高中物理电磁场练习试题

合集下载

电磁场练习题

电磁场练习题

电磁场练习题电磁场是物理学中重要的概念,广泛应用于电力工程、通信技术等领域。

为了更好地理解和掌握电磁场的相关知识,以下是一些练习题,帮助读者巩固对电磁场的理解。

练习题1:电场1. 有一电荷+Q1位于坐标原点,另有一电荷+Q2位于坐标(2a, 0, 0)处。

求整个空间内的电势分布。

2. 两个无限大平行带电板,分别带有电荷密度+σ和-σ。

求两个带电板之间的电场强度。

3. 一个圆环上均匀分布有总电荷+Q,圆环的半径为R。

求圆环轴线上离圆环中心距离为x处的电场强度。

练习题2:磁场1. 一个无限长直导线通过点A,导线中电流方向由点A指向B。

求点A处的磁场强度。

2. 一个长直导线以λ的线密度均匀分布电流。

求距离导线距离为r处的磁场强度。

3. 一半径为R、载有电流I的螺线管,求其轴线上离螺线管中心的距离为x处的磁场强度。

练习题3:电磁场的相互作用1. 在一均匀磁场中,一电子从初始速度为v0的方向垂直进入磁场。

求电子做曲线运动的轨迹。

2. 有两个无限长平行导线,分别通过电流I1和I2。

求两个导线之间的相互作用力。

3. 一个电荷为q的粒子以速度v从初始位置x0进入一个电场和磁场同时存在的区域。

求电荷受到的合力。

练习题4:电磁场的应用1. 描述电磁波的基本特性。

2. 电磁感应现象的原理是什么?列举几个常见的电磁感应现象。

3. 解释电磁场与电路中感应电动势和自感现象的关系。

根据上述练习题,我们可以更好地理解和掌握电磁场的基本原理和应用。

通过解答这些练习题,我们能够加深对电场、磁场以及电磁场相互作用的理解,并掌握其在实际应用中的运用。

希望读者能够认真思考每道练习题,尽量自行解答。

如果遇到困难,可以参考电磁场相关的教材、课件等资料,或者向老师、同学寻求帮助。

通过不断练习和思考,相信读者可以彻底掌握电磁场的相关知识,为今后的学习和应用奠定坚实的基础。

[必刷题]2024高三物理下册电磁场专项专题训练(含答案)

[必刷题]2024高三物理下册电磁场专项专题训练(含答案)

[必刷题]2024高三物理下册电磁场专项专题训练(含答案)试题部分一、选择题:A. 匀速直线运动B. 匀速圆周运动C. 匀加速直线运动D. 匀加速圆周运动2. 下列关于电磁感应现象的描述,错误的是:A. 闭合电路的一部分导体在磁场中做切割磁感线运动时,导体中会产生感应电流B. 感应电流的方向与磁场方向有关C. 感应电流的大小与导体运动速度成正比D. 感应电流的大小与导体长度成正比A. 电势能减小B. 电势能增加C. 电势增加D. 电势减小A. 电容器充电时,电场能转化为磁场能B. 电容器放电时,电场能转化为磁场能C. 电感器中的电流增大时,磁场能转化为电场能D. 电感器中的电流减小时,磁场能转化为电场能A. 电磁波在真空中传播速度为3×10^8 m/sB. 电磁波的传播方向与电场方向垂直C. 电磁波的传播方向与磁场方向垂直D. 电磁波的波长与频率成正比A. 匀速直线运动B. 匀速圆周运动C. 匀加速直线运动D. 匀加速圆周运动A. 洛伦兹力的方向垂直于带电粒子的速度方向B. 洛伦兹力的大小与带电粒子的速度成正比C. 洛伦兹力的大小与磁感应强度成正比D. 洛伦兹力的方向与磁场方向垂直8. 一个闭合线圈在磁场中转动,下列关于感应电动势的说法,正确的是:A. 感应电动势的大小与线圈面积成正比B. 感应电动势的大小与磁场强度成正比C. 感应电动势的大小与线圈转速成正比D. 感应电动势的方向与磁场方向平行A. 变化的电场会产生磁场B. 变化的磁场会产生电场C. 静止的电荷会产生磁场D. 静止的磁场会产生电场A. 电场强度与磁场强度成正比B. 电场强度与磁场强度成反比C. 电场强度与电磁波频率成正比D. 电场强度与电磁波波长成正比二、判断题:1. 带电粒子在电场中一定受到电场力的作用。

()2. 电磁波在传播过程中,电场方向、磁场方向和传播方向三者相互垂直。

()3. 在LC振荡电路中,电容器充电完毕时,电场能最大,磁场能为零。

高考物理电磁场经典练习题(含答案详解)

高考物理电磁场经典练习题(含答案详解)

高三物理第一轮专题复习——电磁场在以坐标原点O为圆心、半径为r的圆形区域内,存在磁感应强度大小为B、方向垂直于纸面向里的匀强磁场,如图所示。

一个不计重力的带电粒子从磁场边界与x轴的交点A处以速度v沿-x方向射入磁场,恰好从磁场边界与y轴的交点C处沿+y方向飞出。

(1)请判断该粒子带何种电荷,并求出其比荷q/m;(2)若磁场的方向和所在空间范围不变,而磁感应强度的大小变为B’,该粒子仍从A处以相同的速度射入磁场,但飞出磁场时的速度方向相对于入射方向改变了60°角,求磁感应强度B’多大?此次粒子在磁场中运动所用时间t是多少?电子自静止开始经M、N板间(两板间的电压A点垂直于磁场边界射入宽度为d的匀强磁场中,电子离开磁场时的位置P偏离入射方向的距离为L,如图所示.求匀强磁场的磁感应强度.(已知电子的质量为m,电量为e)高考)如图所示,abcd为一正方形区域,正离子束从a点沿ad方向以=80m/s 的初速度射入,若在该区域中加上一个沿ab方向的匀强电场,电场强度为E,则离子束刚好从c点射出;若撒去电场,在该区域中加上一个垂直于abcd平面的匀强磁砀,磁感应强度为B,则离子束刚好从bc的中点e射出,忽略离子束中离子间的相互作用,不计离子的重力,试判断和计算:(1)所加磁场的方向如何?(2)E与B的比值BE/为多少?制D 型金属扁盒组成,两个D 形盒正中间开有一条窄缝。

两个D 型盒处在匀强磁场中并接有高频交变电压。

图乙为俯视图,在D 型盒上半面中心S 处有一正离子源,它发出的正离子,经狭缝电压加速后,进入D 型盒中。

在磁场力的作用下运动半周,再经狭缝电压加速。

如此周而复始,最后到达D 型盒的边缘,获得最大速度,由导出装置导出。

已知正离子的电荷量为q ,质量为m ,加速时电极间电压大小为U ,磁场的磁感应强度为B ,D 型盒的半径为R 。

每次加速的时间很短,可以忽略不计。

正离子从离子源出发时的初速度为零。

高考物理电磁学练习题库及答案

高考物理电磁学练习题库及答案

高考物理电磁学练习题库及答案一、选择题1. 在电场中,带电粒子的运动路径称为()A. 轨道B. 轨迹C. 路径D. 脉冲2. 下列哪项不是电磁感应现象中主要的应用?A. 电动机B. 发电机C. 变压器D. 电吹风3. 在电磁波中,波长越小,频率越()A. 大B. 小C. 相等D. 不确定4. 电流大小与导线截面积之间的关系是()A. 正比例B. 反比例C. 平方反比D. 指数关系5. 下列哪个现象与电磁感应无关?A. 磁铁吸引铁矿石B. 手持电磁铁吸附铁钉C. 相机闪光灯工作D. 电动车行驶二、填空题1. 电流的单位是()2. 电阻的单位是()3. 电势差的单位是()4. 电功的单位是()5. 法拉是电容的单位,它的符号是()三、简答题1. 什么是电磁感应?2. 什么是洛仑兹力?3. 简述电阻对电流的影响。

4. 电势差与电压的关系是什么?5. 什么是电容?四、计算题1. 一根导线质量为0.5kg,长度为2m,放在匀强磁场中,当磁感应强度为0.4T时,该导线受到的洛仑兹力大小为多少?(设导线的电流为2A)2. 一台电视机的功率为200W,使用时电流为2A,求电源的电压是多少?3. 一个电容器带电量为5μC,电容为10μF,求该电容器的电势差。

4. 一台电脑的电压为110V,电流为2A,求功率是多少?5. 一根电阻为10欧姆的导线通过电流2A,求该导线两端的电压。

五、综合题1. 请解释什么是电磁感应现象,并列举两个具体的应用。

2. 电流和电势差之间的关系是什么?请给出相关公式并解释其含义。

3. 请计算一个电感为2H的线圈,通过电流为5A,求该线圈的磁场强度。

4. 一个电容器的电容为20μF,通过电流为0.5A,求该电容器两端的电压。

5. 请简述电阻、电容和电感的区别与联系。

答案及解析如下:一、选择题1. B. 轨迹解析:带电粒子在电场中的运动路径称为轨迹。

2. C. 变压器解析:变压器是电磁感应现象的一种重要应用。

高考物理电磁学大题练习20题Word版含答案及解析

高考物理电磁学大题练习20题Word版含答案及解析

高考物理电磁学大题练习20题Word版含答案及解析方向与图示一致。

金属棒的质量为m,棒的左端与导轨相接,右端自由。

设金属棒在磁场中的电势能为0.1)当磁场的磁感应强度为B1时,金属棒在匀强磁场区域内做匀速直线运动,求金属棒的速度和通过电阻的电流强度。

2)当磁场的磁感应强度随时间变化时,金属棒受到感生电动势的作用,求金属棒的最大速度和通过电阻的最大电流强度。

答案】(1) v=B1d/2m。

I=B1d2rR/(rL+dR) (2) vmaxBmaxd/2m。

ImaxBmaxd2rR/(rL+dR)解析】详解】(1)由洛伦兹力可知,金属棒在匀强磁场区域内受到向左的洛伦兹力,大小为F=B1IL,方向向左,又因为金属棒在匀强磁场区域内做匀速直线运动,所以受到的阻力大小为F1Fr,方向向右,所以有:B1IL=Fr解得:v=B1d/2m通过电阻的电流强度为:I=B1d2rR/(rL+dR)2)当磁场的磁感应强度随时间变化时,金属棒受到感生电动势的作用,其大小为:e=BLv所以金属棒所受的合力为:F=BLv-Fr当合力最大时,金属棒的速度最大,即:BLvmaxFr=0解得:vmaxBmaxd/2m通过电阻的电流强度为:ImaxBmaxd2rR/(rL+dR)题目一:金属棒在电动机作用下的运动一根金属棒在电动机的水平恒定牵引力作用下,从静止开始向右运动,经过一段时间后以匀速向右运动。

金属棒始终与导轨相互垂直并接触良好。

问题如下:1) 在运动开始到匀速运动之间的时间内,电阻R产生的焦耳热;2) 在匀速运动时刻,流过电阻R的电流方向、大小和电动机的输出功率。

解析:1) 运动开始到匀速运动之间的时间内,金属棒受到电动机的牵引力向右运动,电阻R中会产生电流。

根据欧姆定律和焦耳定律,可以得到电阻R产生的焦耳热为:$Q=I^2Rt$,其中I为电流强度,t为时间。

因此,我们需要求出这段时间内的电流强度。

根据电动机的牵引力和电阻R的阻值,可以得到电路中的总电动势为$E=FL$,其中F为电动机的牵引力,L为金属棒的长度。

高中物理电磁学基础练习题及答案

高中物理电磁学基础练习题及答案

高中物理电磁学基础练习题及答案练习题一:电场1. 电荷的基本单位是什么?答案:库仑(C)2. 两个等量的正电荷相距1米,它们之间的电力是多少?答案:9 × 10^9 N3. 电场强度的定义是什么?答案:单位正电荷所受到的电力4. 空间某点的电场强度为10 N/C,某个电荷在此点所受的电力是5 N,求该电荷的电量。

答案:0.5 C练习题二:磁场1. 磁力线的方向与什么方向垂直?答案:磁力线的方向与磁场的方向垂直。

2. 磁力的大小与什么有关?答案:磁力的大小与电流强度、导线长度以及磁场强度有关。

3. 磁感应强度的单位是什么?答案:特斯拉(T)4. 在垂直磁场中,一根导线受到的力大小与什么有关?答案:导线长度、电流强度以及磁场强度有关。

练习题三:电磁感应1. 什么是电磁感应?答案:电磁感应是指导体在磁场的作用下产生感应电动势的现象。

2. 什么是法拉第电磁感应定律?答案:法拉第电磁感应定律指出,当导体回路中的磁通量变化时,导体回路中会产生感应电动势。

3. 一根长度为1 m的导体以2 m/s的速度与磁感应强度为0.5 T 的磁场垂直运动,求导体两端的感应电动势大小。

答案:1 V4. 一根长度为3 m的导线以2 m/s的速度穿过磁感应强度为0.5 T的磁场,若导线两端的电压为6 V,求导线的电阻大小。

答案:1 Ω练习题四:电磁波1. 什么是电磁波?答案:电磁波是由电场和磁场相互作用产生的波动现象。

2. 电磁波的传播速度是多少?答案:光速,约为3 × 10^8 m/s。

3. 可见光属于电磁波的哪个频段?答案:可见光属于电磁波的红外线和紫外线之间的频段。

4. 无线电波属于电磁波的哪个频段?答案:无线电波属于电磁波的低频段。

练习题五:电磁学综合练习1. 一个电荷在垂直磁场中受到的磁力大小为5 N,该电荷的电量是2 C,求该磁场的磁感应强度。

答案:2.5 T2. 一段长度为2 m的导线以8 m/s的速度进入磁感应强度为0.2 T的磁场中,导线所受的感应电动势大小为4 V,求导线两端的电阻大小。

2020年高考物理电磁场压轴精选14道(答案和解析)

2020年高考物理电磁场压轴精选14道(答案和解析)

物理电磁场压轴精炼14道(有答案和精细解析)1.(16分)如图所示,直角坐标系xoy位于竖直平面内,在-3m≤x≤0的区域内有磁感应强度大小B = 4.0×10-4T、方向垂直于纸面向里的条形匀强磁场,其左边界与x轴交于P点;在x>0的区域内有电场强度大小E = 4N/C、方向沿y轴正方向的条形匀强电场,其宽度d = 2m。

一质量m = 6.4×10-27kg、电荷量q =--3.2×10-19C的带电粒子从P点以速度v = 4×104m/s,沿与x轴正方向成α=60°角射入磁场,经电场偏转最终通过x轴上的Q点(图中未标出),不计粒子重力。

求:⑴带电粒子在磁场中运动时间;⑵当电场左边界与y轴重合时Q点的横坐标;⑶若只改变上述电场强度的大小,要求带电粒子仍能通过Q点,讨论此电场左边界的横坐标x′与电场强度的大小E′的函数关系。

2.(18分)如图a所示,水平直线MN下方有竖直向上的匀强电场,现将一重力不计、比荷qm=106 C/kg的正电荷置于电场中的O点由静止释放,经过15π×10-5 s后,电荷以v0=1.5×104 m/s的速度通过MN进入其上方的匀强磁场,磁场与纸面垂直,磁感应强度B按图b所示规律周期性变化(图b中磁场以垂直纸面向外为正,以电荷第一次通过MN时为t=0时刻).求:(1)匀强电场的电场强度E的大小;(保留2位有效数字)(2)图b中t=45π×10-5 s时刻电荷与O点的水平距离;(3)如果在O点右方d=68 cm处有一垂直于MN的足够大的挡板,求电荷从O点出发运动到挡板所需的时间.(sin 37°=0.60,cos 37°=0.80) (保留2位有效数字)3.(20分)一个质量m =0.1kg的正方形金属框,其电阻R=0.5Ω,金属框放在表面绝缘且光滑的斜面顶端(金属框上边与AB重合),由静止开始沿斜面下滑,下滑过程中穿过一段边界与斜面底边CD平行、宽度为d的匀强磁场后滑至斜面底端(金属框下边与CD重合)。

