管道的阴极保护及故障分析

关于长输管道的阴极保护及故障分析

关于长输管道的阴极保护及故障分析长输管道是输送油气、水等液体或气体的重要通道,其保护是关系到国家能源安全和环境安全的关键问题。

阴极保护是一种有效的管道保护方法,主要是通过施加电场,使管道表面电位负化,从而减少管道金属的腐蚀速率,延长管道使用寿命。

本文将阐述长输管道的阴极保护原理、方法及故障分析。

一、阴极保护原理由于土壤中存在着各种离子,例如水、氯离子等,这些离子会形成电池,导致管道金属表面出现电位差,这种现象称为自然电位。

如果管道的自然电位低于一定的电位(通常为-0.85V),则管道处于负电位,就会发生金属的电化学腐蚀。

阴极保护的主要原理是通过施加外加电场,将管道表面电位负化,使得管道处于负电位,在靠近管道表面的电场区域内,电子从管道金属表面流向土壤中的正离子,使其发生还原反应,从而减少管道金属腐蚀速率。

1、电位调节法:通过在管道两端安装钛阳极和铁/铜阴极,以及控制钛阳极输出的电流来调节管道表面的电位,从而达到保护作用。

2、电流输出法:在管道保护系统的控制下,直接将电流输出到管道端部的阳极或在管道上部固定钛阳极来保护管道。

3、均匀分散法:通过在管道上均匀分布一定数量的阳极,使得管道表面的电位均匀调整到负电位,从而保护整个管道。

1、偏移现象:阴极保护系统在使用过程中,由于地下水流的影响,土壤的化学组成及导电性不均匀等因素,易出现管道阴极保护区域偏移的现象。

一般采用分析安装阳极的位置是否正确,调整阴阳极之间的距离和电位来解决偏移问题。

2、极化过度:在保护过程中,如果管道阴极保护电位过于负化,反而会引起金属氢化、内应力等问题,从而导致管道的损坏。

应当合理调整阴极保护的电位,避免出现极化过度的情况。

3、外来干扰:阴极保护系统如果受到外部电源干扰(例如电力系统、通信设备等),会导致保护系统失效,出现管道腐蚀。

一般应在设计阴极保护系统时,选取合适的接地点,采取防雷、防电磁干扰等措施来预防外来干扰。

综上所述,长输管道阴极保护技术是一项重要的保护措施,可有效减少管道的金属腐蚀速率,延长管道寿命。

石油天然气长输管道阴极保护技术概述

石油天然气长输管道阴极保护技术概述

石油天然气长输管道阴极保护技术概述
近年来,伴随着我国经济的不断发展,以及现代工业体系的不断完善,对石油天然气能源的需求量越来越大。

石油及天然气资源的应用必须满足运输需求,即从能源产地到消费场所的传输,国内石油化工企业主要采用的有两种方式,即罐车运输和管道运输。

其中,罐车运输由于受到经济性、安全性等方面的制约,主要在短距离内发挥作用。

相对而言,管道运输由于不受时间空间限制,具有成本低、安全性高、不间断作业等优势,被视为长距离输送的最佳选择。

结合现状分析,我国的石油天然气长输管道铺设过程中主要采用掩埋的方式,尽管在管道外部做了敷设防护,但由于土壤成分复杂、地形迥异等问题,依然会形成一定的破坏作用,其中最明显的就是腐蚀问题。

长埋地下的管道与土壤接触,长期收到土壤介质中的水分、细菌、酸碱等因素干扰,腐蚀因素慢慢积累,经过量变完成质变。

一旦发生管道腐蚀泄露,就会导致重大的经济损失甚至人身安全事故,造成不良的社会影响。

而对于企业而言,腐蚀问题会导致整个管线的停运,受到巨大的直接经济损失和间接经济损失。

基于以上原因,针对长输管道进行腐蚀预防是十分必要的,无论多么严密的仿佛绝缘层或隔离措施,都不可能完全避免腐蚀因素的干扰,同时,由于长输管道长埋于土壤之中,无法进行定期观察检修,更不可能采用常规手段进行维护。

根据阴极保护的原理不难看出,只需要确保长输管道获得稳定的电子补充,就可以有效组织腐蚀问题的发生,因此,阴极保护是最经济、最有效、最合理的措施。

油气长输管道的阴极保护埋地管道牺牲阳极阴极保护

油气长输管道的阴极保护埋地管道牺牲阳极阴极保护

油气长输管道的阴极保护埋地管道牺牲阳极阴极保护当采用数字万用表测管地电位时,应将电压表的负接线柱(COM)与硫酸铜参比电极连接(硫酸铜参比电极应安放在管道的正上方并确保与大地土壤接触良好),正接线柱(V)与管道连接,仪表值指示的是管道相对于参比电极的电位值,正常情况下显示负值;在测量管地电位时,首先把探头插入被测体附近的土壤中,如果土壤干燥,应在探头周围的土壤中浇入纯净水湿润。

在用2号绿色接线进行与管道的极化,当极化完全后,再将1 号参比电极线接到万用表的地线,把万用表的正极接到2号线同时接到被测体,待电位值稳定后,读取被测量体阴极保护电位值。

将2号线换为3号线接到万用表的正极,同时不要与被测量体相连接,待电位稳定后,即测量到自腐蚀电位。

如果要对管道进行长期监测时,就要把电位测量探头作为监测电极长期埋入地下,首先把探头装入牺牲阳极用在填料包内再埋入土壤中,并在探头周围的土壤中浇入纯净水湿润;再把1 号红色接线接到万用表的地线,2号接线接万用表的正极,同时与被测体固定连接,待电位稳定后,读取测量阴极保护电位值。

将2号接线换3号接线接到万用表的正极,同时不要与被测量体连接,待电位稳定后,即测量到自腐蚀电位。

在埋地管道的阴极保护系统中,被保护的管道每间隔一定的距离(例如一公里)有一个管地电位测试桩,是用导线与管体金属联结,然后引到地面上,并做好与地的绝缘。

阴极保护站的工作人员定期用毫伏表沿管线逐个在桩上测量该点的管对地电位,从阴极保护站的加电点开始观察所施加的电压沿管道的衰减情况,用以了解保护的范围和异常衰减的区段。

