九年级数学专题复习-规律专题

合集下载

中考数学复习专题图形规律

中考数学复习专题图形规律

专题:图形找规律一.选择题(共19小题)1.观察下列图形及所对应的算式,根据你发现的规律计算1+8+16+24+…+8n(n是正整数)的结果为()A.(2n+1)2B.1+8n C.1+8(n﹣1)D.4n2+4n2.如图,观察下列图形,第一个图形有3个三角形,第二个图形有7个三角形,第三个图形有11个三角形,依照此规律,第八个图形中共有()个三角形.A.29 B.30 C.31 D.323.下列各图形都是由同样大小的菱形按一定规律组成的,其中第(1)个图形中菱形的个数是1,第(2)个图形中菱形的个数是5,第(3)个图形中菱形的个数是14,第(4)个图形中菱形的个数是30,…,则第(8)个图形中菱形的个数是()A.196 B.204 C.214 D.2284.观察下列图形,第1个图形中有4个三角形,第二个图形中有12个三角形,…,则第10个图形中三角形的个数是()A.4000 B.92 C.76 D.845.如图是经典手机游戏“俄罗斯方块”中的图案,图1中有8个矩形,图2中有11个矩形,图3中有15个矩形,根据此规律,图5中共有()个矩形.A.19 B.25 C.26 D.316.用边长相等的黑色正三角形与白色正六边形镶嵌图案,按图①②③所示的规律依次下去,则第10个图案中,所包含的黑色正三角形的个数是()A.36 B.38 C.40 D.427.下列每个图是由若干个圆点组成的形如四边形的图案,当每条边(包括顶点)上有n (n≥2)个圆点时,图案的圆点数为S n.则S10有()个圆点.A.51 B.36 C.30 D.198.如图,某广场地面的图案是用大小相同的黑、白正方形地砖镶嵌而成,图中第1个黑色L形由3个正方形组成,第2个黑色L形由7个正方形组成,…那么第n个黑色L 形的正方形个数是()A.n2+1 B.n2+2 C.4n+1 D.4n﹣19.如图案中由“△”按一定的规律组成的,从左到右排成一列(如图所示),第一个图是由3个“△”组成,第二个由6个“△”组成的,第三个是由10个“△”组成的,依此规律,由55个“△”组成的图案是左起第()个图.A.7 B.8 C.9 D.1010.现有3×3的方格,每个小方格内均有数目不同的点图,要求方格内每一行、每一列以及每一条对角线上的三个点图的点数之和均相等.图中给出了部分点图,则P处所对应的点图是()A.B.C.D.11.如图,小桥用黑白棋子组成的一组图案,第1个图案由1个黑子组成,第2个图案由1个黑子和6个白子组成,第3个图案由13个黑子和6个白子组成,按照这样的规律排列下去,则第8个图案中共有()个黑子.A.37 B.42 C.73 D.12112.将一些半径相同的小圆按如图所示的方式摆放,图①中有8个小圆,图②中有13个小圆,图③中有19个小圆,图④中有26个小圆,照此规律,图⑨中小圆的个数为()A.64 B.76 C.89 D.9313.下列图形都是由同样大小的等边三角形按一定的规律摆成,其中第①个图形有4个等边三角形,第②个图形有8个等边三角形,第③个图形有14个等边三角形,第④个图形有22个等边三角形,……,则第⑨个图形中等边三角形的个数是()A.76 B.84 C.91 D.9214.找出以如图形变化的规律,则第101个图形中黑色正方形的数量是()A.149 B.150 C.151 D.15215.下列图形都是由同样大小的圆按一定的规律组成,其中,第(1)个图形中一共有2个圆;第(2)个图形中一共有7个圆;第(3)个图形中一共有16个圆;第(4)个图形中一共有29个圆,…,则第(8)个图形中圆的个数为()A.121 B.113 C.92 D.19116.下列图案均是用长度相同的小木棒按一定的规律拼搭而成;拼搭第1个图案需4根小木棒,拼搭第2个图案需10根小木棒,…,依此规律,拼搭第8个图案需小木棒()根.A.144 B.108 C.88 D.8417.同样大小的黑色棋子按如图所示的规律摆放,第()个图形有2013个黑色棋子.A.668 B.669 C.670 D.67118.下列图形都是用同样大小的按一定的规律组成的,其中第①个图形中一共有1个“•”,第②个图形一共有5个“•”,第③个图形一共有11个“•”,…,则第⑧个图形中“•”的个数为()A.55 B.71 C.81 D.9019.观察图中正方形四个顶点所标的数字规律,推测数2019应标在()A.第504个正方形的左下角B.第504个正方形的右下角C.第505个正方形的右下角D.第505个正方形的左上角二.填空题(共18小题)20.现有各边长度均为1cm的小正方体若干个,按下图规律摆放,则第5个图形的表面积是cm2.21.探索规律:右边是用棋子摆成的“H”字,按这样的规律摆下去,摆成第10个“H”字需要个棋子.22.观察下列各图中小圆点的摆放规律,并按这样的规律继续摆放下去,则第5个图形中小圆点的个数为.23.如图,已知△ABC的面积S△ABC=1.在图(1)中,若,则;在图(2)中,若,则;在图(3)中,若,则;按此规律,若,则=.24.如图,由等圆组成的一组图中,第1个图由1个圆组成,第2个图由7个圆组成,…,按照这样的规律排列下去,则第8个图形由个圆组成.25.按照如图所示的方法排列黑色小正方形地砖,则第14个图案中黑色小正方形地砖的块数是.26.观察下列砌钢管的横截面图:则第n个图的钢管数是(用含n的式子表示)27.如图是由火柴棒搭成的几何图案,则第n个图案中有根火柴棒.(用含n的代数式表示)28.如图是一组有规律的图案,图案1是由4个组成的,图案2是由7个组成的,那么图案5是由个组成的,依此,第n个图案是由个组成的.29.观察下图找规律.(1)填出缺少的图形;(2)按照这样的规律,第21个图中,○在最.(填“上”“下”“左”“右).30.如图,下列图形是将正三角形按一定规律排列,则第5个图形中所有正三角形的个数有.31.下面是用棋子摆成的“上”字:如果按照以上规律继续摆下去,那么通过观察,可以发现:第n个“上”字需用枚棋子.32.用正三角形和正六边形按如图所示的规律拼图案,即从第二个图案开始,每个图案都比上一个图案多一个正六边形和两个正三角形,则第n个图案中正三角形的个数为(用含n的代数式表示).33.用同样大小的黑色棋子按如图所示的方式摆图案,按照这样的规律下去,第4个图案需要棋子枚,第n个图案需要棋子枚.34.观察如图图形的构成规律,依照此规律,第100个图形中共有个“•”.35.下列图案是晋商大院窗格的一部分,其中“○”代表窗纸上所贴的剪纸,则第5个图中所贴剪纸“○”的个数为;第n个图中所贴剪纸“○”的个数为.36.如图所示,用大小相等的小正方形拼大正方形,拼第一个正方形需要4个小正方形,拼第二个正方形需要9个小正方形…拼一拼,想一想,按照这样的方法拼成的第n个正方形比第(n﹣1)个正方形多个小正方形.37.如图,是用三角形摆成的图案,摆第一层图需要1个三角形,摆第二层图需要3个三角形,摆第三层图需要7个三角形,摆第四层图需要13个三角形,摆第五层图需要21个三角形,…,摆第n层图需要个三角形.三.解答题(共3小题)38.“数缺形时少直观,形少数时难入微”,小明在探究…+结果时,发现可利用图形的知识来解决问题.他是这样规定的:在图1中,若线段AB的长为1,C1为AB的中点,C2为C1B的中点,C3为C2B的中点,…,C n为C n﹣1B的中点.(1)则可以得出线段C1B=,C1C2=,ACn=;(2)从而发现了…+=;(3)小明学习上爱动脑,经过认真思考和分析后,发现在计算时,也可以利用构造一个图形,通过面积来计算.他构造图形是:如图2,正△ABC面积为1,分别取AC、BC两边的中点A1、B1,再分别取A1C、B1C的中点A2、B2,依次取下去…,能直观地计算出结果.请你根据这个图形说明小明的结果:=.请你对小明的发现,试给出必要的说理.39.某餐厅中,一张桌子可坐6人,有以下两种摆放方式:(1)当有4张桌子时,两种摆放方式各能坐多少人?(2)当有n张桌子时,两种摆放方式各能坐多少人?(3)一天中午餐厅要接待98位顾客共同就餐,但餐厅只有25张这样的餐桌,若你是这个餐厅的经理,你打算选择哪种方式来摆放餐桌,为什么?40.观察下面的点阵图和相应的等式,探究其中的规律:(1)认真观察,并在④后面的横线上写出相应的等式.①1=1 ②1+2==3 ③1+2+3==6 ④…(2)结合(1)观察下列点阵图,并在⑤后面的横线上写出相应的等式.1=12②1+3=22③3+6=32④6+10=42⑤…(3)通过猜想,写出(2)中与第n个点阵相对应的等式.参考答案与试题解析一.选择题(共19小题)1.观察下列图形及所对应的算式,根据你发现的规律计算1+8+16+24+…+8n(n是正整数)的结果为()A.(2n+1)2B.1+8n C.1+8(n﹣1)D.4n2+4n【分析】对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.通过分析找到各部分的变化规律后用一个统一的式子表示出变化规律是此类题目中的难点.【解答】解:图(1):1+8=9=(2×1+1)2;图(2):1+8+16=25=(2×2+1)2;图(3):1+8+16+24=49=(3×2+1)2;…;那么图(n):1+8+16+24+…+8n=(2n+1)2.故选:A.【点评】主要考查了学生通过特例分析从而归纳总结出一般结论的能力.注意此题的规律为:(2n+1)2.2.如图,观察下列图形,第一个图形有3个三角形,第二个图形有7个三角形,第三个图形有11个三角形,依照此规律,第八个图形中共有()个三角形.A.29 B.30 C.31 D.32【分析】易得第1个图形中三角形的个数,进而得到其余图形中三角形的个数在第1个图形中三角形的个数的基础上增加了几个4即可.【解答】解:第1个图形中有3个三角形;第2个图形中有3+4=7个三角形;第3个图形中有3+2×4=11个三角形;…第n个图形中有3+(n﹣1)×4=4n﹣1,当n=8时,4×8﹣1=31,故选:C.【点评】考查图形的规律性问题;得到不变的量及变化的量与n的关系是解决本题的关键.3.下列各图形都是由同样大小的菱形按一定规律组成的,其中第(1)个图形中菱形的个数是1,第(2)个图形中菱形的个数是5,第(3)个图形中菱形的个数是14,第(4)个图形中菱形的个数是30,…,则第(8)个图形中菱形的个数是()A.196 B.204 C.214 D.228【分析】仔细观察图形知道第1个图形有1个菱形,第2个有5=12+22个,第3个图形有14=12+22+32个,…由此得到规律求得第8个图形中菱形的个数即可.【解答】解:第1个图形有1个菱形,第2个有5=12+22个,第3个图形有14=12+22+32个,…第8个图形有1+4+9+16+25+36+49+64=204个菱形.故选:B.【点评】本题考查了规律型问题,解题的关键是仔细观察图形并找到有关图形个数的规律.4.观察下列图形,第1个图形中有4个三角形,第二个图形中有12个三角形,…,则第10个图形中三角形的个数是()A.4000 B.92 C.76 D.84【分析】由已知的三个图可得到一般的规律,即第n个图形中三角形的个数是8n﹣4,根据一般规律解题即可.【解答】解:第一个图形中有4个三角形;第二个图形中有12个三角形;第三个图形中有20个三角形;…第n个图形中三角形的个数为8n﹣4,当n=10时,8n﹣4=76.故选:C.【点评】此题主要考查了数字变化规律,解决此类探究性问题,关键在观察、分析已知数据.5.如图是经典手机游戏“俄罗斯方块”中的图案,图1中有8个矩形,图2中有11个矩形,图3中有15个矩形,根据此规律,图5中共有()个矩形.A.19 B.25 C.26 D.31【分析】通过观察已知图形可得:图1中的矩形个数为8个,图2中的矩形个数为8+3个,图3中的矩形个数为8+3+4,依此类推,即可解答.【解答】解:图1中的矩形个数为8个,图2中的矩形个数为8+3,图3中的矩形个数为8+3+4,图4中的矩形个数为8+3+4+5,图3中的矩形个数为8+3+4+5+6=26(个),故选:C.【点评】本题考查了图形的变化规律,解决本题的关键是观察图形,得出规律.6.用边长相等的黑色正三角形与白色正六边形镶嵌图案,按图①②③所示的规律依次下去,则第10个图案中,所包含的黑色正三角形的个数是()A.36 B.38 C.40 D.42【分析】仔细观察发现第n个图案中,黑色正三角形的个数分别是4n.【解答】解:第1个图案中,黑色正三角形的个数分别是4;第2个图案中,黑色正三角形的个数分别是2×4=8;第3个图案中,黑色正三角形的个数分别是3×4=12;…第n个图案中,黑色正三角形的个数分别是4n.故当n=10时,4n=4×10=40.故选:C.【点评】本题考查了图形的变化类问题,找规律的题,应以第一个图象为基准,细心观察,得到第n个图形与第一个图形之间的关系.7.下列每个图是由若干个圆点组成的形如四边形的图案,当每条边(包括顶点)上有n (n≥2)个圆点时,图案的圆点数为S n.则S10有()个圆点.A.51 B.36 C.30 D.19【分析】此题重点注意各个顶点同时在两条边上,计算点的个数时,不要把顶点重复计算了.【解答】解:此题中药计算点的个数,可以类似周长的计算方法进行,但应注意各个顶点重复了一次.如当n=2时,共有S2=4×2﹣4=4;当n=3时,共有S3=4×3﹣4,…,依此类推,即S n=4n ﹣4,当n=10时,S10=4×10﹣4=36,故选:B.【点评】本题考查了图形的变化类问题,关键是通过归纳与总结,得到其中的规律.8.如图,某广场地面的图案是用大小相同的黑、白正方形地砖镶嵌而成,图中第1个黑色L形由3个正方形组成,第2个黑色L形由7个正方形组成,…那么第n个黑色L 形的正方形个数是()A.n2+1 B.n2+2 C.4n+1 D.4n﹣1【分析】看后面每个图形中正方形的个数是在3的基础上增加几个4即可.【解答】解:第1个黑色“”形由3个正方形组成,第2个黑色“”形由3+4=7个正方形组成,第3个黑色“”形由3+2×4=11个正方形组成,…,那么组成第n个黑色“”形的正方形个数是3+(n﹣1)×4=4n﹣1.故选:D.【点评】考查图形的变化规律;得到第n个图形与第1个图形中正方形个数之间的关系是解决本题的关键.9.如图案中由“△”按一定的规律组成的,从左到右排成一列(如图所示),第一个图是由3个“△”组成,第二个由6个“△”组成的,第三个是由10个“△”组成的,依此规律,由55个“△”组成的图案是左起第()个图.A.7 B.8 C.9 D.10【分析】仔细观察图形会发现第1个图有2+1个三角形,第2个图形有3+2+1个三角形,第3个图形有4+3+2+1个图形,故第n个图形+2+3有1+4+…n+1个图形,从而得到答案即可.【解答】解:观察图形会发现,仔细观察图形会发现第1个图有2+1个三角形,第2个图形有3+2+1个三角形,第3个图形有4+3+2+1个图形,…第n个图形有1+2+3+4+…n+1=个图形,故=55解得:n=9.故选:C.【点评】本题考查了图形的变化类问题,解题的关键是仔细观察并找到通项公式.10.现有3×3的方格,每个小方格内均有数目不同的点图,要求方格内每一行、每一列以及每一条对角线上的三个点图的点数之和均相等.图中给出了部分点图,则P处所对应的点图是()A.B.C.D.【分析】根据图形可得x﹣2+1+x=1+5+x+1,解方程求得x,进一步得到P处所对应的点即可求解.【解答】解:如图,依题意有x﹣2+1+x=1+5+x+1,解得x=8,P=1+5+8+1﹣2﹣8﹣1=4.故选:B.【点评】本题考查了有理数的加法.考查了学生的观察归纳能力.11.如图,小桥用黑白棋子组成的一组图案,第1个图案由1个黑子组成,第2个图案由1个黑子和6个白子组成,第3个图案由13个黑子和6个白子组成,按照这样的规律排列下去,则第8个图案中共有()个黑子.A.37 B.42 C.73 D.121【分析】观察图象得到第1、2图案中黑子有1个,第3、4图案中黑子有1+2×6=13个,第5、6图案中黑子有1+2×6+4×6=37个,…,据此规律可得.【解答】解:第1、2图案中黑子有1个,第3、4图案中黑子有1+2×6=13个,第5、6图案中黑子有1+2×6+4×6=37个,第7、8图案中黑子有1+2×6+4×6+6×6=73个,故选:C.【点评】本题考查了规律型:图形的变化类:通过从一些特殊的图形变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.12.将一些半径相同的小圆按如图所示的方式摆放,图①中有8个小圆,图②中有13个小圆,图③中有19个小圆,图④中有26个小圆,照此规律,图⑨中小圆的个数为()A.64 B.76 C.89 D.93【分析】图①中有1+2+3+2=8个小圆,图②中有1+2+3+4+3=13个小圆,图③中有1+2+3+4+5+4=19个小圆,按此规律第9个图形中小圆的个数为1+2+3+4+5+6+7+8+9+10+11+10=76个小圆.【解答】解:图①中有1+2+3+2=8个小圆,图②中有1+2+3+4+3=13个小圆,图③中有1+2+3+4+5+4=19个小圆,…第9个图形中小圆的个数为1+2+3+4+5+6+7+8+9+10+11+10=76个.故选:B.【点评】此题考查图形的变化规律,是一道关于数字猜想的问题,关键是通过归纳与总结,得到其中的规律,利用穷举法解答此题是一种很好的方法.13.下列图形都是由同样大小的等边三角形按一定的规律摆成,其中第①个图形有4个等边三角形,第②个图形有8个等边三角形,第③个图形有14个等边三角形,第④个图形有22个等边三角形,……,则第⑨个图形中等边三角形的个数是()A.76 B.84 C.91 D.92【分析】先根据题意求找出其中的规律,即可求出第⑨个图形中等边三角形的个数.【解答】解:第①个图形有4个等边三角形,第②个图形有4+2×2=8个等边三角形,第③个图形有4+2×2+2×3=14个等边三角形,第④个图形有4+2×2+2×3+2×4=22个等边三角形,所以第⑨个图形中等边三角形的个数是4+2×2+2×3+2×4+2×5+2×6+2×7+2×8+2×9=92,故选:D.【点评】此题考查图形的变化规律,找出图形之间的数字运算规律,得出规律,解决问题.14.找出以如图形变化的规律,则第101个图形中黑色正方形的数量是()A.149 B.150 C.151 D.152【分析】仔细观察图形并从中找到规律,然后利用找到的规律即可得到答案.【解答】解:∵当n为偶数时第n个图形中黑色正方形的数量为n+个;当n为奇数时第n个图形中黑色正方形的数量为n+个,∴当n=101时,黑色正方形的个数为101+51=152个.故选:D.【点评】本题考查了图形的变化类问题,解题的关键是仔细的观察图形并正确的找到规律.15.下列图形都是由同样大小的圆按一定的规律组成,其中,第(1)个图形中一共有2个圆;第(2)个图形中一共有7个圆;第(3)个图形中一共有16个圆;第(4)个图形中一共有29个圆,…,则第(8)个图形中圆的个数为()A.121 B.113 C.92 D.191【分析】第(1)个图形中最下面有1个圆,上面有一个圆;第(2)个图形中最下面有2个圆,上面有1+3+1个圆;第(3)个图形中最下面有3个圆,上面有1+3+5+3+1个圆,那么可得第(8)个图形最下面有8个圆,上面有1+3+5+7+9+11+13+15+13+11+9+7+5+3+1个圆,相加即可.【解答】解:第(1)个图形中最下面有1个圆,上面有1个圆共有2个;第(2)个图形中最下面有2个圆,上面有1+3+1个圆共有7个;第(3)个图形中最下面有3个圆,上面有1+3+5+3+1个圆共有16个;…第(n)个图形中共有(2n2﹣n+1)个圆;第(8)个图形中共有2×82﹣8+1=121,故选:A.【点评】考查图形的变换规律;根据图形的排列规律得到最下面圆的个数与图形的序号相同,上面圆的个数与n个连续奇数的和相关是解决本题的关键.16.下列图案均是用长度相同的小木棒按一定的规律拼搭而成;拼搭第1个图案需4根小木棒,拼搭第2个图案需10根小木棒,…,依此规律,拼搭第8个图案需小木棒()根.A.144 B.108 C.88 D.84【分析】分析题意,找到规律,并进行推导得出答案.【解答】解:分析可得:第1个图形中,有4根火柴;第2个图形中,有4+6=10根火柴;第3个图形中,有10+8=18根火柴;…第8个图形中,共用火柴的根数是4+6+8+10+12+14+16+18=88根.故选:C.【点评】本题考查学生通过观察、归纳、抽象出数列的规律的能力.17.同样大小的黑色棋子按如图所示的规律摆放,第()个图形有2013个黑色棋子.A.668 B.669 C.670 D.671【分析】根据图中所给的黑色棋子的颗数,找出其中的规律,根据规律列出式子,即可求出答案.【解答】解:(1)第一个图需棋子6,第二个图需棋子9,第三个图需棋子12,第四个图需棋子15,第五个图需棋子18,…第n个图需棋子3(n+1)枚.设第n个图形有2013颗黑色棋子,得3(n+1)=2013解得n=670,所以第670个图形有2013颗黑色棋子故选:C.【点评】此题考查了图形的变化类,是一道关于数字猜想的问题,关键是通过归纳与总结,得到其中的规律.18.下列图形都是用同样大小的按一定的规律组成的,其中第①个图形中一共有1个“•”,第②个图形一共有5个“•”,第③个图形一共有11个“•”,…,则第⑧个图形中“•”的个数为()A.55 B.71 C.81 D.90【分析】根据图形的变化得出规律进行解答即可.【解答】解:由图形可以得出:第一个图形点的个数为1×2﹣1,第二个图形点的个数为2×3﹣1,第三个图形点的个数为3×4﹣1,第四个图形为4×5﹣1,所以第八个图形为8×9﹣1=71,故选:B.【点评】此题考查图形的变化规律问题,关键是由图形变化探究出其规律解答.19.观察图中正方形四个顶点所标的数字规律,推测数2019应标在()A.第504个正方形的左下角B.第504个正方形的右下角C.第505个正方形的右下角D.第505个正方形的左上角【分析】设第n个正方形中标记的最大的数为a n,观察给定图形,可找出规律“a n=4n”,依此规律即可得出结论.【解答】解:设第n个正方形中标记的最大的数为a n.观察给定正方形,可得出:每个正方形有4个数,即a n=4n.∵2019=504×4+3,∴数2019应标在第505个正方形左上角.故选:D.【点评】本题考查了规律型中的图形的变化类,解题的关键是找出变换规律a n=4n.本题属于基础题,难度不大,需找出2019在第几个正方形上.二.填空题(共18小题)20.现有各边长度均为1cm的小正方体若干个,按下图规律摆放,则第5个图形的表面积是90cm2.【分析】对于找规律的题目首先应找出哪个部分发生了变化,是按照什么规律变化的.【解答】解:根据题意可得:每个图形的表面积为最下层正方体的表面积之和;第5个图形中,共5层;从上到下,每层正方体个数为1,3,6,10,15,共35个正方体;其表面积为15×6=90cm2.【点评】本题是一道找规律的题目,这类题型在中考中经常出现.21.探索规律:右边是用棋子摆成的“H”字,按这样的规律摆下去,摆成第10个“H”字需要52个棋子.【分析】图形①用棋子的个数=2×(2×1+1)+1;图形②用棋子的个数=2×(2×2+1)+2;图形③用棋子的个数=2×(2×3+1)+3;…图形⑩用棋子的个数=2×(2×10+1)+10=52个.故答案为:52.【解答】解:观察图形可知第10个“H”字用棋子的个数=2×(2×10+1)+10=52个.【点评】通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力.本题的关键规律为各个图形中两竖行棋子的个数均为2n+1,横行棋子的个数为n.22.观察下列各图中小圆点的摆放规律,并按这样的规律继续摆放下去,则第5个图形中小圆点的个数为50.【分析】对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.【解答】解:根据题意分析可得:第1个图形中小圆点的个数为10=(1+2)2+1;第2个图形中小圆点的个数为17=(2+2)2+1;第3个图形中小圆点的个数为26=(3+2)2+1;…;第5个图形中小圆点的个数为7×7+1=50.故第5个图形中小圆点的个数为50.【点评】本题是一道找规律的题目,这类题型在中考中经常出现.23.如图,已知△ABC的面积S△ABC=1.在图(1)中,若,则;在图(2)中,若,则;在图(3)中,若,则;按此规律,若,则=(提示:用三点式求出抛物线的解析式,再求函数值).【分析】求得三角形ABC的面积S与对应边的比值之间的函数关系,然后代入比值求函数值即可.【解答】解:设函数关系为S=ax2+bx+c,∵若,则;若,则;若,则;∴解得:a=3,b=﹣3,c=1∴S=3x2﹣3x+1∴若,S=3×()2+(﹣3)×+1=.故答案为.【点评】主要考查了学生通过特例分析从而归纳总结出一般结论的能力.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.24.如图,由等圆组成的一组图中,第1个图由1个圆组成,第2个图由7个圆组成,…,按照这样的规律排列下去,则第8个图形由169个圆组成.【分析】首先分析题意,找到规律,并进行推导得出答案.【解答】解:观察分析可得:第1个图形有1个圆,第2个图由1+6=7个圆组成,第3个图由7+2×6=19即1+6+12个圆组成,…,第8个图形由1+6+12+18+24+30+36+42=169个圆.故答案为:169.【点评】本题考查了规律型中的图形变化问题,同时考查了学生通过观察、归纳、抽象出数列的规律的能力.25.按照如图所示的方法排列黑色小正方形地砖,则第14个图案中黑色小正方形地砖的块数是365.【分析】观察图形可知,黑色与白色的地砖的个数的和是连续奇数的平方,而黑色地砖比白色地砖多1个,求出第n个图案中的黑色与白色地砖的和,然后求出黑色地砖的块数,再把n=14代入进行计算即可.【解答】解:第1个图案只有1块黑色地砖,第2个图案有黑色与白色地砖共32=9,其中黑色的有5块,第3个图案有黑色与白色地砖共52=25,其中黑色的有13块,…第n个图案有黑色与白色地砖共(2n﹣1)2,其中黑色的有[(2n﹣1)2+1],当n=14时,黑色地砖的块数有[(2×14﹣1)2+1]=×730=365.故答案为:365.【点评】本题是对图形变化规律的考查,观察图形找出黑色与白色地砖的总块数与图案序号之间的关系是解题的关键.26.观察下列砌钢管的横截面图:则第n个图的钢管数是n2+n(用含n的式子表示)【分析】本题可依次解出n=1,2,3,…,钢管的个数.再根据规律以此类推,可得出第n堆的钢管个数.【解答】解:第一个图中钢管数为1+2=3;第二个图中钢管数为2+3+4=9;第三个图中钢管数为3+4+5+6=18;第四个图中钢管数为4+5+6+7+8=30,。

中考数学专题复习——规律探索(详细答案)

中考数学专题复习——规律探索(详细答案)