人教版高中物理选修2-1《电磁场、电磁波》基础测试及答案

人教版高中物理选修2-1《电磁场、电磁波》基础测试及答案

电磁场和电磁波基础测试一、选择题1.依据麦克斯韦电磁理论,以下说法正确的选项是[]A.变化的电场必定产生变化的磁场B.平均变化的电场必定产生平均变化的磁场C.稳固的电场必定产生稳固的磁场D.振荡的电场必定产生同频次的振荡磁场2.一平行板电容器与一自感线圈构成振荡电路,要使此振荡电路的周期变大,以下举措中正确的选项是[]A.增添电容器两极间的距离B.减少线圈的匝数C.增大电容器两极板间的正对面积D.增大电容器两极板间的距离的同时,减少线圈的匝数3.要使 LC 振荡电路的周期增大一倍,可采纳的方法是[] A.自感系数 L 和电容 C都增大一倍B.自感系数L和电容 C都减小一半C减小一半C.自感系数L增大一倍,而电容D.自感系数L 减小一半,而电容C增大一倍4.以下的阐述中正确的选项是[]A.在磁场四周必定能产生电场B.在变化的磁场四周必定能产生电场C.周期性变化的电场或磁场都能够产生电磁波D.振荡的电场或磁场都能够产生电磁波5.以下相关在真空中流传的电磁波的说法正确的选项是[]A.频次越大,流传的速度越大B.频次不一样,流传的速度同样C.频次越大,其波长越大D.频次不一样 ,流传速度也不一样6. LC 回路发生电磁振荡时[]A.放电结束时,电路中电流为0,电容器所带电量最大B.放电结束时,电路中电流最大,电容器所带电量为0C.充电结束时,电路中电流为0,电容器所带电量最大D.充电结束时,电路中电流最大,电容器所带电量为07.LC 回路发生电磁振荡时[]A.电容器两板间电压减小时,电路中电流减小B.电容器两板间电压减小时,电路中电流增大C.电容器两板间电压为0 时,电路中电流最大D.电容器两板间电压为最大时,电路中电流为08.如图 19-1所示,是 LC振荡电路中产生的振荡电流 i 随时间 t的变化图象,在 t3时辰以下说法正确的选项是[]A.电容器中的带电量最大B.电容器中的带电量最小C.电容器中的电场能达到最大D.线圈中的磁场能达到最小图19-1二、填空题9.在图 19-2 所示的电路中,可变电容器的最大电容是270 pF,最小电容为 30 pF,若 L 保持不变,则可变电容器的动片完整旋出与L C完整旋入时,电路可产生的振荡电流的频次之比为_____.图 19-2 10.频次为 600 kHz 到 1.5 MHz 的电磁波其波长由m 到m.11.某收音机调谐电路的可变电容器动片完整旋入时,电容是 390 PF,这时能接收到 520kHz的无线电电波,动片完整旋出时,电容变成 39 PF,这时能收到的无线电电波的频次是 ______× 106 Hz,此收音机能收到的无线电电波中,最短的波长为 ______m.(取三位有效数字)参照答案一、选择题1.D 2.C 3.A 4.BCD5.B 6.BC 7.BCD 8.B二、填空题9.3:1 10.500,20011. 1.64 , 182。

高三物理电磁学练习题及答案

高三物理电磁学练习题及答案

高三物理电磁学练习题及答案一、选择题1. 带电粒子在磁场中受力的大小与以下哪个因素无关?A. 粒子的电荷量B. 粒子的速度C. 粒子所受磁场的大小D. 粒子所受磁场的方向2. 一个导线以匀速矩形轨道绕一个垂直于轨道面的固定轴旋转。

导线的两端接有电源,通过导线的电流大小和方向在转过一个周期后是:A. 大小不变,方向也不变B. 大小不变,方向相反C. 大小相反,方向不变D. 大小相反,方向相反3. 两个平行的长直导线之间通过电流会发生什么现象?A. 两导线之间会产生吸引力B. 两导线之间会产生斥力C. 两导线之间会发生磁场D. 两导线之间电流大小会发生变化4. 一根导线形状为正方形,两边的两段导线与均匀磁场垂直并相等。

通过导线的总电流为I,导线所在的平面与磁场之间夹角为θ。

则导线所受力的大小为:A. IθB. Iθ/2C. Iθ^2D. Iθ^2/25. 在变化磁场中一个回路内的感应电动势的大小与以下哪个因素无关?A. 磁场的变化速率B. 回路面积的大小C. 回路的形状D. 磁场的方向二、填空题1. 两根平行导线之间的距离为0.2 m,通过第一根导线的电流为2 A,第二根导线与第一根导线的角度为30°,则在第二根导线上的磁感应强度为_____ T。

2. 一根长直导线通过电流3 A,产生的磁场的磁感应强度为____ T。

3. 一个圆形回路的半径为0.2 m,它所在的平面与一个磁场垂直,磁感应强度为0.5 T,磁场持续变化,则回路内感应电动势的大小为_____ V。

4. 一根导线形状为正方形,两边的两段导线与均匀磁场垂直并相等。

通过导线的总电流为4 A,导线所在的平面与磁场之间夹角为60°。

则导线所受力的大小为_____ N。

三、计算题1. 一条长直导线通过电流I,产生的磁场与另一根平行导线距离为d,并在两导线之间产生一个力作用。

当其中一根导线的电流大小为2I时,两导线之间的力变为原来的几倍?2. 一个包围面积为0.2 m^2的圆形回路,其平面与磁场成60°角,磁感应强度为0.4 T,磁场变化的速率为5 T/s,计算回路中感应电动势的大小。

高中物理电磁大题和答案

高中物理电磁大题和答案

1.〔20## ##卷〕18."人造小太阳〞托卡马克装置使用强磁场约束高温等离子体,使其中的带电粒子被尽可能限制在装置内部,而不与装置器壁碰撞.已知等离子体中带电粒子的平均动能与等离子体的温度T 成正比,为约束更高温度的等离子体,则需要更强的磁场,以使带电粒子的运动半径不变.由此可判断所需的磁感应强度B 正比于AB .C.[答案]A[解析]由于等离子体中带电粒子的平均动能与等离子体的温度T 成正比,即.带电粒子在磁场中做圆周运动,洛仑磁力提供向心力:得.而故可得:,所以.A 正确. 2.〔20## 大纲卷〕25.<20分>如图,在第一象限存在匀强磁场,磁感应强度方向垂直于纸面<xy 平面>向外;在第四象限存在匀强电场,方向沿x 轴负向.在y 轴正半轴上某点以与x 轴正向平行、大小为v 0的速度发射出一带正电荷的粒子,该粒子在<d ,0>点沿垂直于x 轴的方向进人电场.不计重力.若该粒子离开电场时速度方向与y 轴负方向的夹角为θ,求: ⑴电场强度大小与磁感应强度大小的比值; ⑵该粒子在电场中运动的时间. 25. [答案]〔1〕〔2〕 [考点]带电粒子在电磁场中的运动、牛顿第二定律、[解析]〔1〕如图粒子进入磁场后做匀速圆周运动,设磁感应强度大小为B ,粒子质量与所带电荷量分别为m 和q ,圆周运动的半径为R 0,由洛伦兹力公式与牛顿第二定律得: 由题给条件和几何关系可知:R 0=d设电场强度大小为E ,粒子进入电场后沿x 轴负方向的加速度大小为a x ,在电场中运动的时间为t ,离开电场时沿x 轴负方向的速度大小为v y .由牛顿定律与运动学公式得: 粒子在电场中做类平抛运动,如图所示 联立得〔2〕同理可得3.〔20## ##卷〕36、〔18分〕如图25所示,足够大的平行挡板A 1、A 2竖直放置,间距6L .两板间存在两个方向相反的匀强磁场区域Ⅰ和Ⅱ,以水平面MN 为理想分界面.Ⅰ区的磁感应强度为B 0,方向垂直纸面向外,A 1、A 2上各有位置正对的小孔S 1、S 2,两孔与分界面MN 的距离均为L .质量为m 、+q 的粒子经宽度为d 的匀强电场由静止加速后,沿水平方向从S 1进入Ⅰ区,并直接偏转到MN 上的P 点,再进入Ⅱ区.P 点与A 1板的距离是L 的k 倍.不计重力,碰到挡板的粒子不予考虑.T 2T k E T ∝2v qvB m R =mv B qR =212k E mv =mvB qR ==B 201tan 2v θ02tan d v θ201tan 2Ev B θ02tan dtv θ〔1〕若k =1,求匀强电场的电场强度E ;〔2〕若2<k <3,且粒子沿水平方向从S 2射出,求出粒子在磁场中的速度大小v 与k 的关系式和Ⅱ区的磁感应强度B 与k 的关系式.36.[答案]:〔1〕 〔2〕 [解析]:〔1〕若k =1,则有: MP =L ,粒子在匀强磁场中作匀速圆周运动, 根据几何关系,该情况粒子的轨迹半径为:R =L ,粒子在匀强磁场中作匀速圆周运动,则有:粒子在匀强电场中加速,根据动能定理有: 综合上式解得:〔2〕因为2<k <3,且粒子沿水平方向从S 2射出,该粒子运动轨迹如上图所示,则从S 1到S 2的轨迹如图所示:有几何关系:,又有则整理解得:又因为: 根据几何关系有:则Ⅱ区的磁感应强度B 与k 的关系: 4. 〔2014 ##卷〕8.如图,两根平行长直导线相距2L ,通有大小相等、方向相同的恒定电流,a 、b 、c 是导线所在平面内的三点,左侧导线与它们的距离分别为、和3.关于这三点处的磁感应强度,下列判断正确的是220q 2dm B L E =20q (k L)v=2m B L +0kB 3kB =-20v qv m B R=21q d mv 2E =220q 2dmB L E =222(k )()R L R L -=-20v qv m B R=20q (k L)v=2mB L +62k 2L L x -=k L R x r=0kB 3kB =-2ll lm +q 图25A .a 处的磁感应强度大小比c 处的大B .b 、c 两处的磁感应强度大小相等C .a 、c 两处的磁感应强度方向相同D .b 处的磁感应强度为零 8. [答案]AD[解析] 根据通电直导线的磁场,利用右手螺旋定则,可知b 处场强为零,两导线分别在a 处的产生的场强都大于在c 处产生的场强,a 、c 两处的场强叠加都是同向叠加,选项AD 正确. 5. 〔2014 ##卷〕14.如图,在x 轴上方存在匀强磁场,磁感应强度大小为B ,方向垂直于纸面向外;在x 轴下方存在匀强电场,电场方向与xoy 平面平行,且与x 轴成450夹角.一质量为m 、电荷量为q 〔q >0〕的粒子以速度v 0从y 轴上P 点沿y 轴正方向射出,一段时间后进入电场,进入电场时的速度方向与电场方向相反;又经过一段时间T 0,磁场方向变为垂直纸面向里,大小不变,不计重力.〔1〕求粒子从P 点出发至第一次到达x 轴时所需的时间; 〔2〕若要使粒子能够回到P 点,求电场强度的最大值. 14.[答案],[解析]〔1〕带电粒子在磁场中做圆周运动,设运动半径为R ,运动周期为T ,根据洛伦兹力公式与圆周运动规律,有依题意,粒子第一次到达x 轴时,运动转过的角度为,所需时间t 1为 求得 〔2〕粒子进入电场后,先做匀减速运动,直到速度减小为0,然后沿原路返回做匀加速运动,到达x 轴时速度大小仍为v 0,设粒子在电场中运动的总时间为t 2,加速度大小为a ,电场强度大小为E ,有 得 根据题意,要使粒子能够回到P 点,必须满足 得电场强度最大值6. <2014 ##卷〕14.<16分> 某装置用磁场控制带电粒子的运动,工作原理如图所示.装置的长为L ,上下两个相同的矩形区域内存在匀强磁场,磁感应强度大小均为B 、方向与纸面垂直且相反,两磁场的间距为d .装置右端有一收集板,M 、N 、P 为板上的三点,M 位于轴线上,N 、P 分别位于下方磁场的上、下边界上.在纸面内,质量为m 、电荷量为-q 的粒子以某一速度从装置左端的中点射入,方向与轴线成300角,经过上方的磁场区域一次,恰好到达P 点.改变粒子入射速度的大小,可以控制粒子到达收集板上的位置.不计粒子的重力.<1> 求磁场区域的宽度h ;qBmt 451π=002qT mv E =π45qBmt 451π=qEmv t 022=OO '<2>欲使粒子到达收集板的位置从P 点移到N 点,求粒子入射速度的最小变化量Δv ; <3>欲使粒子到达M 点,求粒子入射速度大小的可能值. 14.[答案]〔1〕 〔2〕 〔3〕[考点]带电粒子在磁场中的运动、洛伦兹力、牛顿第二定律 [解析]〔1〕设粒子的轨道半径为r 根据题意 且解得 〔2〕改变入射速度后粒子在磁场中的轨道半径为,由题意可知 解得 设粒子经过上方磁场n 次 由题意可知且解得〔20## ##卷〕7. 〔20##全国卷1〕15.关于通电直导线在匀强磁场中所受的安培力,下列说法正确的是 A .安培力的方向可以不垂直于直导线 B .安培力的方向总是垂直于磁场的方向C .安培力的大小与通电直导线和磁场方向的夹角无关D .将直导线从中点折成直角,安培力的大小一定变为原来的一半 15.[答案]:B[解析]:由左手定则安培力方向一定垂直于导线和磁场方向,A 错的B 对的;F =BIL sinθ,安培力大小与磁场和电流夹角有关,C 错误的;从中点折成直角后,导线的有效长度不等于导线长度一半,D 错的8. 〔20##全国卷1〕16.如图,MN 为铝质薄平板,铝板上方和下方分别有垂直于图平面的匀强磁场<未画出>.一带电拉子从紧贴铝板上表面的P 点垂直于铝板向上射出,从Q 点穿越铝23(3)(1)32L d 3()64qB L d m 3(3) (11)13qB L Ld n n m n d<,取整数03sin303cos30Lr d 01cos30)h r (-23(3)(1)32hL d 'r 2mvqvB r2''mv qv B r 03sin304'sin30r r 3'()64qB L v v v d m 0(22)cos30(22)sin30n L n d nr 2n n nmv qv B r 3(3) (11)13nqB L L v d n n m n d<,取整数板后到达PQ 的中点O .已知拉子穿越铝板时,其动能损失一半,这度方向和电荷量不变.不计重力.铝板上方和下方的磁感应强度大小之比为 A .2B .C .1D . 16.[答案]:D[解析]:动能是原来的一半,则速度是原来的倍,又由得上方磁场是下方磁场的倍,选D .10. 〔20## ##卷〕24.如图甲所示,间距为d ,垂直于纸面的两平行板P 、Q 间存在匀强磁场.取垂直与纸面向里为磁场的正方向,磁感应强度的变化规律如图乙所示.t =0时刻,一质量为m ,带电荷量为+q 的粒子〔不计重力〕,以初速度由Q 板左端靠近板面的位置,沿垂直于磁场且平行于板面的方向射入磁场区.当和取某些特定值时,可使t =0时刻射入的粒子经时间恰能垂直打到P 板上〔不考虑粒子反弹〕.上述m ,q ,d ,为已知量.(1)若,求 (2)若,求粒子在磁场中运动的加速度大小.(3)若,为使粒子仍能垂直打到P 板上,求 24、[答案]〔1〕〔2〕〔3〕;[解析]解:〔1〕设粒子做圆周运动的半径为R ,由牛顿第二定律得①据题意由几何关系得 R 1=d ② 联立①②式得③ 〔2〕设粒子做圆周运动的半径为R 2,加速度大小为a ,由圆周运动公式得222212rv m qvB 2=2120v 0B B T t ∆0v 12B t T ∆=0B 32B t T ∆=004mv B qd=B T 00=mv B qd 203v a d=0d =3B T v π01d=arcsin 242v B T π+()200mv qv B R=00=mv B qd④ 据题意由几何关系得⑤联立④⑤式得⑥〔3〕设粒子做圆周运动的半径为R ,周期为T ,由圆周运动公式得⑦ 由牛顿第二定律得⑧由题意知,代入⑧式得 d =4R ⑨ 粒子运动轨迹如图所示,O 1、O 2为圆心,连线与水平方向的夹角为,在每个T B 内,只有A 、B 两个位置才有可能垂直击中P 板,且均要求,由题意可知⑩设经历完整T B 的个数为n 〔n =0,1,2,3……〕 若在A 点击中P 板,据题意由几何关系得错误!当n =0时,无解 错误! 当n =1时,联立⑨错误!式得错误!联立⑦⑨⑩错误!式得错误!当时,不满足的要求 错误!202v a R =23R d =203v a d=02RT v π=2000mv qv B R=004=mv B qdθ02πθ<<2=22B T T πθπ+2(sin )R R R n d θ++=1=(sin =)62πθθ或0d=3B T v π2n ≥0090θ<<若在B 点击中P 板,据题意由几何关系得错误!当n =1时,无解 错误! 当n =1时,联立⑨错误!式得错误!联立⑦⑨⑩错误!式得错误!当时,不满足的要求 错误!11. 〔20## ##卷〕10.在如图所示的竖直平面内,水平轨道CD 和倾斜轨道GH 与半径的光滑圆弧轨道分别相切于D 点和G 点,GH 与水平面的夹角,过G 点、垂直于纸面的竖直平面左侧有匀强磁场,磁场方向垂直于纸面向里,磁感应强度;过D 点、垂直于纸面的竖直平面右侧有匀强电场,电场方向水平向右,电场强度.小物体质量、电荷量,收到水平向右的推力的作用,沿CD 向右做匀速直线运动,到达D 点后撤去推力.当到达倾斜轨道低端G 点时,不带电的小物体在GH 顶端静止释放,经过时间与相遇.和与轨道CD 、GH 间的动摩擦因数均为,取,,物体电荷量保持不变,不计空气阻力.求:(1)小物体在水平轨道CD 上运动的速度v 的大小; (2)倾斜轨道GH 的长度s .10.[解析](1)由对P1受力分析可得:竖着方向受力平衡:N +qvB =mg ……① 水平方向受力平衡:F =N ……② 联立①②可得:v =4m /s2sin 2(sin )R R R R n d θθ+++=11arcsin (sin =)44θθ=或01d=arcsin 242v B T π+()2n ≥0090θ<<m r 449=︒=37θT B 25.1=C N E /1014⨯=1P kg m 3102-⨯=C q 6108-⨯+=N F 31098.9-⨯=1P 2P s t 1.0=1P 1P 2P 5.0=μ2/10s m g =6.037sin =︒8.037cos =︒1P μ(2)P1从D 到G 由于洛伦兹力不做功,电场力做正功,重力做负功由动能定理可知: qEr -mgr <1-cos >=mv -m ……③ P1过G 点后做匀变速直线运动的加速度设为a ,则; qEcos -mg -<mgcos +qE 〕=ma ……④ P2质量设为m 在GH 上做匀加速直线运动的加速度a ,则: m g -m gcos =m a ……⑤ P1和P2在GH 上的时间相同位移之和为S ,所以: S =v t +a t +a t ……⑥ 联立各式,可得:S =0.56m17.〔2014 〕16.带电粒子a 、b 在同一匀强磁场中做匀速圆周运动,他们的动量大小相等,a 运动的半径大于b 运动的半径.若a 、b 的电荷量分别为q a 、q b ,质量分别为m a 、m b ,周期分别为T a 、T b .则一定有A .q a <q bB . m a <m bC . T a <T bD . 16.[答案]A[考点]带电粒子在匀强磁场中的运动、圆周运动的规律、动量[解析]带电粒子在匀强磁场中做匀速圆周运动,由牛顿第二定律有:,因为两个粒子的动量相等,且,所以,A 项正确;速度不知道,所以质量关系不确定,B 项错误;又因为,质量关系不知道,所以周期关系不确定,CD 项错误.20.〔12分〕两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为l .导轨上面横放着两根导体棒ab 和cd ,构成矩形回路,如图所示.两根导体棒的质量皆为m ,电阻皆为R ,回路中其余部分的电阻可不计.在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B .设两导体棒均可沿导轨无摩擦地滑行.开始时,棒cd 静止,棒ab 有指向棒cd 的初速度v 0〔见图〕.若两导体棒在运动中始终不接触,求: 〔1〕在运动中产生的焦耳热最多是多少. 〔2〕当ab 棒的速度变为初速度的43时,cd 棒的加速度是多少? 解析:20.参考解答:θsin θ21G 2212D v 1θθsin μθθsin 1222θsin μ2θ22G 21122122a b a bq qm m <2v mvqBv m r r qB=⇒=a b r r >a b q q <2mT qBπ=ab 棒向cd 棒运动时,两棒和导轨构成的回路面积变小,磁通量发生变化,于是产生感应电流.ab 棒受到与运动方向相反的安培力作用作减速运动,cd 棒则在安培力作用下作加速运动.在ab 棒的速度大于cd 棒的速度时,回路总有感应电流,ab 棒继续减速,cd 棒继续加速.两棒速度达到相同后,回路面积保持不变,磁通量不变化,不产生感应电流,两棒以相同的速度v 作匀速运动.〔1〕从初始至两棒达到速度相同的过程中,两棒总动量守恒,有:mv 0=2mv ①根据能量守恒,整个过程中产生的总热量:222041)2(2121mv v m mv Q =-=② 〔2〕设ab 棒的速度变为初速度的43时,cd 棒的速度为'v ,则由动量守恒可知: '4300mv v m mv += ③此时回路中的感应电动势和感应电流分别为Bl v v )'43(0-=ε④RI 2ε=⑤此时cd 棒所受的安培力:IBl F =⑥cd 棒的加速度:mF a =⑦ 由以上各式,可得:mRv l B a 4022=⑧22.〔13分〕如图所示,两条互相平行的光滑导轨位于水平面内,距离为l =0.2m,在导轨的一端接有阻值为R=0.5Ω的电阻,在x ≥0处有一与水平面垂直的均匀磁场,磁感强度B=0.5T.一质量为m=0.1Kg 的金属直杆垂直放置在在导轨上,并以v 0=2m/s 的初速度进入磁场,在安培力和一垂直于杆的水平外力F 的作用下作匀变速直线运动,加速度大小为a=2m/s 2、方向与初速度方向相反.设导轨和金属杆的电阻都可以忽略,且接触良好.求: 〔1〕电流为零时金属杆所处的位置;〔2〕电流为最大值的一半时施加在金属杆上外力F 的大小和方向;〔3〕保持其他条件不变.而初速度v 0取不同值,求开始时F 的方向与初速度v 0取值的关系.解析:22.〔1〕感应电动势ε=BLV,I =ε/R ∴I =0时,v =0∴x =a v 2/20=1m , ①〔2〕最大电流RBLv I m =R BLvI I m 22'==安培力f=N Rv L B Bl I 02.02022/==②向右运动时F +f =ma ,F =ma -f =0.18N ,方向与X 轴相反③ 向左运动时F -f =ma ,F =ma +f =0.22N , 方向与X 轴相反④<3>开始时,v =v 0,f =I m BL=R v L B 022F +f =ma ,F +ma -f =ma -R v L B 022 ⑤∴当v 022L B maR〈=10m/s 时,F >0, 方向与X 轴相反 ⑥ 当v 022LB maR〉=10m/s 时,F <0,方向与X 轴相同 ⑦24.〔18分〕如图所示,在y >0的空间中存在匀强电场,场强沿y 轴负方向;在y <0的空间中,存在匀强磁场,磁场方向垂直xy 平面〔纸面〕向外.一电量为q 、质量为m 的带正电的运动粒子,经过y 轴上y =h 处的点P 1时速率为v 0,方向沿x 轴正方向;然后,经过x 轴上x =2h 处的P 2点进入磁场,并经过y 轴上y =h 2-处的P 3点.不计重力.求 〔l 〕电场强度的大小.〔2〕粒子到达P 2时速度的大小和方向. 〔3〕磁感应强度的大小.24.〔1〕粒子在电场、磁场中运动的轨迹如图所示.设粒子从P 1到P 2的时间为t ,电场强度的大小为E ,粒子在电场中的加速度为a ,由牛顿第二定律与运动学公式有qE =ma ① v 0t = 2h ②h at =221③ 由①、②、③式解得qhmv E 220=④〔2〕粒子到达P 2时速度沿x 方向的分量仍为v 0,以v 1表示速度沿y 方向分量的大小,v 表示速度的大小,θ表示速度和x 轴的夹角,则有.11 / 11 ah v 221=⑤2021v v v +=⑥ 01tan v v =θ⑦ 由②、③、⑤式得v 1=v 0⑧由⑥、⑦、⑧式得02v v =⑨︒=45θ⑩〔3〕设磁场的磁感应强度为B ,在洛仑兹力作用下粒子做匀速圆周运动,由牛顿第二定律rv m qvB 2=⑾ r 是圆周的半径.此圆周与x 轴和y 轴的交点分别为P 2、P 3.因为OP 2=OP 3,θ=45°,由几何关系可知,连线P 2P 3为圆轨道的直径,由此可求得r =h 2⑿由⑨、⑾、⑿可得。