但是这种测量的结果是很粗糙的,只能对阴极保护状况做个大致的观察。

由于IR降的存在,在每个桩上所测得的管对地电位并不是直接加在破损点管道金属表面与土壤接触界面之间的电位,并不能准确判断对管道保护的效果。

油气长输管道不仅需要传输大量的油气介质,还需要具有高度的安全可靠性。

而腐蚀则是导致管道失效和意外事故的主要因素之一,因此油气管道阴极保护技术在石油天然气行业中显得尤为重要。

埋地管道石油管道管道阴极保护方法管道阴极保护施工条件

埋地管道石油管道管道阴极保护方法管道阴极保护施工条件

埋地管道石油管道管道阴极保护方法管道阴极保护施工条件河南汇龙合金材料有限公司1阴极保护的方法1.1牺牲阳极法牺牲阳极法就是让被保护的金属和另一种金属或者合金链接在一起,被链接的金属或合金的电位比被保护的金属更负。

牺牲阳极的性质比较活泼。

所以在电解液里面它开始溶解的速度非常快,很快就能释放电流让金属金属阴极极化,这样就可以让金属得到保护。

1.2强制电流法强制电流法被保护的电流因为外部直流电源的输入而产生阴极电流,于是就出现了阴极极化的状态,这样就能够让金属得到保护。

强制电流法和众多的因素密切相关,比如阳极、参比电极、直流电源和连接电缆都是必不可少的。

通过辅助阳极能偶让电流进入到被保护的金属当中,所以阳极工作的时候就是处于电解环境里面。

1.3排流保护所谓的排流保护指的是在电流比较散杂的情况下,对这些电流进行排除对被保护构筑物施加阴极保护。

一般而言,有三种方式都可以用来进行排流保护:第一个方法是直接排流。

如果散杂电流干扰电位极性没有太大波动的时候,可以借助电缆把被保护金属和干扰因素连接在一起,让杂散的电流能够排除。

这个方案虽然操作便捷,但是要是判断的不够精准,那么很可能适得其反让杂散的电流更多。

第二个方法是极性排流。

当杂散电流干扰电位极性正负交变时,能够借助二极管让杂散电源回到干扰源,因为二极管在输送电流的时候只能单方向输送,把杂散电流朝正向排出,而负向的就用被当做阴极保护。

现在,极性排流法比较常用。

第三个方法就是强制排流。

前面提到的直接排流法和极性排流都是在排流的过程当中才能实现保护作用,而没有进行排流的时候,金属就不能得到很好的保护作用。

针对这个弊端,于是就有了强制排流这个方法。

在无杂散电流时通过整流器供给保护电流,如果出现杂散电流就借助排流来实现保护。

一般情况下,强制排流采用的都是恒电位仪,在进行排流保护的时候也会有一部分的保护电流输出。

2.阴极保护条件要进行阴极保护,需要满足一下几个特质:首先,腐蚀介质要具备导电性,这样才能产生完整的电路。

石油天然气管道管路的阴极保护

石油天然气管道管路的阴极保护

第二章管路的阴极保护第一节管路的阴极保护一、阴极保护的原理使被保护的金属阴极极化,以减少和防止金属腐蚀的方法,叫作阴极保护。

阴极保护有两种方法,一种叫牺牲阳极保护,另一种叫强制阴极保护。

!"牺牲阳极保护在要保护的金属管路上,连接一种电位更负的金属或合金(如铝合金、镁合金),如图#$%$!(&)所示。

称为牺牲阳极。

原来在金属管路的两部分之间存在的电位差,在土壤中形成腐蚀电池(为了简化,可以把它看成是一对原电池),电流的方向如图。

管路连接牺牲阳极后,构成了一个新的腐蚀电池。

由于管路原来的腐蚀电池阳极的电极电位比外加的牺牲阳极的电位要正,所以整个管路成为阴极,电流从牺牲阳极流出,经土壤流到地下管路,再经导线流回阳极。

这样制止了管路上带正电的金属离子进入土壤,保护了管路免于腐蚀,而外加金属则成为阳极而不断地被腐蚀。

其保护电流的大小,主要决定于两极金属之间的电位差。

牺牲阳极保护的优点是构造简单,施工、管理方便,不需要外加电源,适用于无电源或需要局部保护的地方,对邻近的金属结构影响小。

其缺点是由于受两个金属之间电极电位差时限制,有效电位差及电流受到限制,用于地下管路保护的最大保护距离不过几公里,当土壤电阻率较高时,保护距离则更短,同时调节电流也困难,另一个缺点是阳极消耗量大,要消耗有色金属。

%"强制阴极保护利用外加直流电源,将被保护金属与直流电源负极相连,使被保护的金属整个表面变为阴极而进行阴极极化,以减轻或防止腐蚀,这种方法称为外加电流阴极保护或强制阴极保护如图#$%$!(’)所示。

强制阴极保护中的外加电流在管路和辅助阳极之间所建立的电位差,显然比牺牲阳极保护中,阳极与管路间仅依靠两种金属之间产生的电位差大得多。

因此,它的优点是可供给较大的保护电流,保护距离长。

同时,可以调节电流和电压,适用范围广。

辅助阳极的材料只要求有良好的导电性和抗腐蚀性,不消耗有色金属。

其缺点是需要外电源和经常的维护管理。

石油管道阴极保护的设计要点

石油管道阴极保护的设计要点

河南汇龙合金材料有限公司刘珍
阴极保护产品、设计、工程施工一站式服务;提供阴极保护完整解决方案
阴极保护的设计要点
第一,优化接地电池的设置。

传统的阴极保护设置只注重管道防腐本身,对设备保护缺乏认识。

结合创新的思想,采取安装接地电池的方法,将雷击和静电破坏因素考虑在内,防止绝缘设备与保护电流之间的相互干扰。

第二,杜绝杂散电流的现象。

杂散电流的不稳定性是导致电化学腐蚀程度DI 1,~U的原因,一般来说,在管道附近5 米以内、电位差高于0.5mV/m 时,就会导致大量的杂乱电流出现,会加速绝缘层的破裂速度。