中考数学复习专题——规律探索一.选择题1. (2018·湖北随州·3 分)我们将如图所示的两种排列形式的点的个数分别称作“三角形数”(如 1,3, 6,10…)和“正方形数”(如 1,4,9,1,在小于 200 的数中,设最大的“三角形数”为 m ,最大的 “正方形数”为 n ,则 m +n 的值为( )A .33B .301C .386D .5712.(2018•山东烟台市•3 分)如图所示,下列图形都是由相同的玫瑰花按照一定的规律摆成的,按此规律摆 下去,第 n 个图形中有 120 朵玫瑰花,则 n 的值为( )3.(2018•山东济宁市•3 分)如图,小正方形是按一定规律摆放的,下面四个选项中的图片, 适合填补图中空白处的是( )A .B . B.C .D .4. (2018 湖南张家界 3.00 分)观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256…, 则 2+22+23+24+25+…+21018 的末位数字是( )A .8B .6C .4D .0二、填空题 1. (2018·湖北江汉油田、潜江市、天门市、仙桃市·3 分)如图,在平面直角坐标系中,△P 1OA 1,△P 2A 1A 2, △P3A2A3,…都是等2.(2018•江苏淮安•3 分)如图,在平面直角坐标系中,直线l为正比例函数y=x 的图象,点A1的坐标为(1,,过点A1作x轴的垂线交直线l于点D1,以A1D1为边作正方形A1B1C1D1;过点C1作直线l的垂线,垂足为A2,交x 轴于点B2,以A2B2为边作正方形A2B2C2D2;过点C2作x 轴的垂线,垂足为A3,交直线l 于点D3,以A3D3为边作正方形A3B3C3D3,…,按此规律操作下所得到的正方形A n B n C n D n的面积是(92)n﹣1 .3.(2018•山东东营市•3分)如图,在平面直角坐标系中,点A1,A2,A3,…和B1,B2,B3,…分别在直线y=15x+b和x轴上.△OA1B1,△B1A2B2,△B2A3B3,…都是等腰直角三角形.如果点A1(1,那么点A2018的纵坐标是20173()2.4.(2018•临安•3 分.)已知:2+23=22×23,3+38=32×38,4+415=42×415,5+524=52×524,…,若10+ba=102×ba符合前面式子的规律,则a+b= .5. (2018•广西桂林•3分)将从1开始的连续自然数按如图规律排列:规定位于第m行,第n列的自然记为6. (2018•广西南宁•3 分)观察下列等式:30=1,31=3,32=9,33=27,34=81,35=243,…,根据其中规律可 得 30+31+32+…+32018 的结果的个位数字是 .7. (2018·黑龙江龙东地区·3 分)如图,已知等边△A BC 的边长是 2,以 B C 边上的高 AB 1 为边作等边三角 形,得到第一个等边△AB 1C 1;再以等边△AB 1C 1 的 B 1C 1边上的高 AB 2 为边作等边三角形,得到第二个等边△AB 2C 2;再以等边△A B 2C 2 的B 2C 2边上的高 A B 3 为边作等边三角形,得到第三个等边△AB 3C 3;…,记△B 1CB 2 的面积为 S 1,△B 2C 1B 3 的面积为 S 2,△B 3C 2B 4 的面积为 S 3,如此下去,则 S n = .8.(2018·黑龙江齐齐哈尔·3 分)在平面直角坐标系中,点 A (3,1)在射线 O M 上,点 B (3,3)在 射线 ON 上,以 AB 为直角边作 Rt △A BA 1,以 BA 1 为直角边作第二个 Rt △BA 1B 1,以A 1B 1 为直角边作第三个 Rt△A 1B 1A 2,…,依次规律,得到 R t △B 2017A 2018B 2018,则点 B 2018 的纵坐标为 . 9.(2018•广东•3 分)如图,已B 1 作 B 1A 2∥OA 1 交双曲线于点 A 2,过 A 2 作 A 2B 2∥A 1B 1 交 x 轴于点 B 2,得到第二个等边△B 1A 2B 2;过 B 2 作 B 2A 3∥B 1A 2 交双曲线于点 A 3,过 A 3 作 A 3B 3∥A 2B 2 交 x 轴于点 B 3,得到第三个等边△B 2A 3B 3;以此类推,…,则点 B 6 的坐标 为 ( ) .nn201810. (2018•广西北海•3 分)观察下列等式: 30 = 1, 31 = 3, 32 = 9 , 33 = 27 , 34 = 81, 35= 243,…,根据其中规律可得 01220183+3+3+...3+的结果的个位数字是 。

中考数学复习攻略 专题1 规律探索与归纳推理(含答案)

中考数学复习攻略 专题1 规律探索与归纳推理(含答案)

重点专题突破专题一 规律探索与归纳推理中考重难点突破数式规律数式规律类问题通常是先给出一组数或式子,要求通过观察、归纳这组数或式子的共性规律,写出一个一般性的结论.解决这类题目的关键是找出题目中的规律,即不变的和变化的,变化部分与序号的关系.常见数列 规律❶2,4,6,8,10,12,… 2n (从2开始的连续偶数) ❷1,3,5,7,9,11,… 2n -1(从1开始的连续奇数)❸1,4,9,16,25,36,… n 2(正整数平方) ❹2,4,8,16,32,64,… 2n (2的整数次幂) ❺-1,1,-1,1,-1,1,…(-1)n (奇负偶正)❻1,-1, 1,-1, 1,-1,… (-1)n +1或(-1)n -1(奇正偶负)【例1】(2021·铜仁中考)观察下列各项:112 ,214 ,318 ,4116 ,…,则第n 项是__n +12n __.【解析】根据已知可得出规律:第一项:112 =1+121 ,第二项:214 =2+122 ,第三项:318 =3+123 ,…,从而可以得出第n 项.本题属于数字类规律问题,根据已知各项的规律得出结论是解决此类题目的关键. 【例2】(2020·百色一模)观察下列等式:1-12 =12 ,2-25 =85 ,3-310 =2710 ,4-417 =6417,…,根据你发现的规律,则第20个等式为 __20-20401 =8 000401__ .【解析】根据题意可知,这列等式的左边的被减数是从1开始的连续整数,减数是一个分数,并且分子和被减数相同,分母是被减数的平方加1;右边也是一个分数,分子是被减数的立方,分母和减数的分母相同,由此可写出第20个等式为:20-20202+1 =203202+1 ,最后化简即可.1.按一定规律排列的单项式:a ,-2a ,4a ,-8a ,16a ,-32a ,…,则第n 个单项式是( A )A .(-2)n -1a B .(-2)n aC .2n -1a D .2n a 2.(2020·百色二模)小说《达·芬奇密码》中的一个故事里出现了一串神秘排列的数:1,1,2,3,5,8,…,则这列数的第8个数是__21__.3.观察下面由※组成的图案和算式,解答问题:1+3=4=22,1+3+5=9=32, 1+3+5+7=16=42, 1+3+5+7+9=25=52, ……猜想:1+3+5+7+9+…+(2n -1)+(2n +1)+(2n +3)=__(n +2)2__.图形规律图形规律类问题主要涉及图形的组成、分拆等过程,解答此类问题时,要将后一个图形与前一个图形进行比较,明确哪部分发生了变化,哪部分没有发生变化,分析其联系和区别,有时需要多画出几个图形进行观察,有时规律是循环性的,在归纳时要运用对应思想和数形结合思想.【例3】观察下列砌钢管的横截面图:则第n 个图的钢管数是__32 n 2+32 n __(用含n 的式子表示).【解析】本题可先依次列出n =1,2,3,…时的钢管数,再根据规律依次类推,可得出第n 个图的钢管数.第1个图的钢管数为1+2=3=3×1; 第2个图的钢管数为2+3+4=9=3×(1+2); 第3个图的钢管数为3+4+5+6=18=3×(1+2+3);第4个图的钢管数为4+5+6+7+8=30=3×(1+2+3+4);……依次类推,第n 个图的钢管数为3×(1+2+3+4+…+n )=32 n 2+32n .4.(源于沪科七上P83)在公园内,牡丹按正方形种植,在它的周围种植芍药,如图反映了牡丹的列数(n )和芍药的数量规律,那么当n =11时,芍药的数量为( B )A .84株B .88株C .92株D .121株 5.(2021·遂宁中考)下面图形都是由同样大小的小球按一定规律排列的,依照此规律排列下去,第__20__个图形共有210个小球.6.下图是一组有规律的图案,它们是由边长相同的小正方形组成的,其中部分小正方形涂有阴影,依此规律,第n 个图案中有m 个涂有阴影的小正方形,那么m 与n 的函数关系式为__m =4n +1__.与坐标有关的规律与坐标有关的规律类问题要求探索图形在运动过程中的规律,通常以平面直角坐标系为载体探索点的坐标的变化规律.解答时,应先写出前几次的变化过程,并将相邻两次的变化过程进行比照,明确哪些地方发生了变化,哪些地方没有发生变化,逐步发现规律,从而使问题得以解决.【例4】如图,直线l 为y =3 x ,过点A 1(1,0)作A 1B 1⊥x 轴,与直线l 交于点B 1,以原点O 为圆心,OB 1长为半径画圆弧交x 轴于点A 2;再作A 2B 2⊥x 轴,交直线l 于点B 2,以原点O 为圆心,OB 2长为半径画圆弧交x轴于点A 3……按此作法进行下去,则点A n 的坐标为(__2n -1,0__).【解析】∵直线l 为y =3 x ,点A 1(1,0),A 1B 1⊥x 轴,∴当x =1时,y =3 ,即B 1(1,3 ).∴tan ∠A 1OB 1=3 .∴∠A 1OB 1=60°,∠A 1B 1O =30°.∴OB 1=2OA 1=2.∵以原点O 为圆心,OB 1长为半径画圆弧交x 轴于点A 2,∴A 2(2,0).同理可得A 3(4,0),A 4(8,0),…,∴A n (2n -1,0).7.如图,在平面直角坐标系中,A (-1,1),B (-1,-2),C (3,-2),D (3,1),一只瓢虫从点A 出发以2个单位长度/秒的速度沿A →B →C →D →A 循环爬行,问第2 021 s 瓢虫所在点的坐标是( A )A .(3,1)B .(-1,-2)C .(1,-2)D .(3,-2)8.如图,在平面直角坐标系中,△P 1OA 1,△P 2A 1A 2,△P 3A 2A 3,…都是等腰直角三角形,其直角顶点P 1(3,3),P 2,P 3,…均在直线y =-13 x +4上,设△P 1OA 1,△P 2A 1A 2,△P 3A 2A 3,…的面积分别为S 1,S 2,S 3,…,依据图形所反映的规律,S 2 022=__942 021 __.中考数学专题过关1.如图,第1个图形中有1个正方形,按照如图所示的方式连接对边中点得到第2个图形,图中共有5个正方形;连接第2个图形中右下角正方形的对边中点得到第3个图形,图中共有9个正方形;按照同样的规律得到第4个图形、第5个图形……,则第7个图形中共有正方形( B )A .21个B .25个C .29个D .32个2.如图,在平面直角坐标系中,将△ABO 沿x 轴向右滚动到△AB 1C 1的位置,再到△A 1B 1C 2的位置……依次进行下去,若已知点A (4,0),B (0,3),则点C 100的坐标为( B )A .⎝⎛⎭⎫1 200,125 B .(600,0)C .⎝⎛⎭⎫600,125 D .(1 200,0)3.(2021·百色一模)有一列有序数对:(1,2),(4,5),(9,10),(16,17),…,按此规律,第11对有序数对为 __(121,122)____.4.观察下列一组数:-23 ,69 ,-1227 ,2081 ,-30243,…,它们是按一定规律排列的,那么这一组数的第n 个数是__(-1)n ·n (n +1)3n__.5. (2021·眉山中考)观察下列等式:x 1=1+112+122 =32 =1+11×2 ;x 2=1+122+132 =76 =1+12×3 ;x 3=1+132+142 =1312 =1+13×4;……根据以上规律,计算x 1+x 2+x 3+…+x 2 020-2 021=__-12 021__.6.如图是一组有规律的图案,它们是由边长相等的正三角形组合而成,第1个图案有4个三角形,第2个图案有7个三角形,第3个图案有10个三角形……按此规律摆下去,第n 个图案有__(3n +1)__个三角形(用含n 的代数式表示).7.(2021·扬州中考)将黑色圆点按如图所示的规律进行排列:图中黑色圆点的个数依次为:1,3,6,10,…,将其中所有能被3整除的数按从小到大的顺序重新排列成一组新数据,则新数据中的第33个数为__1__275__.。

初中数学规律题题型与解题基本方法(初三)

初中数学规律题题型与解题基本方法(初三)

初中数学规律题题型与解题方法(一)数列或数式的找规律一、基本方法——看增幅(一)如增幅相等(此实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n个数可以表示为:a+(n-1)b,其中a为数列的第一位数,b为增幅,(n-1)b为第一位数到第n位的总增幅。

然后再简化代数式a+(n-1)b。

强调:均匀变化的数列规律可用待定系数法来求一次函数的解析式来求解。

例:4、10、16、22、28、……,求第n位数。

分析:第二位数起,每位数都比前一位数增加6,增幅相都是6,所以,第n位数是:4+(n-1)×6=6n-2 (二)如增幅不相等,但是,增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差数列)。

如增幅分别为3、5、7、9,说明增幅以同等幅度增加。

此种数列第n位的数也有一种通用求法。

基本思路是:1、求出数列的第n-1位到第n位的增幅;2、求出第1位到第第n位的总增幅;3、数列的第1位数加上总增幅即是第n位数。

举例说明:2、5、10、17、……,求第n位数。

分析:数列的增幅分别为:3、5、7,增幅以同等幅度增加。

那么,数列的第n-1位到第n位的增幅是:3+2×(n-2)=2n-1,总增幅为:[3+(2n-1)]×(n-1)÷2=(n+1)×(n-1)=n2-1。

所以,第n位数是2+ n2-1= n2+1。

此解法虽然较烦,却是此类题的通用解法,当然此题也可用其它技巧,或用分析观察凑的方法求出。

强调:增幅不均匀变化的数列规律可尝试用待定系数法来求二次函数的解析式来求解,一定要验证。

(三)增幅不相等,且增幅也不以同等幅度增加(即增幅的增幅也不相等)。

此类题大概没有通用解法,只用分析观察的方法,但是,此类题包括第二类的题,如用分析观察法,也有一些技巧。

二、基本技巧(一)标出序列号:找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。

中考数学复习专题——找规律(含答案)

中考数学复习专题——找规律(含答案)

中考数学试复习专题——找规律1、如图所示,观察小圆圈的摆放规律,第一个图中有5个小圆圈,第二个图中有8个小圆圈,第100个图中有__________个小圆圈.(1) (2) (3)2、 找规律.下列图中有大小不同的菱形,第1幅图中有1个菱形,第2幅图中有3个菱形,第3幅图中有5个菱形,则第4幅图中有 个菱形,第n 幅图中有 个菱形.3、用同样大小的黑色棋子按下图所示的方式摆图形,按照这样的规律摆下去,则第n 个图形需棋子 枚(用含n 的代数式表示).4、观察表一,寻找规律.表二、表三、表四分别是从表一中截取的一部分,其中a 、b 、c 的值分别为______________.5、如图①是一块瓷砖的图案,用这种瓷砖来铺设地面.如果铺成一个22⨯的正方形图案(如图②),其中完整的圆共有5个,如果铺成一个33⨯的正方形图案(如图③),其中完整的圆共有13个,如果铺成一个44⨯的正方形图案(如图④),其中完整的圆共有25个.若这样铺成一个1010⨯的正方形图案, 则其中完整的圆共有 个.1 2 3n … … 第1个图 2个图 3个图 …6、 如下图,用同样大小的黑、白两种颜色的棋子摆设如下图所示的正方形图案,则第n 个图案需要用白色棋子 枚(用含有n 的代数式表示,并写成最简形式).○ ○ ○ ○ ○ ○ ○ ○ ○○ ○ ○ ○ ● ● ○ ○ ● ● ● ○○ ● ○ ○ ● ● ○ ○ ● ● ● ○○ ○ ○ ○ ○ ○ ○ ○ ● ● ● ○○ ○ ○ ○ ○7、用火柴棒按下图中的方式搭图形,按照这种方式搭下去,搭第334个图形需 根火柴棒。

8、将正整数按如图5所示的规律排列下去,若有序实数对(n ,m )表示第n 排,从左到右第m 个数,如(4,2)表示实数9,则表示实数17的有序实数对是 .9、如图 2 ,用n 表示等边三角形边上的小圆圈,f(n)表示这个三角形中小圆圈的总数,那么f(n)和n 的关系是10、观察图4的三角形数阵,则第50行的最后一个数是 ( )1-2 3-4 5 -67 -8 9 -10。