高中物理电场磁场电磁感应专题训练练习题(含答案)

高中物理电场磁场电磁感应专题训练练习题(含答案)

高中物理电场磁场电磁感应专题训练练习题姓名班级学号得分说明:1、本试卷包括第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

满分100分。

考试时间90分钟。

2、考生请将第Ⅰ卷选择题的正确选项填在答题框内,第Ⅱ卷直接答在试卷上。

考试结束后,只收第Ⅱ卷第Ⅰ卷(选择题)一.单选题(每题3分,共60分)1.关于点电荷的说法,正确的是()A.带电体能否看成点电荷,是看它的形状和大小对相互作用力的影响是否能忽略不计B.点电荷一定是电量很小的电荷C.体积很大的带电体一定不能看作点电荷D.只有体积很小的带电体,才能作为点电荷2.如图所示,其中小磁针静止时N极正确的指向是()A.B.C.D.3.两个电容器,两极板间的电势差之比为2:3,带电量之比为3:2,则等于()A.2:3B.3:2C.4:9D.9:44、如图为某一电场的电场线和等势面分布,图中实线表示电场线,虚线表示等势面,过a、b两点的等势面电势分别为φa=5V,φc=3V那么a、c连线的中点b的电势φb为()A.φb=4V B.φb>4VC.φb<4v D.上述情况都有可能5、如图所示,匝数为N,半径为R1的圆形线圈内有匀强磁场,匀强磁场在半径为R2的圆形区域内,匀强磁场的磁感应强度B垂直于线圈平面.通过该线圈的磁通量为()A.BπR12B.BπR22C.NBπR12D.NBπR226.甲、乙两个原来不带电的物体相互摩擦(没有第三者参与),结果发现甲物体带了1.6×10-15C的电荷量(正电荷),下列说法正确的是()A.乙物体也带了1.6C的正电荷B.甲物体失去了104个电子C.乙物体失去了104个电子D.甲、乙两物体共失去了2×104个电子7.对磁感线的认识,下列说法不正确的是()A.磁感线切线方向即磁场方向B.磁感线上某点的切线方向与放在该点小磁针北极的受力方向相同C.磁感线的疏密可以反映磁场的强弱D.磁感线切线方向是小磁针受力的方向8.两个大小相同、带等量同种电荷的导体小球A和B,彼此间的斥力为F.A与B接触,然后移开放回原位置,这时A和B之间的作用力为F′,则F与F′之比为()A.4:1B.1:4C.1:1D.1:29、如图甲所示为某小型交流发电机的示意图,两磁极之间的磁场可认为是匀强磁场,正方形线圈可绕垂直于磁场方向的水平轴OO′以角速度ω沿逆时针方向匀速转动,开始转动时线圈平面与磁场方向平行,其中A为交流电流表,外电路的电阻R=8Ω,线圈的总电阻r=2Ω.若从线圈开始转动时开始计时,线圈中产生的交变电流如图乙所示,则以下说法中正确的是()A.线圈中产生的交变电压的有效值为100VB.当t=0.015s时,交流电表的示数为零C.从图示位置转过的过程中,电阻R上产生的热量为4JD.若将线圈转动的角速度减半,则线圈产生的交流电动势的瞬时值得表达式应为e=50 cos100πt(V)10.下列四幅图表示的工具或装置,利用地磁场工作的是()磁卡指南针磁性黑板电磁起重机11、A、B两线圈用同样规格的导线绕成且匝数相同,两环半径r A=2r B.有理想边界的匀强磁场恰在B线圈内,如图所示.当磁感应强度均匀减小时,若A、B两线圈互不影响,则()A.A、B两环中产生的感应电动势之比为4:1B.A、B两环中产生的感应电流之比为2:1C.A、B两环中产生的感应电流之比为1:2D.A环中不发生电磁感应现象,B环中有感应电流12.设想地磁场是由地球内部的环形电流形成的,那么这一环形电流的方向应该是()A.B.C.D.13.正电荷沿图示方向进入方向垂直纸面向外的磁场,则该电荷受到的洛伦兹力方向()A.向左B.向右C.向外D.向里14、如图所示,铜棒ab长0.1m,质量为6×10-2kg,两端用轻铜线悬挂,整个装置处在竖直向下的匀强磁场中,现使铜棒中保持通有恒定电流I=9A,铜棒发生偏转,平衡时轻铜线的偏转角为37°,则匀强磁场的磁感应强度为(g=10m/s2,sin37°=0.6,cos37°=0.8)()A.0.4T B.T C.0.5T D.T15、如图所示,导体AB在做切割磁感线运动时,将产生一个电动势,因而在电路中有电流通过.下列说法中正确的是()A.因导体运动而产生的感应电动势称为感生电动势B.动生电动势的产生与洛伦兹力有关C.动生电动势的产生与电场力有关D.动生电动势和感生电动势的产生原因是一样的16.下列用电器中,不是根据电流的热效应制成的是()A.电热毯B.电熨斗C.电话D.电热水器17.关于电场和磁场,下列说法正确的是()A.某处电场的方向就是位于该处的电荷所受库仑力的方向B.某处磁场的方向就是位于该处的通电导线所受安培力的方向C.电荷在某处不受电场力的作用,则该处电场强度一定为零D.一小段通电导线在某处不受磁场力作用,则该处磁感应强度一定为零18.关于电场强度,正确的是()A.电场强度的大小与检验电荷的电量成反比B.电场强度的方向与检验电荷的正负有关C.电场强度大的地方电场线密D.进入电场的电荷受力方向就是场强的方向19、如图所示,两根通电直导线P、Q互相平行,对称分布在x轴上O点两侧,两根导线通入大小相等,方向垂直纸面向里的电流,在y中正方向上一点R,则R处的磁感应强度的方向是()A.x轴正方向B.y轴正方向C.y轴负方向D.x轴负方向20、如图所示,在一个均强电场中有一四边形ABCD,其中M为AD的中点,N为BC的中点,一个电量为3×10-7C的带正电粒子从A点移动到B点,电场力做功为W AB=3.0×10-8J,将该粒子从D点移动到C点,电场力做功为W DC=5.0×10-8J,下列结论正确的是()A.A、B两点之间的电势差为0.01VB.若将该粒子从M点移动到N点,电场力做功W MN=4.0×10-8JC.若将该粒子从M点移动到N点,电场力做功W MN=8.0×10-8JD.若A、B之间的距离为1cm,该电场的场强-定E=10V/m评卷人得分二.填空题(每题2分,共14分)21.电场中同一根电场线上排列着A、B、C三点,一个电量为2×10-8C的负电荷从A移到B,电场力做功为-4×10-6J,一个电量为3×10-8C的正电荷从A移到C,电场力做功为-9×10-6J.则顺着电场线方向这三点的排列次序是______.22、在点电荷Q产生的电场中有a,b两点,已知a点的场强大小为E,方向与ab连线成30°角,b点的场强方向与ab连线成120°角,如图所示,则b点的场强大小为______,a,b两点______点的电势高.23.把带正电的球C移近金属导体AB的A端时,由于同种电荷相互______,异种电荷相互______,使导体上的自由电子向______端移动,因此导体A端和B端带上了______种电荷.24.A、B两个点电荷,相距为L,B质量是A质量的2倍,它们在光滑水平面上由静止释放,开始时A的加速度为a,经过一段时间B的加速度也为a,那么,这时两点电荷相距______.25.一个电容器带电Q=6×10-4C时,两极板间电压∪=120V.当它的带电荷重减少2.0×10-4V时,两极板间电压减少______V,此时电容器的电容为______F.26.自然界中存在的两种电荷:______和______.同种电荷相互______,异种电荷相互______.27.质量为m,电荷量为q的质点,在静电力作用下以恒定速率v沿圆弧由A运动到B,其速度方向改变θ角,AB弧长为s,则A、B两点的电势差U AB=______,AB中点的场强大小E=______.三.简答题(共26分)28、(8分)如图,位于一条直线上的三个点电荷A,B,C,其间隔为==r,A和C都带正电荷,电荷量为q,在AC的垂直平分线上距B亦为r的P点,其场强恰为零,试确定点电荷B的电性和所带电荷量.29、(8分)如图所示,t=0时,竖直向上的匀强磁场磁感应强度B0=0.5T,并且以=1T/s在变化,水平导轨不计电阻,且不计摩擦阻力,宽为0.5m,长L=0.8m.在导轨上搁一导体杆ab,电阻R0=0.1Ω,并且水平细绳通过定滑轮吊着质量M=2kg的重物,电阻R=0.4Ω,问经过多少时间能吊起重物?(g=10m/s2)30(10分)如图劲度系数为k的轻质弹簧,下端挂有一匝数为n的矩形线框αbed,be边长为I,线框下边部分处于匀强磁场中,磁感应强度大小为E,方向与线框平面垂直向里,线框中通以如图方向的电流,开始时线框处于平衡状态,现令磁场反向,磁感应强度大小仍为E,线框达到新的平衡.求此过程中线框位移的大小△x和位移方向.参考答案一.单选题(共__小题)1.关于点电荷的说法,正确的是()A.带电体能否看成点电荷,是看它的形状和大小对相互作用力的影响是否能忽略不计B.点电荷一定是电量很小的电荷C.体积很大的带电体一定不能看作点电荷D.只有体积很小的带电体,才能作为点电荷答案:A解析:解:A、由带电体看作点电荷的条件,当带电体的形状对它们间相互作用力的影响可忽略时,这个带电体可看作点电荷,带电体能否看作点电荷是由研究问题的性质决定,与自身大小形状和电量多少无具体关系,故A正确,CD错误;B、一个带电体能否看成点电荷,不是看它电量的大小,而是看它的形状和大小对相互作用力的影响是否可以忽略,故B错误;故选:A2.如图所示,其中小磁针静止时N极正确的指向是()A.B.C.D.答案:A解析:解:A、由图可知,磁体外部的磁感线由N极到S极,根据小磁针静止时N极所指向表示磁场方向,小磁针指向正确,故A正确;B、由图可知,磁体外部的磁感线由N极到S极,根据小磁针静止时N极所指向表示磁场方向,小磁针N应该在右端,故B错误;C、由图可知,磁体外部的磁感线由N极到S极,根据小磁针静止时N极所指向表示磁场方向,小磁针N应该指向上,故C错误;D、由图可知,磁体外部的磁感线由N极到S极,根据小磁针静止时N极所指向表示磁场方向,小磁针N极应该在左边,故D错误;故选:A.3.两个电容器,两极板间的电势差之比为2:3,带电量之比为3:2,则等于()A.2:3B.3:2C.4:9D.9:4答案:D解析:解:两个电容器,两极板间的电势差之比为2:3,带电量之比为3:2,根据公式C=,有:==;故选:D.4、如图为某一电场的电场线和等势面分布,图中实线表示电场线,虚线表示等势面,过a、b两点的等势面电势分别为φa=5V,φc=3V那么a、c连线的中点b的电势φb为()A.φb=4V B.φb>4VC.φb<4v D.上述情况都有可能答案:C解析:解:由图看出,ab段电场线比bc段电场线密,ab段场强较大,根据公式U=Ed可知,a、b 间电势差U ab大于b、c间电势差U bc,即φa-φb>φb-φc,得到φb<=4V.故选C5、如图所示,匝数为N,半径为R1的圆形线圈内有匀强磁场,匀强磁场在半径为R2的圆形区域内,匀强磁场的磁感应强度B垂直于线圈平面.通过该线圈的磁通量为()A.BπR12B.BπR22C.NBπR12D.NBπR22答案:B解析:解:由题,匀强磁场的磁感应强度B垂直于线圈平面,通过该线圈的磁通量为Φ=BS=B•.故选:B.6.甲、乙两个原来不带电的物体相互摩擦(没有第三者参与),结果发现甲物体带了1.6×10-15C的电荷量(正电荷),下列说法正确的是()A.乙物体也带了1.6C的正电荷B.甲物体失去了104个电子C.乙物体失去了104个电子D.甲、乙两物体共失去了2×104个电子答案:B解析:解:A、甲物体带了1.6C的电荷量(正电荷),由电荷守恒定律可知,乙物体带了1.6C的负电荷,故A错误;B、甲在摩擦过程中失去的电子数为:n==104,故B正确;C、乙物体得到了104个电子,故CD错误;故选:B.7.对磁感线的认识,下列说法不正确的是()A.磁感线切线方向即磁场方向B.磁感线上某点的切线方向与放在该点小磁针北极的受力方向相同C.磁感线的疏密可以反映磁场的强弱D.磁感线切线方向是小磁针受力的方向答案:D解析:解:A、磁感线切线方向即磁场方向.故A正确;B、磁感线上某点的切线方向与放在该点小磁针北极的受力方向相同.故B正确;C、磁感线的疏密可以反映磁场的强弱.故C正确;D、磁感线切线方向是磁场的方向,与小磁针N极受力的方向相同,与小磁针S极受力的方向相反.故D错误.本题要求选择不正确的,故选:D8.两个大小相同、带等量同种电荷的导体小球A和B,彼此间的斥力为F.A与B接触,然后移开放回原位置,这时A和B之间的作用力为F′,则F与F′之比为()A.4:1B.1:4C.1:1D.1:2答案:C解析:解:假设AB带电量都为Q,距离为r,彼此间的斥力F=,A与B接触,然后移开放回原位置,电荷量不变,则彼此间的斥力F′=,所以F:F′=1:1,故C正确.故选:C9、如图甲所示为某小型交流发电机的示意图,两磁极之间的磁场可认为是匀强磁场,正方形线圈可绕垂直于磁场方向的水平轴OO′以角速度ω沿逆时针方向匀速转动,开始转动时线圈平面与磁场方向平行,其中A为交流电流表,外电路的电阻R=8Ω,线圈的总电阻r=2Ω.若从线圈开始转动时开始计时,线圈中产生的交变电流如图乙所示,则以下说法中正确的是()A.线圈中产生的交变电压的有效值为100VB.当t=0.015s时,交流电表的示数为零C.从图示位置转过的过程中,电阻R上产生的热量为4JD.若将线圈转动的角速度减半,则线圈产生的交流电动势的瞬时值得表达式应为e=50 cos100πt(V)答案:D解析:解:A、根据图乙可知,电流的最大值为10A;故有效值为10A;根据欧姆定律可知,电压U=I(R+r)=10×10=100V;故A错误;B、交流电表显示的是电流的有效值;故不会随时间变化;故B错误;C、由Q=I2Rt可知,电阻R上产生的热量Q=100×8×(0.05)2=2J;故C错误;D、若角速度减半,则最大值减半;故表达式为:e=50cos100πt;故D正确;故选:D.10.