可以通过设置排流锌阳极组来减少干扰,实现防腐的目的。

第三,复杂区域的特殊保护。

石油天然气管道在建设中会发生与其他设施较差的局面,如公路、铁路等地理位置上的重叠,由于大量金属材质的集中,会出现腐蚀的共生性。

基于此,应该对这种情况进行特殊保护,如增加套管、开凿焊点增加锌阳极保护等。

输油管道阴极保护方案牺牲阳极阴极保护施工

输油管道阴极保护方案牺牲阳极阴极保护施工

输油管道阴极保护方案牺牲阳极阴极保护施工方案河南汇龙合金材料有限公司石油安全作为工业生产的血液,一直是人们特别关注的问题,特别是在石油管道的保护中,我们要做好相关的保护,尤其是阴极保护。

我们都知道,在石油运输过程中,静电是非常可怕的,它对安全的威胁是难以描述的。

因此,管道用户和实际铺设人员总是要提前做好静电处理,而采取所谓的阴极保护措施是最常用和有效的方法之一。

在埋地管道阴极保护施工中,会对防腐层造成或多或少的损坏,因此有必要对损坏的部分进行修复。

阴极保护是一项技术含量较高的工作,施工单位和操作人员都应注重专业素质的培养和专业水平的提高。

管道一旦埋在地下,就会长期留在地下,原材料的质量无法得到保证,不仅影响管道的正常使用,而且增加了维护的难度,带来安全风险。

因此,在管道施工中,我们必须选择合格的原材料进行加工,相关部门要做好监督工作,确保原材料的采购和调配能够正常有序地进行。

确保原材料质量合格,控制涂层质量,保证厚度均匀性。

实际涂层的厚度往往与理论涂层的厚度不一致,其厚度受工艺、工艺和操作质量等诸多因素的影响。

如果涂层太薄,防腐效果不明显。

太厚会增加成本。

因此,随着生产工艺的不断进步,应不断改进涂装工艺,及时对腐蚀的管道进行修复和修复,使阴极保护工作更加全面。

此外,为了控制工程质量,还要制定统一的标准,制定严格的规章制度,有章可循,违章经营必须追究责任。

这样,不仅将施工单位的工作趋于规范化,也有利于阴极保护工作的顺利开展。

通常情况下我们会用万用表逐一检测阳极和电缆之间的电气连接。

如果发现阳极电连接不良或断线,则不能在施工过程中使用。

施工过程中严禁用力拉索,防止索缝断裂。

为了加速阳极表面的活化,在装配阳极前应先去除阳极表面的油脂和氧化物。

方法是用砂纸或手工砂轮打磨阳极,然后用无水乙醇擦拭。

阳极包装中的包装材料为膨润土、硫酸钙、硫酸镁,按50%、25%、25%的比例。

每个专用白布袋内装50kg 经表面处理的镁合金牺牲阳极。

石油天然气长输管道阴极保护作用及管理要求

石油天然气长输管道阴极保护作用及管理要求

石油天然气长输管道阴极保护作用及管理要求摘要:阴极保护技术在长输管道中已获得广泛应用。

长输管道腐蚀防护采用防腐层加阴极保护系统的做法。

管道施工和运行中防腐层存在漏点损伤,阴极保护系统向管体施加保护电流,管-地电位产生负向极化,实现管体保护。

长输管道主要应用强制电流法,牺牲阳极法用于高寒特殊环境或提供辅助保护。

目前应用范围已从长输管道发展至油气站场、油库、燃气管网,形成区域性阴极保护技术。

随着计算机技术和数值模拟技术的发展,国内已开展阴极保护数值模拟技术在工程领域的实践研究。

未来几年我国油气管道、高压电网、铁路公路发展迅速,对管道设计和安全运行提出了更高要求。

关键词:油气长输管道;阴极保护技术;金属结构引言:油气长输管道保护措施有很多种,但阴极保护技术是最合适的。

该项技术在油气长输管道中的应用,利用的阴极电流将金属阴极进行极化,具体会采取牺牲阳极或者增加外部电流的方式来实现。

所以,本文对油气长输管道中阴极保护技术的具体应用进行了探析,对具体的保护措施进行了总结。

1阴极保护技术应用概况石油储运设施的腐蚀是一个很复杂的过程,并与多种因素有关。

为了减缓金属的腐蚀,在土壤腐蚀调查的基础上,在长输管道和站库上采用了外加电流阴极保护技术,辅助以牺牲阳极保护技术,全面遏制了金属腐蚀穿孔的发生,取得了明显的经济效果。

1.1长输管道阴极保护技术金属电化学腐蚀是指金属与电解质发生电化学反应所产生的腐蚀,阴极保护技术是利用保护电流使金属表面极化,从而抑制金属与电解质发生电化学反应,避免腐蚀发生。

阴极保护的方法有牺牲阳极法和强制电流法。

牺牲阳极法因金属和牺牲阳极之间的驱动电压有限,一般用于所需要保护电流较小的情况。

强制电流法主要由恒电位仪、辅助阳极、电绝缘装置、参比电极等装置组成,因其保护电流大且可根据极化电位变化自动调节保护电流大小而得到广泛应用。

1.2区域性阴极保护技术油田站库内部的埋地管道与储罐金属腐蚀给油品的储存和管理带来了严重的挑战,由于其管网复杂,搭接较多,绝缘情况差别较大,所以牺牲阳极的应用受到限制。