中考数学专题复习探索规律问题

中考数学专题复习探索规律问题

专题探索规律问题解读考点考点归纳归纳 1:数字猜想型基础知识归纳:数字规律问题主要是在分析比较的基础上发现题目中所蕴涵的数量关系,先猜想,然后通过适当的计算回答问题.注意问题归纳:要认真分析比较,从而发现题中蕴涵的数量关系,通过猜想,再通过计算解决问题.例1一列数:0,-1,3,-6,10,-15,21,……,按此规律第n个数为归纳 2:数式规律型基础知识归纳:数式规律问题主要是通过观察、分析、归纳、验证,然后得出一般性的结论,以列代数式即函数关系式为主要内容.注意问题归纳:要注意观察、分析、归纳、并验证得出结论.例2有一个计算程序,每次运算都是把一个数先乘以2,再除以它与1的和,多次重复进行这种运算的过程如下:则第n次运算的结果yn= 用含字母x和n的代数式表示.归纳 3:图形规律型基础知识归纳:图形规律问题主要是观察图形的组成、分拆等过程中的特点,分析其联系和区别,用相应的算式描述其中的规律,要注意对应思想和数形结合.注意问题归纳:要注意分析图形的组成与分拆过程中的特点,要注意数形结合.例3如图,是由一些点组成的图形,按此规律,在第n个图形中,点的个数为.归纳 4:数形结合猜想型基础知识归纳:数形结合猜想型问题首先要观察图形,从中发现图形的变化方式,再将图形的变化以数或式的形式反映出来,从而得出图形与数或式的对应关系,数形结合总结出图形的变化规律,进而解决相关问题.注意问题归纳:要注意观察图形,发现图形的变化方式,用好数形结合思想解决问题.例4如图,等腰Rt△ABC中,∠ACB=90°,AC=BC=1,且AC边在直线a上,将△ABC绕点A顺时针旋转到位置①可得到点P1,此时AP1=;将位置①的三角形绕点P1顺时针旋转到位置②,可得到点P2,此时AP2=1+;将位置②的三角形绕点P2顺时针旋转到位置③,可得到点P3,此时AP3=2+;……,按此规律继续旋转,直至得到点P2014为止.则AP2014= .归纳5:动态规律型基础知识归纳:动态规律问题是探求图形在运动变换过程中的变化规律,解答此类问题时,要将图形每一次的变化与前一次变化进行比较,明确哪些结果发生了变化,哪些结果没有发生变化,从而逐步发现规律.注意问题归纳:要注意探求图形的变化规律,明确发生变化的与没有发生变化的量,从而逐步发现规律.例5如图,在x轴的正半轴上依次间隔相等的距离取点A1,A2,A3,A4,……,An分别过这些点做x轴的垂线与反比例函数y=1x的图象相交于点P1,P2,P3,P4,……Pn作P2B1⊥A1P1,P3B2⊥A2P2,P4B3⊥A3P3,……,PnBn﹣1⊥An﹣1Pn﹣1,垂足分别为B1,B2,B3,B4,……,Bn﹣1,连接P1P2,P2P3,P3P4,……,Pn﹣1Pn,得到一组Rt△P1B1P2,Rt△P2B2P3,Rt△P3B3P4,……,Rt△Pn﹣1Bn﹣1Pn,则Rt△Pn﹣1Bn﹣1Pn的面积为.2年中考2015年题组1.2015绵阳将一些相同的“○”按如图所示的规律依次摆放,观察每个“龟图”中的“○”的个数,若第n个“龟图”中有245个“○”,则n=A.14 B.15 C.16 D.17考点:1.规律型:图形的变化类;2.综合题.2.2015十堰如图,分别用火柴棍连续搭建正三角形和正六边形,公共边只用一根火柴棍.如果搭建正三角形和正六边形共用了2016根火柴棍,并且正三角形的个数比正六边形的个数多6个,那么能连续搭建正三角形的个数是A.222 B.280 C.286 D.2923.2015荆州把所有正奇数从小到大排列,并按如下规律分组:1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,…,现有等式Am=i,j表示正奇数m 是第i组第j个数从左往右数,如A7=2,3,则A2015=A.31,50 B.32,47 C.33,46 D.34,424.2015包头观察下列各数:1,43,97,1615,…,按你发现的规律计算这列数的第6个数为A.2531 B.3635 C.47 D.6263考点:1.规律型:数字的变化类;2.综合题.5.2015重庆市下列图形都是由同样大小的小圆圈按一定规律组成的,其中第①个图形中一共有6个小圆圈,第②个图形中一共有9个小圆圈,第③个图形中一共有12个小圆圈,…,按此规律排列,则第⑦个图形中小圆圈的个数为A.21 B.24 C.27 D.306.2015泰安下面每个表格中的四个数都是按相同规律填写的:根据此规律确定x的值为A.135 B.170 C.209 D.252考点:1.规律型:数字的变化类;2.综合题.7.2015重庆市下列图形都是由几个黑色和白色的正方形按一定规律组成,图①中有2个黑色正方形,图②中有5个黑色正方形,图③中有8个黑色正方形,图④中有11个黑色正方形,…,依次规律,图⑩中黑色正方形的个数是A.32 B.29 C.28 D.26考点:1.规律型:图形的变化类;2.综合题.8.2015崇左下列图形是将正三角形按一定规律排列,则第4个图形中所有正三角形的个数有A.160 B.161 C.162 D.1639.2015贺州观察下列等式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,…,解答下面问题:2+22+23+24+…+22015﹣1的末位数字是A.0 B.3 C.4 D.8考点:1.尾数特征;2.规律型;3.综合题.10.2015宜宾如图,以点O为圆心的20个同心圆,它们的半径从小到大依次是1、2、3、4、…、20,阴影部分是由第1个圆和第2个圆,第3个圆和第4个圆,…,第19个圆和第20个圆形成的所有圆环,则阴影部分的面积为A .231π B.210π C.190π D.171π11.2015鄂州在平面直角坐标系中,正方形A1B1C1D1、D1E1E2B2、A2B2C2D2、D2E3E4B3、A3B3C3D3…按如图所示的方式放置,其中点B1在y 轴上,点C1、E1、E2、C2、E3、E4、C3…在x 轴上,已知正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3…则正方形A2015B2015C2015D2015的边长是A .201421)(B .201521)(C .201533)(D .201433)(答案D .考点:1.正方形的性质;2.规律型;3.综合题.12.2015庆阳在如图所示的平面直角坐标系中,△OA1B1是边长为2的等边三角形,作△B2A2B1与△OA1B1关于点B1成中心对称,再作△B2A3B3与△B2A2B1关于点B2成中心对称,如此作下去,则△B2nA2n+1B2n+1n 是正整数的顶点A2n+1的坐标是A .4n ﹣3.2n ﹣3.3 D .313.2015宁德如图,在平面直角坐标系中,点A1,A2,A3…都在x 轴上,点B1,B2,B3…都在直线y x 上,△OA1B1,△B1A1A2,△B2B1A2,△B2A2A3,△B3B2A3…都是等腰直角三角形,且OA1=1,则点B2015的坐标是A .20142,20142B .20152,20152C .20142,20152D .20152,20142考点:1.一次函数图象上点的坐标特征;2.等腰直角三角形;3.规律型;4.综合题.14.2015河南省如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O1、O2、O3,…组成一条平滑的曲线,点P 从原点O 出发,沿这条曲线向右运动,速度为每秒2π个单位长度,则第2015秒时,点P 的坐标是A .2014,0B .2015,﹣1C .2015,1D .2016,0考点:1.规律型:点的坐标;2.规律型;3.综合题;4.压轴题.15.2015张家界任意大于1的正整数m 的三次幂均可“分裂”成m 个连续奇数的和,如:5323+=,119733++=,1917151343+++=,…按此规律,若3m 分裂后其中有一个奇数是2015,则m 的值是A .46B .45C .44D .4316.2015邵阳如图,在矩形ABCD 中,已知AB=4,BC=3,矩形在直线l 上绕其右下角的顶点B 向右旋转90°至图①位置,再绕右下角的顶点继续向右旋转90°至图②位置,…,以此类推,这样连续旋转2015次后,顶点A 在整个旋转过程中所经过的路程之和是A .2015π B.π C .3018π D.3024π17.2015威海如图,正六边形A1B1C1D1E1F1的边长为2,正六边形A2B2C2D2E2F2的外接圆与正六边形A1B1C1D1E1F1的各边相切,正六边形A3B3C3D3E3F3的外接圆与正六边形A2B2C2D2E2F2的各边相切,…按这样的规律进行下去,A10B10C10D10E10F10的边长为A .92432B .98132C .9812 D .88132考点:1.正多边形和圆;2.规律型;3.综合题.18.2015日照观察下列各式及其展开式:222()2a b a ab b +=++;33223()33a b a a b ab b +=+++;4432234()464a b a a b a b ab b +=++++;554322345()510105a b a a b a b a b ab b +=+++++;…请你猜想10()a b +的展开式第三项的系数是A .36B .45C .55D .66考点:1.完全平方公式;2.规律型;3.综合题.19.2015宁波如图,将△ABC 沿着过AB 中点D 的直线折叠,使点A 落在BC 边上的A2处,称为第1次操作,折痕DE 到BC 的距离记为h1;还原纸片后,再将△ADE 沿着过AD 中点D1的直线折叠,使点A 落在DE 边上的A2处,称为第2次操作,折痕D1E1到BC 的距离记为h2;按上述方法不断操作下去…,经过第2015次操作后得到的折痕D2014E2014到BC 的距离记为h2015,到BC 的距离记为h2015.若h1=1,则h2015的值为A .201521B .201421C .2015211- D .2014212-考点:1.相似三角形的判定与性质;2.三角形中位线定理;3.翻折变换折叠问题;4.规律型;5.综合题.20.2015常州数学家歌德巴赫通过研究下面一系列等式,作出了一个着名的猜想. 4=2+2; 12=5+7;6=3+3; 14=3+11=7+7;8=3+5; 16=3+13=5+11;10=3+7=5+5 18=5+13=7+11;…通过这组等式,你发现的规律是 请用文字语言表达.21.2015淮安将连续正整数按如下规律排列:若正整数565位于第a 行,第b 列,则a+b= .22.2015雅安若1m ,2m ,…,2015m 是从0,1,2这三个数中取值的一列数,若122015...m m m +++=1525,222122015(1)(1)...(1)1510m m m -+-++-=,则1m ,2m ,…,2015m 中为2的个数是 .23.2015桂林如图是一个点阵,从上往下有无数多行,其中第一行有2个点,第二行有5个点,第三行有11个点,第四行有23个点,…,按此规律,第n 行有 个点.24.2015梧州如图是由等圆组成的一组图,第①个图由1个圆组成,第②个图由5个圆组成,第③个图由12个圆组成…按此规律排列下去,则第⑥个图由 个圆组成.25.2015百色观察下列砌钢管的横截面图:则第n 个图的钢管数是 用含n 的式子表示26.2015北海如图,直线22y x =-+与两坐标轴分别交于A 、B 两点,将线段OA 分成n等份,分点分别为P1,P2,P3,…,Pn﹣1,过每个分点作x 轴的垂线分别交直线AB 于点T1,T2,T3,…,Tn ﹣1,用S1,S2,S3,…,Sn ﹣1分别表示Rt△T1OP1,Rt△T2P1P2,…,Rt△Tn ﹣1Pn ﹣2Pn ﹣1的面积,则当n=2015时,S1+S2+S3+…+Sn﹣1= .考点:1.一次函数图象上点的坐标特征;2.规律型;3.综合题.27.2015南宁如图,在数轴上,点A 表示1,现将点A 沿x 轴做如下移动,第一次点A向左移动3个单位长度到达点A1,第二次将点A1向右移动6个单位长度到达点A2,第三次将点A2向左移动9个单位长度到达点,按照这种移动规律移动下去,第n次移动到点An,如果点An 与原点的距离不小于20,那么n 的最小值是 .28.2015常德取一个自然数,若它是奇数,则乘以3加上1,若它是偶数,则除以2,按此规则经过若干步的计算最终可得到1.这个结论在数学上还没有得到证明.但举例验证都是正确的.例如:取自然数5.最少经过下面5步运算可得1,即:,如果自然数m 最少经过7步运算可得到1,则所有符合条件的m 的值为 .29.2015株洲“皮克定理”是用来计算顶点在整点的多边形面积的公式,公式表达式为12b S a =+-,孔明只记得公式中的S 表示多边形的面积,a 和b 中有一个表示多边形边上含顶点的整点个数,另一个表示多边形内部的整点个数,但不记得究竟是a 还是b 表示多边形内部的整点个数,请你选择一些特殊的多边形如图1进行验证,得到公式中表示多边形内部的整点个数的字母是 ,并运用这个公式求得图2中多边形的面积是 .30.2015内江填空:()()a b a b -+= ;22()()a b a ab b -++= ;3223()()a b a a b ab b -+++= .2猜想:1221()(...)n n n n a b a a b ab b -----++++= 其中n 为正整数,且2n ≥.3利用2猜想的结论计算:98732222...222-+-+-+. 31.2015南平定义:底与腰的比是51-的等腰三角形叫做黄金等腰三角形.如图,已知△ABC 中,AB=BC,∠C=36°,BA1平分∠ABC 交AC 于A1.AB=AA1A C;122探究:△ABC是否为黄金等腰三角形请说明理由;提示:此处不妨设AC=13应用:已知AC=a,作A1B1∥AB交BC于B1,B1A2平分∠A1B1C交AC于A2,作A2B2∥AB 交B2,B2A3平分∠A2B2C交AC于A3,作A3B3∥AB交BC于B3,…,依此规律操作下去,用含a,n的代数式表示An﹣1An.n为大于1的整数,直接回答,不必说明理由考点:1.相似形综合题;2.新定义;3.探究型;4.综合题;5.压轴题;6.规律型.33.2015重庆市如果把一个自然数各数位上的数字从最高位到个位依次排出的一串数字,与从个位到最高位依次排出的一串数字完全相同,那么我们把这样的自然数称为“和谐数”.例如自然数12321,从最高位到个位依次排出的一串数字是:1,2,3,2,1,从个位到最高位依次排出的一串数字仍是:1,2,3,2,1,因此12321是一个“和谐数”,再加22,545,3883,345543,…,都是“和谐数”.1请你直接写出3个四位“和谐数”;请你猜想任意一个四位“和谐数”能否被11整除并说明理由;2已知一个能被11整除的三位“和谐数”,设其个位上的数字x1≤x≤4,x为自然数,十位上的数字为y,求y与x的函数关系式.2014年题组1.2014年南平中考如图,将1,若规定a,b表示第a排第b列的数,则8,2与2014,2014表示的两个数的积是A.B.C. D.12.2014年株洲中考在平面直角坐标系中,孔明做走棋的游戏,其走法是:棋子从原点出发,第1步向右走1个单位,第2步向右走2个单位,第3步向上走1个单位,第4步向右走1个单位……依此类推,第n步的走法是:当n能被3整除时,则向上走1个单位;当n被3除,余数为1时,则向右走1个单位;当n被3除,余数为2时,则向右走2个单位,当走完第100步时,棋子所处位置的坐标是A.66,34 B.67,33 C.100,33 D.99,343.2014年宜宾中考如图,将n个边长都为2的正方形按如图所示摆放,点A1,A2,……An分别是正方形的中心,则这n个正方形重叠部分的面积之和是A.n B.n-1 C.n11()4D.n1()4考点:1.正方形的性质;2.全等三角形的判定与性质.4.2014年崇左中考如图,在平面直角坐标系中,A1,1,B﹣1,1,C﹣1,﹣2,D1,﹣2.把一条长为2014个单位长度且没有弹性的细线线的粗细忽略不计的一端固定在点A处,并按A﹣B﹣C﹣D﹣A……的规律绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是A.﹣1,0 B.1,﹣2 C.1,1 D.﹣1,﹣15.2014年百色中考观察以下等式:32﹣12=8,52﹣12=24,72﹣12=48,92﹣12=80,……由以上规律可以得出第n个等式为.6.2014年衡阳中考 如图,在平面直角坐标系xOy 中,已知点0M 的坐标为()10,,将线段0OM 绕原点O 逆时针方向旋转45,再将其延长至点1M ,使得100M M OM ⊥,得到线段1OM ;又将线段1OM 绕原点O 逆时针方向旋转45,再将其延长至点2M ,使得211M M OM ⊥,得到线段2OM ;如此下去,得到线段3OM 、4OM 、5OM 、…….根据以上规律,请直接写出线段2014OM 的长度为 .答案2014.7.2014年抚顺中考如图,已知CO1是△ABC 的中线,过点O1作O1E1∥AC 交BC 于点E1,连接AE1交CO1于点O2;过点O2作O2E2∥AC 交BC 于点E2,连接AE2交CO1于点O3;过点O3作O3E3∥AC 交BC 于点E3,……,如此继续,可以依次得到点O4,O5,……,On 和点E4,E5,……,En .则OnEn= AC .用含n 的代数式表示考点:1.相似三角形的判定与性质;2.三角形中位线定理.8.2014年资阳中考如图,以O0,0、A2,0为顶点作正△OAP1,以点P1和线段P1A 的中点B 为顶点作正△P1BP2,再以点P2和线段P2B 的中点C 为顶点作△P2CP3,……,如此继续下去,则第六个正三角形中,不在第五个正三角形上的顶点P6的坐标是9.2014年宜宾中考在平面直角坐标系中,若点Px,y 的坐标x 、y 均为整数,则称点P 为格点,若一个多边形的顶点全是格点,则称该多边形为格点多边形.格点多边形的面积记为S,其内部的格点数记为N,边界上的格点数记为L,例如图中△ABC 是格点三角形,对应的S=1,N=0,L=4.1求出图中格点四边形DEFG 对应的S,N,L 的值.2已知格点多边形的面积可表示为S=N+aL+b,其中a,b为常数,若某格点多边形对应的N=82,L=38,求S的值.考点:1.规律型:图形的变化类; 2.二元一次方程组的应用.10.2014年凉山中考实验与探究:三角点阵前n行的点数计算如图是一个三角点阵,从上向下数有无数多行,其中第一行有1个点,第二行有2个点……第n行有n个点……容易发现,10是三角点阵中前4行的点数约和,你能发现300是前多少行的点数的和吗如果要用试验的方法,由上而下地逐行的相加其点数,虽然你能发现1+2+3+4+……+23+24=300.得知300是前24行的点数的和,但是这样寻找答案需我们先探求三角点阵中前n行的点数的和与n的数量关系前n行的点数的和是1+2+3+……+n﹣2+n﹣1+n,可以发现.2×1+2+3+……+n﹣2+n﹣1+n=1+2+3+……+n﹣2+n﹣1+n+n+n﹣1+n﹣2+……3+2+1把两个中括号中的第一项相加,第二项相加……第n项相加,上式等号的后边变形为这n个小括号都等于n+1,整个式子等于nn+1,于是得到1+2+3+……+n﹣2+n﹣1+n=12nn+1这就是说,三角点阵中前n项的点数的和是12nn+1下列用一元二次方程解决上述问题设三角点阵中前n行的点数的和为300,则有12nn+1整理这个方程,得:n2+n﹣600=0解方程得:n1=24,n2=25根据问题中未知数的意义确定n=24,即三角点阵中前24行的点数的和是300.请你根据上述材料回答下列问题:1三角点阵中前n行的点数的和能是600吗如果能,求出n;如果不能,试用一元二次方程说明道理.2如果把图中的三角点阵中各行的点数依次换成2、4、6、……、2n、……,你能探究处前n行的点数的和满足什么规律吗这个三角点阵中前n行的点数的和能使600吗如果能,求出n;如果不能,试用一元二次方程说明道理.1年模拟1.2015届山东省济南市平阴县中考二模在平面直角坐标系xOy中,对于点Px,y,我们把点P-y+1,x+1叫做点P的伴随点.已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,…,这样依次得到点A1,A2,A3,…,An,….例如:点A1的坐标为3,1,则点A2的坐标为0,4,…;若点A1的坐标为a,b,则点A2015的坐标为A.-b+1,a+1 B.-a,-b+2 C.b-1,-a+1 D.a,b2.2015届山东省潍坊市昌乐县中考一模如图,下面是按照一定规律画出的“树形图”,经观察可以发现:图A2比图A1多出2个“树枝”,图A3比图A2多出4个“树枝”,图A4比图A3多出8个“树枝”,…,照此规律,图A6比图 A2多出“树枝”A.32 B.56 C.60 D.643.2015届山西省晋中市平遥县九年级下学期4月中考模拟如图,四边形ABCD 中,AC=a,BD=b,且AC⊥BD,顺次连接四边形ABCD各边中点,得到四边形A1B1C1D1,再顺次连接四边形A1B1C1D1各边中点,得到四边形A2B2C2D2,如此进行下去,得到四边形AnBnCnDn.下列结论正确的是①四边形A4B4C4D4是菱形;②四边形A3B3C3D3是矩形;③四边形A7B7C7D7周长为;④四边形AnBnCnDn面积为.A.①②③ B.②③④ C.①③④ D.①②③④4.2015届广东省深圳市龙华新区中考二模如图,已知直线y=-12x+2与x轴交于点B,与y轴交于点A.过线段AB的中点A1做A1B1⊥x轴于点B1,过线段A1B的中点A2作A2B2⊥x轴于点B2,过线段A2B的中点A3作A3B3⊥x轴于点B3…,以此类推,则△AnBnBn-1的面积为A .112n -B .12nC .114n -D .14n5.2014-2015学年山东省潍坊市诸城市实验中学中考三模如图放置的△OAB1,△B1A1B2,△B2A2B3,…都是边长为2的等边三角形,边AO 在y 轴上,点B1,B2,B3,…都在直线y=33x 上,则A2015的坐标是 .考点:1.一次函数图象上点的坐标特征;2.等边三角形的性质;3.规律型.6.2015届北京市平谷区中考二模在平面直角坐标系中,点A,B,C 的坐标分别为()1,0,()0,1,()1,0-.一个电动玩具从坐标原点O 出发,第一次跳跃到点P1,使得点P1与点O 关于点A 成中心对称;第二次跳跃到点P2,使得点P2与点P1关于点B 成中心对称;第三次跳跃到点P3,使得点P3与点P2关于点C 成中心对称;第四次跳跃到点P4,使得点P4与点P3关于点A 成中心对称;第五次跳跃到点P5,使得点P5与点P4关于点B 成中心对称;.…照此规律重复下去.则点P3的坐标为 ;点Pn 在y 轴上,则点Pn 的坐标为 .7.2015届北京市门头沟区中考二模在平面直角坐标系xOy 中,矩形OABC 如图放置,动点P 从0,3出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P 第2次碰到矩形的边时,点P 的坐标为 ;当点P 第6次碰到矩形的边时,点P 的坐标为 ;当点P 第2015次碰到矩形的边时,点P 的坐标为____________.答案7,4, 0,3 ,1,4.8.2015届安徽省安庆市中考二模一组按规律排列的式子:,,,,…则第n 个式子是 n为正整数.9.2015届山东省威海市乳山市中考一模在直角坐标系xOy中,对于点Px,y,我们把点P′y+1,-x+1叫做点P的影子点.已知点A1的影子点为A2,点A2的影子点为A3,点A3的影子点为A4,…,这样依次得到点A1,A2,A3,…,An,…若点A1的坐标为a,b,对于任意的正整数n,点An均在y轴的右侧,则a,b应满足的条件是.10.2015届山东省日照市中考模拟如图,在直角坐标系中,第一次将△OAB变换成△OA1B1,第二次将△OA1B1变换成△OA2B2,第三次将△OA2B2变换成△OA3B3,已知A1,3,A12,3,A24,3,A38,3,B2,0,B14,0,B28,0,B316,0.1观察每次变换前后的三角形有何变化,找出规律,按此变换规律再将△OA3B3变换成△OA4B4,则A4的坐标是.2若按1题找到的规律将△OAB进行了n次变换,得到的△OAnBn,比较每次变换中三角形顶点坐标有何变化,找出规律,推出Bn的坐标是.11.2015届广东省佛山市初中毕业班综合测试如图,依次连接第一个矩形各边的中点得到一个菱形,再依次连接菱形各边的中点得到第二个矩形,按照此方法继续下去.已知第一个矩形的两条邻边长分别为6和8,则第n个菱形的周长为.12.2015届湖北省黄石市6月中考模拟如图,点A1,A2,A3,A4,…,An在射线OA上,点B1,B2,B3,…,Bn﹣1在射线OB上,且A1B1∥A2B2∥A3B3∥…∥An﹣1Bn﹣1,A2B1∥A3B2∥A4B3∥…∥AnBn﹣1,△A1A2B1,△A2A3B2,…,△An﹣1AnBn﹣1为阴影三角形,若△A2B1B2,△A3B2B3的面积分别为1、4,则△A1A2B1的面积为__________;面积小于2011的阴影三角形共有__________个.13.2015届广东省佛山市初中毕业班综合测试若a是不为1的有理数,我们把11a-称为a的差倒数.如:2的差倒数是112-=-1,-1的差倒数是111(1)2=--.已知a1=-13,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数,…,依此类推.1分别求出a2,a3,a4的值;2求a1+a2+a3+…+a2160的值.。

中考数学规律复习题(整理全-含答案)

中考数学规律复习题(整理全-含答案)

规律探索1一.选择题1.观察下列等式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187…解答下列问题:3+32+33+34…+32013的末位数字是()A.0ﻩB.1ﻩC.3ﻩD.72.把所有正奇数从小到大排列,并按如下规律分组:(1),(3,5,7),(9,11,13,15,17),(19,21,23,25,27,29,31),…,现用等式AM=(i,j)表示正奇数M是第i组第j个数(从左往右数),如A7=(2,3),则A2013=( )A.(45,77)B.(45,39) C.(32,46) D.(32,23)3.下表中的数字是按一定规律填写的,表中a的值应是.12 3 5 813a …2 3 5 8132134…4.下列图形都是由同样大小的矩形按一定的规律组成,其中第(1)个图形的面积为2cm2,第(2)个图形的面积为8cm2,第(3)个图形的面积为18 cm2,……,第(10)个图形的面积为( )A.196cm2B.200 cm2C.216cm2D.256cm25.如图,动点P从(0,3)出发,沿所示的方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P第2013次碰到矩形的边时,点P 的坐标为( )A、(1,4)B、(5,0) C、(6,4) D、(8,3)6.如图,下列各图形中的三个数之间均具有相同的规律.根据此规律,图形中M与m、n的关系是A. M=m nB. M=n(m+1) C .M=mn +1 D.M=m(n+1) 7.我们知道,一元二次方程12-=x 没有实数根,即不存在一个实数的平方等于-1, 若我们规定一个新数“”,使其满足12-=i (即方程12-=x 有一个根为),并且进一步规定: 一切实数可以与新数进行四则运算,且原有的运算律和运算法则仍然成立, 于是有,1i i =12-=i ,,).1(23i i i i i -=-=⋅=.1)1()(2224=-==i i 从而对任意正整数n, 我们可得到,.)(.4414i i i i i i n n n ===+同理可得,1,,143424=-=-=++n n n i i i i那么,20132012432i i i i i i +⋅⋅⋅++++的值为( ) A .0 B.1 C .-1 D. i 8.下列图形都是由同样大小的棋子按一定的规律组成,其中第①个图形有1颗棋子,第②个图形一共有6颗棋子,第③个图形一共有16颗棋子,…,则第⑥个图形中棋子的颗数为( )A .51B .70 C.76 D .81 二.填空题1.观察下列图形中点的个数,若按其规律再画下去,可以得到第n个图形中所有的个数为(用含n 的代数式表示).2.如图,在直角坐标系中,已知点A(﹣3,0)、B(0,4),对△OAB 连续作旋转变换, 依次得到△1、△2、△3、△4…,则△2013的直角顶点的坐标为 .图① 图② 图③···(第8题图)3.如图,正方形ABCD的边长为1,顺次连接正方形ABCD四边的中点得到第一个正方形A1B1C1D1,由顺次连接正方形A1B1C1D1四边的中点得到第二个正方形A2B2C2D2…,以此类推,则第六个正方形A6B6C6D6周长是.4.直线上有2013个点,我们进行如下操作:在每相邻两点间插入1个点,经过3次这样的操作后,直线上共有个点.5.如图,古希腊人常用小石子在沙滩上摆成各种形状来研究数.例如:称图中的数1,5,12,22…为五边形数,则第6个五边形数是.6.如图,是用火柴棒拼成的图形,则第n个图形需根火柴棒.7.观察规律:1=12;1+3=22;1+3+5=32;1+3+5+7=42;…,则1+3+5+…+2013的值是. 8.如图12,一段抛物线:y=-x(x-3)(0≤x≤3),记为C1,它与x轴交于点O,A1;将C1绕点A1旋转180°得C2,交x 轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3;……如此进行下去,直至得C13.若P(37,m)在第13段抛物线C13上,则m =_________.9.直线上有2013个点,我们进行如下操作:在每相邻两点间插入1个点,经过3次这样的操作后,直线上共有个点.10.观察下列各式的计算过程:5×5=0×1×100+25,15×15=1×2×100+25,25×25=2×3×100+25,35×35=3×4×100+25,…………请猜测,第n个算式(n为正整数)应表示为____________________________.11.将连续的正整数按以下规律排列,则位于第7行、第7列的数x是__ __.12、如下图,每一幅图中均含有若干个正方形,第①幅图中含有1个正方形;第②幅图中含有5个正方形;……按这样的规律下去,则第(6)幅图中含有个正方形;13.将一些半径相同的小圆按如图所示的规律摆放:第1个图形有6个小圆, 第2个图形有10个小圆, 第3个图形有16个小圆, 第4个图形有24个小圆, ……,依次规律,第6个图形有 个小圆.14.已知一组数2,4,8,16,32,…,按此规律,则第n 个数是 .15、我们知道,经过原点的抛物线的解析式可以是y=ax2+bx (a ≠0) (1)对于这样的抛物线:当顶点坐标为(1,1)时,a =__________;当顶点坐标为(m ,m),m ≠0时,a 与m之间的关系式是__________;(2)继续探究,如果b ≠0,且过原点的抛物线顶点在直线y=k x(k ≠0)上,请用含k 的代数式表示b; (3)现有一组过原点的抛物线,顶点A1,A 2,…,A n 在直线y =x 上,••••••①② ③横坐标依次为1,2,…,n (为正整数,且n ≤12),分别过每个顶点作x 轴的垂线,垂足记为B 1,B 2,…,B n ,以线段A n B n 为边向右作正方形AnB n Cn D n , 若这组抛物线中有一条经过D n ,求所有满足条件的正方形边长.16.如图,所有正三角形的一边平行于x 轴,一顶点在y 轴上,从内到外, 它们的边长依次为2,4,6,8,…,顶点依次用1A 、2A 、3A 、4A 、…表示, 其中12A A 与x 轴、底边12A A 与45A A 、45A A 与78A A 、…均相距一个单位, 则顶点3A 的坐标是 ,22A 的坐标是 .第16题图 17.如图,已知直线l :y=33x ,过点A (0,1)作y 轴的垂线交直线l 于点B , 过点B 作直线l 的垂线交y 轴于点A 1;过点A 1作y 轴的垂线交直线l 于点B1,过点B 1作直线l 的垂线交y轴于点A2;……按此作法继续下去,则点A 2013的坐标为 .18、如图,在平面直角坐标系中,一动点从原点O出发,按向上,向右,向下,向右的方向不断地移动,每移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…那么点A4n+1(n为自然数)的坐标为(用n表示)19.当白色小正方形个数n等于1,2,3…时,由白色小正方形和和黑色小正方形组成的图形分别如图所示. 则第n个图形中白色小正方形和黑色小正方形的个数总和等于__________.(用n表示,n是正整数)20.(2013•衢州4分)如图,在菱形ABCD中,边长为10,∠A=60°.顺次连结菱形ABCD各边中点,可得四边形A1B1C1D1;顺次连结四边形A1B1C1D1各边中点,可得四边形A2B2C2D2;顺次连结四边形A2B2C2D2各边中点,可得四边形A3B3C3D3;按此规律继续下去….则四边形A2B2C2D2的周长是;四边形A2013B2013C2013D2013的周长是.21.一组按规律排列的式子:a2,43a,65a,87a,….则第n个式子是________22.观察下面的单项式:a,﹣2a2,4a3,﹣8a4,…根据你发现的规律,第8个式子是.23.如图,已知直线l:y=x,过点M(2,0)作x轴的垂线交直线l于点N,过点N作直线l的垂线交x轴于点M1;过点M1作x轴的垂线交直线l于N1,过点N1作直线l的垂线交x轴于点M2,…;按此作法继续下去,则点M10的坐标为.24.为庆祝“六•一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛.如图所示:按照上面的规律,摆第(n)图,需用火柴棒的根数为.答案:选择题:1、C2、C3、214、B 5、D6、D 7、D 8、 C填空题:1、(n+1)22、(8052,0) 3、0.54、16097 5、51 6、2n+17、1014049 8、29、16097 10、[10(n-1)+5]2=100n(n-1)+2511、85 12、91 13、4614、2n15、(1)-1;a=-1m(或am+1=0)(2)解:∵a≠0∴y=ax2+bx=a(x+2ba)2-24ba∴顶点坐标为(-2ba,-24ba)∵顶点在直线y=kx上∴k(-2ba)=-24ba∵b≠0∴b=2k(3)解:∵顶点A n在直线y=x上∴可设An的坐标为(n,n),点D n所在的抛物线顶点坐标为(t,t)由(1)(2)可得,点Dn所在的抛物线解析式为y=-1tx2+2x∵四边形AnBnC n D n是正方形∴点Dn的坐标为(2n,n)∴-1t(2n)2+2×2n=n∴4n=3t∵t、n是正整数,且t≤12,n≤12∴n=3,6或9∴满足条件的正方形边长为3,6或916、(0,31-),(-8,-8). 17、()()201340260,40,2或(注:以上两答案任选一个都对) 18、(2n ,1) 19、n2+4n 20、20;21、221na n (n为正整数)22、-128a 8 23、(884736,0) 24、6n+2ﻬ规律探索2 1、 我们平常用的数是十进制数,如2639=2×103+6×102+3×101+9×100,表示十进制的数要用10个数码(又叫数字):0,1,2,3,4,5,6,7,8,9。

中考数学专题复习分考点归纳练习规律探究之数式(一)

中考数学专题复习分考点归纳练习规律探究之数式(一)