下列四幅图表示的工具或装置,利用地磁场工作的是()磁卡指南针磁性黑板电磁起重机答案:B解析:解:磁卡是利用磁条工作,磁性黑板是利用黑板的磁性;电磁起重机是利用电磁体;只有指南针是利用地磁场工作,磁体的S极指向南方;故选:B.11、A、B两线圈用同样规格的导线绕成且匝数相同,两环半径r A=2r B.有理想边界的匀强磁场恰在B线圈内,如图所示.当磁感应强度均匀减小时,若A、B两线圈互不影响,则()A.A、B两环中产生的感应电动势之比为4:1B.A、B两环中产生的感应电流之比为2:1C.A、B两环中产生的感应电流之比为1:2D.A环中不发生电磁感应现象,B环中有感应电流答案:C解析:解:A、D、根据法拉第电磁感应定律有:E=n=nS,题中匝数相同,相同,有效面积S也相同,则得到A、B环中感应电动势之比为:E A:E B=1:1;故A错误,D错误;B、C、根据电阻定律R=ρ及L=n•2πr,因n、ρ、S截相同,则电阻之比为:R A:R B=r A:r B=2:1,根据欧姆定律I=得产生的感应电流之比为:I A:I B=1:2;故B错误,C正确;故选:C.12.设想地磁场是由地球内部的环形电流形成的,那么这一环形电流的方向应该是()A.B.C.D.答案:A解析:解:地磁的北极在地理的南极附近,由于地球绕地轴作自西向东旋转,故地球上所带电荷的运动形成了一个环形电流,根据安培定可知右手的拇指指向南方,则弯曲的四指的方向则自东向西,故环形电流的方向应该由东向西,故A正确,BCD错误.故选:A.13.正电荷沿图示方向进入方向垂直纸面向外的磁场,则该电荷受到的洛伦兹力方向()A.向左B.向右C.向外D.向里答案:B解析:解:带正电的电荷在向外的磁场中向上运动,根据左手定则可知,粒子的受到的洛伦兹力的方向向右,所以B正确.故选:B14、如图所示,铜棒ab长0.1m,质量为6×10-2kg,两端用轻铜线悬挂,整个装置处在竖直向下的匀强磁场中,现使铜棒中保持通有恒定电流I=9A,铜棒发生偏转,平衡时轻铜线的偏转角为37°,则匀强磁场的磁感应强度为(g=10m/s2,sin37°=0.6,cos37°=0.8)()A.0.4T B.T C.0.5T D.T答案:C解析:解:导体棒处于平衡状态,设绳子拉力为T,因此有:Tcosθ=mg…①Tsinθ=F安=BIL…②联立①②解得:B=tanα=故C正确,故选:C15、如图所示,导体AB在做切割磁感线运动时,将产生一个电动势,因而在电路中有电流通过.下列说法中正确的是()A.因导体运动而产生的感应电动势称为感生电动势B.动生电动势的产生与洛伦兹力有关C.动生电动势的产生与电场力有关D.动生电动势和感生电动势的产生原因是一样的答案:B解:A、因导体运动而产生的感应电动势称为动生电动势,故A错误,BC、动生电动势的产生与洛仑兹力有关,感生电动势与电场力做功有关,故B正确,C错误;D、动生电动势和感生电动势的产生原因不一样,故D错误;故选:B.16.下列用电器中,不是根据电流的热效应制成的是()A.电热毯B.电熨斗C.电话D.电热水器答案:C解析:解:电热毯、电熨斗、电热水器均利用了电流的热效应,将电能转化为热能;而电话是利用电能转化为声音信号;故选C.17.关于电场和磁场,下列说法正确的是()A.某处电场的方向就是位于该处的电荷所受库仑力的方向B.某处磁场的方向就是位于该处的通电导线所受安培力的方向C.电荷在某处不受电场力的作用,则该处电场强度一定为零D.一小段通电导线在某处不受磁场力作用,则该处磁感应强度一定为零答案:C解析:解:A、正电荷选择电场中受到的电场力的方向与场强的方向相同,负电荷受到的电场力的方向与电场强度的方向相反.故A错误;B、根据左手定则,磁感应强度的方向与置于该处的通电导线所受的安培力方向垂直.故B 错误;C、根据公式F=qE可知,电荷在某处不受电场力的作用,则该处电场强度一定为零.故C正确;D、小段通电导线在某处若不受磁场力,可能是导线与磁场平行,则此处不一定无磁场.故D错误.18.关于电场强度,正确的是()A.电场强度的大小与检验电荷的电量成反比B.电场强度的方向与检验电荷的正负有关C.电场强度大的地方电场线密D.进入电场的电荷受力方向就是场强的方向答案:C解析:解:电场强度是采用比值定义的,E的大小与F以及检验电荷q无关,是由电场本身决定的,电场E的方向规定为正电荷受力方向,与负电荷受力方向相反,故ABD错误;电场线可以形象的描述电场的强弱和方向,电场线密的地方电场强度大,故C正确.19、如图所示,两根通电直导线P、Q互相平行,对称分布在x轴上O点两侧,两根导线通入大小相等,方向垂直纸面向里的电流,在y中正方向上一点R,则R处的磁感应强度的方向是()A.x轴正方向B.y轴正方向C.y轴负方向D.x轴负方向答案:C解析:解:根据安培定则,两个电流在R处产生的磁场的方向如图,由于电流的大小相等,所以产生的磁场的大小相等,由矢量的合成方法可知,合磁场的方向沿y轴负方向.故选:C20、如图所示,在一个均强电场中有一四边形ABCD,其中M为AD的中点,N为BC的中点,一个电量为3×10-7C的带正电粒子从A点移动到B点,电场力做功为W AB=3.0×10-8J,将该粒子从D点移动到C点,电场力做功为W DC=5.0×10-8J,下列结论正确的是()A.A、B两点之间的电势差为0.01VB.若将该粒子从M点移动到N点,电场力做功W MN=4.0×10-8JC.若将该粒子从M点移动到N点,电场力做功W MN=8.0×10-8JD.若A、B之间的距离为1cm,该电场的场强-定E=10V/m答案:B解析:解:A、由公式W AB=qU AB得A、B两点之间的电势差为:U AB==V=0.1V,故A错误.B、C、因为该电场是匀强电场,M点的电势等于A、D两点电势的平均值;N点的电势等于B、C两点电势的平均值,即:φM=,φN=;所以:W MN=qU MN=q(φM-φN)=q(-)=q(φA-φB)+q(φD-φC)=W AB+ W DC=×(3.0×10-8J+5.0×10-8J)=4.0×10-8J.故B正确,C错误;D、由W AB=qU AB=qEd,若电场方向恰好沿AB方向,则d等于AB间的距离,d=1cm,则有:E===10V/m,若电场方向不沿AB方向,则d<1cm,得到E>10V/m,故D错误.故选:B二.填空题(共__小题)21.电场中同一根电场线上排列着A、B、C三点,一个电量为2×10-8C的负电荷从A移到B,电场力做功为-4×10-6J,一个电量为3×10-8C的正电荷从A移到C,电场力做功为-9×10-6J.则顺着电场线方向这三点的排列次序是______.答案:C、B、A解析:解:由公式U=,得:A、B间的电势差为:U AB==200V>0,则有:φA>φB;A、C间的电势差为:U AC=V=-300V<0,则有:φA<φC;所以有:φC>φA>φB;根据顺着电场线电势降低可知顺着电场线方向这三点的排列次序是:C、A、B.故答案为:C、A、B22、在点电荷Q产生的电场中有a,b两点,已知a点的场强大小为E,方向与ab连线成30°角,b点的场强方向与ab连线成120°角,如图所示,则b点的场强大小为______,a,b两点______点的电势高.答案:3Ea解析:解:将场强E a、E b延长,交点即为点电荷所在位置,如图所示,由于电场强度方向指向点电荷,则知该点电荷带负电.根据几何知识分析解得a点到Q点的距离:r a=2dcos30°=d,b点到Q点的距离r b=d,a、b两点到点电荷Q的距离之比r a:r b=:1,由公式E=得:a、b两点场强大小的比值E a:E b=1:3.得,E b=3E.由于a点距离负点电荷Q更近,所以a点的电势高于b点的电势.故答案为:3E;a23.把带正电的球C移近金属导体AB的A端时,由于同种电荷相互______,异种电荷相互______,使导体上的自由电子向______端移动,因此导体A端和B端带上了______种电荷.答案:排斥吸引A异解析:解:把带正电的球C移近金属导体A和B时,由于同种电荷相互排斥,异种电荷相互吸引,使导体上的自由电子向在外电场的作用下向A移动,正电荷不移动,因此导体A端和B端带上了异种电荷.故答案为:排斥;吸引;A;异.24.A、B两个点电荷,相距为L,B质量是A质量的2倍,它们在光滑水平面上由静止释放,开始时A的加速度为a,经过一段时间B的加速度也为a,那么,这时两点电荷相距______.答案:L解析:解:初态,对A电荷,由库仑定律得:k=ma----①末态,对B电荷,由库仑定律得:k=2ma----②①②相比,化简得:L′=L故答案为:25.一个电容器带电Q=6×10-4C时,两极板间电压∪=120V.当它的带电荷重减少2.0×10-4V时,两极板间电压减少______V,此时电容器的电容为______F.答案:405×10-6解析:解:电容器带电Q=6.0x10-4C,电压U=120V,故电容为:根据C=,带电量减少2.0×10-4C时,两极板间的电压减少:V电容器的电容与带电量无关,由电容器本身决定,当它的带电荷重减少2.0×10-4V时,电容不变,为5×10-6;故答案为:40,5×10-6.26.自然界中存在的两种电荷:______和______.同种电荷相互______,异种电荷相互______.答案:正电荷负电荷排斥吸引解析:解:因自然界中有正、负电荷之分,即存在两种电荷,电荷间的作用力的规律是:同种电荷相互排斥,异种电荷相互吸引.故答案为:正电荷,负电荷,排斥,吸引.27.质量为m,电荷量为q的质点,在静电力作用下以恒定速率v沿圆弧由A运动到B,其速度方向改变θ角,AB弧长为s,则A、B两点的电势差U AB=______,AB中点的场强大小E=______.答案:解析:解:由题意知电荷在静电力作用下做的是匀速圆周运动,从A点运动到B点,由动能定理知,静电力做的功是零,所以A、B两点间的电势差U AB=0设场源电荷的电荷量为Q,质点做圆周运动的轨道半径为r,则弧长s=θr①静电力是质点做圆周运动的向心力,即②弧AB中点的场强大小E=③解①②③组成的方程组得E=故答案为:0;三.简答题(共__小题)28、如图,位于一条直线上的三个点电荷A,B,C,其间隔为==r,A和C都带正电荷,电荷量为q,在AC的垂直平分线上距B亦为r的P点,其场强恰为零,试确定点电荷B的电性和所带电荷量.答案:解:由几何关系可知,A和C到P的距离:A与C在P点产生的场强的大小:由图可知,A与C点的点电荷在P点产生的场强的方向相互垂直,合场强:E=由矢量的合成可知,B点的场强大小也是,方向向下,所以B带负电.由库仑定律:联立得:答:B带负电,带电量大小是.29、如图所示,t=0时,竖直向上的匀强磁场磁感应强度B0=0.5T,并且以=1T/s在变化,水平导轨不计电阻,且不计摩擦阻力,宽为0.5m,长L=0.8m.在导轨上搁一导体杆ab,电阻R0=0.1Ω,并且水平细绳通过定滑轮吊着质量M=2kg的重物,电阻R=0.4Ω,问经过多少时间能吊起重物?(g=10m/s2)答案:解:要提起重物,安培力F=Mg且F=BIL在任意时刻t,磁感应强度B=B0+•t电路中的电流I=感应电动势E=•s=dL综合以上各式代入数据:=20解得:t=30.75s答:经过30.75s时间重物将被提起..30、如图劲度系数为k的轻质弹簧,下端挂有一匝数为n的矩形线框αbed,be边长为I,线框下边部分处于匀强磁场中,磁感应强度大小为E,方向与线框平面垂直向里,线框中通以如图方向的电流,开始时线框处于平衡状态,现令磁场反向,磁感应强度大小仍为E,线框达到新的平衡.求此过程中线框位移的大小△x和位移方向.答案:解:线框在磁场中受重力、安培力、弹簧弹力处于平衡,安培力为:F B=nBIL,且开始的方向向上,然后方向向下,大小不变.设在电流反向之前弹簧的伸长x,则反向之后弹簧的伸长为(x+△x),则有:kx+nBIL-G=0k(x+△x)-nBIL-G=0。

高中物理电磁学练习题(含解析)

高中物理电磁学练习题(含解析)

高中物理电磁学练习题学校:___________姓名:___________班级:___________一、单选题1.下列哪种做法不属于防止静电的危害()A.印染厂房中保持潮湿B.油罐车的尾部有一铁链拖在地上C.家用照明电线外面用一层绝缘胶皮保护D.在地毯中夹杂一些不锈钢丝纤维2.避雷针能起到避雷作用,其原理是()A.尖端放电B.静电屏蔽C.摩擦起电 D.同种电荷相互排斥3.2022年的诺贝尔物理学奖同时授予给了法国物理学家阿兰•阿斯佩、美国物理学家约翰•克劳泽及奥地利物理学家安东•蔡林格,以表彰他们在“纠缠光子实验、验证违反贝尔不等式和开创量子信息科学”方面所做出的杰出贡献。

许多科学家相信量子科技将改变我们未来的生活,下列物理量为量子化的是()A.一个物体带的电荷量B.一段导体的电阻C.电场中两点间的电势差D.一个可变电容器的电容4.关于电流,下列说法中正确的是()A.电流跟通过截面的电荷量成正比,跟所用时间成反比B.单位时间内通过导体截面的电量越多,导体中的电流越大C.电流是一个矢量,其方向就是正电荷定向移动的方向D.国际单位制中,其单位“安培”是导出单位5.转笔(Pen Spinning)是一项用不同的方法与技巧、以手指来转动笔的休闲活动,如图所示。