长输管道站场区域阴极保护

长输管道站场区域阴极保护

• 多年来站场内部埋地管网的腐蚀破坏事故 不断的发生,如忠—武输气管线站场在扩建开 挖时发现,站内管线防腐层脱落严重,又没有 阴极保护措施,造成了较为严重的腐蚀;07年 初在西气东输轮南首站以及陕京输气管道站内 开挖过程中,也同样发现防腐层破损严重,使 管道遭受了腐蚀;另外,早些年在阿—赛线、 濮--临复线
• CPE西南分公司也在永唐秦输气管道站场中实施 了深井阳极地床区域阴极保。 在国内工程不断进行区 域阴保实验的同时,管道局也先后在科威特、俄罗斯 西伯利亚—太平洋等管道工程中实施区域阴保,同时 我们也在不断与我们的国际合作伙伴如美国克罗尼尔 、MACTOR、英国CP、德国SSS等专业公司广泛合作,对 国外的区域阴保也有比较多的了解和掌握。
•三、 区域性阴极保护技术特点
• 多年来,长输管道工程设计中,区域阴极保
护设计和实施之所以没有很好地全面开展,与其保护 对象的多样性、影响因素的多重性以及现场条件制约 的多方性有很大关系。通常来说,区域阴保具有如下 技术特点。
• --保护对象复杂性,站内区域性阴极保护是复杂 的系统,通常包括站内埋地工艺管网、站内消防管线 、排污管线、放空管线、热力管网等,这与站外单一 干线管道的保护完全不同,相互制约和影响因很多, 需要系统地统筹考虑。
• 这些因素都是区域阴保难以成功实施原因。
•边水平浅埋阳极组方式,这两个站的设计和实施由泵 站管理单位完成,由于输油泵站区域较大,地下管网 较多,管道电绝缘几乎没有实施,因此,这两个站的 区域阴保除靠近阳极地床的区域配管外,相当一部分 由于地下管道的相互电屏蔽而没有达到保护电位,普 遍在-0.75-0.8V C.S.E。
• 进入新世纪初,区域阴极保护进入全面尝试应用 阶段。2001年11月,管道公司在所属的鄯乌线对沿线 所有工艺站场实施区域阴极保护,这次阴极保护的实 施,充

长输管道阴极保护原理及运行管理

长输管道阴极保护原理及运行管理

一、阴极保护原理阴极保护的原理是给金属补充大量的电子,使被保护金属整体处于电子过剩的状态,使金属表面各点达到同一负电位,金属原子不容易失去电子而变成离子溶入溶液。

有两种办法可以实现这一目的,即,牺牲阳极阴极保护和外加电流阴极保护。

1、牺牲阳极阴极保护是将电位更负的金属与被保护金属连接,并处于同一电解质中,使该金属上的电子转移到被保护金属上去,使整个被保护金属处于一个较负的相同的电位下。

该方式简便易行,不需要外加电源,很少产生腐蚀干扰,广泛应用于保护小型(电流一般小于1安培)或处于低土壤电阻率环境下(土壤电阻率小于100欧姆·米)的金属结构。

如,城市管网、小型储罐等。

根据国内有关资料的报道,对于牺牲阳极的使用有很多失败的教训,认为牺牲阳极的使用寿命一般不会超过3年,最多5年。

牺牲阳极阴极保护失败的主要原因是阳极表面生成一层不导电的硬壳,限制了阳极的电流输出。

本人认为,产生该问题的主要原因是阳极成份达不到规范要求,其次是阳极所处位置土壤电阻率太高。

因此,设计牺牲阳极阴极保护系统时,除了严格控制阳极成份外,一定要选择土壤电阻率低的阳极床位置。

2、外加电流阴极保护是通过外加直流电源以及辅助阳极,迫使电流从土壤中流向被保护金属,使被保护金属结构电位低于周围环境。

该方式主要用于保护大型或处于高土壤电阻率土壤中的金属结构,如:长输埋地管道,大型罐群等。

二、阴极保护投入前的准备和验收(一) 阴极保护投入前对被保护管道的检查1、管道对地绝缘的检查从阴极保护的原理介绍,已得知没有绝缘就没有保护。

为了确保阴极保护的正常运行,在施加阴极保护电流前,必须确保管道的各项绝缘措施正确无误。

应检查管道的绝缘法兰的绝缘性能是否正常;管道沿线布置的设施如阀门、抽水缸、闸井均应与土壤有良好的绝缘;管道与固定墩、跨越塔架、穿越套管处也应有正确有效的绝缘处理措施。

管道在地下不应与其它金属构筑物有“短接”等故障。

管道表面防腐层应无漏敷点,所有施工时期引起的缺陷与损伤,均应在施工验收时使用DCVG 检漏仪检测,修补后回填。

长输管道阴极保护施工工艺标准

长输管道阴极保护施工工艺标准

长输管道阴极保护施工工艺标准1.目的为规范我公司长输管道阴极保护工程的施工质量,特制定本工艺标准。

2.适用范1本工艺标准适用于输送原油、成品油、煤气和天然气的埋地钢质干线管道及站内区域性钢质管网和容器的阴极保护工程的施工。

3.参考文件或引用标准GB50369-2006 《长输管道工程施工及验收规范》SYJ4006-90 《长输油气管道阴极保护工程施工及验收规范》SY0402-2000 《石油天然气站内工艺管线工程施工及验收规范》SY/T0036-1999 《埋地钢质管道强制电流阴级保护规范》4.施工准备4.1阴极保护工程施工应与主管道同步进行,并应在干线敷设后半年内投运。

4.2凡采用阴极保护的输油、气管道及其设施必须作好防腐绝缘处理,防腐层质量应符合现行有关标准及工程设计文件的规定。

4.3依据施工设计编制技术交底或施工方案,并据此进行人员、材料及机具的准备。

4.4绝缘法兰的安装绝缘法兰应先组装,然后焊短管进行水压试验并进行电气检查,合格后再整体焊接在管道上。

水压试验应按SY0402-2000《石油天然气站内工艺管线工程施工及验收规范》有关条款执行。

5.强制电流的阴极保护 5.1电源设备的安装5.1.1选用的电源设备及电料器材的规格、性能均应符合现行有关标准规范及设计文件的规定,电气设备应有铭牌和出厂合格证。

5.1.2阴极保护电源设备的安装应按设计和设备产品说明书要求进行。

并应符合下列规定:1)电源设备附近应通风良好;2)接线时电源电压应与设备额定电压值相符;3)接线时根据接线图核对交直流电压的关系;输出电源极性应正确,在接线端子上注明" + ”、“一” 符号。