中考数学专题复习分考点归纳练习规律探究之数式(一)学校:___________姓名:___________班级:___________考号:___________评卷人得分一、单选题1.按规律排列的一组数据:12,35,□,717,926,1137,…,其中□内应填的数是()A.23B.511C.59D.122.一列数1,5,11,19…按此规律排列,第7个数是()A.37B.41C.55D.713.观察下列按一定规律排列的n个数:2,4,6,8,10,12,…;若最后三个数之和是3000,则n等于()A.499B.500C.501D.10024.根据图中数字的规律,若第n个图中的143q ,则p的值为()A.100B.121C.144D.1695.把黑色三角形按如图所示的规律拼图案,其中第①个图案中有1个黑色三角形,第①个图案中有3个黑色三角形,第①个图案中有6个黑色三角形,…,按此规律排列下去,则第①个图案中黑色三角形的个数为()A.10B.15C.18D.216.观察等式:2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2;…已知按一定规律排列的一组数:2100,2101,2102,…,2199,2200,若2100=S,用含S的式子表示这组数据的和是()A.2S2﹣S B.2S2+S C.2S2﹣2S D.2S2﹣2S﹣27.已知1a 为实数﹐规定运算:2111a a =-,3211a a =-,4311a a =-,5411a a=-,……,111n n a a -=-.按上述方法计算:当13a =时,2021a 的值等于( ) A .23-B .13C .12-D .238.将从1开始的连续奇数按如图所示的规律排列,例如,位于第4行第3列的数为27,则位于第32行第13列的数是( )A .2025B .2023C .2021D .2019评卷人 得分二、填空题 9.观察下列各项:112,124,138,1416,…,则第n 项是______________.10.将黑色圆点按如图所示的规律进行排列,图中黑色圆点的个数依次为:1,3,6,10,……,将其中所有能被3整除的数按从小到大的顺序重新排列成一组新数据,则新数据中的第33个数为___________.11.如图,用火柴棍拼成一个由三角形组成的图形,拼第一个图形共需要3根火柴棍,拼第二个图形共需要5根火柴棍;拼第三个图形共需要7根火柴棍;……照这样拼图,则第n 个图形需要___________根火柴棍.12.如图都是由同样大小的小球按一定规律排列的,依照此规律排列下去,第___个图形共有210个小球.13.如图是一组有规律的图案,它们是由边长相等的正三角形组合而成,第1个图案有4个三角形,第2个图案有7个三角形,第3个图案有10个三角形按此规律摆下去,第n 个图案有_______个三角形(用含n 的代数式表示).14.观察下列等式: 2+22=23﹣2; 2+22+23=24﹣2; 2+22+23+24=25﹣2; 2+22+23+24+25=26﹣2; …已知按一定规律排列的一组数:220,221,222,223,224,…,238,239,240,若220=m ,则220+221+222+223+224+…+238+239+240=_____(结果用含m 的代数式表示). 15.观察等式:232222+=-,23422222++=-,2345222222+++=-,……,已知按一定规律排列的一组数:1002,1012,1022,……,1992,若1002=m ,用含m 的代数式表示这组数的和是___________.16.观察下列等式:22110=-,22321=-,22532=-,…按此规律,则第n 个等式为21n -=__________________.17.按一定规律排列的一列数:3,32,3﹣1,33,3-4,37,3﹣11,318,…,若a ,b ,c 表示这列数中的连续三个数,猜想a ,b ,c 满足的关系式是______.18.把正整数1,2,3,4,5,……,按如下规律排列:按此规律,可知第n行有_________个正整数19.如图,将正整数按此规律排列成数表,则2021是表中第____行第________列.20.将正整数按如图所示的规律排列.若用有序数对(a,b)表示第a排,从左至右第b 个数.例如(4,3)表示的数是9,则(7,2)表示的数是_________.21.下表在我国宋朝数学家杨辉1261年的著作《详解九章算法》中提到过,因而人们把这个表叫做杨辉三角,请你根据杨辉三角的规律补全下表第四行空缺的数字是______.22.观察下面的变化规律:212112112111,,,133353557577979=-=-=-=-⨯⨯⨯⨯,……222213355720192021++++=⨯⨯⨯⨯__________.23.观察下列各式的规律:①2132341⨯-=-=-;①2243891⨯-=-=-;①235415161⨯-=-=-.请按以上规律写出第4个算式________.用含有字母的式子表示第n个算式为________.24.有一列数,按一定的规律排列成13,1-,3,9-,27,-81,….若其中某三个相邻数的和是567-,则这三个数中第一个数是______.25.观察下列各式:1234523101526,,,,,357911a a a a a=====,根据其中的规律可得na=________(用含n的式子表示).26.下面各图形是由大小相同的黑点组成,图1中有2个点,图2中有7个点,图3中有14个点,……,按此规律,第10个图中黑点的个数是________.27.如图图形都是由同样大小的菱形按照一定规律所组成的,其中第①个图形中一共有3个菱形,第①个图形中一共有7个菱形,第①个图形中一共有13个菱形,…,按此规律排列下去,第①个图形中菱形的个数为________.28.幻方,最早源于我国,古人称之为纵横图.如图所示的幻方中,各行、各列及各条对角线上的三个数字之和均相等,则图中a的值为______.-1-610a-4-52-329.一组按规律排列的代数式:2335472,2,2,2a b a b a b a b+-+-,…,则第n个式子是30.将一些相同的“〇”按如图所示的规律依次摆放,观察每个“龟图”的“〇”的个数,则第30个“龟图”中有___________个“〇”.评卷人 得分三、解答题 31.阅读解答:(1)填空:1022==_____()2=;2122-=_____()2=;3222-=_____()2=…… (2)探索(1)中式子的规律,试写出第n 个等式_________; (3)根据上述规律,计算:012342021222222++++++.参考答案:1.D 【解析】 【分析】分子为连续奇数,分母为序号的平方1+,根据规律即可得到答案. 【详解】观察这排数据发现,分子为连续奇数,分母为序号的平方1+,∴第n 个数据为:2211n n -+ 当3n =时的分子为5,分母为23110+= ∴这个数为51102= 故选:D . 【点睛】本题考查了数字的探索规律,分子和分母分别寻找规律是解题关键. 2.C 【解析】 【分析】根据题意得出已知数组的规律,得到第n 个数的表示方法,从而得出结果. 【详解】 解:1=1×2-1, 5=2×3-1, 11=3×4-1, 19=4×5-1, ...第n 个数为n (n+1)-1, 则第7个数是:55 故选C. 【点睛】本题考查了数字型规律,解题的关键是总结出第n 个数为n (n+1)-1. 3.C【解析】 【分析】根据题意列出方程求出最后一个数,除去一半即为n 的值. 【详解】设最后三位数为x -4,x -2,x . 由题意得: x -4+x -2+x =3000, 解得x =1002. n =1002÷2=501. 故选C . 【点睛】本题考查找规律的题型,关键在于列出方程简化步骤. 4.B 【解析】 【分析】分别分析n 的规律、p 的规律、q 的规律,再找n 、p 、q 之间的联系即可. 【详解】解:根据图中数据可知: 1,2,3,4n =,……22221,2,3,4,p =……222221,31,41,51,q =----……则2p n =,2(1)1q n =+-, ①第n 个图中的143q =, ①2(1)1=143q n =+-,解得:11n =或13n =-(不符合题意,舍去) ①2=121p n =, 故选:B . 【点睛】本题主要考查数字之间规律问题,将题中数据分组讨论是解决本题的关键.5.B【解析】【分析】根据前三个图案中黑色三角形的个数得出第n个图案中黑色三角形的个数为1+2+3+4+……+n,据此可得第①个图案中黑色三角形的个数.【详解】解:①第①个图案中黑色三角形的个数为1,第①个图案中黑色三角形的个数3=1+2,第①个图案中黑色三角形的个数6=1+2+3,……①第①个图案中黑色三角形的个数为1+2+3+4+5=15,故选:B.【点睛】本题主要考查图形的变化规律,解题的关键是根据已知图形得出规律:第n个图案中黑色三角形的个数为1+2+3+4+……+n.6.A【解析】【分析】根据已知条件和2100=S,将按一定规律排列的一组数:2100,2101,2102,…,2199,2200,求和,即可用含S的式子表示这组数据的和.【详解】解:①2100=S,①2100+2101+2102+…+2199+2200=S+2S+22S+…+299S+2100S=S(1+2+22+…+299+2100)=S(1+2100-2+2100)=S(2S-1)=2S2-S.故选:A.【点睛】本题考查了规律型——数字的变化类、列代数式,解决本题的关键是观察数字的变化寻找规律. 7.D 【解析】 【分析】当13a =时,计算出23421,,3,32a a a ==-=⋅⋅⋅⋅⋅⋅,会发现呈周期性出现,即可得到2021a 的值. 【详解】解:当13a =时,计算出23421,,3,32a a a ==-=⋅⋅⋅⋅⋅⋅,会发现是以:213,,32-,循环出现的规律,202136732=⨯+,2021223a a ∴==, 故选:D . 【点睛】本题考查了实数运算规律的问题,解题的关键是:通过条件,先计算出部分数的值,从中找到相应的规律,利用其规律来解答. 8.B 【解析】 【分析】根据数字的变化关系发现规律第n 行,第n 列的数据为:2n (n -1)+1,即可得第32行,第32列的数据为:2×32×(32-1)+1=1985,再依次加2,到第32行,第13列的数据,即可. 【详解】解:观察数字的变化,发现规律:第n 行,第n 列的数据为:2n (n -1)+1, ①第32行,第32列的数据为:2×32×(32-1)+1=1985, 根据数据的排列规律,第偶数行从右往左的数据一次增加2, ①第32行,第13列的数据为:1985+2×(32-13)=2023, 故选:B . 【点睛】本题考查了数字的变化类,解决本题的关键是观察数字的变化寻找探究规律,利用规律解决问题.9.12nn + 【解析】【分析】根据已知可得出规律:第一项:1111122=+,第二项:2112242=+,第三项:3113382=+…即可得出结果.【详解】解:根据题意可知:第一项:1111122=+, 第二项:2112242=+, 第三项:3113382=+, 第四项:41144162=+, … 则第n 项是12nn +; 故答案为:12n n +. 【点睛】此题属于数字类规律问题,根据已知各项的规律得出结论是解决此类题目的关键. 10.1275【解析】【分析】首先得到前n 个图形中每个图形中的黑色圆点的个数,得到第n 个图形中的黑色圆点的个数为()12n n +,再判断其中能被3整除的数,得到每3个数中,都有2个能被3整除,再计算出第33个能被3整除的数所在组,为原数列中第50个数,代入计算即可.【详解】解:第①个图形中的黑色圆点的个数为:1,第①个图形中的黑色圆点的个数为:()1222+⨯=3,第①个图形中的黑色圆点的个数为:()1332+⨯=6,第①个图形中的黑色圆点的个数为:()1442+⨯=10,...第n个图形中的黑色圆点的个数为()12n n+,则这列数为1,3,6,10,15,21,28,36,45,55,66,78,91,...,其中每3个数中,都有2个能被3整除,33÷2=16...1,16×3+2=50,则第33个被3整除的数为原数列中第50个数,即50512⨯=1275,故答案为:1275.【点睛】此题考查了规律型:图形的变化类,关键是通过归纳与总结,得到其中的规律.11.2n+1【解析】【分析】分别得到第一个、第二个、第三个图形需要的火柴棍,找到规律,再总结即可.【详解】解:由图可知:拼成第一个图形共需要3根火柴棍,拼成第二个图形共需要3+2=5根火柴棍,拼成第三个图形共需要3+2×2=7根火柴棍,...拼成第n个图形共需要3+2×(n-1)=2n+1根火柴棍,故答案为:2n+1.【点睛】此题考查图形的变化规律,找出图形之间的联系,得出运算规律解决问题.12.20【解析】【分析】根据已知图形得出第n 个图形中黑色三角形的个数为1+2+3++n =()12n n +,列一元二次方程求解可得.【详解】解:①第1个图形中黑色三角形的个数1,第2个图形中黑色三角形的个数3=1+2,第3个图形中黑色三角形的个数6=1+2+3,第4个图形中黑色三角形的个数10=1+2+3+4,……①第n 个图形中黑色三角形的个数为1+2+3+4+5++n =()12n n +,当共有210个小球时,()12102n n +=, 解得:20n =或21-(不合题意,舍去),①第20个图形共有210个小球.故答案为:20.【点睛】本题考查了图形的变化规律,解一元二次方程,解题的关键是得出第n 个图形中黑色三角形的个数为1+2+3+……+n .13.()31n +【解析】【分析】由图形可知第1个图案有3+1=4个三角形,第2个图案有3×2+ 1=7个三角形,第3个图案有3×3+ 1=10个三角形...依此类推即可解答.【详解】解:由图形可知:第1个图案有3+1=4个三角形,第2个图案有3×2+ 1=7个三角形,第3个图案有3×3+ 1=10个三角形,...第n 个图案有3×n+ 1=(3n+1)个三角形.故答案为(3n+1).【点睛】本题考查图形的变化规律,根据图形的排列、归纳图形的变化规律是解答本题的关键.14.()21m m﹣. 【解析】【分析】由题意可得220+221+222+223+224+…+238+239+240=220(1+2+22+…+219+220)=220(1+221﹣2)=220(220×2﹣1),再将220=m 代入即可求解.【详解】①220=m ,①220+221+222+223+224+…+238+239+240=220(1+2+22+…+219+220)=220(1+221﹣2)=m(2m ﹣1).故答案为:m(2m ﹣1).【点睛】本题考查了规律型问题:数字变化,列代数式等知识,解题的关键是学会探究规律,利用规律解决问题,属于中考填空题中的压轴题.15.2m m -【解析】【分析】根据规律将1002,1012,1022,……,1992用含m 的代数式表示,再计算0199222+++的和,即可计算1001011011992222++++的和. 【详解】由题意规律可得:2399100222222++++=-.①1002=m①23991000222222=2m m +++++==, ①22991001012222222+++++=-,①10123991002222222=++++++12=2m m m m =+=.102239910010122222222+=++++++224=2m m m m m =++=.1032399100101102222222222=++++++++3248=2m m m m m m =+++=. ……①1999922m =.故10010110110199992222222m m m ++++=+++. 令012992222S ++++=① 12310022222S ++++=②①-①,得10021S -=①10010110110199992222222m m m ++++=+++=()100221m m m -=- 故答案为:2m m -.【点睛】本题考查规律问题,用含有字母的式子表示数、灵活计算数列的和是解题的关键. 16.()221n n --. 【解析】【分析】第一个底数是从1开始连续的自然数的平方,减去从0开始连续的自然数的平方,与从1开始连续的奇数相同,由此规律得出答案即可.【详解】解:①22110=-,22321=-,22532=-,…①第n 个等式为:()22211n n n -=-- 故答案是:()221n n --.【点睛】本题考查了数字的变化类,通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题的关键.17.bc =a##a=bc【解析】【分析】首先判断出这列数中,3的指数各项依次为 1,2,﹣1,3,﹣4,7,﹣11,18…,从第三个数起,前两数相除等于第三个数,可得这列数中的连续三个数,满足a ÷b =c ,据此解答即可.【详解】①3,32,3﹣1,33,3﹣4,37,3﹣11,318,…,121333-÷=,213333-÷=,134333--÷=,347333-÷=,4711333--÷=,71118333-÷=,…, ①a ,b ,c 满足的关系式是a ÷b =c ,即bc =a .故答案为:bc =a .【点睛】此题考查了实数的规律问题,同底数幂的除法运算,负整数指数幂等知识,解题的关键是正确分析出题目中指数之间的规律.18.12n -【解析】【分析】仔细观察各行数字的个数,不难发现,第一行有1102=2=1-个数字,第二行有2112=2=2-个数字,第三行有3122=2=4-4个数字,第四行有4132=2=8-个数字,由此得出规律求解即可.【详解】解:仔细观察各行数字的个数,不难发现,第一行有1102=2=1-个数字,第二行有2112=2=2-个数字,第三行有3122=2=4-4个数字,第四行有4132=2=8-个数字,①可以推出第n 行有12n -个数字,故答案为:12n -.【点睛】本题主要考查了数字类的规律型问题,解题的关键在于准确理解题意得到规律.19. 64 5【解析】【分析】找到第n 行第n 列的数字,找到规律,代入2021即可求解【详解】通过观察发现:1=13=1+26=1+2+310=1+2+3+4……故第n 行第n 列数字为:1(1)2n n +, 则第n 行第1列数字为:1(1)(1)2n n n +--,即1(1)2n n -+1 设2021是第n 行第m 列的数字,则:1(1)2021()2m m n n n +=<- 即24421)0(n n m +=-,可以看作两个连续的整数的乘积,2263=396964=4096,,m n ,为正整数, 64n ∴=当64n =时,=5m故答案为:64,5【点睛】本题考查了规律探索,通过观察发现特殊位置的数字之间的关系,找到规律,通过计算确定行数,再根据方程求得列数,能正确发现规律是解题的关键.20.23【解析】【详解】根据图中所揭示的规律可知,1+2+3+4+5+6=21,所以第7排;应从左到右由小到大,从22开始数,第二个应是23,所以(7,2)表示的数是23.故答案是:23.21.3【解析】【分析】通过观察每一个数字等于它上方相邻两数之和.【详解】解:通过观察杨辉三角发现每一个数字等于它上方相邻两数之和的规律,例如:第3行中的2,等于它上方两个相邻的数1,1相加,即:211=+;第4行中的3,等于它上方两个相邻的数2,1相加,即:321=+;⋅⋅⋅⋅⋅⋅由此规律:故空缺数等于它上方两个相邻的数1,2相加,即空缺数为:3,故答案是:3.【点睛】本题考查了杨辉三角数的规律,解题的关键是:通过观察找到数与数之间的关系,从来解决问题.22.2020 2021【解析】【分析】本题可通过题干信息总结分式规律,按照该规律展开原式,根据邻项相消求解本题.【详解】由题干信息可抽象出一般规律:211a b a b=-•(,a b均为奇数,且2b a=+).故222213355720192021++++=⨯⨯⨯⨯111111111111111202011()()()1 3355720192021335520192019202120212021 -+-+-++-=+-+-++--=-=.故答案:20202021. 【点睛】本题考查规律的抽象总结,解答该类型题目需要准确识别题干所给的例子包含何种规律,严格按照该规律求解.23. 246524251⨯-=-=- ()()2211n n n ⨯+-+=- 【解析】【分析】(1)按照前三个算式的规律书写即可;(2)观察发现,算式序号与比序号大2的数的积减去比序号大1的数的平方,等于-1,根据此规律写出即可;【详解】(1)2132341⨯-=-=-,①2243891⨯-=-=-,①235415161⨯-=-=-,①246524251⨯-=-=-;故答案为246524251⨯-=-=-. (2)第n 个式子为:()()2211n n n ⨯+-+=-.故答案为()()2211n n n ⨯+-+=-. 【点睛】本题主要考查了规律性数字变化类知识点,准确分析是做题的关键.24.81-【解析】【分析】题中数列的绝对值的比是-3,由三个相邻数的和是567-,可设三个数为n ,-3n ,9n ,据题意列式即可求解.【详解】题中数列的绝对值的比是-3,由三个相邻数的和是567-,可设第一个数是n ,则三个数为n ,-3 n ,9n由题意:()n 3n 9n 567+-+=-,解得:n=-81,故答案为:-81.【点睛】此题主要考查数列的规律探索与运用,一元一次方程与数字的应用,熟悉并会用代数式表示常见的数列,列出方程是解题的关键.25.()12121n n n ++-+【解析】【分析】 观察发现,每一项都是一个分数,分母依次为3、5、7,…,那么第n 项的分母是2n+1;分子依次为2,3,10,15,26,…,变化规律为:奇数项的分子是n 2+1,偶数项的分子是n 2-1,即第n 项的分子是n 2+(-1)n+1;依此即可求解.【详解】解:由分析得21(1)21n n n a n ++-=+, 故答案为:21(1)21n n n a n ++-=+【点睛】 本题考查学生通过观察、归纳、抽象出数列的规律的能力,要求学生首先分析题意,找到规律,并进行推导得出答案.26.119【解析】【分析】根据题意,找出图形的规律,得到第n 个图形的黑点数为2(1)2n +-,即可求出答案.【详解】解:根据题意,第1个图有2个黑点;第2个图有7个黑点;第3个图有14个黑点;……第n 个图有2(1)2n +-个黑点;①当n=10时,有2(101)21212119+-=-=(个);故答案为:119.【点睛】本题考查了图形的变化规律,找出图形的摆放规律,得出数字之间的运算方法,利用计算规律解决问题.27.57【解析】【分析】根据题意得出第n 个图形中菱形的个数为21n n ++;由此代入求得第①个图形中菱形的个数.【详解】解:第①个图形中一共有3个菱形,2312=+;第①个图形中共有7个菱形,2723=+; 第①个图形中共有13个菱形,21334=+;…,第n 个图形中菱形的个数为:21n n ++;则第①个图形中菱形的个数为277157++=.故答案为:57.【点睛】本题考查了整式加减的探究规律—图形类找规律,其关键是根据已知图形找出规律. 28.-2【解析】【分析】先通过计算第一行数字之和得到各行、各列及各条对角线上的三个数字之和,再利用第二列三个数之和得到a 的值.【详解】解:由表第一行可知,各行、各列及各条对角线上的三个数字之和均为1616--+=-,①626a -++=-,①2a =-,故答案为:2-.【点睛】本题考查了数字之间的关系,解决本题的关键是读懂题意,正确提取表中数据,找到它们之间的关系等,该题对学生的观察分析能力有一定的要求,同时也考查了学生对有理数的和差计算的基本功.29.()12112n n n a b +-+-⋅ 【解析】【分析】根据已知的式子可以看出:每个式子的第一项中a 的次数是式子的序号;第二项中b 的次数是序号的2倍减1,而第二项的符号是第奇数项时是正号,第偶数项时是负号.【详解】解:①当n 为奇数时,()111n +-=; 当n 为偶数时,()111n +-=-,①第n 个式子是:()1211?2n n n a b +-+-.故答案为:()1211?2n n n a b +-+- 【点睛】本题考查了多项式的知识点,认真观察式子的规律是解题的关键.30.875【解析】【分析】设第n 个“龟图”中有an 个“〇”(n 为正整数),观察“龟图”,根据给定图形中“〇”个数的变化可找出变化规律“an =n 2−n +5(n 为正整数)”,再代入n =30即可得出结论.【详解】解:设第n 个“龟图”中有an 个“〇”(n 为正整数).观察图形,可知:a 1=1+2+2=5,a 2=1+3+12+2=7,a 3=1+4+22+2=11,a 4=1+5+32+2=17,…,①an =1+(n +1)+(n −1)2+2=n 2−n +5(n 为正整数),①a 30=302−30+5=875.故答案是:875.【点睛】本题考查了规律型:图形的变化类,根据各图形中“〇”个数的变化找出变化规律“an =n 2−n +5(n 为正整数)”是解题的关键.31.(1)1,0;2,1;4,2;(2)2n -2n -1=2n -1;(3)202221-【解析】【分析】(1)根据有理数的乘方的定义进行计算即可得解;(2)根据(1)中式子的规律,可得结果;(3)设S =20+21+22+23+24+…+22021,然后表示出2S ,再相减计算即可得解.【详解】解:(1)21-20=1=20,22-21=2=21,23-22=4=22;(2)由题意可得:2n -2n -1=2n -1;(3)设012342021222222S =++++++, ①12342022222222S =+++++, ①2S S S =-=()()1234202201234202122222222222+++++++++++- =202221-.【点睛】本题是对数字变化规律的考查,主要利用了有理数的乘方的计算,难点在于(3)利用整体思想求解.。

人教版九年数学中考规律专题练习及参考答案

人教版九年数学中考规律专题练习及参考答案

人教版九年数学中考规律专题练习学习数学很重要的一个目的,就是要善于捕捉事物的规律,用数学形式和数学方法表示出来.规律与猜想类试题选材一般来源于学生熟悉的生活,有一定的趣味性,呈现形式多样,便于学生观察,侧重考查学生观察和归纳能力,让学生从不同角度,利用不同方法探索并发现数学规律,同时利用发现的规律,让学生学会自我验证,真正考查了学生的数学思考能力.类型之一数式的变化规律例1 (2014·安徽)观察下列关于自然数的等式:32-4×12=552-4×22=972-4×32=13……根据上述规律解决下列问题:(1)完成第四个等式:92-4×( )2=( );(2)写出你猜想的第n个等式(用含n的式子表示),并验证其正确性.【思路点拨】(1)从等式的结构看,等于号的左边第一项的底数依次增大2,第二项的底数依次增大1,等于号的右边依次增大4.依次规律就可写出第四个等式;(2)先根据分析的规律用含n的等式表示出第n个等式,然后将等号的一边经过整理与另一边相同.【解答】(1)4,17.(2)(2n+1)2-4×n2=4n+1.验证:∵左边=4n2+4n+1-4n2=4n+1=右边,∴等式成立.方法归纳:探究等式变化规律的题目,关键把握两点:一是找出等式中“变”与“不变”的部分;二是分析出“变”的规律即等式的个数之间存在的规律.1.(2014·东营)将自然数按以下规律排列:表中数2在第二行,第一列,与有序数对(2,1)对应;数5与(1,3)对应;数14与(3,4)对应;根据这一规律,数2 014对应的有序数对为.2.(2014·菏泽)下面是一个按某种规律排列的数阵:根据数阵排列的规律,第n行(n是整数,且n≥3)从左至右数第n-2个数是(用含n的代数式表示).3.(2014·滨州)计算下列各式的值:2919+;299199+;2999 1 999+;29 99919 999+.观察所得结果,总结存在的规律,运用得到的规律可得22 01492 01499991999⋯+⋯个个= .4.(2014·巴中)如图是我国古代数学家杨辉最早发现的,称为“杨辉三角”.它的发现比西方要早五百年左右,由此可见我国古代数学的成就是非常值得中华民族自豪的!“杨辉三角”中有许多规律,如它的每一行的数字正好对应了(a+b)n (n 为非负整数)的展开式中a 按次数从大到小排列的项的系数.例如,(a+b)2=a 2+2ab+b 2展开式中的系数1、2、1恰好对应图中第三行的数字;再如,(a+b)3=a 3+3a 2b+3ab 2+b 3展开式中的系数1、3、3、1恰好对应图中第四行的数字.请认真观察此图,写出(a-b)4的展开式为 .5.(2014·黄石)观察下列等式:第一个等式:a 1=23122⨯⨯=112⨯-2122⨯第二个等式:a 2=34232⨯⨯=2122⨯-3132⨯ 第三个等式:a 3=45342⨯⨯=3132⨯-4142⨯ 第四个等式:a 4=56452⨯⨯=14142⨯-5152⨯按上述规律,回答以下问题:用含n 的代数式表示第n 个等式:a n = = ;式子a 1+a 2+a 3+…+a 20= .6.(2014·烟台)将一组数3,6,3,23,15,…,310,按下面的方法进行排列:若23的位置记为(1,4),26的位置记为(2,3),则这组数中最大的有理数的位置记为( ) A.(5,2) B.(5,3) C.(6,2) D.(6,5)类型之二 图形的变化规律例2 (2014·金华)一种长方形餐桌的四周可坐6人用餐,现把若干张这样的餐桌按如图方式进行拼接. (1)若把4张、8张这样的餐桌拼接起来,四周分别可坐多少人? (2)若有餐的人数有90人,则这样的餐桌需要多少张?【思路点拨】由拼图可知,每多拼一张餐桌,可坐的人数就增多4人,依次规律可探究出餐桌的个数与可坐人数之间的关系.从而就可解决问题.【解答】(1)根据图中的规律我们可以发现,每多拼接一张餐桌,可坐的人数就增多4人.即:拼接x张餐桌可以就餐的人数为:6+4(x-1)=4x+2(人).所以,拼4张可以坐4×4+2=18(人),拼8张可以坐4×8+2=34(人).(2)由题意可知4x+2=90.解得x=22.答:这样的餐桌需要拼接22张.方法归纳:当图形在变换时,图形的个数与对应的另一个变换的量的关系很难直接观察出规律时,可以通过建立这两个变量之间的函数关系,利用已知的几对对应值求出函数关系式,然后去论证.1.(2014·重庆A卷)如图,下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,……,按此规律,则第(6)个图形中面积为1的正方形的个数为( )A.20B.27C.35D.402.(2014·武汉)观察下列一组图形中点的个数,其中第1个图片共有4个点,第2个图中共有10个点,第3个图中共有19个点,…按此规律第5个图中共有点的个数是( )A.31B.46C.51D.663.(2014·重庆B卷)下列图形都是按照一定规律组成,第一个图形中共有2个三角形,第二个图形中共有8个三角形,第三个图形中共有14个三角形,……,依此规律,第五个图形中三角形的个数是( )A.22B.24C.26D.284.(2014·宜宾)如图,将n个边长都为2的正方形按照如图所示摆放,点A1,A2,…,A n分别是正方形的中心,则这n 个正方形重叠部分的面积之和是( )A.nB.n-1C.(14)n-1 D.14n5.(2014·鄂州)如图,四边形ABCD中,AC=a,BD=b,且AC⊥BD,顺次连接四边形ABCD各边中点,得到四边形A1B1C1D1,再顺次连接四边形A1B1C1D1各边中点,得到四边形A2B2C2D2,如此进行下去,得到四边形A n B n C n D n.下列结论正确的是( )①四边形A 4B 4C 4D 4是菱形;②四边形A 3B 3C 3D 3是矩形;③四边形A 7B 7C 7D 7周长为8a b+;④四边形A n B n C n D n 面积为·2na b . A.①②③ B.②③④ C.①③④ D.①②③④6.(2014·内江)如图,已知A 1、A 2、……、A n 、A n +1是x 轴上的点,且OA 1=A 1A 2=A 2A 3=……=A n A n +1=1,分别过点A 1、A 2、……、A n 、A n +1作x 轴的垂线交直线y =2x 于点B 1、B 2、……、B n 、B n +1,连接A 1B 2、B 1A 2、A 2B 3、B 2A 3、……、A n B n +1、B n A n +1,依次相交于点P 1、P 2、P 3、……、P n ,△A 1B 1P 1、△A 2B 2P 2、……、△A n B n P n 的面积依次为S 1、S 2、……、S n ,则S n 为( )A.121n n ++ B.231n n - C.221n n - D.22+1n n7.(2014·内江)如图所示,将若干个正三角形、正方形和圆按一定规律从左向右排列,那么第 2 014个图形是 .△△□□□△○○□□□△○○□□□△○○□……8.(2014·娄底)如图是一组有规律的图案,第1个图案由4个▲组成,第2个图案由7个▲组成,第3个图案由10个▲组成,第4个图案由13个▲组成,…,则第n (n 为正整数)个图案由 个▲组成.9.(2014·盐城)如图,在平面直角坐标系中,边长不等的正方形依次排列,每个正方形都有一个顶点落在函数y =x 的图象上,从左向右第3个正方形中的一个顶点A 的坐标为(8,4),阴影三角形部分的面积从左向右依次记为S 1,S 2,S 3,…,S n ,则S n 的值为 .(用含n 的代数式表示,n 为正整数)类型之三 点的坐标的变化规律例3 (2014·泰安)如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去……,若点A(53,0),B(0,4),则点B2 014的横坐标为.【思路点拨】先根据勾股定理求出AB的长度,再根据第4个图形与第1个图形的位置相同,可知每三个三角形为一个循环依次循环,然后求出每个循环组中B点坐标的变化规律即可.【解答】由题意可得:∵AO=53,BO=4,∴AB=133,∴OA+AB1+B1C2=53+133+4=6+4=10,∴B2的横坐标为10,B4的横坐标为2×10=20,∴点B2 014的横坐标为:20142×10=10 070.故答案为:10 070.方法归纳:由于图形在坐标系中的运动而导致的点的坐标的变化情况,先应该分析图形的运动规律,然后结合点在图形中的位置找出点的坐标的变化规律.1.如图,在一单位为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7,……,都是斜边在x轴上、斜边长分别为2,4,6,……的等腰直角三角形.若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,-1),A3(0,0),则依图中所示规律,A2 014的坐标为.2.(2013·湛江)如图,所有正三角形的一边平行于x轴,一顶点在y轴上,从内到外,它们的边长依次为2,4,6,8,…,顶点依次用A1、A2、A3、A4、…表示,其中A1A2与x轴、底边A1A2与A4A5、A4A5与A7A8、…均相距一个单位,则顶点A3的坐标是,A22的坐标是.3.(2014·孝感)正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图所示的方式放置.点A1,A2,A3,…和点C1,C2,C3,…分别在直线y=x+1和x轴上,则点B6的坐标是.4.(2014·德州)如图,抛物线y =x 2在第一象限内经过的整数点(横坐标、纵坐标都为整数的点)依次为A 1,A 2,A 3,…A n ,….将抛物线y =x 2沿直线l :y =x 向上平移,得一系列抛物线,且满足下列条件: ①抛物线的顶点M 1,M 2,M 3,…M n ,…都在直线l :y =x 上; ②抛物线依次经过点A 1,A 2,A 3,…A n ,…. 则顶点M 2 014的坐标为 .参考答案类型之一 数式的变化规律1.(45,12) 22n - 3.102 0142919+1299199+229 99 1 999+3,29 99919 999+4,2201492014999...9199...9+个个=102 014.故答案为102 014.4.a 4-4a 3b+6a 2b 2-4ab 3+b 45.()1212n n n n +++;1·2n n -()1112n n ++;12-211212⨯ 6.C类型之二 图形的变化规律1.B2.B3.C提示:每一次操作三角形个数增加6个. 4.B提示:每两个之间重叠部分的面积都等于正方形面积的14,正方形的面积为4,所以重叠部分的面积为1,n 个正方形有(n-1)个重叠部分,故重叠部分的面积之和为(n-1). 5.A 6.D提示:A n B n当底,利用函数y=2x即可求得,利用黑白三角形相似如△A1B1P1∽△B2A2P1等求得P n到A n B n的距离,从而得△A n B n P n的面积.7.正方形8.3n+19.24n-5提示:根据A点的坐标为(8,4)即可得出正方形的边长依次为20、21、22、23、…,第n个正方形的边长为2n-1计算,第n个阴影部分是在第2n-1和2n个正方形中,与求S2的方法一样,第n个阴影部分的面积是第2n-1个正方形面积的一半,∴S n=12×(22n-1-1)2=24n-5.类型之三点的坐标的变化规律1.(1,-1 007)2.(0,3-1) (-8,-8)提示:由于22÷3=7……1,而A1的坐标为(-1,-1);A4的坐标为(-2,-2);A7的坐标为(-3,-3);……;A22的坐标为(-8,-8).3.(63,32)提示:A1(0,1),B1(1,1);A2(1,2)B2(3,2),A3(3,4),B3(7,4);依次类推A n(2n-1,2n-1),所以B6(63,32).4.(4 027,4 027)提示:M1(a1,a1)是抛物线y1=(x-a1)2+a1的顶点,抛物线y=x2与抛物线y1=(x-a1)2+a1相交于A1,得x2=(x-a1)2+a1,即2a1x=a21+a1,x=12(a1+1).∵x为整数点,∴a1=1,M1(1,1);同理M2(3,3),M3(5,5),……,∴M2 014(2 014×2-1,2014×2-1),即M2014(4 027,4 027).。