转笔深受广大中学生的喜爱,其中也包含了许多的物理知识,假设某转笔高手能让笔绕其上的某一点O做匀速圆周运动,下列有关该同学转笔中涉及到的物理知识的叙述正确的是()A.笔杆上的点离O点越近的,做圆周运动的向心加速度越大B.若该同学使用中性笔,笔尖上的小钢珠有可能因快速的转动做离心运动而被甩走C.若该同学使用的是金属笔杆,且考虑地磁场的影响,由于笔杆中不会产生感应电流,因此金属笔杆两端一定不会形成电势差D.若该同学使用的是金属笔杆,且考虑地磁场的影响,那么只有在竖直平面内旋转时,金属笔杆两端才会形成电势差6.关于电场力做功与电势差的关系,下列说法正确的是()A.M、N两点间的电势差等于将单位电荷从M点移到N点电场力做的功B.不管是否存在其他力做功,电场力对电荷做多少正功,电荷的电势能就减少多少C.在两点间移动电荷电场力做功为零,则这两点一定在同一等势面上,且电荷一定在等势面上移动D.在两点间移动电荷,电场力做功的多少与零电势的选取有关7.图甲和乙是教材中演示自感现象的两个电路图,L1和L2为电感线圈。

高中物理磁场习题200题(带答案解析)

高中物理磁场习题200题(带答案解析)

WORD格式整理一、选择题1.如图所示,一电荷量为q的负电荷以速度v射入匀强磁场中.其中电荷不受洛仑兹力的是( )A. B. C. D.【答案】C【解析】由图可知,ABD图中带电粒子运动的方向都与粗糙度方向垂直,所以受到的洛伦兹力都等于qvB,而图C中,带电粒子运动的方向与磁场的方向平行,所以带电粒子不受洛伦兹力的作用.故C正确,ABD错误.故选C.2.如图所示为电流产生磁场的分布图,其中正确的是( )A. B. C. D.【答案】D【解析】A中电流方向向上,由右手螺旋定则可得磁场为逆时针(从上向下看),故A错误;B图电流方向向下,由右手螺旋定则可得磁场为顺时针(从上向下看),故B错误;C图中电流为环形电流,由由右手螺旋定则可知,内部磁场应向右,故C错误;D图根据图示电流方向,由右手螺旋定则可知,内部磁感线方向向右,故D正确;故选D.点睛:因磁场一般为立体分布,故在判断时要注意区分是立体图还是平面图,并且要能根据立体图画出平面图,由平面图还原到立体图.3.下列图中分别标出了一根放置在匀强磁场中的通电直导线的电流I、磁场的磁感应强度B和所受磁场力F的方向,其中图示正确的是( )A. B. C. D.【答案】C【解析】根据左手定则的内容:伸开左手,使大拇指与其余四个手指垂直,并且都与手掌在同一个平面内;让磁感线从掌心进入,并使四指指向电流的方向,这时拇指所指的方向就是通电导线在磁场中所受安培力的方向,可得:A、电流与磁场方向平行,没有安培力,故A错误;B、安培力的方向是垂直导体棒向下的,故B错误;C、安培力的方向是垂直导体棒向上的,故C正确;D、电流方向与磁场方向在同一直线上,不受安培力作用,故D错误.故选C.点睛:根据左手定则直接判断即可,凡是判断力的方向都是用左手,要熟练掌握,是一道考查基础的好题目.4.如图所示,水平地面上固定着光滑平行导轨,导轨与电阻R连接,放在竖直向上的匀强磁场中,杆的初速度为v0,不计导轨及杆的电阻,则下列关于杆的速度与其运动位移之间的关系图像正确的是()A. B. C. D.【答案】C【解析】导体棒受重力、支持力和向后的安培力;感应电动势为:E=BLv感应电流为:I=II安培力为:I=III=I 2I2II=II=I△I△I故:I 2I2II△I=I△I求和,有:I 2I2I∑I△I=I∑△I故:I 2I2II=I(I0−I)故v与x是线性关系;故C正确,ABD错误;故选:C.5.如图所示,直角三角形ABC中存在一匀强磁场,比荷相同的两个粒子沿AB方向射入磁场,粒子仅受磁场力作用,分别从AC边上的P、Q两点射出,则( )A. 从P射出的粒子速度大B. 从Q射出的粒子速度大C. 从P射出的粒子,在磁场中运动的时间长D. 两粒子在磁场中运动的时间一样长【答案】BD【解析】试题分析:粒子在磁场中做圆周运动,根据题设条件作出粒子在磁场中运动的轨迹,根据轨迹分析粒子运动半径和周期的关系,从而分析得出结论.WORD 格式整理粒子在磁场中做匀速圆周运动,根据几何关系(图示弦切角相等),粒子在磁场中偏转的圆心角相等,根据粒子在磁场中运动的时间:I =I 2II ,又因为粒子在磁场中圆周运动的周期I =2II II ,可知粒子在磁场中运动的时间相等,故D 正确,C 错误;如图,粒子在磁场中做圆周运动,分别从P 点和Q 点射出,由图知,粒子运动的半径I I <I I ,又粒子在磁场中做圆周运动的半径I =II II知粒子运动速度I I <I I ,故A 错误B 正确;【点睛】带电粒子在匀强磁场中运动时,洛伦兹力充当向心力,从而得出半径公式I =II II ,周期公式I =2II II ,运动时间公式I =I 2I I ,知道粒子在磁场中运动半径和速度有关,运动周期和速度无关,画轨迹,定圆心,找半径,结合几何知识分析解题,6.在等边三角形的三个顶点a 、b 、c 处,各有一条长直导线垂直纸面放置,导线中通有大小相等的恒定电流,方向如图所示.过c 点的导线所受安培力的方向( )A. 与ab 边平行,竖直向上B. 与ab 边垂直,指向右边C. 与ab 边平行,竖直向下D. 与ab 边垂直,指向左边【答案】D【解析】试题分析:先根据右手定则判断各个导线在c 点的磁场方向,然后根据平行四边形定则,判断和磁场方向,最后根据左手定则判断安培力方向导线a 在c 处的磁场方向垂直ac 斜向下,b 在c 处的磁场方向垂直bc 斜向上,两者的和磁场方向为竖直向下,根据左手定则可得c 点所受安培力方向为与ab 边垂直,指向左边,D 正确;7.下列说法中正确的是( )A. 电场线和磁感线都是一系列闭合曲线B. 在医疗手术中,为防止麻醉剂乙醚爆炸,医生和护士要穿由导电材料制成的鞋子和外套,这样做是为了消除静电C. 奥斯特提出了分子电流假说D. 首先发现通电导线周围存在磁场的科学家是安培【答案】B【解析】电场线是从正电荷开始,终止于负电荷,不是封闭曲线,A 错误;麻醉剂为易挥发性物品,遇到火花或热源便会爆炸,良好接地,目的是为了消除静电,这些要求与消毒无关,B 正确;安培发现了分子电流假说,奥斯特发现了电流的磁效应,CD 错误;8.在如图所示的平行板电容器中,电场强度E 和磁感应强度B 相互垂直,一带正电的粒子q 以速度v 沿着图中所示的虚线穿过两板间的空间而不偏转(忽略重力影响)。

高中物理电磁场经典高考例题

高中物理电磁场经典高考例题

1.(20分)如图甲,在圆柱形区域内存在一方向竖直向下、磁感应强度大小为B 的匀强磁场,在此区域内,沿水平面固定一半径为r 的圆环形光滑细玻璃管,环心0在区域中心。

一质量为m 、带电量为q (q>0)的小球,在管内沿逆时针方向(从上向下看)做圆周运动。

已知磁感应强度大小B 随时间t 的变化关系如图乙所示,其中002m T qB π=。

设小球在运动过程中电量保持不变,对原磁场的影响可忽略。

(1)在t=0到t=T 0 这段时间内,小球不受细管侧壁的作用力,求小球的速度大小V 0;(2)在竖直向下的磁感应强度增大过程中,将产生涡旋电场,其电场线是在水平面内一系列沿逆时针方向的同心圆,同一条电场线上各点的场强大小相等。

试求t=T 0 到t=1.5T 0 这段时间内:①细管内涡旋电场的场强大小E ;②电场力对小球做的功W 。

2.如图所示,一只用绝缘材料制成的半径为R 的半球形碗倒扣在水平面上,其内壁上有一质量为m 的带正电小球,在竖直向上的电场力F =2mg 的作用下静止在距碗口R 54高处。

已知小球与碗之间的动摩擦因数为μ,则碗对小球的弹力与摩擦力的大小分别为-----------------3.(22分)如图所示,在xOy 平面的第一象限内,分布有沿x 轴负方向的场强E =34×104N/C 的匀强电场,第四象限内分布有垂直纸面向里的磁感应强度B 1=0.2 T的匀强磁场,第二、三象限内分布有垂直纸面向里的磁感应强度B 2的匀强磁场。

在x 轴上有一个垂直于y 轴的平板OM ,平板上开有一个小孔P ,P 处连接有一段长度d =lcm 内径不计的准直管,管内由于静电屏蔽没有电场。

y 轴负方向上距O的粒子源S 可以向第四象限平面内各个方向发射a 粒子,假设发射的a 粒子速度大小v 均为2×105m /s ,打到平板和准直管管壁上的a 粒子均被吸收。

已知a 粒子带正电,比荷为5q m=×l07C /kg ,重力不计,求:(1)a 粒子在第四象限的磁场中运动时的轨道半径和粒子从S 到达P 孔的时间;(2) 除了通过准直管的a 粒子外,为使其余a 粒子都不能进入电场,平板OM 的长度至少是多长?(3) 经过准直管进入电场中运动的a 粒子,第一次到达y 轴的位置与O 点的距离;(4) 要使离开电场的a 粒子能回到粒子源S 处,磁感应强度B 2应为多大?4.(多选题)如图所示,在垂直纸面向里的水平匀强磁场中,水平放置一根粗糙绝缘细直杆,有一重力不可忽略,中间带有小孔的正电小球套在细杆上。

高中物理电磁学部分试题精选.

高中物理电磁学部分试题精选.

电磁学部分一、在下列各踢的四个选项中,1~60小题只有一个选项是符合题目要求的,61~70小题有两个或两个以上的选项是符合题目要求的。

1. 下列关于电磁波的叙述中正确的是( )A. 电磁波是变化的电磁场由发生区域向远处的传播B .电磁波在任何介质中的传播速度为3×108m/sC. 电磁波由真空进入介质传播时, 波长将变化D. 电磁波不能产生干涉、衍射现象2. 19世纪20年代, 以数学家赛贝克为代表的科学家己认识到温度差会引起电流. 安培考虑到地球自转造成了被太阳照射后正面与背面的温度差, 从而提出如下假设:地球磁场是绕地球的环形电流引起的. 该假设中电流的方向是 ( )A. 由西向东垂直磁子午线B. 由东向西垂直磁子午线C .由南向北沿磁子午线方向 D. 由赤道向两极沿磁子午线方向3. 如图所示,A 、B 是两个外形相同的正六面体, 其中A 由金属板焊接而成,B 由玻璃板粘合而成, 在A 、B 之间有一个由电容器C 、电感线圈L, 干电池E 和单刀双掷开关S 组成的电路.初始时将S 置于位置l, 当电路处于稳定状态后, 不考虑其它干扰 , 将有( )A. 保持开关S 在1位置不变 ,A 内没有电磁波传播, B 内有电磁波传播B. 保持开关S 在1位置不变 ,A 和 B 内都有电磁波传播C. 将开关 S 掷于2位置后 ,A 内没有电磁波传播 ,B 内有电磁波传播D. 无论开关 S 置于何处 ,A 内均没有电磁波传播 ,B 内总有电磁波传播4. 如图,一绝缘细杆的两端各固定着一个小球,两小球带有等量异号的电荷,处于匀强电场中,电场方向如图中箭头所示。