1.1.3可控硅恒电位仪表在安装前应按出厂技术标准进行校验,不合格者,不能使用。

1.1.4送电前应对电源设备各插接件进行全面检查,各螺栓应连接牢固,设备应接地可靠,安装时,必须将“零位接阴线”单独用一根电缆接到管道上。

1.2汇流点及辅助阳极的安装1.2.1汇流点及辅助阳极必须联接牢固,不得虚接或脱焊,联接后,必须用与管道防腐层相容的防腐材料进行防腐绝缘处理。

长输管道阴极保护技术与故障解决措施

长输管道阴极保护技术与故障解决措施

重要作用。 1.2 外加电流法阴极保护技术
外加电流阴极保护需要外设电源,并依托外 置电源向被保护的管线施加阴极的电流,增加表面 上还原反应所需的电子含量,达成抑制管线腐蚀的 过程。
2 阴极保护技术故障分析
2.2.3 阳极故障 在阴极保护装置运行过程中,如果出现无原因
的恒电位一输出电压攀升,阳极接地电阻值不断提 高的现象,可以认定为阳极故障。其中,造成阳极 接地电阻增大的原因主要有如下几种,其一,管线 在敷设时,下埋深度较低不能满足阴极保护的敷设 深度,在进入冬季后,在冻土的作用下,接地电阻 值上升;其二,施工不合理,或施工流程错误,导
经验交流 Experience Exchange
长输管道阴极保护技术
与故障解决措施
杨志
(大庆油田工程建设有限公司,黑龙江 大庆 163000)
摘 要:长输管道一般采用地下敷设的安装方式,管线长期处于地下高腐蚀环境下,导致管
线腐蚀加剧。受油气长输管线输送介质特殊的物理化学性质决定,长输管线一旦发生泄漏会引发

Abstract: The long-distance pipeline is generally installed underground, and the pipeline is in the
underground high corrosion environment for a long time, which leads to the aggravation of pipeline
电极,参比电极在发生故障后,会造成恒电位仪无 层的巡视管理,不能及时发现和处理具备破算,导
法正常运行,导致阴极保护防腐措施失效,甚至加 致破碎位置积少成多,最终造成防腐失效。
速管线腐蚀。造成参比电极故障的主要原因一般为

管道阴极保护

管道阴极保护

管道阴极保护1. 管道阴极保护的背景与概述在现代工业中,管道的使用非常普遍,尤其是在石油、天然气等行业中,管道起到了非常关键的作用。

然而,由于管道在使用过程中常常接触到水、土壤等导电介质,导致管道表面出现腐蚀的问题。

为了解决这一问题,管道阴极保护技术应运而生。

管道阴极保护通过施加电流使管道的金属表面成为阴极,从而抑制腐蚀的发生。

2. 管道阴极保护的原理管道阴极保护的原理是利用外加电源产生直接电流,通过作用于管道金属表面,使之成为阴极,从而抑制自腐蚀的发生。

具体原理如下:•管道金属表面通常会存在一些腐蚀点,这些点通常是金属的阴极位置。

•通过施加外加电流,使管道表面成为电流的路径,从而将自腐蚀的位置转变为阴极位置。

•通过向管道输送电流,并通过阳极来提供电子,实现对管道的阴极保护。

3. 管道阴极保护的实施步骤3.1 管道表面处理在实施管道阴极保护之前,需要对管道的表面进行处理。

处理步骤如下:1.清洁管道表面:通过高压水枪等工具将管道表面的污物、油漆等清除干净,以提供良好的阴极保护条件。

2.去除锈蚀:对于已经存在的锈蚀处,需要使用刷子、砂纸等工具进行去除,并用除锈剂进行清洗。

3.涂覆绝缘涂层:为了增强管道表面的绝缘性能,需要对管道进行绝缘涂层的涂覆,如使用油漆、聚乙烯等材料进行涂覆。

3.2 安装阴极保护设备在管道表面处理完毕后,需要安装阴极保护设备。

设备安装包括以下步骤:1.安装阴极:在管道的一段或多段位置,安装阴极,通常选择带有金属物质的材料作为阴极,如铁或铝。

2.安装阳极:将长条状的阳极埋入土壤中,以便提供电子并供给阴极保护系统所需的电流。

3.连接电缆:通过电缆将阴极和阳极与阴极保护设备连接起来,以便实现电流的传输。

3.3 测试与监测在阴极保护设备安装完毕后,需要进行测试与监测,以确保阴极保护系统的正常运行。

测试与监测包括以下内容:1.阳极地深度测试:使用测试设备,测试阳极埋入土壤中的深度,以确保其与土壤的良好接触。

油气长输管道阴极保护技术及工程应用pdf

油气长输管道阴极保护技术及工程应用pdf

油气长输管道阴极保护技术及工程应用油气长输管道阴极保护技术及工程应用是一项关键的技术,它能有效地保护管道免受腐蚀的侵害,延长管道的使用寿命。

本文将对油气长输管道阴极保护技术及其工程应用进行全面阐述,旨在提供相关知识和信息:1. 油气长输管道阴极保护技术的概念与原理:油气长输管道阴极保护技术是通过在管道上施加负电位,使其成为阴极,从而抑制和减缓管道表面的金属腐蚀。

其原理是利用电流法或电势法在管道表面形成一层保护膜,阻隔氧或水分子的接触与管道金属。

2. 油气长输管道阴极保护工程的方法与措施:在实际工程应用中,常用的油气长输管道阴极保护工程方法包括电流法保护、牺牲阳极法保护、半牺牲阳极法保护等。

具体措施包括设计和选择阴极保护系统、施工阴极保护装置、监测和维护等。

3. 油气长输管道阴极保护技术的优势与应用:油气长输管道阴极保护技术具有很多优势,如经济高效、可靠性强、施工方便等。

在实际应用中,它广泛用于油气长输管道、城市燃气管道、石油化工设施等领域,取得了良好的效果和应用案例。

4. 油气长输管道阴极保护技术的发展趋势与前景:随着油气行业的不断发展和对管道安全可靠性的要求提高,油气长输管道阴极保护技术也在不断创新和发展。

未来,该技术有望在防腐蚀、管道健康管理等方面发挥更大作用,并逐步向智能化、数字化的方向发展。

5. 目前油气长输管道阴极保护技术存在的问题与挑战:尽管油气长输管道阴极保护技术在实际应用中取得了一定的成果,但仍存在一些问题和挑战,如系统设计与优化、材料选择与腐蚀行为研究等方面的困难。