初三数学中考复习:规律探究(含答案)

初三数学中考复习:规律探究(含答案)

探究数字或算式的变化规律1.(2018·云南)按一定规律排列的单项式:a ,-a 2,a 3,-a 4,a 5,-a 6…第n个单项式是 ( C ) A .a n B .-a n C .(-1)n+1a n D .(-1)n a n 2.(2018·武汉)D ) A .2 019 B .2 018 C .2 016 D .2 0133.(2018·德州)我国南宋数学家杨辉所著的《详解九章算术》一书中,用下图 的三角形解释二项式(a +b )n 的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”请计算(a +b )8的展开式中从左起第四项的系数为 ( B ) A .84 B .56 C .35 D .284.(2018·临安)已知2+23=22×23,3+38=32×38,4+415=42×415,5+524=52×524…若10+b a =102×ba 符合前面式子的规律,则a +b = 109 . 5.(2018·咸宁)按一定顺序排列的一列数叫做数列,如数列:12,16,112,120…则这个数列的前2 018个数的和为2 0182 019. 6.(2018·毕节)观察下列运算过程:11+2=12+1=2-1()2+1()2-1=2-1()22-12=2-1; 12+3=13+2=3-2()3+2()3-2=3-2()32-()22=3- 2…请运用上面的运算方法计算:11+3+13+5+15+7+…+12 015+ 2 017+12 017+ 2 019=2 019-12. 7.(2018·广西北部湾)观察下列等式:30=1,31=3,32=9,33=27,34=81,35=243…据其中规律可得30+31+32+…+32 018的结果的个位数字是 3 .则c 的值为 270(或28+14) .9.(2018·娄底)设a 1,a 2,a 3…是一列正整数,其中a 1表示第一个数,a 2表示第二个数,依此类推,a n 表示第n 个数(n 是正整数).已知a 1=1,4a n =(a n +1 -1)2-(a n -1)2,则a 2 018= 4 035 . 10.(2018·荆门)将数1个1,2个12,3个13,…,n 个1n(n 为正整数)顺次排成一列:1,12,12,13,13,13,…,n 1,n 1,…,记a 1=1,a 2=12,a 3=12,…,S 1=a 1,S 2=a 1+a 2,S 3=a 1+a 2+a 3,…,S n =a 1+a 2+…+a n , 则S 2 018=63132.11.(2018·黔东南州)根据下列各式的规律,在横线处填空:11+12-1=12,13+14-12=112,1 5+16-13=130,17+18-14=156…12 017+12 018-11 009=12 017×2 018.12.(2018·淄博)将从1开始的自然数按以下规律排列,例如位于第3行、第4 列的数是12,则位于第45行、第8列的数是 2 018 .13.(2018·乐山)已知直线l1:y=(k-1)x+k+1和直线l2:y=kx+k+2,其中k为不小于2的自然数.(1)当k=2时,直线l1,l2与x轴围成的三角形的面积S2= 1 ;(2)当k=2,3,4,…,2 018时,设直线l1,l2与x轴围成的三角形的面积分别为S2,S3,S4,…,S2 018,则S2+S3+S4+…+S2 018=2 0171 009.探究图形的变化规律1.(2018·济宁)如图,小正方形是按一定规律摆放的,下面四个选项中的图片,适合填补图中空白处的是 ( C )2.(2018·烟台)如图所示,下列图形都是由相同的玫瑰花按照一定的规律摆成的,按此规律摆下去,第n个图形中有120朵玫瑰花,则n的值为 (C)A.28 B.29 C.30 D.313.(2018·随州)我们将如图所示的两种排列形式的点的个数分别称作“三角形数”(如1,3,6,10…)和“正方形数”(如1,4,9,16…),在小于200 的数中,设最大的“三角形数”为m,最大的“正方形数”为n,则m+n的值为 ( C )A.33 B.301 C.386 D.5714.(2018·贺州)如图,正方形ABCD的边长为1,以对角线AC为边作第二个正方形ACEF,再以对角线AE为边作第三个正方形AEGH,依此下去,第n个正方形的面积为 ( B )A.(2)n-1 B.2n-1C.(2)n D.2n5.(2017·达州)如图,将矩形ABCD绕其右下角的顶点按顺时针方向旋转90°至图①位置,继续绕右下角的顶点按顺时针方向旋转90°至图②位置,依此类推,这样连续旋转2 017次.若AB=4,AD=3,则顶点A在整个旋转过程中所经过的路径总长为 ( D )A.2 017π B.2 034πC.3 024π D.3 026π6.(2018·自贡)观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2 018个图形共有 6 055 个○.7.(2018·遵义)每一层三角形的个数与层数的关系如图所示,则第2 018层的三角形个数为 4 035 .8.(2017·威海)某广场用同一种如图所示的地砖拼图案,第一次拼成形如图1所示的图案,第二次拼成形如图2所示的图案,第三次拼成形如图3所示的 图案,第四次拼成形如图4所示的图案……按照这样的规律进行下去,第n 次拼成的图案共用地砖 2n 2+2n 块.9.(2018·宁夏)如图是各大小型号的纸张长宽关系裁剪对比图,可以看出纸张大小的变化规律:A0纸长度方向对折一半后变为A1纸;A1纸长度方向对折一半后变为A2纸;A2纸长度方向对折一半后变为A3纸;A3纸长度方向对折一半后变为A4纸……A4规格的纸是我们日常生活中最常见的,那么有一张A4的纸可以裁 16 张A8的纸.10. (2018·葫芦岛)如图,∠MON =30°,点B 1在边OM 上,且OB 1=2,过点B 1作B 1A 1⊥OM 交ON 于点A 1,以A 1B 1为边在A 1B 1右侧作等边三角形A 1B 1C 1; 过点C 1作OM 的垂线分别交OM ,ON 于点B 2,A 2,以A 2B 2为边在A 2B 2的右 侧作等边三角形A 2B 2C 2;过点C 2作OM 的垂 线分别交OM ,ON 于点B 3,A 3,以A 3B 3为边 在A 3B 3的右侧作等边三角形A 3B 3C 3…按此规 律进行下去,则△A n A n +1C n 的面积为33232-2⨯⎪⎭⎫ ⎝⎛n .(用含正整数n 的代数式表示)探究坐标的变化规律1.(2017·温州)我们把1,1,2,3,5,8,13,21…这组数称为斐波那契数列,为了进一步研究,依次以这列数为半径作90°圆弧P 1P 2︵,P 2P 3︵,P 3P 4︵…得到斐波那契螺旋线,然后顺次连接P1P2,P2P3,P3P4…得到螺旋折线(如图),已知点P1(0,1),P2(-1,0),P3(0,-1),则该折线上的点P9的坐标为 ( B ) A.(-6,24) B.(-6,25)C.(-5,24) D.(-5,25) 2.(2018·广州)在平面直角坐标系中,一个智能机器人接到如下指令.从原点O出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1 m,其行走路线如图所示,第1次移动到A1,第2次移动到A2……第n次移动到A n,则△OA2A2 018的面积是 ( A )A. 504 m2B. 1 00 92m2 C.1 0112m2 D. 1 009 m23.(2017·广西北部湾)如图,把正方形铁片OABC置于平面直角坐标系中,顶点A的坐标为(3,0),点P(1,2)在正方形铁片上,将正方形铁片绕其右下角的顶点按顺时针方向依次旋转90°,第一次旋转至图①位置,第二次旋转至图②位置……则正方形铁片连续旋转2 017次后,点P的坐标为(6 053,2).4.(2017·广安)正方形A1B1C1O,A2B2C2C1,A3B3C3C2…按如图所示放置,点A1,A2,A3…在直线y=x+1上,点C1,C2,C3…在x轴上,则A n的坐标是 (2n-1-1,2n-1) .5.(2018·衡阳)如图,在平面直角坐标系中,函数y=x和y=-12x的图象分别为直线l1,l2,过点⎪⎭⎫⎝⎛21-,11A作x轴的垂线交l1于点A2,过点A2作y轴的垂线交l2于点A3,过点A3作x轴的垂线交l1于点A4,过点A4作y轴的垂线交l2于点A5……依次进行下去,则点A2 018的横坐标为21 008 .6.(2017·赤峰)在平面直角坐标系中,点P(x,y)经过某种变换后得到点P′(-y+1,x+2),我们把点P′(-y+1,x+2)叫做点P(x,y)的终结点.已知点P1的终结点为P2,点P2的终结点为P3,点P3的终结点为P4,这样依次得到P1,P2,P3,P4,…,P n,…,若点P1的坐标为(2,0),则点P2 017的坐标为 (2,0) .7.(2018·威海)如图,在平面直角坐标系中,点A1的坐标为(1,2),以点O为圆心,以OA1长为半径画弧,交直线y=12x于点B1.过B1点作B1A2∥y轴,交直线y=2x于点A2,以点O为圆心,以OA2长为半径画弧,交直线y=12x于点B2;过点B2作B2A3∥y轴,交直线y=2x于点A3,以点O为圆心,以OA3长为半径画弧,交直线y=12x于点B3;过B3点作B3A4∥y轴,交直线y=2x于点A4,以点O为圆心,以OA4长为半径画弧,交直线y=12x于点B4……按照如此规律进行下去,点B2 018的坐标为 (22 018,22 017) .8.(2018·内江)如图,直线y=-x+1与两坐标轴分别交于A,B两点,将线段OA分成n等份,分点分别为P 1,P2,P3…P n-1,过每个分点作x轴的垂线分别交直线AB于点T1,T2,T3…T n-1,用S1,S2,S3…S n-1分别表示Rt△T1OP1,Rt△T2P1P2…Rt△T n-1P n-2P n-1的面积,则S1+S2+S3+…+S n-1=14-14n.9.(2018·广东)如图,已知等边△OA1B1,顶点A1在双曲线y=x3(x>0)上,点B1的坐标为(2,0).过B1作B1A2∥OA1交双曲线于点A2,过A2作A2B2∥A1B1交x轴于点B2,得到第二个等边△B1A2B2;过B2作B2A3∥B1A2交双曲线于点A3,过A3作A3B3∥A2B2交x轴于点B3,得到第三个等边△B2A3B3;依此类推,则点B6的坐标为 (26,0) .10.(2018·潍坊)如图,点A1的坐标为(2,0),过点A1作x轴的垂线交直线l:y=3x于点B1,以原点O为圆心,OB1的长为半径画弧交x轴正半轴于点A2;再过点A2作x轴的垂线交直线l于点B2,以原点O为圆心,以OB2的长为半径画弧交x轴正半轴于点A3……按此作法进行下去,则A2 019B2 018的长是22 0193π.11.(2018·东营)如图,在平面直角坐标系中,点A1,A2,A3…和B1,B2,B3…分别在直线y=15x+b和x轴上.△OA1B1,△B1A2B2,△B2A3B3…都是等腰直角三角形.如果点A1(1,1),那么点A2 018的纵坐标是201723⎪⎭⎫⎝⎛.12.(2018·淮安)如图,在平面直角坐标系中,直线l为正比例函数y=x的图象,点A1的坐标为(1,0),过点A1作x轴的垂线交直线l于点D1,以A1D1为边作正方形A1B1C1D1;过点C1作直线l的垂线,垂足为A2,交x轴于点B2,以A2B2为边作正方形A2B2C2D2;过点C2作x轴的垂线,垂足为A3,交直线l于点D3,以A3D3为边作正方形A3B3C3D3……按此规律操作下去,所得到的正方形A n B n C n D n的面积是-129n⎪⎭⎫⎝⎛.。

初中数学专题复习(数字变化规律)

初中数学专题复习(数字变化规律)

初中数学专题复习(数字变化规律)一.数字表示事件1.(2020•达州)中国奇书《易经》中记载,远古时期,人们通过在绳子上打结来计数,即“结绳计数”.如图,一位母亲在从右到左依次排列的绳子上打结,满5进1,用来记录孩子自出生后的天数.由图可知,孩子自出生后的天数是()A .10B .89C .165D .294解:2×53+1×52+3×51+4×50=294,故选:D .2.(2020•江西)公元前2000年左右,古巴比伦人使用的楔形文字中有两个符号(如图所示),一个钉头形代表1,一个尖头形代表10.在古巴比伦的记数系统中,人们使用的标记方法和我们当今使用的方法相同,最右边的数字代表个位,然后是十位,百位.根据符号记数的方法,如图符号表示一个两位数,则这个两位数是25.解:由题意可得,表示25.故答案为:25.3.(2020•湘潭)算筹是在珠算发明以前我国独创并且有效的计算工具,为我国古代数学的发展做出了很大的贡献.在算筹计数法中,以“纵式”和“横式”两种方式来表示数字如图:数字形式123456789纵式|||||||||||||||横式表示多位数时,个位用纵式,十位用横式,百位用纵式,千位用横式,以此类推,遇零则置空.示例如图:,则表示的数是9167.解:根据算筹计数法,表示的数是:9167故答案为:9167.二.通项公式类数字变化4.(2020•安徽模拟)已知对于任意正整数n,都有a1+a2+a3+…+a n=n3,则=()A.B.C.D.解:∵a1+a2+…+a n﹣1+a n=n3,a1+a2+…+a n﹣1=(n﹣1)3,两式相减,得a n=3n2﹣3n+1,∴,∴==,=.故选:C.5.(2020•酒泉一模)我们规定:S1=1,S2=1+,S3=1﹣S2,S4=1+,S5=1﹣S4.…(即当n为大于1的奇数时,S n=1﹣S n﹣1,当n为大于1的偶数时.S n=1+,按此规律.S2020=0.解:由题意可得,S1=1,S2=1+=1+=2,S3=1﹣S2=1﹣2=﹣1,S4=1+=1+=0,S5=1﹣S4=1﹣0=1,…,故这列数依次以1,2,﹣1,0循环出现,∵2020÷4=505,∴S2020=0,故答案为:0.6.(2020•芝罘区一模)对于实数x>0,规定f(x)=,例如f(2)==,f()==,那么计算f()+f()+f()+…+f()+f(1)+f(2)+f(3)+…+f(2020)的结果是2019.解:∵f(x)=,∴f (1)=,f (2)=,f ()=,f (3)==,f ()==,…,f (2020)==,f ()==,∴f (2)+f ()==1,f (3)+f ()==1,…,f (2020)+f ()=+=1,∴f ()+f ()+f ()+…+f ()+f (1)+f (2)+f (3)+…+f (2020)=+2020﹣1=2019.故答案为:2019.7.(2020•宜宾)定义:分数(m ,n 为正整数且互为质数)的连分数(其中a 1,a 2,a 3,…,为整数,且等式右边的每个分数的分子都为1),记作+++…,例如:======,的连分数为,记作+++,则++.解:++====.故答案为:.8.(2020•泰安)如表被称为“杨辉三角”或“贾宪三角”.其规律是:从第三行起,每行两端的数都是“1”,其余各数都等于该数“两肩”上的数之和.表中两平行线之间的一列数:1,3,6,10,15,…,我们把第一个数记为a 1,第二个数记为a 2,第三个数记为a 3,…,第n 个数记为a n ,则a 4+a 200=20110.解:观察“杨辉三角”可知第n个数记为a n=(1+2+…+n)=n(n+1),则a4+a200=×4×(4+1)+×200×(200+1)=20110.故答案为:20110.三.数列类数字变化9.(2020•娄底)下列各正方形中的四个数之间都有相同的规律,根据此规律,x的值为()A.135B.153C.170D.189解:根据规律可得,2b=18,∴b=9,∴a=b﹣1=8,∴x=2b2+a=162+8=170,故选:C.10.(2020•昆明)观察下列一组数:﹣,,﹣,,﹣,…,它们是按一定规律排列的,那么这一组数的第n个数是(﹣1)n..解:观察下列一组数:﹣=﹣,=,﹣=﹣,=,﹣=﹣,…,它们是按一定规律排列的,那么这一组数的第n个数是:(﹣1)n.故答案为:(﹣1)n.11.(2020•西藏)观察下列两行数:1,3,5,7,9,11,13,15,17,…1,4,7,10,13,16,19,22,25,…探究发现:第1个相同的数是1,第2个相同的数是7,…,若第n个相同的数是103,则n等于()A.18B.19C.20D.21解:第1个相同的数是1=0×6+1,第2个相同的数是7=1×6+1,第3个相同的数是13=2×6+1,第4个相同的数是19=3×6+1,…,第n个相同的数是6(n﹣1)+1=6n﹣5,所以6n﹣5=103,解得n=18.答:第n个相同的数是103,则n等于18.故选:A.12.(2020•广西)观察下列一行数:4,1,﹣8,1,16,1,﹣32,1,64,1,﹣128,1,…,则第19个数与第20个数的和为﹣2047.解:∵一行数:4,1,﹣8,1,16,1,﹣32,1,64,1,﹣128,1,…,∴这列数的第偶数个数都是1,奇数个数是,∴当n=19时,这个数为=﹣2048,当n=20时,这个数为1,∴第19个数与第20个数的和为:﹣2048+1=﹣2047,故答案为:﹣2047.13.(2020•新野县二模)定义一种对正整数n的“F”运算:①当n为奇数时,F(n)=3n+1;②当n为偶数时,F(n)=(其中k是使F(n)为奇数的正整数)……,两种运算交替重复进行,例如,取n=24,则:若n=13,则第2020次“F”运算的结果是()A.1B.4C.2020D.42020解:若n=13,第1次结果为:3n+1=40,第2次结果是:=5,第3次结果为:3n+1=16,第4次结果为=1,第5次结果为:4,第6次结果为:1,…可以看出,从第四次开始,结果就只是1,4两个数轮流出现,且当次数为偶数时,结果是1;次数是奇数时,结果是4,而2020次是偶数,因此最后结果是1.故选:A.14.(2020•天水)观察等式:2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2;…已知按一定规律排列的一组数:2100,2101,2102,…,2199,2200,若2100=S,用含S的式子表示这组数据的和是()A.2S2﹣S B.2S2+S C.2S2﹣2S D.2S2﹣2S﹣2解:∵2100=S,∴2100+2101+2102+…+2199+2200=S+2S+22S+…+299S+2100S=S(1+2+22+…+299+2100)=S(1+2100﹣2+2100)=S(2S﹣1)=2S2﹣S.故选:A.15.(2020•武汉模拟)已知有理数a≠1,我们把称为a的差倒数,如:2的差倒数是=﹣1,﹣1的差倒数是.如果a1=﹣3,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数…依此类推,那么a1﹣a2+a3﹣a4…+a401﹣a402+a403﹣a404的值是()A.B.﹣3C.D.解:∵a1=﹣3,∴a2==,a3==,a4==﹣3,……∴这个数列以﹣3,,依次循环,∵404÷3=134…2,∴a403的值是﹣3,a404的值是,那么a1﹣a2+a3﹣a4…+a401﹣a402+a403﹣a404=﹣3﹣++3+﹣﹣3﹣++3+﹣﹣ (3)=﹣3﹣=﹣.故选:A.16.(2020•硚口区二模)观察下列算式:a1==5,a2==11,a3==19,…,它有一定的规律性,把第n个算式的结果记为a n,则+++…+的值是()A.B.C.D.解:观察算式:a1==5,a2==11,a3==19,…,发现11﹣5=6,19﹣11=8,猜测下一个数比19大10,即29,验证:a4==29,故依次猜测a5=41,a6=55,a7=71,且验证正确;∴+++…+=++++++=++++++=(1﹣+﹣+﹣+﹣+﹣+﹣+﹣)=(1++﹣﹣﹣)=×=.故选:C.17.(2020•德阳)将正偶数按照如下规律进行分组排列,依次为(2),(4,6),(8,10,12),(14,16,18,20)…,我们称“4”是第2组第1个数字,“16”是第4组第2个数字,若2020是第m组第n个数字,则m+n=65.解:∵将正偶数按照如下规律进行分组排列,依次为(2),(4,6),(8,10,12),(14,16,18,20)…,∴第m组有m个连续的偶数,∵2020=2×1010,∴2020是第1010个偶数,∵1+2+3+…+44==990,1+2+3+…+45==1035,∴2020是第45组第1010﹣990=20个数,∴m=45,n=20,∴m+n=65,故答案为:65.四.实际问题类数字变化18.(2020•呼和浩特)“书法艺术课”开课后,某同学买了一包纸练习软笔书法,且每逢星期几写几张,即每星期一写1张,每星期二写2张,……,每星期日写7张,若该同学从某年的5月1日开始练习,到5月30日练习完后累积写完的宣纸总数超过120张,则可算得5月1日到5月28日他共用宣纸张数为112,并可推断出5月30日应该是星期几五、六、日.解:∵5月1日~5月30日共30天,包括四个完整的星期,∴5月1日~5月28日写的张数为:4×=112,若5月30日为星期一,所写张数为112+7+1=120,若5月30日为星期二,所写张数为112+1+2<120,若5月30日为星期三,所写张数为112+2+3<120,若5月30日为星期四,所写张数为112+3+4<120,若5月30日为星期五,所写张数为112+4+5>120,若5月30日为星期六,所写张数为112+5+6>120,若5月30日为星期日,所写张数为112+6+7>120,故5月30日可能为星期五、六、日.故答案为:112;五、六、日.19.(2020•淄博)某快递公司在甲地和乙地之间共设有29个服务驿站(包括甲站、乙站),一辆快递货车由甲站出发,依次途经各站驶往乙站,每停靠一站,均要卸下前面各站发往该站的货包各1个,又要装上该站发往后面各站的货包各1个.在整个行程中,快递货车装载的货包数量最多是210个.解:当一辆快递货车停靠在第x个服务驿站时,快递货车上需要卸下已经通过的(x﹣1)个服务驿站发给该站的货包共(x﹣1)个,还要装上下面行程中要停靠的(n﹣x)个服务驿站的货包共(n﹣x)个.根据题意,完成下表:服务驿站序号在第x服务驿站启程时快递货车货包总数1n﹣12(n﹣1)﹣1+(n﹣2)=2(n﹣2)32(n﹣2)﹣2+(n﹣3)=3(n﹣3)43(n﹣3)﹣3+(n﹣4)=4(n﹣4)54(n﹣4)﹣4+(n﹣5)=5(n﹣5)……n0由上表可得y=x(n﹣x).当n=29时,y=x(29﹣x)=﹣x2+29x=﹣(x﹣14.5)2+210.25,当x=14或15时,y取得最大值210.故答案为:210.20.(2020•南宁)如图,某校礼堂的座位分为四个区域,前区一共有8排,其中第1排共有20个座位(含左、右区域),往后每排增加两个座位,前区最后一排与后区各排的座位数相同,后区一共有10排,则该礼堂的座位总数是556个.解:因为前区一共有8排,其中第1排共有20个座位(含左、右区域),往后每排增加两个座位,所以前区最后一排座位数为:20+2(8﹣1)=34,所以前区座位数为:(20+34)×8÷2=216,因为前区最后一排与后区各排的座位数相同,后区一共有10排,所以后区的座位数为:10×34=340,所以该礼堂的座位总数是216+340=556个.故答案为:556个.。