开始时,细杆与电场方向垂直,即在图中Ⅰ所示的位置;接着使细杆绕其中心转过90”,到达图中Ⅱ所示的位置;最后,使细杆移到图中Ⅲ所示的位置。

以W 1表示细杆由位置Ⅰ到位置Ⅱ过程中电场力对两小球所做的功,W 2表示细杆由位置Ⅱ到位置Ⅲ过程中电场力对两小球所做的功,则有 A .W 1=0,W 2≠0 B .W 1=0,W 2=0 C .W 1≠0,W 2=0 D .W 1≠0,W 2≠05. 宇航员在探测某星球时, 发现该星球均匀带电,且电性为负, 电量为Q, 表面无大气 .在一次实验中, 宇航员将一带电-q (q 《 Q)的粉尘置于离该星球表面h 高处, 该粉尘恰处于悬浮状态;宇航员又将此粉尘带到距该星球表面2h 处, 无初速释放, 则此带电粉尘将( )A. 背向星球球心方向飞向太空B. 仍处于悬浮状态C. 沿星球自转的线速度方向飞向太空D. 向星球球心方向下落6. 等量异种点电荷的连线和其中垂线如图所示, 现将一个带负电的检验电荷先从图中a 点沿直线移到b 点, 再从b 点沿直线移到C 点. 则检验电荷在此全过程中( )A. 所受电场力的方向将发生改变B .所受电场力的大小恒定C. 电势能一直减小D. 电势能先不变后减小7. 空间中有一个孤立的带负电的金属球, 电荷量为q, 球半径为R, 球外a 、b 两点距球心的距离分别为2R 和4R, 如图所示 , 已知在带电金属球的电场中这两点的电场强度分别为a E 、b E , 电势分别为a φ、b φ关于这个电场有以下判断① a E >b E ② a φ > b φ③ 若在a 点引入一个带正电、电荷量也是q 的点电荷, 则该点电荷受到的电场力应是 F=q a E , 其中a E 是没有引人点电荷时, 金属球在a 点所产生的场强④ 若把该正点电荷从a 点移到b 点 , 电势能一定增大下述四个选项中包含全部正确说法的是( )A. ①②③B. ①③C. ①③④D. ①④8.空间存在一匀强磁场B, 其方向垂直纸面向里,另有一个点电荷+Q 的电场, 如图所示 .一带电-q 的粒子以初速度v 0从某处垂直电场、磁场入射, 初位置到点电荷的距离为r, 则粒子在电、磁场中的运动轨迹不可能为( )A. 以点电荷十Q 为圆心 , 以r 为半径的在纸平面内的圆周B. 开始阶段在纸面内向右偏的曲线C. 开始阶段在纸面内向左偏的曲线D. 沿初速度v 0方向的直线9. 不带电的金属球A 的正上方有一点, 该处有带电液滴不断地自静止开始落下, 液滴到达A 球后将电荷全部传给A 球, 不计其它影响, 则下列叙述中正确的是( )A. 第一液滴做自由落体运动 , 以后的液滴做变加速运动, 都能到达A 球B. 当液滴下落到重力等于电场力位置时, 液滴速度为零C. 当液滴下落到重力等于电场力位置时, 开始做匀速运动D. 一定有液滴无法到达A 球10. 如图所示, 在竖直放置的光滑半圆弧绝缘细管的圆心O 处固定一点电荷, 将质量为m, 带电量为q 的小球从圆弧管的水平直径端点A 由静止释放, 小球沿细管滑到最低点B 时, 对管壁恰好无压力, 则固定于圆心处的点电荷在AB 弧中点处的电场强度的大小为( )A. E=mg/qB. E=2mg/qC. E=3mg/qD. E =4mg/q11. 内壁光滑, 水平放置的玻璃圆环内, 有一直径略小于环口直径的带正电的小球, 以速度V 0沿逆时针方向匀速转动, 如图所示, 若在此空间突然加上方向竖直向上、磁感应强 度B 随时间成正比增加的变化磁场, 设运动过程中小球带电量不变,则正确的是( )A. 小球对玻璃环的压力一定不断增大B. 小球受到的磁场力一定不断增大C. 小球先沿逆时针方向减速运动一段时间后沿顺时针方向加速运动D. 磁场力对小球先做负功后做正功12. A 、B 是电场中的一条直线形的电场线, 若将一个带正电的点电荷从A 点由静止释放, 它在沿电场线从A 向B 运动过程中的速度图象如图所示 .比较A 、B 两点的电势ϕ和场强E ,下列说法中正确的是( )A .A ϕ<B ϕ,B A E E < B.B A ϕϕ<,B A E E >C. B A ϕϕ>,B A E E >D.B A ϕϕ>, B A E E <13. 传感器是把非电学量(如温度、速度、压力等)的变化转换为电学量变化的一种元件. 在自动控刽中有着广泛的应用. 如图所示是种测量液面高度h 的电容式传感器的示意图,从电容C 大小的变化就能反映液面的升降情况 .关于两者关系的说法中正确的是( )A. C 增大表示h 减小B .C 减小表示h 增大C .C 减小表示h 较小D. C 的变化与h 变化无直接关系14. 示波器可以视为加速电场与偏转电场的组合,若已知前者的电压为U 1 , 后者电压为U 2、极板长为L 、板间距为d ,且电子被加速前的初速度可忽略, 则下面关于示波器的灵敏度(偏转电场中每单位偏转电压所引起的偏转量h/U 2称“灵敏度”)与加速电场、偏转电场的关系中正确的是( )A. L 越大,灵敏度越大B. d 越大, 灵敏度越大C .U 1越大,灵敏度越小 D. 灵敏度与U 2无关15.要使平行板电容器两极板间电势差加倍, 同时极板间的场强减半,下述的四种方法中应采取哪种( )A .两极板的电荷量加倍,板间距离为原来的4倍B .两极板的电荷量减半, 板间距离为原来的4倍C .两极板的电荷量加倍, 板间距离为原来的2倍D .两极板的电荷量减半, 板间距离为原来的2倍16.传感器是一种采集信息的重要器件, 如图所示的是一种测定压力的电容式传感器,当待测压力F 作用于可动膜片的电极上时,以下说法中正确的是( )① 若F 向上压膜片电极, 电路中有从a 到b 的电流② 若F 向上压膜片电极, 电路中有从b 到a 的电流③ 若F 向上压膜片电极, 电路中不会出现电流④ 若电流表有示数 , 则说明压力 F 发生变化⑤ 若电流有有示数 , 则说明压力 F 不发生变化A. ②④B. ①④C. ③⑤D. ①⑤17. 如图所示, 质量相同的两个带电粒子P 、Q 以相同的速度沿垂直于电场方向射入两平行板间的匀强电场中,P 从两极板正中央射入,Q 从下极板边缘处射入,它们最后打在同一点 (不计P 、Q 的重力以及它们间的相互作用),则从开始射入到打到上极板的过程, 下列说法中不正 确的是( )A. 它们运动的时间相等B. 它们所带的电荷量之比21=Q P q q C. 它们的电势能减小量之比21=∆∆Q P E E D. 它们的动量增量之比21=∆∆Q P P P 18. 电阻R 与两个完全相同的二极管连成如图所示的电路,a 、b 端加上电压ab U =1OV 时,a 点的电流为0.01A ;当ab U =-0.2V 肘 ,a 点的电流也为0.0lA,电阻R 的阻值为( )A .1020Ω B. 1000Ω C. 980Ω D. 20Ω19. 有一内阻为4.4Ω的直流电动机和一盏标有“110V 6OW ”的灯泡串联后接在电压恒定为22OV 的电路两端, 灯泡正常发光 , 则( )A. 电动机的输入功率为 60 WB. 电动机的发热电功率为 60 WC. 电路消耗的总功率为 6OWD. 电动机的输出功率为 6O W20. 如图所示的电路, 开关S 原来是闭合的, 当S 开时, 电流表的示数变化情况是 ( 电池内阻符号为 r )( )A. r=0 时示数不变 ,r≠0时示数变大B. r=0 时、 r≠0时示数都变大C .r=0 时示数变小 ,r ≠0时示数变大D. r=0时示数变大,r ≠0时示数变小21. 如图所示是一火警报警器的部分电路示意图. 其中R2为用半导体热敏材料制成的传感器, 电流表为值班室的显示器,a、b之间接报警器. 当传感器R2所在处出现火情时, 显示器的电流I、报警器两端的电压U的变化情况是( )A. I 变大, U 变大B. I 变大 ,U 变小C. I 变小 ,U 变大D. I 变小 ,U 变小22. 如图所示的电路图是测量电流表G内阻的实验电路图, 根据实验原理分析可知( )A. 测量值比真实值偏大B. 测量值比真实值偏小C. 测量值与真实值相等D. 测量值与真实值是否相等难以确定23. 如图所示的电路中,电阻R1=R2,外加电压U保持不变,在双刀双掷开关分别掷向3、6位置和掷向1 、4位置的两种情况下,电路在单位时间里放出的总热量之比是( )A.4 :1B.l :4C.2 :1D.1 :224. 在如图所示电路中,电源的电动势为E,内电阻为r,当变阻器R3的滑动触头P向b端移动时( )A. 电压表示数变大,电流表示数变小B. 电压表示数变小,电流表示数变大C. 电压表示数变大,电流表示数变大D. 电压表示数变小,电流表示数变小25. 如图所示是一种测量电阻阻值的实验电路图, 其中R1、R2是未知的定值电阻,R3是保护电阻. R是电阻箱,Rx为待测电阻. V0是一只零刻度在中央、指针可以左右偏转的双向电压表, 闭合开关S1、S2 , 调节R. 使电压表V0的指针指在零刻度处, 这时R的读数为90Ω,将R1、R2互换后再次闭合S1、S2, 调节R, 使指针指在零刻度处, 这时R的读数为 160Ω, 那么被测电阻Rx的数值和R1与R2的比值分别为 ( )A.120Ω,3 :4B. 125Ω,4 :3C.160Ω,16 :9D. 25OΩ,9 :1626. 某同学做电学实验 , 通过改变滑动变阻器电阻大小, 测量并记录了多组电压表和电流表的读数, 根据表格中记录的数据分析, 他所连接的电路可能是下列电路图中的( )27. 如图所示, R 1为定值电阻,R 2为可变电阻,E 为电源电动势,r 为电源的内电阻, 以下说法中正确的是( )A. 当R 2=R 1+r 时 ,R 2上获得最大功率B. 当R 2=R 1+r 时 ,R 1上获得最大功率C. 当R 2=0 时 , 电源的效率最大D. 当R 2=0 时 , 电源的输出功率一定最大28. 临沂市电厂发电机的输出电压稳定, 它发出的电先通过电厂附近的升压变压器升压,然后用输电线路把电能输送到远处居民小区附近的降压变压器, 经降低电压后输送到用户, 设升、降变压器都是理想变压器, 那么在用电高峰期, 白炽灯不够亮, 但电厂输送的总功率增加 , 这时( )A. 升压变压器的副线圈的电压变大B. 降压变压器的副线圈的电压变大C. 高压输电线路的电压损失变大D. 用户的负载增多, 高压输电线中的电流减小29. 计算电功率的公式RU P 2=中,U 表示用交流电压表测出的加在用电器两端的电压值,R 是用欧姆表测出的用电器的电阻值, 则此式可用于计算 ( )A. 电冰箱的功率B. 电风扇的功率C. 电烙铁的功率D. 洗衣机的功率30. 如图所示, 理想变压器的输入电压U 1不变 , R 1、R 2、R 3、R 4为定值电阻,R 为滑动变阻器 , 设电压表和电流表的示数分别为U 和I, 当R 的滑动触头向图中b 移动时,则( )A. U 不变 , I 不变B.U 减小 ,I 增大C.U 不变 ,I 增大D.U 减小 ,I 不变31. 如图所示,T 为理想变压器,A 1、A 2 为交流电流表 , R 1、R 2为定值电阻,R 3为滑动变阻器 ,原线圈两端接恒压交流电源, 当滑动变阻器的滑动触头向下 滑动时 ( )A. A 1读数变大 ,A 2 读数变大B. A 1读数变大 ,A 2读数变小C. A 1读数变小 ,A 2读数变大D. A 1读数变小, A 2读数变小32. 如图甲所示为分压器电路图, 已知电源电动势为E, 内电阻不计, 变阻器总电阻为 R 0=50Ω. 闭合开关S后, 负载电阻R L 两端的电压U 随变阻器a 端至滑动触头间的阻值Rx 变化而改变. 当负载电阻分别为R L1=20O Ω和R L2=2O Ω时, 关于负载电阻两端的电压U 随Rx 变化的图线大致接近图乙中哪条曲线的下列说法中, 正确的是( )A.R L1大致接近曲线① ,R L2大致接近曲线②B.R L1大致接近曲线②,R L2大致接近曲线①C.R L1大致接近曲线③,R L2大致接近曲线④D.R L1大致接近曲线④,R L2大致接近曲线③33. 如图所示为一理想变压器, 其原、副线圈的匝数均可调节, 原线圈两端电压为一最大值不变的正弦交流电, 为了使变压器输入功率增大, 可使 ( )A. 其他条件不变, 原线圈的匝数n 1增加B. 其他条件不变, 副线圈的匝数n 2的减小C . 其他条件不变 .负载电阻R 的阻值增大D . 其他条件不变 .负载电阻R 的阻值减小34. 如图所示 .理想变压器、原副线圈匝数之比n 1:n 2=3:l , 且分别接有阻值相同的电阻R 1和R 2,所加交流电源电压的有效值为U, 则( )A. R 1两端电压与R 2两端电压之比为3:1B. R1、R2消耗功率之比为1:9C. R 1、R 2两端电压均为U/4D. R 1 、R 2 消耗功率之比为l:l35. 如图所示, 理想变压器原、副线圈匝数之比n 1: n 2=4:1, 原线圈两端连接光滑导轨, 副线圈与电阻R 相连组成闭合回路. 当直导线AB在均强磁场中沿导轨匀速地向右做切割磁感线运动时, 电流表A 1 的读数是12mA, 那么电流表A 2的读数为 ( )A.OB. 3mAC.48mAD. 与电阻 R 大小有关36. 如图所示, 有一个理想变压器,0为副线圈中心抽出的线头 , 电路中两个电阻R 1和R 2的阻值相同, 开关S 闭合前后, 原线圈的电流分别为I 1和I 2, 则I 1:I 2等于 ( )A. 1:1B. 2:1C. 1:2D. 4:137. 如图所示, 理想变压器原、副线圈的匝数比为10:1,b 是原线圈的中心抽头, 电压表V 和电流表A 均为理想电表, 除R 以外其余电阻不计, 从某时刻开始在原线圈两端加上交变电压,其瞬时值表达式为u 1=220t π100sin 2V). 下列说法中正确的是( ) A. t=6001s 时, ac 两点间的电压瞬时值为110V B. t=6001s 时, 电压表的读数为22V C. 滑动变阻器触头向上移, 电压表和电流表的示数均变大D. 单刀双掷开关由a 搬向b,电压表和电流表的示数均变小38. 图(a)为某型号电热毯的电路图, 将电热丝接在u=156sin120πtV 的电源上, 电热毯被加热到一定温度后, 由于P 的作用使输入的正弦交流电仅有半个周期能够通过, 即电压变为图(b)所示波形, 从而进入保温状态, 则此时交流电压表的读数是( )A. 156VB. 110VC. 78VD. 55V39. 自藕变压器的特点是在铁心上只绕一个线圈,它的结构如图所示,P 、M 之间可以当作一个线圈,移动滑动触头P, 可以改变这个线圈的匝数;N 、M 之间可以当作另一个线圈. M 、N 与一个滑动变阻器相连,Q 为滑动变阻器的滑动触头, 下列论述中正确的是( )A. 当恒压电源接到a 、b 时, 向上移动滑动触头P, 电压表V 1的示数不变, V 2示数变大B. 当恒压电源接到a 、b 时, 向上移动滑动触头P, 电压表V 1的示数变大, V 2示数也变大C. 当恒压电源接到c 、d 时, 向上移动滑动触头Q, 电压表V 1的示数不变, V 2示数不变D. 当恒压电源接到c 、d 时, 向上移动滑动触头Q, 电压表V 1的示数变大, V 2示数不变40. 如图所示 , 三只白炽灯L 1、L 2、L 3分别和电感、电阻、电容器串联后并联接在同一个交变电源上. 当交变电源的电压为U, 频率为5OHz 时,三只灯泡的亮度相同, 那么当交变电源的电压不变,而频率增大后, 三只灯泡的亮度变化将是( )A. L 1变暗, L 2不变, L 3变亮B. L l 变亮, L 2不变, L 3变暗C. L l 变暗, L 2变亮, L 3变亮D. L 1变亮, L 2变亮, L 3变暗41. 一直升飞机停在南半球的地磁极上空。

高中物理竞赛习题专题之《电磁场典型必练例题》(Word版包含答案详解》

高中物理竞赛习题专题之《电磁场典型必练例题》(Word版包含答案详解》

高中物理竞赛习题之电磁场经典例题一、选择题1. 如图所示将一个电量为q 的点电荷放在一个半径为R 的不带电的导体球附近,点电荷距导体球球心为d ,参见附图。

设无穷远处为零电势,则在导体球球心O 点有( )(A )dεq V E 0π4,0==(B )dεq V d εq E 020π4,π4== (C )0,0==V E(D )Rεq V d εq E 020π4,π4== 解析: 达到静电平衡时导体内处处各点电场强度为零。

点电荷q 在导体球表面感应等量异号的感应电荷±q′,导体球表面的感应电荷±q′在球心O 点激发的电势为零,O 点的电势等于点电荷q 在该处激发的电势。

因而正确答案为(A )。

2、在图(a)和(b)中各有一半径相同的圆形回路L1 、L2 ,圆周内有电流I1 、I2 ,其分布相同,且均在真空中,但在(b)图中L2 回路外有电流I3 ,P 1 、P 2 为两圆形回路上的对应点,则( )(A ) ⎰⎰⋅=⋅21L L d d l B l B ,21P P B B = (B ) ⎰⎰⋅≠⋅21L L d d l B l B ,21P P B B = (C ) ⎰⎰⋅=⋅21L L d d l B l B ,21P P B B ≠ (D ) ⎰⎰⋅≠⋅21L L d d l B l B ,21P P B B ≠ 解析:由磁场中的安培环路定律,积分回路外的电流不会影响磁感强度沿回路的积分;但同样会改变回路上各点的磁场分布.因而正确答案为(C ).3、对位移电流,下述四种说法中哪一种说法是正确的是( )(A ) 位移电流的实质是变化的电场(B ) 位移电流和传导电流一样是定向运动的电荷(C ) 位移电流服从传导电流遵循的所有定律(D ) 位移电流的磁效应不服从安培环路定理解析:位移电流的实质是变化的电场.变化的电场激发磁场,在这一点位移电流等效于传导电流,但是位移电流不是走向运动的电荷,也就不服从焦耳热效应、安培力等定律.因而正确答案为(A ).4.将形状完全相同的铜环和木环静止放置在交变磁场中,并假设通过两环面的磁通量随时间的变化率相等,不计自感时则( )(A ) 铜环中有感应电流,木环中无感应电流(B ) 铜环中有感应电流,木环中有感应电流(C ) 铜环中感应电动势大,木环中感应电动势小(D ) 铜环中感应电动势小,木环中感应电动势大分析与解 根据法拉第电磁感应定律,铜环、木环中的感应电场大小相等,但在木环中不会形成电流.因而正确答案为(A ).二、计算题5、如图所示,有三个点电荷Q 1 、Q 2 、Q 3 沿一条直线等间距分布且Q 1 =Q 3 =Q .已知其中任一点电荷所受合力均为零,求在固定Q 1 、Q 3 的情况下,将Q 2从点O 移到无穷远处外力所作的功.解析:由库仑力的定义,根据Q 1 、Q 3 所受合力为零可求得Q 2 .外力作功W ′应等于电场力作功W 的负值,即W ′=-W .求电场力作功的方法有两种:(1)根据功的定义,电场力作的功为l E d 02⎰∞=Q W 其中E 是点电荷Q 1 、Q 3 产生的合电场强度.(2) 根据电场力作功与电势能差的关系,有()0202V Q V V Q W =-=∞其中V 0 是Q 1 、Q 3 在点O 产生的电势(取无穷远处为零电势).解1 由题意Q 1 所受的合力为零()02π4π420312021=+d εQ Q d εQ Q 解得 Q Q Q 414132-=-=由点电荷电场的叠加,Q 1 、Q 3 激发的电场在y 轴上任意一点的电场强度为 ()2/322031π2y d εQ E E E yy y +=+=将Q 2 从点O 沿y 轴移到无穷远处,(沿其他路径所作的功相同,请想一想为什么?)外力所作的功为()d εQ y y d εQ Q Q W y 022/3220002π8d π241d =+⋅⎥⎦⎤⎢⎣⎡--=⋅-='⎰⎰∞∞l E 解2 与解1相同,在任一点电荷所受合力均为零时Q Q 412-=,并由电势的叠加得Q 1 、Q 3 在点O 的电势dεQ d εQ d εQ V 003010π2π4π4=+= 将Q 2 从点O 推到无穷远处的过程中,外力作功dεQ V Q W 0202π8=-=' 比较上述两种方法,显然用功与电势能变化的关系来求解较为简洁.这是因为在许多实际问题中直接求电场分布困难较大,而求电势分布要简单得多.6、在一半径为R 1 =6.0 cm 的金属球A 外面套有一个同心的金属球壳B .已知球壳B 的内、外半径分别为R 2=8.0 cm ,R 3 =10.0 cm .设球A 带有总电荷Q A =3.0 ×10-8C ,球壳B 带有总电荷Q B =2.0×10-8C .(1) 求球壳B 内、外表面上所带的电荷以及球A 和球壳B 的电势;(2) 将球壳B 接地然后断开,再把金属球A 接地,求金属球A 和球壳B 内、外表面上所带的电荷以及球A 和球壳B 的电势.解析:(1) 根据静电感应和静电平衡时导体表面电荷分布的规律,电荷Q A 均匀分布在球A 表面,球壳B 内表面带电荷-Q A ,外表面带电荷Q B +Q A ,电荷在导体表面均匀分布[图(a)],由带电球面电势的叠加可求得球A 和球壳B 的电势.(2) 导体接地,表明导体与大地等电势(大地电势通常取为零).球壳B 接地后,外表面的电荷与从大地流入的负电荷中和,球壳内表面带电-Q A [图(b)].断开球壳B 的接地后,再将球A 接地,此时球A 的电势为零.电势的变化必将引起电荷的重新分布,以保持导体的静电平衡.不失一般性可设此时球A 带电q A ,根据静电平衡时导体上电荷的分布规律,可知球壳B 内表面感应-q A ,外表面带电q A -Q A [图(c )].此时球A 的电势可表示为0π4π4π4302010=-+-+=R εQ q R εq R εq V A A A A A 由V A =0 可解出球A 所带的电荷q A ,再由带电球面电势的叠加,可求出球A 和球壳B 的电势.解 (1) 由分析可知,球A 的外表面带电3.0 ×10-8C ,球壳B 内表面带电-3.0 ×10-8C ,外表面带电5.0 ×10-8C .由电势的叠加,球A 和球壳B 的电势分别为V 106.5π4π4π43302010⨯=-+-+=R εQ Q R εQ R εq V A A A A A V 105.4π4330⨯=+=R εQ Q V B A B (2) 将球壳B 接地后断开,再把球A 接地,设球A 带电q A ,球A 和球壳B 的电势为0π4π4π4302010=+-+-+=R εq Q R εq R εq V A A A A A 30π4R εq Q V A A B +-= 解得C 1012.2831322121-⨯=-+=R R R R R R Q R R q A A 即球A 外表面带电2.12 ×10-8C ,由分析可推得球壳B 内表面带电-2.12 ×10-8C ,外表面带电-0.9 ×10-8C .另外球A 和球壳B 的电势分别为0A V =27.2910V B V =-⨯导体的接地使各导体的电势分布发生变化,打破了原有的静电平衡,导体表面的电荷将重新分布,以建立新的静电平衡.7、如图所示球形金属腔带电量为Q >0,内半径为ɑ,外半径为b ,腔内距球心O 为r 处有一点电荷q ,求球心的电势.解析:导体球达到静电平衡时,内表面感应电荷-q ,外表面感应电荷q ;内表面感应电荷不均匀分布,外表面感应电荷均匀分布.球心O 点的电势由点电荷q 、导体表面的感应电荷共同决定.在带电面上任意取一电荷元,电荷元在球心产生的电势Rεq V 0π4d d = 由于R 为常量,因而无论球面电荷如何分布,半径为R 的带电球面在球心产生的电势为R εq R εq V s 00π4π4d ==⎰⎰由电势的叠加可以求得球心的电势. 解 导体球内表面感应电荷-q ,外表面感应电荷q ;依照分析,球心的电势为bεQ q a εq r εq V 000π4π4π4++-= 8、有一个空气平板电容器,极板面积为S ,间距为d .现将该电容器接在端电压为U 的电源上充电,当(1) 充足电后;(2) 然后平行插入一块面积相同、厚度为δ(δ <d )、相对电容率为εr 的电介质板;(3) 将上述电介质换为同样大小的导体板.分别求电容器的电容C ,极板上的电荷Q 和极板间的电场强度E .解析:电源对电容器充电,电容器极板间的电势差等于电源端电压U .插入电介质后,由于介质界面出现极化电荷,极化电荷在介质中激发的电场与原电容器极板上自由电荷激发的电场方向相反,介质内的电场减弱.由于极板间的距离d 不变,因而与电源相接的导体极板将会从电源获得电荷,以维持电势差不变,并有()δSεεQ δd S εQ U r 00+-= 相类似的原因,在平板电容器极板之间,若平行地插入一块导体板,由于极板上的自由电荷和插入导体板上的感应电荷在导体板内激发的电场相互抵消,与电源相接的导体极板将会从电源获得电荷,使间隙中的电场E 增强,以维持两极板间的电势差不变,并有()δd SεQ U -=0 综上所述,接上电源的平板电容器,插入介质或导体后,极板上的自由电荷均会增加,而电势差保持不变.解 (1) 空气平板电容器的电容dS εC 00= 充电后,极板上的电荷和极板间的电场强度为U dS εQ 00= d U E /0=(2) 插入电介质后,电容器的电容C 1 为()()δd εδS εεδS εεQ δd S εQ Q C r r r -+=⎥⎦⎤⎢⎣⎡+-=0001/ 故有()δd εδSU εεU C C r r -+==011 介质内电场强度 ()δd εδU S εεQ E r r -+=='011 空气中电场强度 ()δd εδU εS εQ E r r -+==011 (3) 插入导体达到静电平衡后,导体为等势体,其电容和极板上的电荷分别为δd S εC -=02 U δd S εQ -=02 导体中电场强度 02='E 空气中电场强度δd U E -=2 无论是插入介质还是插入导体,由于电容器的导体极板与电源相连,在维持电势差不变的同时都从电源获得了电荷,自由电荷分布的变化同样使得介质内的电场强度不再等于E 0/εr.9、如图所示,有两根导线沿半径方向接触铁环的a 、b 两点,并与很远处的电源相接。