解决这些问题需要科学研究和工程实践的不断探索。

6. 综上所述,油气长输管道阴极保护技术及工程应用是保护油气管道的重要手段,对于延长管道使用寿命、提高运行安全性具有重要意义。

通过不断的研究和应用,我们可以进一步提升油气长输管道阴极保护技术水平,为油气行业提供更加可靠的输送管道。

长输管道阴极保护

长输管道阴极保护

1 强制电流阴极保护
利用外部直流电源,取得阴极极化电流,以防止金属遭受[wiki]腐蚀[/wiki]的方法称强制电流阴极保护,或外加电流阴极保护。

此时被保护的金属接在直流电源的负极上,而电流的正极则接辅助阳极。

强制电位阴极保护为目前油气管道阴极保护的主要形式。

该保护系统主要包括供电电源,辅助阳极(阳极地床),参比电极,电绝缘装置,检测系统等。

2 牺牲阳极保护
在离子导电的介质中,与被保护体相连并可以提供阴极保护电流的金属或合金称牺牲阳极。

牺牲阳极保护实质上是应用了不同金属间电极电位差的电化学原理来实现阴极保护。

当钢铁管道与电位更负的金属电气连接,并且两者处于同一电解质溶液中(如土壤、海水)则电位更负的金属作为阳极在腐蚀过程中向管道提供阴极保护电流,实现管道的阴极保护。

常用的牺牲阳极有镁和镁合金、锌及锌合金以及铝合金三大类
3 阴极保护准则
(a)埋地钢质管道阴极保护应符合下列准则之一:
•在施加阴极保护电流的情况下,测得管/地电位为-850mV(相对饱和[wiki]硫酸[/wiki]铜参比电极下同)或更负。

•相对饱和硫酸铜参比电极的管/地极化电位为-850mV或更负。

•管道表面与同土壤接触的稳定参比电极之间阴极极化值最小为100mV。

这一准则可以用于极化的建立过程或衰减过程中。

(b)其它要求
•对于裸钢表面或涂敷不良的管道,在预先确定的电流排放点(阳极区)确定净电流应从电解质流向管道表面。

•当土壤或水中含有硫酸盐还原菌,且硫酸根含量大于0.5%时,通电保护电位应达到-950mV 或更负。

关于长输管道的阴极保护及故障分析

关于长输管道的阴极保护及故障分析

关于长输管道的阴极保护及故障分析长输管道是国家能源和基础设施的重要组成部分,用于输送石油、天然气和其他液体或气体。

长输管道在长期运行过程中会面临腐蚀和损坏的风险,因此需要采取阴极保护来延长其使用寿命并保证其安全运行。

阴极保护是一种常用的管道保护措施,通过使管道表面处于负电位,使其成为阴极,以减少或防止管道的腐蚀。

阴极保护包括两种主要方法:外部阴极保护和内部阴极保护。

外部阴极保护是指在管道表面施加电流以形成负电位,通常采用在管道周围埋设的阳极来提供电流。

常用的的阳极包括铅合金阳极、镁合金阳极和铝合金阳极等。

外部阴极保护的关键是确保阳极与管道之间的电阻低。

常用的外部阴极保护系统包括串联系统和平行系统。

串联系统适用于管道长度较短的情况,而平行系统适用于管道长度较长、电流分布不均匀的情况。

内部阴极保护是指在管道内部注入一种阴极保护剂,使其在管道内部形成保护膜,从而抑制腐蚀。

常用的阴极保护剂有铜阳极剂、锌阳极剂和铝阳极剂等。

内部阴极保护的关键是保持阴极保护剂的浓度和一致性,并确保其能够覆盖整个管道内部表面。

尽管采取了阴极保护的措施,长输管道仍然可能出现故障。

常见的管道故障包括阳极故障、缺陷电流产生、外电源干扰和电阻变化等。

阳极故障是指阳极与管道之间的电阻增加或阳极失效。

阳极故障可能导致管道表面处于阳极状态,从而加速腐蚀。

阳极故障的检测方法包括原子吸收法、电化学法和电流-电位法等。

缺陷电流产生是指管道或管道涂层的缺陷引起的局部腐蚀,产生电流。

缺陷电流的大小和分布对管道的腐蚀速率有很大影响。

常用的检测方法包括电化学腐蚀测量和超声波检测等。

外电源干扰是指外部电源(如真正阴保电位、铁路电流和直流输电架空线路)对管道的干扰,使其电位偏离设计要求。

外电源干扰可能导致管道腐蚀加剧或产生其它安全隐患。

常用的解决方法包括隔离干扰源和增加阴极保护措施。

电阻变化是指管道的电阻发生变化,可能是由于管道锈蚀、磨损、温度变化或应力变化引起的。

油气管道阴极保护的基本原理和方法

油气管道阴极保护的基本原理和方法

油气管道阴极保护的基本原理和方法
• 腐蚀原理、类型和防护方法 • 参比电极 • 阴极保护原理 • 阴极保护主要方法 • 阴极保护系统的组成
阴极保护原理
• 阴极保护极化理论 • 阴极保护
阴极保护极化理论
EFe= - 0.55 V vs CSE EZn= - 1.10 V vs CSE
EFe= - 0.90 V vs CSE EZn= - 1.00 V vs CSE
参比电极介绍
• 参比电极种类很多,构造各异,适用不同的测量对象和使用范围, 常见的参比电极种类如下:
• 标准氢电极(SHE) • 铜-硫酸铜参比电极(CSE) • 银-氯化银参比电极(SSE) • 甘汞参比电极(SCE) • 锌参比电极(Zn) • 二氧化锰参比电极(MnO2) • 石墨电极
标准氢电极(SHE)
腐蚀原理、类型和防护方法
• 腐蚀的危害之一:巨大的经济损失
• 腐蚀的危害之二:安全、环境的危害

(一些局部腐蚀,如孔腐、应力腐蚀、
破裂等常常是突发性的,可能引起事故,造成危险)
• 腐蚀的危害之三:自然资源的巨大消耗 例如,每年花费大量资源和能源生产
的钢铁,有40%左右被腐蚀,而腐蚀后完全变为铁锈不能 再利用的约10%。按此计算,我国每年腐蚀掉的不能回收 利用的钢铁达1000多万吨(2009),大致相当于宝山钢 铁厂一年的产量。因而会加速自然资源的损耗,这是不可 逆转的。
油气管道阴极保护的基本原理和方法
汇报人:XX 单位:××公司
X年X月
油气管道阴极保护的基本原理和方法
• 腐蚀原理、类型和防护方法 • 参比电极 • 阴极保护原理 • 阴极保护主要方法 • 阴极保护系统的组成
腐蚀原理、类型和防护方法