中考数学(通用版)复习专题学案:规律探究问题

中考数学(通用版)复习专题学案:规律探究问题

规律探究问题【题型特征】规律探究性问题的特点是问题的结论不是直接给出,而是通过对问题的观察、分析、归纳、概括、演算、判断等一系列的探究活动,才能得到问题的结论.这类问题,因其独特的规律性和探究性,对分析问题、解决问题的能力具有很高的要求.在近几年全国各地的中考试题中,不仅频频出现规律探究题,而且“花样百出”.常见的类型有:(1)数式规律型;(2)图形变化规律型;(3)坐标变化规律型;(4)数形结合规律型等.【解题策略】解决规律探究性问题常常利用特殊值(特殊点、特殊数量、特殊线段、特殊位置等)进行归纳、概括,从特殊到一般,从而得出规律(符合一定的经验与事实的数学结论),然后验证或应用这一规律解题即可.解答时对分析问题、解决问题能力具有很高的要求.(1)数式规律型:数式规律涉及数的变化规律和式的变化规律,式变化规律往往包含数的变化规律.数的变化规律问题是按一定的规律排列的数之间的相互关系或大小变化规律的问题,主要是通过观察、分析、归纳、验证,然后得出一般性的结论,以列代数式为主要内容;式的变化规律通常给定一些代数式,等式或者不等式,猜想其中蕴含的规律,一般解法是先写出代数式的基本结构,然后通过横比(比较同一等式中的不同数量关系)或纵比(比较不同等式间相同位置的数量关系),找出各部分的特征,写出符合条件的格式.(2)图形变化规律型:图形变化型问题涉及图形排列规律和变化蕴含的规律.主要是观察图形变化过程中的特点,分析其联系和区别,用相应的算式由特殊到一般描述其中的规律.这需要有敏锐的观察能力和计算能力.(3)坐标变化规律型:此类题型主要考查了点的坐标规律,培养学生观察和归纳能力,从所给的数据和图形中寻求规律进行解题是解答本类问题的关键.(4)数形结合规律型:这类问题主要考查学生综合运用代数知识和几何知识的能力,解决这类问题要求学生不仅要有很好的“数感”,还要有很强的“图形”意识.类型一数式规律型【技法梳理】对于数式规律型问题,关键是根据已知的式子或数得出前后算式或前后数之间的变化关系和规律,然后再利用这个变化规律回到问题中去解决问题.举一反三1. (2015·山东菏泽)下面是一个某种规律排列的数阵:1√2第1行√32√5√6第2行√72√23√10√112√3第3行√13√14√154√173√2√192√5第4行……根据数阵的规律,第n(n是整数,且n≥3)行从左到右数第n-2个数是(用含n的代数式表示).2. (2015·山东临沂)请你计算:(1-x)(1+x),(1-x)(1+x+x2),…,猜想(1-x)(1+x+x2+…+x n)的结果是().A. 1-x n+1B. 1+x n+1C. 1-x nD. 1+x n【小结】此类问题考查的知识点是单项式的知识.找代数式的变化规律,一般是由特殊到一般,得出一般规律.比如典例观察单项式的规律,把一个单项式分解成数字因数和字母因式的积,分别找出单项式的系数和次数的规律也是解决此类问题的关键.类型二图形变化规律型典例2(2015·四川内江)如图,将若干个正三角形、正方形和圆按一定规律从左向右排列,那么第2015个图形是.【解析】根据图象规律得出每6个数为一周期,用2015先减2再除以6,根据余数来决定第2015个图形.因为(2015-2)÷6=335……2,故第2015个图形与第2个图象相同,故答案是正方形.【全解】正方形【技法梳理】本题是一道找图形循环排列规律的题目.这类题首先应找出哪些部分发生了变化,是按照什么规律变化的,解题时对观察能力和归纳总结能力有一定要求.举一反三3. (2015·湖北天门)将相同的矩形卡片,按如图方式摆放在一个直角上,每个矩形卡片长为2,宽为1,依此类推,摆放2015个时,实线部分长为.(1)(2)(3)(第3题)4. (2015·珠海)如图,在等腰Rt△OAA1中,∠OAA1=90°,OA=1,以OA1为直角边作等腰Rt△OA1A2,以OA2为直角边作等腰Rt△OA2A3,…,则OA4的长度为.(第4题)5. (2015·湖北十堰)根据如图中箭头的指向规律,从2013到2015再到2015,箭头的方向是以下图示中的().(第5题)【小结】 (1)图形循环类问题,只要找到所求值在第几个循环,便可找出答案,一般难度不大;(2)图形的变化规律计算问题,关键是根据题目中给出的图形,通过观察思考,归纳总结出规律,再利用规律解决问题,难度一般偏大,属于难题.类型三坐标变化规律型典例3(2015·广东梅州)如图,弹性小球从点P(0,3)出发,沿所示方向运动,每当小球碰到矩形OABC的边时反弹,反弹时反射角等于入射角,当小球第1次碰到矩形的边时的点为P1,第2次碰到矩形的边时的点为P2,…,第n次碰到矩形的边时的点为P n,则点P3的坐标是;点P2 014的坐标是.【解析】如图,经过6次反弹后动点回到出发点(0,3),当点P第3次碰到矩形的边时,点P的坐标为(8,3),∵2015÷6=335……4,∴当点P第2015次碰到矩形的边时为第336个循环组的第4次反弹.点P的坐标为(5,0).故答案为(8,3),(5,0).【全解】 (8,3)(5,0)【技法梳理】根据反射角与入射角的定义作出图形,可知每6次反弹为一个循环组依次循环,用2015除以6,根据商和余数的情况确定所对应的点的坐标即可.举一反三6. (2015·湖北荆门)如图,在第1个△A1BC中,∠B=30°,A1B=CB;在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第2个△A1A2D;在边A2D上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A2A3E,…按此做法继续下去,则第n个三角形中以A n为顶点的内角度数是().(第6题)7. (2015·山东潍坊)如图,已知正方形ABCD,顶点A(1,3),B(1,1),C(3,1).规定“把正方形ABCD先沿x轴翻折,再向左平移1个单位”为一次变换,如此这样,连续经过2015次变换后,正方形ABCD的对角线交点M的坐标变为().(第7题)A. (-2012,2)B. (-2012,-2)C. (-2013,-2)D. (-2013,2)【小结】此类题型主要考查点的坐标变化规律,解决此类问题的关键是从点的变化中发现横坐标、纵坐标的变化规律.类型四数形结合规律型典例4(2015·山东泰安)如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B,O分别落在点B1,C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去…….若点,B(0,4),则点B2015的横坐标为.故答案为10070.【全解】10070【技法梳理】首先利用勾股定理得出AB的长,进而得出三角形的周长,进而求出B2,B4的横坐标,进而得出变化规律,即可得出答案.举一反三8. (2015·四川内江)如图,已知A1,A2,A3,…,A n,A n+1是x轴上的点,且OA1=A1A2=A2A3=…=A n A n+1=1,分别过点A1,A2,A3,…,A n,A n+1作x轴的垂线交直线y=2x于点B1,B2,B3,…,B n,B n+1,连接A1B2,B1A2,B2A3,…,A n B n+1,B n A n+1,依次相交于点P1,P2,P3,…,P n.△A1B1P1,△A2B2P2,△A nB n P n的面积依次记为S1,S2,S3,…,S n,则S n为().(第8题)9. (2015·山东威海)如图,在平面直角坐标系xOy中,Rt△OA1C1,Rt△OA2C2,Rt△OA3C3,Rt△OA4C4…的斜边都在坐标轴上,∠A1OC1=∠A2OC2=∠A3OC3=∠A4OC4=…=30°.若点A1的坐标为(3,0),OA1=OC2,OA2=OC3,OA3=OC4…,则依此规律,点A2015的纵坐标为().(第9题)【小结】此类题主要考查坐标的变化规律.解决此类问题的关键是利用数形结合的思想发现运动的规律.综合其用勾股定理等知识点解出相应的问题.类型一1. (2015·山东烟台)将一组数√3,√6,3,2√3,√15,…,3√10,按下面的方式进行排列:√3,√6,3,2√3,√15;3√2,√21,2√6,3√3,√30;……若2√3的位置记为(1,4),2√6的位置记为(2,3),则这组数中最大的有理数的位置记为().A. (5,2)B. (5,3)C. (6,2)D. (6,5)2. (2015·湖北咸宁)观察分析下列数据:0,-√3,√6,-3,2√3,-√15,3√2,…,根据数据排列的规律得到第16个数据应是.(结果需化简)3. (2015·贵州铜仁)一列数:0,-1,3,-6,10,-15,21,…,按此规律第n个数为.4. (2015·甘肃白银)观察下列各式:13=12,13+23=32,13+23+33=62,13+23+33+43=102,……猜想13+23+33+…+103=.类型二5. (2015·湖北武汉)观察下列一组图形中点的个数,其中第1个图中共有4个点,第2个图中共有10个点,第3个图中共有19个点…按此规律第5个图中共有点的个数是().(第5题)A. 31B. 46C. 51D. 666. (2015·湖南娄底)如图是一组有规律的图案,第1个图案由4个▲组成,第2个图案由7个▲组成,第3个图案由10个▲组成,第4个图案由13个▲组成,…,则第n(n为正整数)个图案由个▲组成.(第6题)7. (2015·广东深圳)如图,下列图形是将正三角形按一定规律排列,则第5个图形中所有正三角形的个数有.…(第7题)类型三8. (2015·湖南邵阳)如图,A点的初始位置位于数轴上的原点,现对A点做如下移动:第1次从原点向右移动1个单位长度至B点,第2次从B点向左移动3个单位长度至C点,第3次从C点向右移动6个单位长度至D点,第4次从D点向左移动9个单位长度至E 点,…,依此类推,这样至少移动次后该点到原点的距离不小于41.(第8题)9. (2015·甘肃天水)如图,一段抛物线y=-x(x-1)(0≤x≤1)记为m1,它与x轴交点为O,A1,顶点为P1;将m1绕点A1旋转180°得m2,交x轴于点A2,顶点为P2;将m2绕点A2旋转180°得m3,交x轴于点A3,顶点为P3,…,如此进行下去,直至得m10,顶点为P10,则P10的坐标为().(第9题)类型四10. (2015·四川遂宁)已知:如图,在△ABC中,点A1,B1,C1分别是BC,AC,AB的中点,A2,B2,C2分别是B1C1,A1C1,A1B1的中点,依此类推….若△ABC的周长为1,则△A n B n C n的周长为.(1)(2)(3)(第10题)11. (2015·江苏淮安)如图,顺次连接边长为1的正方形ABCD四边的中点,得到四边形A1B1C1D1,然后顺次连接四边形A1B1C1D1的中点,得到四边形A2B2C2D2,再顺次连接四边形A2B2C2D2四边的中点,得到四边形A3B3C3D3,…,按此方法得到的四边形A8B8C8D8的周长为.(第11题)12. (2015·广东佛山)(1)证明三角形中位线定理:三角形的中位线平行于第三边,且等于第三边的一半;[要求根据图(1)写出已知、求证、证明;在证明过程中,至少有两处写出推理依据(“已知”除外)](2)如图(2),在▱ABCD中,对角线焦点为O,A1,B1,C1,D1分别是OA,OB,OC,OD的中点,A2,B2,C2,D2分别是OA1,OB1,OC1,OD1的中点,…,以此类推.若▱ABCD的周长为1,直接用算式表示各四边形的周长之和l;(3)借助图形(3)反映的规律,猜猜l可能是多少?(1)(2)(3) (第12题)参考答案【真题精讲】2. A解析:(1-x)(1+x)=1-x2,(1-x)(1+x+x2)=1+x+x2-x-x2-x3=1-x3,…,依此类推(1-x)(1+x+x2+…+x n)=1-x n+1.3.方法一:由图形可得出:摆放一个矩形实线长为3,摆放2个矩形实线长为5,摆放3个矩形实线长为8,摆放4个矩形实线长为10,摆放5个矩形实线长为13,即第偶数个矩形实线部分在前一个的基础上加2,第奇数个矩形实线部分在前一个的基础上加3,∵摆放2015个时,相等于在第1个的基础上加1007个2,1006个3,∴摆放2015个时,实线部分长为3+10072+10063=5035.故答案为5035.方法二:第①个图实线部分长 3,第②个图实线部分长 3+2,第③个图实线部分长 3+2+3,第④个图实线部分长 3+2+3+2,第⑤个图实线部分长 3+2+3+2+3,第⑥个图实线部分长 3+2+3+2+3+2,……从上述规律可以看到,对于第n个图形,当n为奇数时,第n个图形实线部分长度为4. 8解析:∵△OAA1为等腰直角三角形,OA=1,∴AA1=OA=1,OA1=√2OA=√2.∵△OA1A2为等腰直角三角形,∴A1A2=OA1=√2,OA2=√2OA1=2.∵△OA2A3为等腰直角三角形,∴A2A3=OA2=2,OA3=√2OA2=2√2.∵△OA3A4为等腰直角三角形,∴A3A4=OA3=2√2,OA4=√2OA3=4.故答案为4.5. D解析:由图可知,每4个数为一个循环组依次循环, 2013÷4=503……1,∴2013是第504个循环组的第2个数.∴从2013到2015再到2015,箭头的方向是.故选D.7. A解析:∵正方形ABCD,点A(1,3),B(1,1),C(3,1),∴M的坐标变为(2,2).∴根据题意得,第1次变换后的点M的对应点的坐标为(2-1,-2),即(1,-2),第2次变换后的点M的对应点的坐标为(2-2,2),即(0,2),第3次变换后的点M的对应点的坐标为(2-3,-2),即(-1,-2),第2015次变换后的点M的对应点的坐标为(2-2015,2),即(-2012,2).故答案为A.8. D解析:本题根据一次函数函数图象上点的坐标性质得出B点坐标变化规律进而得出图形面积变化规律是解题关键.根据图象上点的坐标性质得出点B1,B2,B3,…,B n,B n+1各点坐标,进而利用相似三角形的判定与性质得出S1,S2,S3,…,S n,进而得出答案9. D解析:∵∠A2OC2=30°,OA1=OC2=3,【课后精练】1. C2.-3√54. 552解析:本题的规律为:从1开始,连续n个数的立方和=(1+2+3+…+n)2.5. B6. 3n+17. 485解析:本题考查图形的变化规律.由图可以看出:第一个图形中5个正三角形,第二个图形中53+2=17个正三角形,第三个图形中173+2=53个正三角形,由此得出第四个图形中533+2=161个正三角形,第五个图形中1613+2=485个正三角形.8. 289. (9.5,-0.25)12. (1)已知:在△ABC中,D,E分别是边AB,AC的中点, 证明:如图,延长DE至F,使EF=DE,(第12题)∵E是AC的中点,∴AE=CE.在△ADE和△CFE中,∴△ADE≌△CFE(SAS).∴AD=CF(全等三角形对应边相等),∠A=∠ECF(全等三角形对应角相等).∴AD∥CF.∵点D是AB的中点,∴AD=BD.∴BD=CF且BD∥CF.∴四边形BCFD是平行四边形(一组对边平行且相等的四边形是平行四边形).∴DF∥BC且DF=BC(平行四边形的对边平行且相等).。

中考数学专题复习找规律问题之周期型模型

中考数学专题复习找规律问题之周期型模型

中考数学专题复习找规律问题之周期型模型学校:___________姓名:___________班级:___________考号:___________评卷人得分一、单选题1.如图,一个机器人从坐标原点O点出发,向正东方向走3米到达A1点,再向正北方向走6米到达A2点,再向正西方向走9米到达A3点,再向正南方向走12米到达A4点,再向正东方向走15米到达A5点,…….按此规律走下去,当机器人走到A7点时,它的位置可表示为()(单位长度为1米)A.(-21,18)B.(9,12)C.(-12,12)D.(-21,12)2.如图所示,直线3333y x=+与y轴相交于点D,点A1在直线3333y x=+上,点B1在x轴,且∆OA1B1是等边三角形,记作第一个等边三角形;然后过B1作B1A2∥OA1与直线3333y x=+相交于点A2,点B2在x轴上,再以B1A2为边作等边三角形A2B2B1,记作第二个等边三角形;同样过B2作B2A3∥OA1与直线3333y x=+相交于点A3,点B3在x轴上,再以B2A3为边作等边三角形A3B3B2,记作第三个等边三角形;∥依此类推,则第n个等边三角形的顶点A纵坐标为()A.1n-B.2n-C.1n-3⨯D.2n-3⨯3.下表中的数字是按一定规律填写的,则a b+的值是()1235813a34⋯⋯2358132134b⋯⋯A.55B.66C.76D.1104.如图,下列图形都是由几个黑色和白色的正方形按一定规律组成,图∥中有2个黑色正方形,图∥中有5个黑色正方形,图∥中有8个黑色正方形,图∥中有11个黑色正方形,…,依此规律,图n中黑色正方形的个数是()A.2n B.3n C.21n-D.31n-5.在下面各正方形中的四个数之间都有相同的规律,根据此规律,m的值是()A.128B.120C.112D.1026.下列图形都是由同样大小的小圆圈按一定规律所组成的,其中第∥个图形中一共有4个小圆圈,第∥个图形中一共有10个小圆圈,第∥个图形中一共有19个小圆圈,…,按此规律排列,则第∥个图形中小圆圈的个数为()A.31B.46C.64D.857.观察下列三行数:第一行:2、4、6、8、10、12……第二行:3、5、7、9、11、13……第三行:1、4、9、16、25、36……设x、y、z分别为第一、第二、第三行的第100个数,则22x y z-+的值为()A.9999B.10001C.20199D.200018.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第一次从原点O运动到点1(1,1)P,第二次运动到点2(2,0)P,第三次运动到3(3,2)P-,⋯,按这样的运动规律,第2021次运动后,动点2021P的纵坐标是()A.1B.2C.2-D.0评卷人得分二、填空题9.根据表中数字的规律,则代数式()x y x--的值是__.2468512177237228x y10.一列数1a,2a,3a,…,na满足11a=-,2111aa=-,3211aa=-,…,111nnaa-=-,则2a=__________;1232020a a a a++++=__________,1232020a a a a⨯⨯⨯⨯=__________.11.如图,1条直线将平面分成两个部分,2条直线最多可以将平面分成4个部分,3条直线最多可以将平面分成7个部分,4条直线最多可以将平面分成11个部分.现有n 条直线最多可以将平面分成2017个部分,则n的值为______.12.如图,在平面直角坐标系中,等腰直角三角形1OAA的直角边OA在x轴上,点1A 在第一象限,且1OA=,以点1A为直角顶点,1OA为一直角边作等腰直角三角形12OA A,再以点2A为直角顶点,2OA为直角边作等腰直角三角形23OA A⋯依此规律,则点2021A的坐标是__.13.如图,在平面直角坐标系中,等腰直角三角形OA1A2的直角边OA1在y轴的正半轴上,且OA1=A1A2=1,以OA2为直角边作第二个等腰直角三角形OA2A3,以OA3为直角边作第三个等限直角三角OA3A4,…,依此规律,得到等腰直角三角形OA2020A2021,则点A2021的坐标为_____________.14.用棱长相同的小正方体摆成如图所示的几何体,第1层有1个正方体,第2层有3个正方体,第3层有6个正方体,按图中摆放的方法类推,第20层有_________个正方体15.如图,“海春书局”把WIFI密码做成了数学题.小红在海春书局看书时,思索了一会儿,输入密码,顺利地连接到了“海春书局”的网络,那么她输入的密码是__________.16.观察下面一列单项式:2345,2,4,8,16,x x x x x---⋅⋅⋅,根据你发现的规律写出第100个单项式_______.17.定义一种新运算:“⊗”观察下列各式:232339⊗=⨯+=()313318⊗-=⨯-=4443416⊗=⨯+= ()5353312⊗-=⨯-=,则a b⊗=______(用含a、b的代数式表示)18.如图,直线l为3y x=,过点1(1,0)A作11A B x⊥轴,与直线l交于点1B,以原点O 为圆心,1OB长为半径画圆弧交x轴于点2A;再作22A B x⊥轴,交直线l于点2B,以原点O为圆心,2OB长为半径画圆弧交x轴于点3A;⋯⋯,按此作法进行下去,则点nA 的坐标为__.19.观察一列数:12,34-,56,78-,⋯,按此规律,这一列数的第2022个数为__.20.将黑色圆点按如图所示的规律进行排列:图中黑色圆点的个数依次为:1,3,6,10,……,将其中所有能被3整除的数按从小到大的顺序重新排列成一组新数据,则新数据中的第10个数为______,第55个数为______.21.如图,矩形OABC 在平面直角坐标系中,点B 的坐标是(﹣2,1),过点A 作1AB OB ∥,交x 轴于B 1,过点B 1作A 1B 1∥x 轴交直线AC 于A 1,过点A 1作直线121A B AB ∥,交x 轴于B 2,过点B 2作A 2B 2∥x 轴交直线AC 于A 2,……,则A 2021的坐标是 __________________.22.法国著名数学家笛卡尔在蜘蛛戒网的启示下创建了数对与直角坐标系.如图,一只蜘蛛先以O 为起点结六条线OA ,OB ,OC ,OD ,OE ,OF 后,再从线OA 上某点开始按逆时针方向,依次在OA ,OB ,OC ,OD ,OE ,OF ,OA ,OB ,OC ,OD ,…,上结网,若将各线上的结点依次记为1,2,3,4,5,6,7,8,…,那么,第2021个结点在线________上.23.在庆祝建党“100周年”的活动中,某同学用围棋棋子按照某种规律摆成如图所示的“100”字样、如图∥有11个棋子,图∥有16个棋子,按这种规律,则第20个“100”字样的棋子个数是_____.24.一组数1,3,5,7,9,…,用含有n的式子表示这组数中的第n个数:_____.25.已知21=2,22=4,23=8,24=16,25=32,26=64……则22020﹣22019的个位数字是____.26.观察一列有规律的单项式:x,3x2,5x3,7x4,9x5…,它的第n个单项式是______.27.如图,是由一些小圆点组成的图形,第1个图形是由7个小圆点组成,第2个图形是由13个小圆点组成,第3个图形是由19个小圆点组成,…,按照这样的规律,由181个小圆点组成的是第_____个图形.评卷人得分三、解答题28.规律探究:15×15=1×2×100+25=225;25×25=2×3×100+25=625;35×35=3×4×100+25=1225;(1)第4行为;(2)用含n的式子表示规律并证明.29.若干个有规律的数,排列如下:试探究:(1)第2012个数在第几行?这个数是多少?(每行的数都是从左往右数)(2)写出第n行第k个数的代数式;(用含n,k的式子表示)(3)求第2012个数所在行的所有数之和S.30.将连续的奇数1,3,5,7,9,……排成如图所示的数表.(1)写出数表所表示的规律;(至少写出4个)(2)若将方框上下左右移动,可框住另外的9个数.若9个数之和等于297,求方框里中间数是多少?参考答案:1.C 【解析】 【分析】根据题意知:13OA =,1232A A =⨯ ,2333A A =⨯,可得规律:13n n A A n -=,根据规律可以得到A 7的横坐标和纵坐标. 