高考物理电磁场压轴题

高考物理电磁场压轴题

以下是高考物理电磁场的压轴题:
1.带电粒子在电磁场中的运动
在一个匀强磁场中,有一个竖直向下的匀强电场。

一个带正电的粒子从A点以一定的初速度垂直射入这个电磁场中,粒子在电场力和洛伦兹力的共同作用下做运动。

已知粒子在A点的初速度为v₀,质量为m,电量为q,磁场的磁感应强度为B,电场强度为E,重力加速度为g。

若粒子能沿直线从A点运动到B点,求A、B两点间的距离。

2.电容器与电磁场的综合问题
真空中有一个竖直放置的平行板电容器,两极板间的距离为d,电容为C,上极板带正电。

现有一个质量为m、带电量为+q的小球,从小孔正上方h高度处由静止开始释放,小球穿过小孔到达下极板处速度恰好为零。

已知小球在运动过程中所受空气阻力的大小恒为f,静电力常量为k,重力加速度为g。

求:
(1) 小球到达下极板时的动能;
(2) 电容器的带电量。

3.电磁感应与电磁场的综合问题
在匀强磁场中,一矩形金属线圈两次分别以不同的转速,绕与磁感线垂直的轴匀速转动,产生的交变电动势的图象分别如甲、乙所示,则在两图中t₁和t₁时刻()
A. 甲图中线圈平面与磁感线平行,乙图中线圈平面与磁感线垂直
B. 甲图中线圈的转速小于乙图中线圈的转速
C. 甲、乙两图中交变电动势的有效值相等
D. 甲、乙两图中交变电动势的瞬时值表达式相同。

高三物理电磁场的基础练习题及答案

高三物理电磁场的基础练习题及答案

高三物理电磁场的基础练习题及答案一、选择题1. 以下哪个选项描述了电磁场正确的特性?a) 只有电荷会在电磁场中产生力b) 只有磁铁会在电磁场中产生力c) 电荷和磁铁都会在电磁场中产生力d) 只有电流会在电磁场中产生力答案:c2. 磁场的单位是:a) 牛顿/库仑b) 度c) 汤d) 物质/秒答案:c3. 以下哪个选项描述了一个正确的电磁场图案?a) 经过两个平行电容板的电场线是平行的b) 磁铁的磁场线从南极向北极c) 磁铁的磁场线从北极向南极d) 磁铁的磁场线是闭合环路答案:b4. 静止电荷周围产生的电场是:a) 仅由正电荷产生b) 仅由负电荷产生c) 由正负电荷共同产生d) 不产生电场答案:c5. 假设有两个相同大小的电荷,一个带正电,一个带负电。

将它们靠近一起时,它们之间的作用力是:a) 斥力b) 引力c) 中和d) 无法确定答案:b二、简答题1. 什么是电场?答:电场是一种存在于空间中的物理场,由电荷产生。

它是描述电荷周围电力相互作用的物理量,可以使带电粒子受到电场力的作用。

2. 什么是磁场?答:磁场是一种存在于空间中的物理场,由磁铁或电流产生。

它是描述磁力相互作用的物理量,可以使带电粒子或其他磁性物体受到磁场力的作用。

3. 电场力和磁场力之间有什么区别?答:电场力和磁场力都是电磁场中的力,但它们有一些区别。

电场力是由电荷产生的,作用在电荷上,大小与电荷的量和距离有关;而磁场力由磁铁或电流产生,作用在带电粒子或其他磁性物体上,大小与磁场的强度、带电粒子的速度和磁场的方向有关。