油气管道阴极保护

油气管道阴极保护

• 腐蚀原电池的腐蚀作用就会在两极电位相等 的情况下被迫中止。此时,外加电流IP等于 阴极电流IC,电流不再继续流动。腐蚀电流 为零,金属就会得到完全保护。这就是阴极 保护的基本原理。
• 二、极化曲线图
-E E0a E1 E自腐
P
O D
F
E0C I腐 I自腐 I1 IP
在左侧的阴极曲线图中,我们可 以看到两条交叉曲线。 其中E0a为金属腐蚀电池阳极的平 衡 电位曲线; E0c为阴极的平衡电位 曲线,两条曲线的交叉点,意味着 金属腐蚀电池的阳极与阴极等电 位,即短路。短路时的电位为自 腐蚀电位,用E自腐来表示。此时 的电流用I自腐表示。当外加电流 加至阴极,使阴极极化电流达到 I1时,腐蚀系统的电位向负偏移 I 到E1,阳极腐蚀电流降低到I腐, 当阴极极化电流达到IP。腐蚀系 统的电位继续偏移到E0a,此时, 阳极的腐蚀电流变为零,从而腐 蚀电池的腐蚀电流也变为零,整 个系统的腐蚀过程终止。
• 在应用上列判定指标时,应注意测量误差。因地 下管道阴极保护电位,不是直接在管道金属和土 壤介质接触界面上的某一点进行测定。而是将硫 酸铜参比电极放在位于管道上方或在地面距管道 较远点进行测量。由于电流流经管道,金属界面 与硫酸铜参比电极接触的土壤之间会产生附加电 位。这个附加电位是电流流入土壤产生的IR降造 成的,它会使测得的管/地电位变得更负。 • 所以,在埋有长效参比电极的测试桩,要注意使 用长效参比电极来进行电位测量,测得的数据会 更准确些。我们阴保站的恒电位仪有一项测试功 能,它就是为消除电位测量的IR降而设计的,其 使用条件非常苛刻。很难使用此功能进行电位的 精确测量。原因在于1、全线停机必须同步。2、 同步停机的时间必须在0.2秒内完成。很难实现。
两种阴极保护方式的比较
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

原油管道长输管道







线






河南汇龙合金材料有限公司
1 管道内部清洁度
阴极保护电流在线检测技术并非适用于任何管道。

作为直接测量工具,阴极保护电流在线检测器需要与管道内壁良好接触,以便能够测量阴极保护电流产生的小电压降。

由于原油管道定期清管,因此其影响检测器与管壁接触的问题较少。

而成品油管道通常输送规格产品,一般不存在碎片堆积物,因此,其清管频率明显小于原油管道。

只要成品油管道末端油品污染程度轻,就可以认为该成品油管道是“清洁”管道。

为了确保阴极保护电流在线检测成功进行,在进行成品油管道检测前,通常需要对其进行较高质量的管道清管。

目前,市面上已有用于成品油管道的简便和较低成本的清管器产品。

这些清管器产品在进行清管的同时,也能测量管道内壁的清洁度,并能确定阴极保护电流在线检测时,检测器与管内壁是否能够充分接触。

由同一条成品油管道在间隔1年时间内进行的两次阴极保护在线检测测得的电压降变化曲线可以看出,由于管壁没有充分清洁及电接使用阴极保护电流检测器定位电流源触不良,使得检测过程产生大量噪音,从而导致电压降变化曲线( 上方) 波动较大,而在进行两次清管之后,测得的电压降变化曲线( 下方) 明显平缓。