【详解】解:根据题意,得13OA =,1232A A =⨯ ,2333A A =⨯,可得规律:13n n A A n -=,当机器人走到A 7点时,其横坐标为3-9+15-21=-12;纵坐标为6-12+18=12, 故点A7坐标为(-12,12) 故选择:C . 【点睛】本题考查点的坐标变化,根据题意确定横坐标和纵坐标的变化规律是解决问题的关键. 2.D 【解析】 【分析】可设直线与x 轴相交于C 点.通过求交点C 、D 的坐标可求∥DCO =30°.根据题意得△COA 1、△CB 1A 2、△CB 2A 3…都是等腰三角形,且腰长变化有规律.在正三角形中求高即可得解. 【详解】解:设直线与x 轴相交于C 点.令x =0,则y =33;令y =0,则x =-1. ∥OC =1,OD =33.∥tan∥DCO =33OD OC =, ∥∥DCO =30°. ∥∥OA 1B 1是正三角形, ∥∥A 1OB 1=60°. ∥∥CA 1O =∥A 1CO =30°, ∥OA 1=OC =1.∥第一个正三角形的高=1×sin60°=32; 同理可得:第二个正三角形的边长=1+1=2,高=2×sin60°=3; 第三个正三角形的边长=1+1+2=4,高=4×sin60°=23; 第四个正三角形的边长=1+1+2+4=8,高=8×sin60°=43; …第n 个正三角形的边长=2n -1,高=2n -2×3. ∥第n 个正三角形顶点An 的纵坐标是2n -2×3. 故选:D . 【点睛】本题是一次函数综合题型,主要考查了等腰三角形的性质,一次函数图象上点的坐标特征. 3.C 【解析】 【分析】根据表格可以得到每行数字的排列规律,然后算出a 、b 的值,最后代入求出a +b 的值,即可判断选项. 【详解】观察可得:第一行从第三个数开始,每个数都等于前面两个数的和,第二行的规律与第一行相同.∥81321a =+=,213455b =+= ∥215576a b +=+= 故选C . 【点睛】此题为数字型规律探索问题,解题关键是发现数字的变化规律.4.D【解析】【分析】观察图中黑色正方形的个数,1n =对应的个数为231=-;2n =对应的个数为561231=-=⨯-;3n =对应的个数为891331=-=⨯-;4n =对应的个数为11121341=-=⨯-;进而可推导出一般性规律.【详解】解:图∥中有231131=-=⨯-个黑色正方形;图∥中有561231=-=⨯-个黑色正方形;图∥中有891331=-=⨯-个黑色正方形;图∥中有11121341=-=⨯-个黑色正方形;依此规律,图n 中有31n -个黑色正方形故选D .【点睛】本题考查了图形规律的探究.解题的关键在于推导规律.5.A【解析】【分析】观察四个正方形,可得到规律,每个正方形中左上角的数为连续的偶数,右上角的数比左上角的数大3,左下角的数是右上角的数的相反数,右下角的数=右上角的数与左下角的数的绝对值的乘积+左上角的数-1,依此计算即可求解.【详解】解:观察四个正方形,可得到规律:每个正方形中左上角的数为从0开始的连续的偶数,右上角的数比左上角的数大3,左下角的数是右上角的数的相反数,右下角的数=右上角的数与左下角的数的绝对值的乘积+左上角的数-1,∥m =11×11-+8-1=128,故选:A .【点睛】本题考查了数字的变化规律,能够根据所给表格,发现数字之间的规律是解题的关键. 6.C【解析】【分析】先分别观察给出的四个图形中,小圆圈的个数,找到规律:第n 个图形小圆圈个数为:(1)(2)2n n +++n 2,即可求解本题. 【详解】解:通过观察,得到小圆圈的个数分别是:第∥图形小圆圈个数为:(12)22+⨯+12=4, 第∥个图形小圆圈个数为:(13)32+⨯+22=10, 第∥个图形小圆圈个数为:(14)42+⨯+32=19, 第∥个图形小圆圈个数为:(15)52+⨯+42=31, …, 所以第n 个图形小圆圈个数为:(1)(2)2n n +++n 2, 第∥个图形小圆圈个数为(61)(62)2+++62=64; 故选:C .【点睛】 本题考查的是图形与规律,从图形中读取我们需要的数据,并进行规律的探寻是解题的关键.7.C【解析】【分析】总结第∥,第∥,第∥行的变化规律,分别求出x ,y ,z 的值即可计算.【详解】解:观察第∥行:2、4、6、8、10、12、…∥第100个数为100×2=200,即x =200,观察第∥行:3、5、7、9、11、13、…∥第100个数为100×2+1=201,观察第∥行:1、4、9、16、25、36、…∥第100个数是1002=10000,即x =200、y =201、z =10000,∥2x ﹣y +2z =20199,故选:C .【点睛】本题主要考查的是数字的变化规律,总结归纳出变化规律是解题的关键.8.B【解析】【分析】观察图象,结合第一次从原点O 运动到点1(1,1)P ,第二次运动到点2(2,0)P ,第三次运动到3(3,2)P -,⋯,运动后的点的坐标特点,分别得出点P 运动的横坐标和纵坐标的规律,再根据循环规律可得答案.【详解】解:观察图象,结合第一次从原点O 运动到点1(1,1)P ,第二次运动到点2(2,0)P ,第三次运动到3(3,2)P -,⋯,运动后的点的坐标特点,由图象可得纵坐标每6运动组成一个循环:1(1,1)P ,2(2,0)P ,3(3,2)P -,4(4,0)P ,()55,2P ,()66,0P ⋯202163365÷=⋯,∴经过第2021次运动后,动点P 的坐标与5P 坐标相同,为(5,2),故经过第2021次运动后,动点P 的纵坐标是2.故选:B .【点睛】本题考查了规律型点的坐标,数形结合并从图象中发现循环规律是解题的关键. 9.-398【解析】【分析】根据图中的规律可得8(1)x y +=,求出x 与y 可得答案.【详解】解:2521=+,12522=⨯+;21741=+,721744=⨯+;23761=+,2283766=⨯+;28165x ∴=+=,6588528y =⨯+=,()65(52865)398x y x --=--=-.故答案为:398-.【点睛】考查了规律型:数字的变化类,关键是由图形得到第二行左边的数比第一行数的平方大1,第二行右边的数=第二行左边的数×第一行的数+第一行的数.10. 12 201721 【解析】【分析】根据题意,可以求出前几项的值,从而发现这列数的变化特点,从而可以求得所求式子的值.【详解】解:由题意可得,当11a =-时,2111111(1)2a a ===---, 321121112a a ===--,43111112a a ===---, …∥2020÷3=673…1,∥123202012017(12)673(1)22a a a a ++++=-++⨯+-=, 67312320201[(1)2](1)12a a a a ⨯⨯⨯⨯=-⨯⨯⨯-=. 故答案为:12,20172, 1. 【点睛】 本题考查了数字的变化类,明确题意,发现数字的变化特点是解题的关键.11.63【解析】【分析】n 条直线最多可将平面分成()11123112S n n n =+++⋯+=++,依此可得等量关系:n 条直线最多可将平面分成2017个部分,列出方程求解即可.【详解】解:依题意有:()11120172n n ++=, 整理得,240320n n +-=,所以()()64630n n +-=,解得164(n =-不合题意舍去),263n =.答:n 的值为63,故答案为:63.【点睛】本题考查了规律型:图形的变化类,解一元二次方程,得到分成的最多平面数的规律是解决本题的难点.12.()101010102,2--【解析】【分析】首先根据图形的变化得出OAn 的变化规律,判断出点A 2021的所在象限,再求出其坐标即可.【详解】解:由已知,点A 每次旋转转动45°,则转动一周需转动360845︒=︒(次), 而22111=2OA =+, ()()()222222=2=2OA =+, ()322322=22=2OA =+,…,()=2nn OA (n 为正整数), 即每次转动点A 到原点的距离变为转动前的2倍,202125285=⨯+,∴点2021A 的在第三象限的角平分线上,∥20212021(2)OA =,设点A 2021(x ,x ),其中x <0,∥()22021222x x ⎡⎤+=⎢⎥⎣⎦, ∥2202122x =,∥220202x =,∥10102x =-,∥点A 2021的坐标是()101010102,2--【点睛】本题是平面直角坐标系下的规律探究题,除了研究动点变化的相关数据规律,还应该注意各个象限内点的坐标符号.13.(0,﹣21010)【解析】【分析】根据题意,利用等腰直角三角形的性质,勾股定理,坐标系中点与象限的关系,确定一部分点的坐标,从坐标中寻找规律,再按规律计算即可.【详解】解:∥等腰直角三角形OA 1A 2的直角边OA 1在y 轴的正半轴上,且OA 1=A 1A 2=1, ∥A 1(0,1),A 2(1,1);根据勾股定理得:OA 2=2211=2+,∥OA 3=2OA 2=2,∥A 3(2,0),A 4(2,﹣2),根据勾股定理得:OA 4=2222=22+,∥OA 5=2OA 4=4,∥A 5(0,﹣4),∥A 6(﹣4,﹣4),根据勾股定理得:OA 6=2OA 5=42,∥OA 7=2OA 6=8,∥A 7(﹣8,0),A 8(﹣8,﹣8),根据勾股定理得:OA 8=2OA 7=82,∥OA 9=2OA 8=16,∥A 9(0,16),∥坐标的循环节为8,∥2021÷8=252…5,∥A 2021的坐标与A 5(0,﹣4)的规律相同,∥﹣4=﹣22=5122--,∥A 2021的纵坐标为2021122--=﹣21010,∥A 2021的坐标为(0,﹣21010),故答案为:(0,﹣21010).【点睛】本题考查了坐标系中坐标的变化规律,等腰直角三角形的性质,勾股定理,坐标的特点熟练掌握等腰直角三角形的性质,勾股定理灵活运用一般与特殊的思想,构造幂运算是解题的关键.14.210【解析】【分析】根据层数与正方体个数推导一般规律,第n 层有()1231n n +++⋅⋅⋅+-+个正方体,代值计算求解即可.【详解】解:第1层有1个正方体;第2层有123+=个正方体;第3层有12+36+=个正方体;依次类推,可知第n 层有()1231n n +++⋅⋅⋅+-+=(1)2n n +个正方体; ∥第20层有123192200(2021201)+++⋅⋅⋅++=⨯+=个正方体 故答案为:210.【点睛】本题考查了图形下的数字类规律的探究.解题的关键在于总结一般规律.15.167288【解析】【分析】根据前面三个等式,寻找规律解决问题.【详解】解:由三个等式,得到规律: 635⊕⊗=301545,可知:6×5 3×5 (6+3)×5,276⊕⊗=124254,可知:2×6 7×6 (2+7)×6,834⊕⊗=321244,可知:8×4 3×4 (8+3)×4,∥298⊕⊗=2×8 9×8 (2+9)×8=167288.故答案为:167288.【点睛】本题考查数字的变化规律,能够根据所给的式子,探索出数字之间的联系是解题的关键. 16.991002x【解析】【分析】根据符号的规律:n 为奇数时,单项式为负号,n 为偶数时,单项式为正号;系数的绝对值的规律:第n 个对应的单项式的系数的绝对值是2n −1;指数的规律:第n 个对应的单项式的x 指数是n ,据此解答即可.解:根据题干单项式,可知:n为奇数时,单项式为负号,n为偶数时,符号为正号,所以第100个单项式为正号;系数的绝对值的规律:第n个对应的单项式的系数的绝对值是2n−1,所以第100个单项式对应的系数的绝对值是299;指数的规律:第n个对应的单项式的x指数是n,所以第100个单项式对应的x指数是100,故第100个单项式是299x100.故答案为:299x100.【点睛】本题考查了单项式表示规律,确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.分别找出单项式的系数和次数的规律也是解决此类问题的关键.17.3a+b【解析】【分析】根据所给算式总结规律解答即可.【详解】⊗=⨯+=,解:∥232339()⊗-=⨯-=,313318⊗=⨯+=,4443416()⊗-=⨯-=,5353312∥a b⊗=3a+b,故答案为:3a+b.【点睛】本题考查了规律型-数字的变化类,通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.n-18.1(2,0)【解析】依据直线l 为3y x =,点1(1,0)A ,11A B x ⊥轴,可得2(2,0)A ,同理可得,3(4,0)A ,4(8,0)A ,…,依据此规律可得点n A 的坐标为()12,0n -.【详解】解:直线l 为3y x =,点1(1,0)A ,11A B x ⊥轴,∴当1x =时,3y =,即1(1,3)B ,11tan 3A OB ∴∠=,1160AOB ∴∠=︒,1130A B O ∠=︒,1122OB OA ∴==,以原点O 为圆心,1OB 长为半径画圆弧交x 轴于点2A ,2(2,0)A ∴,同理可得,3(4,0)A ,4(8,0)A ,⋯,∴点n A 的坐标为1(2,0)n -,故答案为:1(2,0)n -.【点睛】本题主要考查了一次函数图象上点的坐标特征,以及点的坐标的规律性,解题时注意:直线上任意一点的坐标都满足函数关系式()0y kx b k =+≠,在找规律时,A 点的横坐标的指数与A 所处的位数容易搞错,应注意.19.40434044- 【解析】【分析】根据前几个数的变化规律得到第n 个数为121(1)()2n n n+--,据此即可解答. 【详解】解:观察一列数:12,34-,56,78-,⋯,可得变化规律为:第n 个数为121(1)()2n n n+--, ∥第2022个数是40434044-, 故答案为:40434044-. 【点睛】 本题考查数字类规律探究,仔细观察,找到数字变化规律是解答的关键.20. 120 3486【解析】【分析】首先得到前n 个图形中每个图形中的黑色圆点的个数,得到第n 个图形中的黑色圆点的个数为(1)2n n +,再判断其中能被3整除的数,得到每3个数中,都有2个能被3整除,再计算出第10和55个能被3整除的数所在组为原数列中的个数,代入计算即可.【详解】第∥个图形中的黑色圆点的个数为:1,第∥个图形中的黑色圆点的个数为:2(21)32⨯+=, 第∥个图形中的黑色圆点的个数为:3(31)62⨯+=, 第∥个图形中的黑色圆点的个数为:4(41)102⨯+=, ……第n 个图形中的黑色圆点的个数为(1)2n n ⨯+, ∥这列数为1,3,6,10,15,21,28,36,45,55,66,78,91,...,∥其中每3个数中,都有2个能被3整除,10÷2=5(组),∥第10个能被3整除的数为原数列中的个数为5×3=15(个),∥15(151)2⨯+=120, ∥55÷2=27(组)……1,∥第55个能被3整除的数为原数列中的个数为27×3+2=83(个)∥83(831)2⨯+=3486, 故答案为:120,3486【点睛】此题考查了图形类的规律变化,通过归纳与总结,得到其中的规律是解题关键. 21.(22020﹣2,22021)【解析】【分析】根据平行四边形的性质及判定可得四边形AB 1OB 是平行四边形,从而推出B 1O =CO =AB =2,再根据直线之间的垂直和平行关系以及相似三角形的判定定理得到∥AOC ∥∥A 1B 1C ,∥AOB 1∥∥A 1B 1B 2,∥A 1B 1C ∥∥A 2B 2C ,利用相似三角形的性质解得A 1B 1=2,B 1B 2=4,A 2B 2=4,再根据点的坐标特征寻找出规律,最后运用即可解答.【详解】解:∥四边形OABC 是矩形∥AB =CO ,且AB CO ∥,又∥1AB OB ∥,∥四边形AB 1OB 是平行四边形,∥B 1O =AB ,∥点B 的坐标是(﹣2,1),∥B 1O =CO =AB =2,∥A 1B 1∥x 轴,∥11A B AO ∥,∥∥AOC ∥∥A 1B 1C ,∥111AO CO A B CB =,即11124A B =,解得A 1B 1=2, ∥点A 1坐标为(22﹣2,2),又∥11A B AO ∥,∥∥AOB 1∥∥A 1B 1B 2,∥11211OB AO B B A B ==12, ∥B 1B 2=4,∥A 2B 2∥x 轴,∥2211A B A B ∥,∥∥A 1B 1C ∥∥A 2B 2C ,∥111222A B CB A B CB =48, ∥A 2B 2=4,∥点A 2(23﹣2,22),以此类推...,A 2021的坐标为(22020﹣2,22021),故答案为:(22020﹣2,22021).【点睛】本题主要考查了矩形的性质、平行四边形的性质与判定、相似三角形的判定与性质以及坐标规律等知识点,根据坐标特征、总结坐标规律成为解答本题的关键.22.OE【解析】【分析】根据点在射线上的排布顺序发现规律“射线上的数字以6为周期循环”,依此规律即可得出结论.【详解】解:根据数的排布发现:1在OA 上,2在OB 上,3在OC 上,4在OD 上,5在OE 上,6在OF 上,7在OA 上,…,射线上的数字以6为周期循环,∥2021÷6=336……5,∥2021与5在同一条射线上,即2021在射线OE 上.故答案为:OE .【点睛】本题考查了规律型中的数字的变化类,解题的关键是找出规律“射线上的数字以6为周期循环”.本题属于基础题,难度不大,解决该题型题目时,根据射线上数字的排布找出规律是关键.23.106【解析】找出规律:“1”的规律是:最先3个棋子,以后每次加1,第20个“100”中的“1”有:3+19=22(个)棋子;“0”的规律是:最先4个棋子,以后每次加2个,第20个“100”中的“0”有:4+19×2=42(个)棋子,从而可求得总的棋子数.【详解】由题意得:(3+19)+2×(4+19×2)=106(个)故答案为:106【点睛】本题考查了图形的规律,找出规律是本题的关键.24.21n -##-1+2n【解析】【分析】根据题意得:第1个数为1,第2个数为3221=⨯-,第3个数为5231=⨯-,第4个数为7241=⨯-,第5个数为9251=⨯-,……,由此发现规律,即可求解.【详解】解:根据题意得:第1个数为1,第2个数为3221=⨯-,第3个数为5231=⨯-,第4个数为7241=⨯-,第5个数为9251=⨯-,……,由此发现,第n 个数为21n -.故答案为:21n -【点睛】本题主要考查了数字类规律题,明确题意,准确得到规律是解题的关键.25.8【解析】【分析】通过观察可知每运算四次个位数循环一次,由此可知22020﹣22019的个位数与23的尾数相同.解:∵21=2,22=4,23=8,24=16,25=32,26=64,∴每运算四次个位数循环一次,∵22020﹣22019=22019(2﹣1)=22019,∵2019÷4=504…3,∴22020﹣22019的个位数与23的尾数相同,∴22020﹣22019的个位数字是8,故答案为:8.【点睛】本题考查数字的变化规律,能够通过所给数对个位数的特点,确定个位数的循环规律是解题的关键.26.()21nn x - 【解析】【分析】根据单项式的系数与次数的变化,探索个数与系数、次数的关系的一般性规律即可.【详解】 解:第1个单项式x 中,系数为1,次数为1;第2个单项式23x 中,系数为3,341221=-=⨯-,次数为2;第3个单项式35x 中,系数为5,561321=-=⨯-,次数为3;第4个单项式47x 中,系数为7,781421=-=⨯-,次数为4;第5个单项式59x 中,系数为9,9101521=-=⨯-,次数为5;依次类推,可知第n 个单项式的系数为21n -,次数为n ,单项式为()21nn x - 故答案为:()21nn x -. 【点睛】本题考查了单项式,数字规律的探究.解题的关键在于总结一般性规律.27.30【解析】【分析】首先分析题意,找到规律,并进行推导得出答案.解:观察分析可得:第1个图形有7个小圆点,7=6+1,第2个图形有13个小圆点,13=6×2+1,第3个图形有19个小圆点,19=6×3+1,…,第n个图形小圆点的个数为6n+1,所以6n+1=181,解得:n=30.故答案为:30【点睛】本题主要考查了图形类规律题,明确题意,准确得到规律是解题的关键.28.(1)45×45=4×5×100+25=2025(2)(10n+5)2=100n(n+1)+25,证明见解析【解析】【分析】(1)从给出的数据分析得,这些得出的结果最后两位都为25,百位以上2=1×2,6=2×3,12=3×4,…,依此类推得出规律:百位为n×(n+1).(2)直接利用已知数据变化规律进而得出符合题意的公式.(1)解:根据数据可分析出规律,个位数位5的整数的平方运算结果的最后2位一定是25,百位以上结果则为n×(n+1),∥第4个算式应为45×45=4×5×100+25=2025.(2)规律:(10n+5)2=100n(n+1)+25,证明:∥左边=100n2+100n+25,右边=100n2+100n+25,∥左边=右边,∥(10n+5)2=100n(n+1)+25.【点睛】本题考查规律型中的数字变化问题,本题的规律为个位数位5的整数的平方运算结果的最后2位一定是25,百位以上结果则为n×(n+1),难度一般.29.(1)第63行,这个数为358;(2)(﹣1)n+13k﹣1;(3)63312-.【解析】【分析】每一行的数的个数和行数都是相同的,奇数行的数字都是3n﹣1,偶数行的数字都是(﹣3)n﹣1,统一为(﹣1)n+13n﹣1;(1)设第2012个数在第n行,则1+2+3+…+n=(1)2n n+,估算得出答案即可;(2)有以上分析直接写出即可;(3)写出第2012个数所在行的所有数,进一步求和即可.(1)解:∥每一行的数的个数和行数都是相同的,奇数行的数字都是3n﹣1,偶数行的数字都是(﹣3)n﹣1,设行数为n,数字个数为k,k=1+2+3+…+n=(1)2n n+,当n=62时,62+2⨯(621)=1953;当n=63时,63+2⨯(631)=2016;∥62+2⨯(621)=1953<2012<63+2⨯(631)=2016,所以第2012个数在第63行,从左往右数第2012﹣1953=59个,这个数为358;(2)解:由以上分析可直接写出为(﹣1)n+13k﹣1;(3)解:∥S=1+3+32+ (362)∥3S=3+32+…+362+363∥由∥﹣∥得2S=363﹣1∥S =1+3+32+…+362=63312- . 【点睛】此题考查数字的变化规律,找出数字之间的联系,得出规律,解决问题.30.(1)见解析(2)方框里中间数是33【解析】【分析】(1)观察所给的数表即可得;(2)设方框里中间数为x ,则另外8个数为2x -,2x +,10x -,10x +,12x -,12x +,8x -,8x +,由题意得,221010121288297x x x x x x x x x -+-+-+++-+++-+++= 进行计算即可得.(1)解:规律有:∥第一列个位数都是1,∥每行只有5个奇数,∥每行相邻两个数的和是2的倍数,∥每列相邻的两个数相差10.(2)解:设方框里中间数为x ,则另外8个数为2x -,2x +,10x -,10x +,12x -,12x +,8x -,8x +,由题意得,221010121288297x x x x x x x x x -+-+-+++-+++-+++=9297x =,33x =,则方框里中间数是33.【点睛】本题考查了数字规律,一元一次方程,解题的关键是理解题意,掌握一元一次方程的应用.。