相比原油管道和成品油管道,对天然气管道进行阴极保护电流在线检测较为困
难。

由于天然气管道内的氧化物和管壁上脱落的碎片不能像原油或成品油管道那样被油流带走,因此天然气管道的清管难度较大。

管壁清洁度不足导致天然气管道的内壁电接触不够充分,影响了测得的直流电数据的准确性,而管壁清洁度问题对交流电数据影响不大。

同时,由于阴极保护电流在线检测器质量轻且与管道内壁间摩擦力小,因此天然气管道的介质流速波动对检测数据的准确性影响不容忽视。

较新的管道内壁存在大量轧屑,使得其与检测器接触和电压降测量难度增大。

同时,较新的管道防腐层完好,因此需要的阴极保护电流较小。

由于旧管道阴极保护电流较高,因此可一定程度上忽略其管壁接触问题对检测结果的影响,但是对于较新的施加低阴极保护电流的管道,其内壁接触问题对检测结果的影响不容忽视。

鉴于此,阴极保护电流在线检测技术通常用于旧的液体管道,只有当天然气管道腐蚀主要是由交流干扰引起时,才能对天然气管道进行阴极保护电流在线检测。

2 电流源记录
阴极保护电流在线检测器能够定位管道上的所有电流源以及未被记录的接头/排污管/短接。

进行间断的CIS数据分析时,需要考虑管道上所有电流源及排污管。

在对某管道进行阴极保护电流在线检测时,发现未被记录的2个整流器和3个接头。

这些埋地接头属于一条废弃的管道。

该在检管道与废弃管道为并行敷设,由同一套阴极保护系统提供保护。

由于时间太久,废弃管道埋地接头的位置信息已经遗失。

阴极保护电流在线检测器偶尔会检测不到某些阴极保护特征,如某次检测没有检出已知位置的整流器,而这个整流器已伴随该管道多年。

在对检测数据进行分析时,操作人员的第一反应是检测器的准确性存在问题。

然而,对阴极排污管的开挖结果表明,该整流器是属于另一条管道。

在另一案例中,某海底管道阴极保护电流在线检测结果显示,该管道新近安装的6个阳极栅并未正常工作。

潜水员进行水下检测后发现,这些阳极栅未正常工作是由于没有正确连接在管道上或其已被飓风损坏造成的。

这也表明,阴极保护电流在线检测器也可以作为有效检验设施是否正确安装的质量保证/质量控制
( QA/QC) 工具。

阴极保护电流在线检测器可用于定位套管中的短接。

虽然该检测器无法对套管进行检测,但当将以前漏磁检测的数据输入阴极保护电流在线检测数据库并进行校准后,就能确定套管的始末端。

该检测器不仅能检测出从套管通过短接流向管道的电流值,而且能对短接进行准确定位。

3检测数据及防腐层质量评价
阴极保护电流在线检测器检测出的数据能有效用于防腐层质量评价。

由于检测器能检测出流入管道和流回电流源的阴极保护电流值,因此很容易计算出任何给定区域接收的电流值。

阴极保护电流在线检测数据曲线反映出电流密度与防腐层质量关系密切。

电流曲线出现陡降,说明该处电流密度高,而下降平缓说明该处电流密度较低。

由于检测器检测出的只是检测器头部与尾部之间固定长度( 1.8~2.7 m) 管壁内的电压降,因此该检测器只是一种粗略的电压检测器。

该检测器无法检测出小的防腐层缺陷漏失的电流值,但对于几个漏点的累积效应产生的或未防腐环焊缝处管段接收的电流值有
足够高的分辨率。

根据某管径203 mm的成品油管道阴极保护电流变化曲线(显示约9.7km 长管段的电流情况) 可以看出,两段不同防腐层管段电流变化存在显著的区别,其中涂敷熔结环氧树脂粉末防腐层管段的电流变化平缓,而涂敷煤焦油防腐层管段的电流变化幅度很大。

涂敷煤焦油防腐层管段的电流密度在22~54 mA/m 2范围内变化,而涂敷熔结环氧树脂粉末防腐层管段的电流密度介于0.013~0.015 mA/m2之间。

这表明涂敷熔结环氧树脂粉末防腐层的管段处于过保护状态,因为其电流密度比同类型防腐层管道完好保护状态下的电流密度高出2倍。

在进行阴极保护电流在线检测数据分析时,需要将管道分成若干个电流密度呈线性的区段。

具体方法是:当电流坡度出现变化时,该处即视为新管段的始端。

在电流密度检测报告中,将这些划分好的管段数据各自列表,这有助于快速搜索出高或低电流密度的管段。

4 阴极保护失效的判断
对管道情况不明有时会干扰对评价结论的判断。

以某管道检测结果为例,在距离管道起点95 m处( 该处与一条废弃管道短接) ,有3.8A的电流漏失。

在距离管道起点3.6 km处,有一个73 A的整流器。

检测结果表明,阴极保护系统只对截断阀下游609 m长的管道实施了保护,而截断阀上游管道检测不出阴极保护电流。

操作人员就此决定对这个截断阀进行在线隔离,以便对截断阀上游管道实施阴极保护。

但是之前的检测历史数据表明,这个截断阀的管地电位一直正常,因此对截断阀采取在线隔离的决定可能并非正确。

在对这个埋地截断阀进行开挖后发现,阀门上游法兰的一个隔离器上有一截破损的金属线与邻近的一条废弃管道搭接,这使得超过3 km长的管道因无阴极保护电流而未得到保护。

由于邻近一个大功率整流器和高电位截断阀,使得操作人员对这段管道阴极保护的有效性产生错觉。

5 介质流速的影响
介质流速和在检管道的内部状况会影响阴极ChaoXing保护电流在线检测数据的准确性,但其影响程度取决于在检管道的内壁粗糙度。

一般而言,电阻焊管道比无缝管道或螺旋焊缝管道的介质流速要高。

值得注意的是,阴极保护电流在线检测器检测出的是很小的电压—通常是微电压。

在粗糙管道中介质流速过大,会对数据的准确性产生负面影
响。

对于大多数管道,介质流速一般为3.2 km/h较为理想。

6 管道干扰定位
当外界干扰设施周期性中断运行,而管道出现阴极保护电位改变时,技术人员会认为其运营的管道存在来自外界的干扰。

事实证明,这经常是一种误解。

因为只有在两种结构通过电解质发生电流交换时,才会出现干扰。

作为国际管道研究协会
(Pipeline Reseach Council International,PRCI)研究项目的一个组成部分,阴极保护电流在线检测器已被证实能够对干扰电流进行定位和测量。

目前,利用该检测器已经对超过4827 km的管道进行了检测,对这些管道干扰误判的现象已大幅减小。

公司简介:
河南汇龙合金材料有限公司座落在经济蓬勃发展的黄河沿岸、中原腹地---河南省原阳县,是一家合金材料多元化延伸产品深加工、电气技术研发、工程承包为一体的高新企业。

公司创办以来本着科技领先、专注行业的经营理念,在部队、石油、化工、天然气、铁路、市政等大型企业项目中树立起了良好的企业形象和数以千计的成熟业绩;在电化学防腐蚀、阴极保护材料开发、阴极保护施工、防雷及接地领域,汇龙品牌产品已畅销海内外并得到了客户的普遍好评和认可。

汇龙公司拥有一支长期从事特种合金、阴极保护材料研发、防雷及接地材料行业具有丰富经验的专家团队,在阴极保护防腐蚀领域采用新技术、新工艺不断改革创新使我们的产品与技术更具有市场竞争力,一直走在同行业的前列。

汇龙公司自主研发设计的主要产品有:镁合金阳极、锌合金阳极、铝合金阳极、镁带、锌带、长效硫酸铜参比电极、便携式参比电极、高纯锌参比电极、锌接地电池、阴极保护测试桩、防爆接线箱、高硅铸铁阳极、钛基氧化物阳极、预包装深井阳极、浅埋式预包装阳极、固态去耦合器、等电位连接器、恒电位仪、电位传送器、智能测试桩、火花间隙保护器、防雷器、手动升降杆、电动升降杆、气动升降杆、非金属接地模块、离子接地极、石墨接地线、合金接地极、铜包钢接地极、铜包钢绞线、放热焊接模具、铝热焊剂等。

愿我们的产品、技术和服务能为广大用户提供更多的放心和实惠,欢迎国内外各界朋友光临河南汇龙。

相关文档
最新文档