中考数学专题复习找规律问题之固定累加型

中考数学专题复习找规律问题之固定累加型

中考数学专题复习找规律问题之固定累加型学校:___________姓名:___________班级:___________考号:___________ 评卷人 得分一、单选题1.下面由火柴棒拼出的一列图形中,第1个图形有4根火柴棒,第2个图形有7根火柴棒,第3个图形有10根火荣棒…,则第7个图形有( )根火柴棒.A .16B .22C .15D .212.在平面直角坐标系中,正方形ABCD 的位置如图所示,点A 的坐标为()1,0,点D 的坐标为()0,2,延长CB 交x 轴于点1A ,作正方形111A B C C ;延长11C B 交x 轴于点2A ,作正方形2221A B C C ,…按这样的规律进行下去,第2021个正方形的面积为( )A .2020352⎛⎫⨯ ⎪⎝⎭B .2021352⎛⎫⨯ ⎪⎝⎭C .4040352⎛⎫⨯ ⎪⎝⎭D .4042352⎛⎫⨯ ⎪⎝⎭3.一组按规律排列的多项式:233547,,,,,a b a b a b a b +-+-其中第n (n 为正整数)个式子的次数是( ) A .nB .21n -C .31n -D .2n4.用同样大小的黑色棋子按如图所示的规律摆放:第一个图中有6枚棋子,第二个图中有9枚棋子,第三个图中有12枚棋子,第四个图中有15枚棋子,…若第n 个图中有2019枚棋子,则n 的值是( ). A .670 B .671C .672D .6735.电子跳蚤在数轴上的点K处,第一步从K向右跳1个单位到1K,第二步由1K向左跳2个单位到2K,第三步由2K向右跳3个单位到3K,第四步由3K向左跳4个单位到4K,…按以上规律跳了50步时电子跳蚤落在数轴上的点50K处,若50K所表示的数是-26.5,则电子跳蚤的初始位置点K所表示的数是()A.0B.-1C.-1.5D.1.56.已知2021个整数a1,a2,a3,…,a2020满足下列条件:a1=1,a2=﹣|a1+1|,a3=﹣|a2+1|,……a2020=﹣|a2019+1|,则a1+a2+a3+…+a2021的值为()A.0B.﹣1009C.﹣1011D.﹣20217.按一定规律排列的单项式a,222a-,333a,48a-,…,第n(n为正整数)个单项式是()A.(1)n nn na-B.1(1)n nn na+-C.(1)(1)n nn na-+D.1(1)(1)n nn na+-+8.给定一列按规律排列的数:4381,,,,325,则这列数的第9个数是()A.910B.95C.169D.20119.如图,图形都是由形状、大小完全相同的“●”按一定规律所组成,其中图①共有6个黑点,图①共有9个黑点,图①共有12个黑点…,按此规律排列,则图①中黑点的个数为()A.21B.24C.27D.30评卷人得分二、填空题10.根据表中数字的规律,则代数式()x y x--的值是__.2468512177237228x y11.某休闲广场的地面中间是1块正六边形地砖,周围是用正方形和正三角形地砖按如图方式依次向外铺设10圈而成,其中第1圈有6块正方形和6块正三角形地砖,则铺设该广场共用地砖__________块.12.用同样大小的黑色棋子按图所示的方式摆图案,按照这样的规律摆下去,第21个图案需要棋子_______枚.13.观察下列的“蜂窝图”2021个图案中的“”的个数是_______.14.观察下列图形:它们是按一定规律排列的,依照此规律,第n(n 为正整数)个图形中共有的点数是__________.15.将图中①的正方形剪开得到图①,图①中共有4个正方形﹔将图中一个正方形剪开得到图①.图①中共有7个正方形;将图①中一个正方形剪开得到图①,图①中共有10个正方形;…;如此下去.则图①中共有______________个正方形.16.如图,将n个边长都为1的正方形按如图所示摆放,点A 1,A 2,…,An 分别是正方形的中心,则n 个正方形重叠形成的重叠部分的面积和为_____.17.一列数6,8,10,12,14,16…,则第n 个数为 _______.18.如图,在平面直角坐标系中,将ABO 绕点A 顺时针旋转到11AB C △的位置,点B 、O 分别落在点1B 、1C 处,点1B 在x 轴上,再将11AB C △绕点1B 顺时针旋转到112A B C 的位置,点2C 在x 轴上,将112A B C 绕点2C 顺时针旋转到222A B C △的位置,点2A 在x 轴上,依次进行下去……若点3,02A ⎛⎫⎪⎝⎭,()0,2B ,则点2022B 的坐标为________.19.如图,①是一个三角形,分别连接这个三角形三边中点得到图①,再连接图①中间小三角形三边的中点得到图①,按这样的方法进行下去,第n 个图形中共有4005个三角形,则n 的值是_____________.20.如图是一组有规律的图案,第1个图形(如图1)由4个▲组成,第2个图形(如图2)由7个▲组成,第3个图形(如图3)由10个▲组成,第4个图形(如图4)由13个▲组成,……,则第6个图形由_____个▲组成,第n (n 为正整数)个图形由______个▲组成.21.如图,在平面直角坐标系中,点123,,,A A A ,都在x 轴正半轴上,点123,,,B B B ,都在直线y kx =上,1130B OA ∠=︒,112223334,,,A B A A B A A B A ∆∆∆,都是等边三角形,且11OA =,则点6B 的横坐标是_______.22.观察下列各式: (x ﹣1)(x +1)=x 2﹣1; (x ﹣1)(x 2+x +1)=x 3﹣1; (x ﹣1)(x 3+x 2+x +1)=x 4﹣1;……根据这一规律计算:22020+22019+22018+…+22+2+1的结果是___________________. 23.如图,在平面直角坐标系中,一动点从原点O 出发,沿着箭头所示方向,每次移动1个单位,依次得到点P 1(0,1),P 2(1,1),P 3(1,0),P 4(1,﹣1),P 5(2,﹣1),P 6(2,0),…,则点P 60的坐标是________.24.如图,所有正方形的中心均在坐标原点,且各边与x 轴或y 轴平行,从内到外,它们的边长依次为2,4,6,8,…顶点依次用A 1,A 2,A 3,A 4…表示,则顶点A 2021的坐标是________.评卷人得分三、解答题 25.把2100个连续的正整数1、2、3、…、2100,按如图方式排成一个数表,如图用一个正方形框在表中任意框住4个数,设左上角的数为x .(1)另外三个数用含x 的式子表示出来,从小到大排列是 ; (2)被框住4个数的和为416时,x 值为多少?(3)能否框住四个数和为324?若能,求出x 值,若不能,说明理由;(4)从左到右,第1至第7列各数之和分别为a 1、a 2、a 3、a 4、a 5、a 6、a 7,求7个数中最大的数与最小的数之差. 26.用火柴棒按下图中的方式搭图形.(1)按图示规律填空: 图形符号① ① ① ① ①火柴棒根数(2)按照这种方式搭下去,搭第n 个图形需要 根火柴棒? 27.请观察下列等式,找出规律并回答以下问题.111122=-⨯,1112323=-⨯,1113434=-⨯,1114545=-⨯,…… (1)按照这个规律写下去,第5个等式是:______;第n 个等式是:______.(2)①计算:1111 1223344950⨯⨯⨯⨯++++.①若a为最小的正整数,30b-=,求:()()()()()()()()111111122339797ab a b a b a b a b+++++++++++++.28.下列是用火柴棒拼出的一列图形.仔细观察,找出规律,解答下列各题:(1)第5个图中共有___________根火柴;(2)第n个图形中共有___________根火柴(用含n的式子表示);(3)请计算第2021个图形中共有多少根火柴?29.观察下列等式:111122=-⨯,1112323=-⨯,1113434=-⨯,将以上三个等式两边分别相加得:1111111113111223342233444++=-+-+-=-=⨯⨯⨯.(1)猜想并写出:1n(n1)+=.(2)直接写出下列各式的计算结果:①111112233420152016++++⨯⨯⨯⨯=;①111124466820142016++++⨯⨯⨯⨯=.(3)探究并解决问题:如果有理数a,b满足|a﹣2|+|1﹣b|=0,试求:1111(1)(1)(2)(2)(2015)(2015)ab a b a b a b++++++++++的值.30.亮亮和同学观察下面一列数,探求其规律:111111,,,,,,23456---,并解决了下面的问题,相信你也能解决这些问题.(1)写出这列数的第7,8,9,10四个数;(2)第2020个数是什么?(3)如果这一列数无限排列下去,与哪一个数越来越近?参考答案:1.B 【解析】 【分析】根据变化规律,后一个图形比前一个图形多3根火柴棒,然后写出第n 个图形的表达式从而可得结论. 【详解】解:第1个图形中有4根火柴棒; 第2个图形中有4+3=7根火柴棒; 第3个图形中有4+3×2=10根火柴棒; …第n 个图形中火柴棒的根数有4+3×(n -1)=(3n +1)根火柴棒 当n =7时,3n +1=21+1=22 故选:B 【点睛】本题是对图形变化规律的考查,比较简单,观察出后一个图形比前一个图形多3根火柴棒是解题的关键. 2.C 【解析】 【分析】先利用勾股定理求出AB =BC =AD ,再用三角形相似得出212253,()522A B A B ==,找出规律2021202120213()52A B =,即可求出第2021个正方形的面积. 【详解】解:①点A 的坐标为(1,0),点D 的坐标为(0,2), ①OA =1,OD =2,BC =AB =AD =5, ①正方形ABCD ,正方形A 1B 1C 1C , ①①OAD +①A 1AB =90°,①ADO +①OAD =90°, ①①A 1AB =①ADO , ①①AOD =①A 1BA =90°,①①AOD ①①A 1BA , ①1AO ODA B AB =, ①1125A B =, ①152A B =, ①1111352A B AC A B BC ==+=, 同理可得,222935()542A B ==, 同理可得,3333()52A B =,同理可得,2020202020203()52A B =, ①第2021个正方形的面积=2202114040335522-⎡⎤⎛⎫⎛⎫⨯=⨯⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦.故选:C . 【点睛】此题考查正方形的性质,坐标与图形性质,相似三角形的判定与性质,解题关键在于找到规律. 3.B 【解析】 【分析】根据根据第1个多项式为a b + ,第2个多项式为222132a b a b ⨯-=--,第3个多项式为332351a b a b ⨯-++=,第4个多项式为442471a b a b ⨯---=,第5个多项式为595251a b a b ⨯-+=+, 由此得到规律,即可求解.【详解】解:第1个多项式为211a b a b ⨯-+=+ 第2个多项式为222132a b a b ⨯-=-- 第3个多项式为332351a b a b ⨯-++= 第4个多项式为442471a b a b ⨯---= 第5个多项式为595251a b a b ⨯-+=+由此得到第n 个多项式为21n n a b -+第n (n 为正整数)个式子的次数是21n - . 故选:B 【点睛】本题主要考查了数字类规律题,明确题意,准确得到规律是解题的关键. 4.C 【解析】 【分析】仔细观察,可以发现,每一个图形中的棋子数比前一个图形多3个,根据这一规律得出第n 个图形中的棋子数与n 的关系,然后代入数值解方程即可求解. 【详解】解:观察发现:每一个图形中的棋子数比前一个图形多3个,所以第n 个图形中的棋子数为3+3n ,由3+3n =2019得:n =672, 故选:C . 【点睛】本题考查探索图形的变化规律、解一元一次方程,解答的关键是发现第n 个图形中棋子个数与n 的关系. 5.C 【解析】 【分析】根据题意,每跳动2次,向左平移1个单位,跳动50次,相当于在原数的基础上减了25,相应的等量关系为:原数字-25=-26.5. 【详解】解:设0K 点所对应的数为x ,由题意得:每跳动2次,向左平移1个单位,跳动50次,相当于在原数的基础上减了25, 则x -25=-26.5, 解得:x =-1.5.即电子跳蚤的初始位置0K 点所表示的数为-1.5. 故选C【点睛】本题考查了数轴、图形的变化规律,得到每跳动2次相对于原数的规律是解决本题的突破点.6.C【解析】【分析】根据题意,可以分别求得这列数的各项的数值,从而可以求得从a 3开始2个一循环,本题即可求解.【详解】解:①a 1=1,a 2=﹣|a 1+1|,a 3=﹣|a 2+1|,……a 2020=﹣|a 2019+1|,①a 2=-2,a 3=-1,a 4=0,a 5=-1,a 6=0,a 7=-1,……,a 2020=0,a 2021=-1,①从a 3开始2个一循环,①a 1+a 2+a 3+…+a 2021=(1-2)+(-1+0)×1009+(-1)=-1011.故选:C .【点睛】本题考查了绝对值,解题的关键是得到这列数从a 3开始2个一循环的规律. 7.B【解析】【分析】根据每一项的系数、字母指数的变化规律得出答案.【详解】解:a =(−1)2×1×1a 1,222a -=(−1)3×2×2 a 2,333a =(−1)4×3×3 a 3,48a -=(−1)5×4×4 a 4,…,第n (n 为正整数)为1(1)n n n na +-故选:B .【点睛】本题考查算术平方根,数字的变化美,探索和发现每一项的系数、字母指数的变化规律是得出正确答案的关键.8.B【解析】【分析】把数列4381,,,,325变2468,,,,2345,分别观察分子和分母的规律即可解决问题.【详解】解:把数列4381,,,,325变2468,,,,2345,可知分子是从2开始的连续偶数,分母是从2开始的连续自然数,则第n个数为21nn+所以这列数的第9个数是189105=,故选:B.【点睛】本题考查了数字类规律探索,将原式整理为2468,,,,2345,分别得出分子分母的规律是解本题的关键.9.B【解析】【分析】观察图形,找到图形中圆形个数的规律:第n个图形有3(n+1)个●,然后代入n=7求解即可.【详解】解:观察图形得:第1个图形有3+3×1=6个●,第2个图形有3+3×2=9个●,第3个图形有3+3×3=12个●,…第n个图形有3+3n=3(n+1)个●,当n=7时,3×(7+1)=24,即第7个图形中●的个数为24,故选:B .【点睛】本题考查了图形的变化类问题,解题的关键是仔细的读题并找到图形变化的规律,难度不大.10.-398【解析】【分析】根据图中的规律可得8(1)x y +=,求出x 与y 可得答案. 【详解】解:2521=+,12522=⨯+;21741=+,721744=⨯+;23761=+,2283766=⨯+;28165x ∴=+=,6588528y =⨯+=,()65(52865)398x y x --=--=-.故答案为:398-.【点睛】 考查了规律型:数字的变化类,关键是由图形得到第二行左边的数比第一行数的平方大1,第二行右边的数=第二行左边的数×第一行的数+第一行的数.11.661【解析】【分析】由题意得:从里向外的第1圈有6块正方形和6块正三角形地砖,第二圈有有6块正方形和18块正三角形地砖,此后每一圈都比前一圈多12个正三角形,再列式计算即可得到答案.【详解】解:由题意得:从里向外的第1圈有6块正方形和6块正三角形地砖,第二圈有有6块正方形和18块正三角形地砖,此后每一圈都比前一圈多12个正三角形,所以第10圈含有的正三角形的个数有6129114(个),所以铺设该广场共用地砖:6+6+12+6+122++6+129+610+1 61830425466789010211461661(块)故答案为:661【点睛】本题考查的是图形类的规律探究,掌握“从具体到一般的探究方法”是解本题的关键. 12.65【解析】【分析】图案1中,黑色棋子个数为5;图案2中,黑色棋子个数为53+;图案3中,黑色棋子个数为533++;得出规律,进而求解出图案21中,黑色棋子个数.【详解】解:图案1中,黑色棋子个数为5;图案2中,黑色棋子个数为5353153(21)+=+⨯=+⨯-;图案3中,黑色棋子个数为53353253(31)++=+⨯=+⨯-;得出规律为图案n 中,黑色棋子个数为53(1)n +⨯-; 当21n =时,黑色棋子个数为53(1)53(211)65n +⨯-=+⨯-=故答案为:65.【点睛】本题主要考察了总结规律.解题的关键在于是否能够根据数据的特征推导出规律. 13.6064【解析】【分析】 通过分析前面4个,可以发现后一个图形比前一个图形中的“”的个数多3个,利用此规律,即可出第2021个图案中的“”的个数. 【详解】解:通过观察可以发现:第1个有4个,第2个有7个,第3个有10个,第4个有13个,由此可知,后一个图形比前一个图形要多三个“”, 故第n 个图形中的“”的个数为:43(1)31n n +-=+个.当2021n =时,有3202116064⨯+=个.故答案为:6064.【点睛】本题主要是考查了图形类的规律问题,通过观察前几个图形,找到对应规律,进而求得第n 个图形对应的个数,这是解决此类问题的重点.14.61n -##-1+6n【解析】【分析】根据第1个图形中的点数为561=- ;第2个图形中的点数为11621=⨯- ;第3个图形中的点数为17631=⨯- ;发现规律,即可求解.【详解】解:第1个图形中的点数为561=- ;第2个图形中的点数为11621=⨯- ;第3个图形中的点数为17631=⨯- ;由此发现规律:第n (n 为正整数)个图形中的点数为61n -.故答案为:61n -【点睛】本题主要考查了图形类规律题,明确题意,准确得到规律是解题的关键.15.25【解析】【分析】根据图形的变化发现规律即可求解.【详解】解:图①中的正方形剪开得到图①,图①中共有3×1+1=4个正方形;将图①中一个正方形剪开得到图①,图①中共有3×2+1=7个正方形;将图①中一个正方形剪开得到图①,图①中共有3×3+1=10个正方形;……发现规律:第n 个图中共有正方形的个数为:3(n -1)+1=3n -2;则图①中共有正方形的个数为3×9-2=25.故答案为:25.【点睛】本题考查了规律型:图形的变化类,解决本题的关键是观察图形的变化寻找规律并利用规律.16.14n - 【解析】【分析】根据题意可得,阴影部分的面积是正方形的面积的14,已知两个正方形可得到一个阴影部分,则n 个这样的正方形重叠部分即为(n -1)个阴影部分的和.【详解】解:由题意可得一个阴影部分面积等于正方形面积的14,即是14, n 个这样的正方形重叠部分(阴影部分)的面积和为:()11144n n -⨯-=. 故答案为:14n -. 【点睛】本题考查了正方形的性质,解题的关键是得到n 个这样的正方形重叠部分(阴影部分)的面积和的计算方法,难点是求得一个阴影部分的面积.17.2n +4【解析】【分析】观察题目所给数字可以发现这一系列数字都是连续的正的偶数,只需要利用偶数的表示方法进行表示即可.【详解】解:观察题目可知:这列数是从6开始的连续的正的偶数,①第n 个数为2(n +2)=2n +4.故答案为:2n+4.【点睛】本题主要考查了数字类规律,解题的关键在于能够准确根据题意观察出数字间的规律.18.()6066,2【解析】【分析】由勾股定理可计算出AB的长,其周长为p=6,①AOB经过3次旋转后点B2的横坐标为OA+AB+OB=p=6,即为三角形的周长,纵坐标为2,即B2(6,2);再经过3次旋转后点B4的横坐标为2(OA+AB+OB)=2p=12,即为三角形的周长2倍,纵坐标为2,即B4(12,2);再经过3次旋转后点B6的横坐标为3(OA+AB+OB)=3p=18,即为三角形的周长的3倍,纵坐标为2,即B6(18,2);…;一般地,①AOB经过3n次旋转后点B2n的横坐标为n (OA+AB+OB)=np=6n,即为三角形的周长的n倍,纵坐标为2,B2n(6n,2).从而根据规律可求得B2022的坐标.【详解】①3,02A⎛⎫⎪⎝⎭,()0,2B①3,22OA OB==在Rt①AOB中,由勾股定理得:222235222 AB OA OB⎛⎫=+=+=⎪⎝⎭①①AOB的周长为35++2622p==①AOB经过3次旋转后点B2的横坐标为OA+AB+OB=p=6,即为三角形的周长,纵坐标为2,即B2(6,2);①AOB再经过3次旋转后点B4的横坐标为2(OA+AB+OB)=2p=12,即为三角形的周长2倍,纵坐标为2,即B4(12,2);再经过3次旋转后点B6的横坐标为3(OA+AB+OB)=3p=18,即为三角形的周长的3倍,纵坐标为2,即B6(18,2);…;一般地,经过3n次旋转后点B2n的横坐标为n(OA+AB+OB)=np=6n,即为三角形的周长的n倍,纵坐标为2,即B2n(6n,2).①2022是偶数①B2022(6066,2)6066,2故答案为:()【点睛】本题是平面直角坐标系中坐标规律探索问题,先由特殊情况出发,得出一般性规律,再回到特殊情况,体现了数学中的归纳思想,这是问题的关键.注意数形结合.19.1002【解析】【分析】分别数出图①、图①、图①中的三角形的个数,可以发现:第几个图形中三角形的个数就是4与几的乘积减去3.如图①中三角形的个数为9=4×3-3.按照这个规律即可求出第n个图形中有多少三角形,列方程可解决问题.【详解】解:分别数出图①、图①、图①中的三角形的个数,图①中三角形的个数为1=4×1-3;图①中三角形的个数为5=4×2-3;图①中三角形的个数为9=4×3-3;… 可以发现,第几个图形中三角形的个数就是4与几的乘积减去3.按照这个规律,第n个图形中共有三角形的个数为4n-3,即4n-3=4005,n=1002,故答案是1002.【点睛】本题主要考查学生对图形变化类这个知识点的理解和掌握,解答此类题目的关键是根据题目中给出的图形,数据等条件,通过认真思考,归纳总结出规律.20.19(3n+1)##(1+3n)【解析】【分析】仔细观察图形可知:第一个图形有3×2-3+1=4个三角形;第二个图形有3×3-3+1=7个三角形;第三个图形有3×4-3+1=10个三角形,据此进一步代入求得答案即可.【详解】解:观察发现:第一个图形有3×2-3+1=4个三角形;第二个图形有3×3-3+1=7个三角形;第三个图形有3×4-3+1=10个三角形;…第n 个图形有3(n +1)-3+1=3n +1个三角形;当n =6时,3n +1=3×6+1=19,故答案为:19;(3n +1).【点睛】此题考查了规律型:图形的变化类,对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.21.48【解析】【分析】设①1n n n B A A +的边长为n a ,根据直线的解析式得出30n n A OB ∠=︒,再结合等边三角形的性质及外角的性质即可得出30n n OB A ∠=︒,190n n OB A +∠=︒,从而得出13n n n B B a +=,由点1A 的坐标为(1,0),得到11a =,2112a =+=,31214a a a =++=,412318a a a a =+++=,⋯,12n n a ,即可解决问题. 【详解】解:过1B 作1B C x ⊥轴于C ,过2B 作2B D x ⊥轴于D ,过3B 作3B E x ⊥轴于E ,如图所示:设①1n n n B A A +的边长为n a ,则121212AC A C A A ==,232312A D A D A A ==,⋯, 1132B C a ∴=,2232B D a =,3332B E a =,⋯, 13(2B ∴,3)2, 点1B ,2B ,3B ,⋯是直线y kx =上的第一象限内的点, 33k ∴=, 30n n A OB ∠=︒,又①1n n n A B A +为等边三角形, 160n n n B A A +∴∠=︒, 30n n OB A ∴∠=︒,190n n OB A +∠=︒, 13n n n n B B OB a +∴==, 11OA =,∴点1A 的坐标为(1,0), 11a ∴=,2112a =+=,31214a a a =++=,412318a a a a =+++=,⋯, 12n n a , 632a ∴=,∴点6B 的横坐标为633324822a =⨯=, 故答案为:48.【点睛】本题考查了一次函数的性质、等边三角形的性质、规律型、以及三角形外角的性质等,解题的关键是找出规律13n n n n B B OB a +==.22.22021﹣1【解析】【分析】观察一系列等式得到一般性规律,利用得出的规律(x ﹣1)(xn +xn -1+…+x +1)=xn +1﹣1,把x =2,n =2020代入计算即可,【详解】解:根据题意得:(x ﹣1)(xn +xn -1+…+x +1)=xn +1﹣1,把x =2,n =2020代入得,22020+22019+22018+…+22+2+1=(2﹣1)(22020+22019+22018+…+22+2+1),=22021﹣1.故答案为:22021﹣1.【点睛】本题考查了平方差公式和多项式乘法公式在计算中的应用,熟练掌握相关计算法则是解题的关键.23.(20,0)【解析】【分析】根据P 1(0,1),P 2(1,1),P 3(1,0),P 4(1,﹣1),P 5(2,﹣1),P 6(2,0),…,可得到规律:P 3n (n ,0),据此即可得到答案.【详解】解:①P 3(1,0),P 6(2,0),P 9(3,0),…,①P 3n (n ,0),①当n=20时,P 60(20,0).故答案为:(20,0) .【点睛】本题是平面直角坐标系中点的规律问题,观察数据,找到规律是解题的关键.24.(-506,-506)【解析】【分析】根据正方形的性质找出部分A n点的坐标,根据坐标的变化找出变化规律“A4n+1(-n-1,-n-1),A4n+2(-n-1,n+1),A4n+3(n+1,n+1),A4n+4(n+1,-n-1)(n为自然数)”,依此即可得出结论.【详解】解:观察发现:A1(-1,-1),A2(-1,1),A3(1,1),A4(1,-1),A5(-2,-2),A6(-2,2),A7(2,2),A8(2,-2),A9(-3,-3),…,①A4n+1(-n-1,-n-1),A4n+2(-n-1,n+1),A4n+3(n+1,n+1),A4n+4(n+1,-n-1)(n为自然数),①2021=505×4+1,①A2021(-506,-506),故答案为:(-506,-506).【点睛】本题考查了规律型:点的坐标,解题的关键是找出变化规律“A4n+1(-n-1,-n-1),A4n+2(-n-1,n+1),A4n+3(n+1,n+1),A4n+4(n+1,-n-1)(n为自然数),”解决该题型题目时,根据点的坐标的变化找出变化规律是关键.25.(1)x+1、x+7、x+8;(2)x值为100;(3)不存在用正方形框出的四个数的和为324,见解析;(4)7个数中最大的数与最小的数之差为1800【解析】【分析】(1)根据数表的排列,可用含x的代数式表示出其它三个数;(2)根据四个数之和为416,可得出关于x的一元一次方程,解之即可得出x的值,再由x不在第7列即可得出结论;(3)根据四个数之和为324,可得出关于x的一元一次方程,解之即可得出x的值,再由x在第7列即可得出不存在用正方形框出的四个数的和为324;(4)根据数表的排布,可得出总共300行其每行最右边的数比最左边的数大6,用其×300即可得出结论.【详解】解:(1)观察数表可知:另外三个数分别为x+1、x+7、x+8.故答案为:x+1、x+7、x+8.(2)设正方形框出的四个数中最小的数为x,根据题意得:x+(x+1)+(x+7)+(x+8)=416,解得:x=100.①100=14×7+2,①100为第2列的数,符合题意.答:被框住4个数的和为416时,x值为100.(3)设正方形框出的四个数中最小的数为x,依题意得根据题意得:x+(x+1)+(x+7)+(x+8)=324,解得:x=77,①77=11×7,①77为第7列的数,不符合题意,①不存在用正方形框出的四个数的和为324.(4)本数表共2100个数,每行7个数,共排300行,即有7列,每列共300个数,①每一行最右边的数比最左边的数大6,①a7﹣a1=6×(2100÷7)=1800.答:7个数中最大的数与最小的数之差为1800.【点睛】本题考查了一元一次方程的应用以及规律型中数字的变化类,解题的关键是:(1)根据数表中数的规律找出其它三个数;(2)由四个数之和为416,列出一元一次方程;(3)由四个数之和为324,列出一元一次方程;(4)根据数表中数的规律,找出每行最右边数比最左边数大6.26.(1)4;6;8;10;12;(2)(2+2n)【解析】【分析】(1)由图形发现,后面的图形都比前面相邻的图形多2根火柴棒,由此计算得出答案即可;(2)利用表中的规律得出一般的规律即可.【详解】解:(1)填表如下:图形符号① ① ① ① ① 火柴棒根数4 6 8 10 12(2)搭第n 个图形需要(2n +2)根火柴.故答案为:(2n +2)【点睛】此题考查图形的变化规律,找出图形之间的数字运算规律,进一步利用规律解决问题. 27.(1)1115656=-⨯,()11111n n n n =-⨯++;(2)①4950;①1465119800 【解析】【分析】(1)根据规律可得第5个算式;根据规律可得第n 个算式;(2)①根据运算规律可得结果.①利用非负数的性质求出a 与b 的值,代入原式后拆项变形,抵消即可得到结果.【详解】 (1)根据规律得:第5个等式是1115656=-⨯,第n 个等式是()11111n n n n =-⨯++; (2)①11111223344950⨯⨯⨯⨯++++, 111111111223344950=-+-+-++-, 1150=-, 4950=; ①a 为最小的正整数,30b -=,1a ,3b =,原式111111324354698100=+++++⨯⨯⨯⨯⨯, 11111111111111(1)()()+()()23224235246298100=⨯-+⨯-+⨯-⨯-++⨯-, 1111111111(1)2324354698100=⨯-+-+-+-++-,1111(1)2299100=⨯+--, 1465119800=. 【点睛】本题主要考查了数字的变化规律,发现规律,运用规律是解答此题的关键.28.(1)16;(2)31n +;(3)6064【解析】【分析】(1)观察图形发现规律:每个图形比前一个图形多3根火柴,进而求解;(2)根据每个图形比前一个图形多3根火柴,总结规律即可;(3)将2021n =代入(2)中代数式求解即可.【详解】(1)根据图案可知,每个图形比前一个图形多3根火柴,第4个图案中火柴有13根,∴第5个图案中火柴有13316+=(根);故答案为:16;(2)当1n =时,火柴的根数是3114⨯+=;当2n =时,火柴的根数是3217⨯+=;当3n =时,火柴的根数是33110⨯+=;,所以第n 个图形中火柴有31n +,故答案为:31n +;(3)当2021n =时,3202116064⨯+=,所以第2021个图形中共有6064根火柴.【点睛】本题考查了规律型-图形的变化类,对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.通过分析找到各部分的变化规律后用一个统一的式子表示出变化规律是此类题目中的难点.29.(1)111n n -+;(2)①20152016;①10074032;(3)20162017. 【解析】(1)根据题目中的等式,可以写出相应的猜想;(2)①利用(1)中的结论得到原式=1-12+12-13+13-14+…+12015-12016,然后合并即可;①每个分数提14,然后利用(1)中的结论计算;;(3)根据|ab-2|+|1-b|=0,可以得到a、b的值,然后即可求得所求式子的值.【详解】解:(1)111 (1)1n n n n=-++;(2)①原式=1-12+12-13+13-14+…+12015-12016=1-12016=20152016;①原式=14(112⨯+123⨯+134⨯+…+110071008⨯)=14(1-12+12-13+13-14+…+11007-11008)=14(1-11008)=1007 4032;(3)①|a-2|+|1-b|=0,①a-2=0,1-b=0,解得a=2,b=1,①1111(1)(1)(2)(2)(2015)(2015) ab a b a b a b ++++++++++=1111... 21324320172016 ++++⨯⨯⨯⨯=1-12+12-13+13-14+…+12016-12017=1-1 2017=2016 2017.【点睛】本题考查了数字的变化类、非负数的性质、有理数的混合运算,解答本题的关键是明确题意题意,发现式子的特点,求出相应的值.30.(1)1111,,,78910--;(2)12020-;(3)0【解析】(1)根据题目中的数字,可以发现奇数个数都是负数,偶数个数都是正数,第几个数分母就是几,从而可以写出第7个,第8个,第9个,第10个数;(2)根据题目中的数字的特点,可以写出第2020个数;(3)根据分子都是1,分母越来越大,即可得到这列数无限排列下去,越来越接近哪一个数.【详解】(1)一列数为:111111,,,,,,23456---,第7、8、9、10四个数分别为:1111 ,,, 78910--;(2)一列数为:11111 1,,,,,,23456---,∴第2020个数是1 2020 -;(3)如果这一列数无限排列下去,越来越近0.【点睛】本题考查数字的变化类,解答本题的关键是明确题意,发现数字的变化特点,写出相应的数字.。

人教版九年级中考复习数学课件:专题一 规律探索型(共24张PPT)

人教版九年级中考复习数学课件:专题一 规律探索型(共24张PPT)

【例 3】 (2018 安徽)观察以下等式: 1 0 1 0 第 1 个等式: + + × =1, 1 2 1 2 1 1 1 1 第 2 个等式: + + × =1, 2 3 2 3 1 2 1 2 第 3 个等式: + + × =1, 3 4 3 4 1 3 1 3 第 4 个等式: + + × =1, 4 5 4 5 1 4 1 4 第 5 个等式: + + × =1, 5 6 5 6 … 按照以上规律,解决下列问题:
(4)个位数字规律类.
【例1】 (2018泰安)观察“田”字中各数之间的关系:
则c的值为
270(或28+14)
.
解析:经过观察每个“田”左上角数字依次是1,3,5,7等奇数,第n个图形为2n-1,此
位置数为15时,2n-1=15,n=8,即此“田”字图形为第8个.观察每个“田”字左下角 数据,可以发现规律是2,22,23,24等,第n个图形可表示为2n,则第8个图形为28.观察 左下角和右上角,每个“田”字的右上角数字依次比左下角大 0,2,4,6等,第n个图 形 的 右 上 角 比 左 下 角 大 2n-2, 到 第 8 个 图 形 右 上 角 比 左 上 角 大 2×8-2=14, 则 c=28+14=270.
(1)写出第6个等式: (2)写出你猜想的第n个等式:
; (用含n的等式表示),并证明.
解题思路:观察等式可以发现,第一列数与第三列数相同,第二列数与第四列数相 同,第一列数的分子是 1,分母是正整数,∴可表示为 列数的分母大 1,分子比分母小 2,∴可表示为 来即可.
1 ,第二列数的分母比第一 n
解决图形规律类问题,常用的方法首先从简单的图形入手,观察图形、数字随着“序

(word完整版)中考数学规律探索专题复习

(word完整版)中考数学规律探索专题复习

中考数学规律探索专题复习一、典例精析类型之一 数字规律型例1. (2011丽江)下面是按一定规律排列的一列数:23,45-,87,169-,…那么第n 个数是 . 【简析】根据题意,首先从各个数开始分析,n=1时,分子:2=(﹣1)2•21,分母:3=2×1+1;n=2时,分子:﹣4=(﹣1)3•22,分母:5=2×2+1;…,即可推出第n 个数为12(1)21nn n +-•+。

【答案】解:∵n=1时,分子:2=(-1)2•21,分母:3=2×1+1;n=2时,分子:﹣4=(—1)3•22,分母:5=2×2+1; n=3时,分子:8=(—1)4•23,分母:7=2×3+1;n=4时,分子:﹣16=(-1)5•24,分母:9=2×4+1;…,∴第n 个数为:12(1)21n n n +-•+ 故答案为:12(1)21n n n +-•+. 例2:(2010深圳) 观察下列算式,用你所发现的规律得出22010的末位数字是( )。

21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,… A .2 B .4 C .6 D .8【简析】有些题目包含着事物的循环规律,找到了事物的循环规律,其他问题就可以迎刃而解.通过观察可以发现,本题中的数字从第1个到第4个为一个循环节,以此规律总结下来,第2010个图形应该就是一个循环节中的第2个数字,故选B.【答案】B对应练习1。

有一组数:1,2,5,10,17,26,……,请观察这组数的构成规律,用你发现的规律确定第8个数为 .2.(2011湛江)若:A 32=3×2=6,A 53=5×4×3=60,A 54=5×4×3×2=120,A 64=6×5×4×3=360,…,观察前面计算过程,寻找计算规律计算A 73= (直接写出计算结果),并比较A 103 A 104(填“>”或“<”或“=”) 类型之二 图形规律型例3:(2011•临沂)如图,上面各图都是用全等的等边三角形拼成的一组图形.则在第10个这……样的图形中共有 个等腰梯形.【简析】本题考查了图形的变化,解题的关键是按照一定的顺序依次找到符合条件的等腰梯形,做到不重复不遗漏.由于图②4个=2+1+1,图③8个3+2+2+1+1,图④16=4+3+3+2+2+1+1,由此即可得到第10个图形中等腰梯形的个数为:10+9+9+8+8+7+7+6+6+5+5+4+4+3+3+2+2+1+1=100. 【答案】100.例4: (2011兰州)如图,依次连结第一个矩形各边的中点得到一个菱形,再依次连结菱形各边的中点得到第二个矩形,按照此方法继续下去。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

规律题专题
1.观察以下一列数:3,,,,,…则第20个数是.
2.一列数1,4,7,10,13,……按此规律排列,第n个数是
3.古希腊数学家把1、3、6、10、15、21、…叫做三角形数,其中1是第一个三角形数,3是第二个三角形数,6是第三个三角形数,…,依此类推,第100个三角形数是.
4.已知a1=﹣,a2=,a3=﹣,a4=,a5=﹣,…,则a8=.
5.按一定规律排列的一列数依次为:,1,,,,,…,按此规律,这列数中的第100个数是.
6.观察下列各式:…请你将发现的规律用含自然数n(n ≥1)的代数式表达出来.
7.请观察下列式子的规律:a1=,a2=,a3=,a4=,a5=,…,则a8=.
8.观察下列数据:﹣2,,﹣,,﹣,…,它们是按一定规律排列的,依照此规律,第11个数据是.
9.观察下列等式:
在上述数字宝塔中,从上往下数,2016在第层.
10.如图所示,下列各三角形中的三个数之间均有相同的规律,根据此规律,当图中m=90时,正整数n的值为.11.观察下列等式(式子中“!”是一种数学运算符号,n是正整数):1!=1,2!=2×1,3!=3×2×1,4!=4×3×2×1,…计算=.
12.观察下列等式31=3,32=9,33=27,34=81,35=243,36=729,37=2187…解答下列问题:3+32+33+34+…+32020的末位数字是.
13.观察下面“品”字形中各数之间的规律,根据观察到的规律得出a的值为()
A.23B.75C.77D.139
14.1261年,我国南宋数学家杨辉用图中的三角形解释二项和的乘方规律,比欧洲的相同发现要早三百多年,我们把这个三角形称为“杨辉三角”,请观察图中的数字排列规律,则a,b,c的值分别为()
(第14题)(第14题)
A.a=1,b=6,c=15B.a=6,b=15,c=20
C.a=15,b=20,c=15D.a=20,b=15,c=6
15.如图,是按一定规律排成的三角形数阵,按图中数阵的排列规律,第9行从左至右第5个数是()A.2B.C.5D.
16.观察以下等式:
第1个等式:++×=1,第2个等式:++×=1,
第3个等式:++×=1,第4个等式:++×=1,
第5个等式:++×=1,……
按照以上规律,解决下列问题:
(1)写出第6个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.
17.观察下列关于自然数的等式:
32﹣4×12=5 ①52﹣4×22=9 ②
72﹣4×32=13 ③…
根据上述规律解决下列问题:
(1)完成第四个等式:92﹣4×2=;
(2)写出你猜想的第n个等式(用含n的式子表示),并验证其正确性.
18.观察下列等式:1×=1﹣,2×=2﹣,3×=3﹣,…
(1)猜想并写出第n个等式;(2)证明你写出的等式的正确性.19.已知下列等式
①(3+1)2﹣(3﹣1)2=4×3×1;②(5+3)2﹣(5﹣3)2=4×5×3;
③(7+5)2﹣(7﹣5)2=4×7×5;④(9+7)2﹣(9﹣7)2=4×9×7.
(1)请仔细观察,写出第5个式子;
(2)写出第n个式子,并运用所学知识说明第n个等式成立.
20.观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2018个图形共有个○.
21.刘莎同学用火柴棒依图的规律摆六边形图案,用10086根火柴棒摆出的图案应该是第个.
22.如图,用同样大小的黑色棋子按如图所示的规律摆放:则第⑦个图案有个黑色棋子.
23.将一些圆按照如图方式摆放,从上向下有无数行,其中第一行有2个圆,第二行有4个圆,第三行有6个圆…按此规律排列下去,则前50行共有圆个.
24.如图,下列图案是由火柴棒按某种规律搭成的,第(1)个图案中有2个正方形,第(2)个图案中有5个正方形,第(3)个图案中有8个正方形……,则第(5)个图案中有个正方形,第n 个图案中有个正方形.
25.观察下列一组由★排列的“星阵”,按图中规律,第n个“星阵”中的★的个数是.
26如图,两个连接在一起的菱形的边长都是1cm,一只电子甲虫从点
A开始按ABCDAEFGAB…的顺序沿菱形的边循环爬行,当电子甲
虫爬行2018cm时停下,则它停的位置是()
A.点F B.点E C.点A D.点C
27.如图所示,一动点从半径为2的⊙O上的A0点出发,沿着射线A0O方向运动到⊙O上的点A1处,再向左沿着与射线A1O夹角为60°的方向运动到⊙O上的点A2处;接着又从A2点出发,沿着射线
A2O方向运动到⊙O上的点A3处,再向左沿着与射线A3O夹角为60°的方
向运动到⊙O上的点A4处;…按此规律运动到点A2017处,则点A2017与点
A0间的距离是()
A.4B.2C.2D.0
28.已知:顺次连接矩形各边的中点,得到一个菱形,如图①;再顺次连接菱形各边的中点,得到一个新的矩形,如图②;然后顺次连接新的矩形各边的中点,得到一个新的菱形,如图③;如此反复操作下去,则第2012个图形中直角三角形的个数有()
A.8048个B.4024个C.2012个D.1066个
29.如图,一只青蛙在圆周上标有数字的五个点上跳,若它停在奇数点上,则下一次沿顺时针方向跳两个点;若停在偶数点上,则下一次沿逆时针方向跳一个点.若青蛙从
5这点开始跳,则经2011次跳后它停在的点所对应的数为()
A.1B.2C.3D.5
30.如图,在△ABC中,BC=1,点P1,M1分别是AB,AC边的中点,点P2,M2分别是AP1,AM1的中点,点P3,M3分别是AP2,AM2的中点,按这样的规律下去,P n M n的长为(n为正整数).
31.如图,已知OB=1,以OB为直角边作等腰直角三角形A1BO,再以OA1为直角边作等腰直角三角形
A2A1O,如此下去,则线段OA n
的长度为

32.如图,在平面直角坐标系中,直线l的函数表达式为y=x,点O1的坐标为(1,0),以O1为圆心,O1O为半径画圆,交直线l于点P1,交x轴正半轴于点O2,以O2为圆心,O2O为半径画圆,交直线l于点P2,交x轴正半轴于点O3,以O3为圆心,O3O为半径画圆,交直线l于点P3,交x轴正半轴于点O4;…按此做法进行下去,其中的长为.
33.如图,在平面直角坐标系中,函数y=x和y=﹣x的图象分别为直线l1,l2,过点A1(1,﹣)作x轴的垂线交11于点A2,过点A2作y轴的垂线交l2于点A3,过点A3作x轴的垂线交l1于点A4,过点A4作y轴的垂线交l2于点A5,…依次进行下去,则点A2018的横坐标为.
34.如图,已知直线l:y=2x,分别过x轴上的点A1(1,0)、A2(2,0)、…、A n(n,0),作垂直于x 轴的直线交l于点B1、B2、…、B n,将△OA1B1,四边形A1A2B2B1、…、四边形A n﹣1A n B n B n﹣1的面积依次记为S1、S2、…、S n,则S n=()
A.n2B.2n+1C.2n D.2n﹣1。

相关文档
最新文档