4. 什么是洛伦兹力?答:洛伦兹力是带电粒子在电磁场中所受的力,包括电场力和磁场力的合力。

它的大小和方向由带电粒子的电荷、速度、电场和磁场的强度决定。

5. 电磁感应定律和法拉第定律之间有什么关系?答:电磁感应定律是由法拉第定律推导而来的一个具体应用。

电磁感应定律指出,当磁通量通过一个线圈发生变化时,该线圈中将会产生感应电动势。

高中物理电磁场练习试题

高中物理电磁场练习试题

专题练习电磁场第1讲电场及带电体在电场中的运动微网构建核心再现知识规律(1)电场力的性质.①电场强度的定义式:E=Fq.②真空中点电荷的场强公式:E=kQr2.③匀强电场场强与电势差的关系式:E=Ud.(2)电场能的性质.①电势的定义式:φ=E pq.②电势差的定义式:U AB=W ABq.③电势差与电势的关系式:U AB=φA-φB.④电场力做功与电势能:W AB=-ΔE p.思想方法(1)物理思想:等效思想、分解思想.(2)物理方法:理想化模型法、比值定义法、控制变量法、对称法、合成法、分解法等.高频考点一电场的特点和性质知能必备1.电场强度的三种表达形式及适用条件.2.电场强度、电势、电势能大小的比较方法.3.电场的叠加原理及常见电荷电场线、等势线的分布特点.例1直角坐标系xOy 中,M 、N 两点位于x 轴上,G 、H 两点坐标如图.M 、N 两点各固定一负点电荷,一电量为Q 的正点电荷置于O 点时,G 点处的电场强度恰好为零.静电力常量用k 表示.若将该正点电荷移到G 点,则H 点处场强的大小和方向分别为( ) A.3kQ 4a 2,沿y 轴正向 B.3kQ4a 2,沿y 轴负向 C.5kQ 4a 2,沿y 轴正向 D.5kQ4a 2,沿y 轴负向 [例2] (2016·全国大联考押题卷)(多选)如图所示,虚线为某电场中的三条电场线1、2、3,实线表示某带电粒子仅在电场力作用下的运动轨迹,a 、b 是轨迹上的两点,则下列说法中正确的是( ) A .粒子在a 点的加速度大小小于在b 点的加速度大小 B .粒子在a 点的电势能大于在b 点的电势能 C .粒子在a 点的速度大小大于在b 点的速度大小 D .a 点的电势高于b 点的电势电场性质的判断方法1.电场强度的判断方法:(1)根据电场线的疏密程度进行判断. (2)根据等差等势面的疏密程度进行判断. (3)根据E =Fq 进行判断.2.电势高低的判断方法:(1)由沿电场线方向电势逐渐降低进行判断. (2)若q 和W AB 已知,由U AB =W ABq进行判断. 3.电势能大小的判断根据电场力做功的正负判断电势能的变化或动能的变化.1.(多选)两个固定的等量异种点电荷所形成电场的等势线如图中虚线所示,一带电粒子以某一速度从图中f点进入电场,其运动轨迹如图中实线所示,若粒子只受静电力作用,则下列说法中正确的是()A.f、b、c、d、e五点中,c点电场强度最大B.带电粒子的加速度逐渐变大C.带电粒子的速度先增大后减小D.粒子经过b点和d点时的速度大小相同2.(多选)两个相同的负电荷和一个正电荷附近的电场线分布如图所示,c是两负电荷连线的中点,d点在正电荷的正上方,c、d到正电荷的距离相等,则()A.a点的电场强度比b点的大B.a点的电势比b点的高C.c点的电场强度比d点的大D.c点的电势比d点的低3.(2016·湖北武汉调研)在真空中某区域有一电场,电场中有一点O,经过O点的一条直线上有P、M、N三点,到O点的距离分别为r0、r1、r2,直线上各点的电势φ分布如图所示,r 表示该直线上某点到O点的距离,下列说法中正确的是()A.O、P两点间电势不变,O、P间场强一定为零B.M点的电势低于N点的电势C.M点的电场强度大小小于N点的电场强度大小D.在将正电荷沿该直线从M移到N的过程中,电场力做负功高频考点二平行板电容器问题知能必备1.电容的定义式和决定式、板间电场强度的计算式.2.引起电容器电容变化的因素及动态分析问题的两种结论及处理方法.[例3]已知均匀带电的无穷大平面在真空中激发电场的场强大小为σ2ε0,其中σ为平面上单位面积所带的电荷量,ε0为常量.如图所示的平行板电容器,极板正对面积为S,其间为真空,带电荷量为Q.不计边缘效应时,极板可看做无穷大导体板,则极板间的电场强度大小和两极板间相互的静电引力大小分别为()A.Qε0S和Q2ε0S B.Q2ε0S和Q2ε0SC.Q2ε0S和Q22ε0S D.Qε0S和Q22ε0S[例4](2016·山西名校联盟)(多选)如图所示,平行板电容器与电动势为E′的直流电源(内阻不计)连接,下极板接地,静电计所带电荷量很少,可被忽略.一带负电油滴被固定于电容器中的P点.现将平行板电容器的下极板竖直向下移动一小段距离,则下列说法中正确的是()A.平行板电容器的电容将变小B.静电计指针张角变小C.带电油滴的电势能将减少D.若先将上极板与电源正极的导线断开,再将下极板向下移动一小段距离,则带电油滴所受电场力不变1.如图所示,平行板电容器与一电动势为E的直流电源(内阻不计)连接,一带电油滴位于电容器中的P点且恰好处于平衡状态.在其他条件不变的情况下,现将平行板电容器的两极板缓慢地错开一些,那么在错开的过程中()A.电容器的电容C增大B.电容器所带电荷量Q增多C.油滴将向下加速运动,电流计中的电流从N流向MD.油滴静止不动,电流计中的电流从N流向M2.(2016·陕西宝鸡高三二模)如图所示,一带电小球悬挂在平行板电容器内部,闭合电键S,电容器充电后,细线与竖直方向夹角为φ,则下列说法中正确的是()A.保持电键S闭合,使两极板靠近一些,φ将减小B.保持电键S闭合,将滑动变阻器滑片向右移动,φ将减小C.打开电键S,使两极板靠近一些,φ将不变D.轻轻将细线剪断,小球将做斜抛运动3.(创新题)如图所示,理想二极管(具有单向导电性)、平行板电容器、电源组成闭合电路,带电液滴P置于水平放置的平行板电容器的正中间而静止,则下列说法中正确的是()A.若将极板A向下移动少许,则液滴的电势能将减小B.若将极板A向上移动少许,则液滴将向上运动C.若将极板B向上移动少许,则液滴的电势能将增大D.若将极板A、B错开少许,使两极板正对面积变小,则液滴将向下运动高频考点三 带电粒子在电场中的运动知能必备1.牛顿第二定律和运动学方程.2.动能定理及功能关系.3.类平抛运动的处理方法.4.类平抛运动的两个推论.[例5] (名师原创)如图所示,金属丝发射出的电子(质量为m 、电荷量为e ,初速度与重力均忽略不计)被加速后从金属板的小孔穿出进入偏转电场(小孔与上、下极板间的距离相等).已知偏转电场两极板间距离为d ,当加速电压为U 1、偏转电压为U 2时,电子恰好打在下极板的右边缘M 点,现将偏转电场的下极板向下平移d2.(1)如何只改变加速电压U 1,使电子打在下极板的中点? (2)如何只改变偏转电压U 2,使电子仍打在下极板的M 点?[例6] 如图甲所示,A 、B 两板竖直放置,两板之间的电压U 1=100 V ,M 、N 两板水平放置,两板之间的距离d =0.1 m ,板长L =0.2 m .一个质量m =2×10-12kg 、电荷量q =+1×10-8C的带电粒子(不计重力)从靠近A 板处由静止释放,经加速电场加速后从B 板的小孔穿出,沿着M 、N 两板的中轴线垂直进入偏转电场.如果在M 、N 两板之间加上如图乙所示的偏转电压,当t =T4时,带电粒子刚开始进入偏转电场,则:(1)带电粒子从B 板的小孔穿出时的速度为多大?(2)要使带电粒子能够从M 、N 两板之间(不沿中轴线)穿出,并且穿出后的速度方向保持水平,则交流电U 2的周期T 为多少?(3)在满足(2)条件的情况下,它在偏转电场中的最大偏移量是多少?(结果保留一位有效数字)解决带电粒子在电场中运动问题的基本思路及注意问题2.(多选)如图所示,氕核、氘核、氚核三种粒子从同一位置无初速地飘入电场线水平向右的加速电场E 1,之后进入电场线竖直向下的匀强电场E 2发生偏转,最后打在屏上.整个装置处于真空中,不计粒子重力及其相互作用,那么( )A .偏转电场E 2对三种粒子做功一样多B .三种粒子打到屏上时的速度一样大C .三种粒子运动到屏上所用时间相同D .三种粒子一定打到屏上的同一位置3.(2016·陕西五校联考)如图甲所示,两平行金属板MN 、PQ 的板长和板间距离相等,板间存在如图乙所示的随时间周期性变化的电场,电场方向与两板垂直,在t =0时刻,一不计重力的带电粒子沿板间中线垂直电场方向射入电场,粒子射入电场时的速度为v 0,t =T 时刻粒子刚好沿MN 板右边缘射出电场.则( )A .该粒子射出电场时的速度方向一定是沿垂直电场方向的B .在t =T2时刻,该粒子的速度大小为2v 0C .若该粒子在T2时刻以速度v 0进入电场,则粒子会打在板上D .若该粒子的入射速度变为2v 0,则该粒子仍在t =T 时刻射出电场4(2016·高考全国乙卷)一平行板电容器两极板之间充满云母介质,接在恒压直流电源上.若将云母介质移出,则电容器()A.极板上的电荷量变大,极板间电场强度变大B.极板上的电荷量变小,极板间电场强度变大C.极板上的电荷量变大,极板间电场强度不变D.极板上的电荷量变小,极板间电场强度不变5(2016·高考全国甲卷)如图,P是固定的点电荷,虚线是以P为圆心的两个圆.带电粒子Q 在P的电场中运动,运动轨迹与两圆在同一平面内,a、b、c为轨迹上的三个点.若Q仅受P 的电场力作用,其在a、b、c点的加速度大小分别为a a、a b、a c,速度大小分别为v a、v b、v c.则()A.a a>a b>a c,v a>v c>v bB.a a>a b>a c,v b>v c>v aC.a b>a c>a a,v b>v c>v aD.a b>a c>a a,v a>v c>v b7如图所示,两个带等量正电的点电荷分别固定于P、Q两点,它们连线的中点是O,A、B 是P、Q连线的中垂线上的两点,OA<OB.则下列说法正确的是()A.A点场强大小一定大于B点的场强大小B.A、B所在直线是一条等势线,等势线左右对称点电势相等C.将一正试探电荷分别置于A和B点,该试探电荷在A点的电势能等于在B点的电势能D.将一负试探电荷分别置于A和B点,该试探电荷在A点的电势能小于在B点的电势能“等势线(电场线)+运动轨迹”模型的处理思路1.(多选)在光滑绝缘的水平桌面上,存在着方向水平向右的匀强电场,电场线如图中实线所示.一初速度不为零的带电小球从桌面上的A点开始运动,到C点时,突然受到一个外加的水平恒力F作用而继续运动到B点,其运动轨迹如图中虚线所示,v表示小球经过C点时的速度.则()A.小球带正电B.恒力F的方向可能水平向左C.恒力F的方向可能与v方向相反D.在A、B两点处小球的速率不可能相等2.(多选)如图所示,虚线为某电场中的三个等差等势面1、2、3,实线表示某带电粒子仅在电场力作用下的运动轨迹,a、b是轨迹上的两点,则下列说法中正确的是()A.等势面1的电势最高B.粒子在a点的加速度大小小于在b点的加速度大小C.粒子在a点的电势能大于在b点的电势能D.粒子在a点的速度大小大于在b点的速度大小即时练习1.(多选)如图所示,直线是一簇未标明方向的由点电荷产生的电场线,曲线是某一带电粒子通过电场区域时的运动轨迹,a、b是轨迹上两点.若带电粒子运动中只受电场力作用,根据此图可以作出的判断是()A.带电粒子所带电荷的符号B.带电粒子在a、b两点的受力方向C.带电粒子在a、b两点的加速度何处大D.带电粒子在a、b两点的加速度方向2.(多选)如图所示的虚线为电场中的三条等势线,三条虚线平行且等间距,电势分别为10 V、19 V、28 V,实线是仅受电场力的带电粒子的运动轨迹,a、b、c是轨迹上的三个点,a到中间虚线的距离大于c到中间虚线的距离,下列说法正确的是()A.粒子在a、b、c三点受到的电场力方向相同B.粒子带负电C.粒子在a、b、c三点的电势能大小关系为E p c>E p b>E p aD.粒子从a运动到b与从b运动到c,电场力做的功可能相等3.如图所示,边长为L=1 m的等边三角形ABC置于匀强电场中,电场线的方向平行于△ABC 所在平面,其中A点电势为1 V,AC中点电势为2 V,BC中点的电势为4 V,则该匀强电场的场强大小是()A.1 V/m B.32V/mC.3 V/m D.4 V/m4.带有等量异种电荷的两块等大的平行金属板M、N水平正对放置.两板间有一带电微粒以速度v0沿直线运动,当微粒运动到P点时,将M板迅速向上平移一小段距离后,则此后微粒的可能运动情况是()A.沿轨迹①运动B.沿轨迹②运动C.沿轨迹③运动D.沿轨迹④运动5.(2016·湖北八市联考)如图,M和N是两个带有异种电荷的带电体(M在N的正上方,图示平面为竖直平面),P和Q是M表面上的两点,S是N表面上的一点.在M和N之间的电场中画有三条等势线.现有一个带正电的液滴从E点射入电场,它先后经过了F点和W点.已知油滴在F 点时的机械能大于在W 点时的机械能,E 、W 两点在同一等势面上,不计油滴对原电场的影响,不计空气阻力,则以下说法正确的是( )A .P 和Q 两点的电势不相等B .P 点的电势高于S 点的电势C .油滴在F 点的电势能高于在E 点的电势能D .油滴在E 、F 、W 三点的机械能和电势能之和不变6.(2016·浙江宁波高三联考)如图所示,分别在M 、N 两点固定放置两个点电荷,电荷量均为+Q ,MN 连线的中点为O .正方形ABCD 以O 点为中心,E 、F 、G 、H 是正方形四边的中点,取无穷远处电势为0,则下列说法正确的是( )A .A 点电势低于B 点电势B .正点电荷沿直线从F 到H ,电势能先增大后减小C .O 点的电场强度为零,电势也为零D .沿路径A →D →C 移动一负点电荷比沿路径A →B 移动同一负点电荷克服电场力做的功多7.(多选)静电场在x 轴上的场强E 随x 的变化关系如图所示,x 轴正向为场强正方向,带正电的点电荷沿x 轴运动,则点电荷( )A .在x 2和x 4处电势能相等B .由x 1运动到x 3的过程中电势能增大C .由x 1运动到x 4的过程中电场力先增大后减小D .由x 1运动到x 4的过程中电场力先减小后增大8.如图所示,平行板电容器的两金属板A 、B 竖直放置,电容器所带电荷量为Q ,一液滴从A 板上边缘由静止释放,液滴恰好能击中B 板的中点O ,若电容器所带电荷量增加Q 1,液滴从同一位置由静止释放,液滴恰好击中OB 的中点C ,若电容器所带电荷量减小Q 2,液滴从同一位置由静止释放,液滴恰好击中B 板的下边缘D 点,则Q 1Q 2=( )A.1 B.2C.3 D.49.(2016·河南开封二模)(多选)如图所示,一带电粒子在匀强电场中从A点抛出,运动到B点时速度方向竖直向下,且在B点时粒子的速度为粒子在电场中运动的最小速度,已知电场方向和粒子运动轨迹在同一竖直平面内,粒子的重力和空气阻力与电场力相比可忽略不计,则()A.电场方向一定水平向右B.电场中A点的电势一定高于B点的电势C.从A到B的过程中,粒子的电势能一定增加D.从A到B的过程中,粒子的电势能与动能之和一定不变10.如图所示是一对等量异种点电荷的电场线分布图,图中两点电荷P、Q连线长度为r,M 点、N点到两点电荷P、Q的距离都为r,S点到点电荷Q的距离也为r,由此可知()A.M点的电场强度为2k qr2B.M、N、S三点的电势可能相等C.把同一试探电荷放在M点,其所受电场力等于放在S点所受的电场力D.沿图中虚线,将一试探电荷从N点移到M点,电场力一定不做功11.(多选)如图所示,半圆槽光滑、绝缘、固定,圆心是O,最低点是P,直径MN水平,a、b是两个完全相同的带正电小球(视为点电荷),b固定在M点,a从N点静止释放,沿半圆槽运动经过P点到达某点Q(图中未画出)时速度为零,则小球a()A.从N到Q的过程中,重力与库仑力的合力先增大后减小B .从N 到P 的过程中,速率先增大后减小C .从N 到Q 的过程中,电势能一直增加D .从P 到Q 的过程中,动能减少量小于电势能增加量12.在xOy 平面内,有沿y 轴负方向的匀强电场,场强大小为E (图中未画出),由A 点斜射出一质量为m ,带电荷量为+q 的粒子,B 和C 是粒子运动轨迹上的两点,如图所示,其中l 0为常数.粒子所受重力忽略不计.求:(1)粒子从A 到C 过程中电场力对它做的功;(2)粒子从A 到C 过程所经历的时间;(3)粒子经过C 点时的速率.14.如图甲所示,水平放置的平行金属板A 和B 的距离为d ,它们的右端安放着垂直于金属板的靶MN ,现在A 、B 板上加上如图乙所示的方波形电压,电压的正向值为U 0,反向电压值为U 02,且每隔T 2变向1次.现将质量为m 的带正电且电荷量为q 的粒子束从AB 的中点O 以平行于金属板的方向OO ′射入,设粒子能全部打在靶上,而且所有粒子在A 、B 间的飞行时间均为T .不计重力的影响,试求:(1)定性分析在t =0时刻从O 点进入的粒子,在垂直于金属板的方向上的运动情况.(2)在距靶MN 的中心O ′点多远的范围内有粒子击中?(3)要使粒子能全部打在靶MN 上,电压U 0的数值应满足什么条件?(写出U 0、m 、d 、q 、T 的关系式即可)第2讲磁场及带电体在磁场中的运动微网构建核心再现知识规律(1)掌握“两个磁场力”.①安培力:F=BIL sin θ,其中θ为B与I的夹角.②洛伦兹力:F=q v B sin θ,其中θ为B与v的夹角.(2)明确“两个公式”.①带电粒子在磁场中做匀速圆周运动的半径公式:R=m vqB.②带电粒子在磁场中做匀速圆周运动的周期公式:T=2πRv=2πmqB.(3)用准“两个定则”.①对电流的磁场用准安培定则.②对安培力和洛伦兹力用准左手定则.(4)画好“两个图形”.①对安培力作用下的平衡、运动问题画好受力分析图.②对带电粒子的匀速圆周运动问题画好与圆有关的几何图形.思想方法(1)物理思想:等效思想.(2)物理方法:理想化模型法、比值定义法、对称法、临界法等.高频考点一磁场的性质知能必备1.磁感应强度的定义,磁场的叠加原理.2.电流磁场方向的判断方法,磁感线的用途.3.磁场对通电电流作用大小计算及方向的判断.1.如图所示,两根互相平行的长直导线过纸面上的M、N两点,且与纸面垂直,导线中通有大小相等、方向相反的电流.a、O、b在M、N的连线上,O为MN的中点,c、d位于MN的中垂线上,且a、b、c、d到O点的距离均相等.关于以上几点处的磁场,下列说法正确的是()A.O点处的磁感应强度为零B.a、b两点处的磁感应强度大小相等,方向相反C.c、d两点处的磁感应强度大小相等,方向相同D.a、c两点处磁感应强度的方向不同2.如图所示,用绝缘细线悬挂一个导线框,导线框是由两同心半圆弧导线和直导线ab、cd(ab、cd在同一条水平直线上)连接而成的闭合回路,导线框中通有图示方向的电流,处于静止状态.在半圆弧导线的圆心处沿垂直于导线框平面的方向放置一根长直导线P.当P中通以方向向外的电流时()A.导线框将向左摆动B.导线框将向右摆动C.从上往下看,导线框将顺时针转动D.从上往下看,导线框将逆时针转动4.(2016·湖北三市六校二联)(多选)如图所示,两根光滑金属导轨平行放置,导轨所在平面与水平面间的夹角为θ.质量为m、长为L的金属杆ab垂直导轨放置,整个装置处于垂直ab方向的匀强磁场中.当金属杆ab中通有从a到b的恒定电流I时,金属杆ab保持静止.则磁感应强度的方向和大小可能为()A.竖直向上,mg tan θ/(IL) B.平行导轨向上,mg cos θ/(IL)C.水平向右,mg/(IL) D.水平向左,mg/(IL)磁场性质分析的两点技巧1.判断电流磁场要正确应用安培定则,明确大拇指、四指及手掌的放法.2.分析磁场对电流的作用要做到“一明、一转、一分析”.即:高频考点二带电粒子在匀强磁场中的运动知能必备1.洛伦兹力大小的计算及方向的判断方法.2.洛伦兹力作用下带电粒子的运动特点及规律.[例2](原创题)图甲所示有界匀强磁场Ⅰ的宽度与图乙所示圆形匀强磁场Ⅱ的半径相等,一不计重力的粒子从左边界的M点以一定初速度水平向右垂直射入磁场Ⅰ,从右边界射出时速度方向偏转了θ角,该粒子以同样的初速度沿半径方向垂直射入磁场Ⅱ,射出磁场时速度方向偏转了2θ角.已知磁场Ⅰ、Ⅱ的磁感应强度大小分别为B1、B2,则B1与B2的比值为()A.2cos θB.sin θC.cos θD.tan θ[例3]如图甲所示,M、N为竖直放置彼此平行的两块平板,板间距离为d,两板中央各有一个小孔O、O′正对,在两板间有垂直于纸面方向的磁场,磁感应强度随时间的变化如图乙所示,设垂直纸面向里的磁场方向为正方向.有一群正离子在t=0时垂直于M板从小孔O射入磁场.已知正离子质量为m、带电荷量为q,正离子在磁场中做匀速圆周运动的周期与磁感应强度变化的周期都为T0,不考虑由于磁场变化而产生的电场的影响.求:(1)磁感应强度B0的大小;(2)要使正离子从O′孔垂直于N板射出磁场,正离子射入磁场时的速度v0的可能值.1.带电粒子在匀强磁场中做匀速圆周运动的分析方法(1)圆心的确定:轨迹圆心总是位于入射点和出射点所受洛伦兹力作用线的交点上或过这两点的弦中垂线与任一个洛伦兹力作用线的交点上.(2)半径的确定:利用平面几何关系,求出轨迹圆的半径.(3)运动时间的确定:t=α2πT,其中α为偏转角度.2.作带电粒子运动轨迹时需注意的问题(1)四个点:分别是入射点、出射点、轨迹圆心和入射速度直线与出射速度直线的交点.(2)六条线:圆弧两端点所在的轨迹半径,入射速度直线和出射速度直线,入射点与出射点的连线,圆心与两条速度直线交点的连线.前面四条边构成一个四边形,后面两条为对角线.(3)三个角:速度偏转角、圆心角、弦切角,其中偏转角等于圆心角,也等于弦切角的两倍.即时练习1.(多选)如图所示,在正方形区域abcd内有沿水平方向的、垂直于纸面向里的匀强磁场,一个带电荷量为q的离子垂直于EF自O点沿箭头方向进入磁场.当离子运动到F点时,突然吸收了若干个电子,接着沿另一圆轨道运动到与OF在一条直线上的E点.已知OF的长度为EF长度的一半,电子电荷量为e(离子吸收电子时不影响离子的速度,电子重力不计),下列说法中正确的是()A.此离子带正电B.离子吸收电子的个数为q2eC.当离子吸收电子后所带电荷量增多D.离子从O到F的时间与从F到E的时间相等3.如图甲所示,比荷qm=k的带正电的粒子(可视为质点),以速度v0从A点沿AB方向射入长方形磁场区域,长方形的长AB=3L,宽AD=L.取粒子刚进入长方形区域的时刻为0时刻,垂直于长方形平面的磁感应强度按图乙所示规律变化(以垂直纸面向外的磁场方向为正方向),粒子仅在洛伦兹力的作用下运动.(1)若带电粒子在通过A点后的运动过程中不再越过AD边,要使其恰能沿DC方向通过C点,求磁感应强度B0及其磁场的变化周期T0为多少?(2)要使带电粒子通过A点后的运动过程中不再越过AD边,求交变磁场磁感应强度B0和变化周期T0的乘积B0T0应满足什么关系?4(2015·高考全国卷Ⅰ)两相邻匀强磁场区域的磁感应强度大小不同、方向平行.一速度方向与磁感应强度方向垂直的带电粒子(不计重力),从较强磁场区域进入到较弱磁场区域后,粒子的()A.轨道半径减小,角速度增大B.轨道半径减小,角速度减小C.轨道半径增大,角速度增大D.轨道半径增大,角速度减小5(2016·高考全国甲卷)一圆筒处于磁感应强度大小为B的匀强磁场中,磁场方向与筒的轴平行,筒的横截面如图所示.图中直径MN的两端分别开有小孔,筒绕其中心轴以角速度ω顺时针转动.在该截面内,一带电粒子从小孔M射入筒内,射入时的运动方向与MN成30°角.当筒转过90°时,该粒子恰好从小孔N飞出圆筒.不计重力.若粒子在筒内未与筒壁发生碰撞,则带电粒子的比荷为()。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题练习电磁场第1讲电场及带电体在电场中的运动微网构建核心再现知识规律(1)电场力的性质.①电场强度的定义式:E=Fq.②真空中点电荷的场强公式:E=kQr2.③匀强电场场强与电势差的关系式:E=Ud.(2)电场能的性质.①电势的定义式:φ=E pq.②电势差的定义式:U AB=W ABq.③电势差与电势的关系式:U AB=φA-φB.④电场力做功与电势能:W AB=-ΔE p.思想方法(1)物理思想:等效思想、分解思想.(2)物理方法:理想化模型法、比值定义法、控制变量法、对称法、合成法、分解法等.高频考点一电场的特点和性质知能必备1.电场强度的三种表达形式及适用条件.2.电场强度、电势、电势能大小的比较方法.3.电场的叠加原理及常见电荷电场线、等势线的分布特点.例1直角坐标系xOy中,M、N两点位于x轴上,G、H两点坐标如图.M、N两点各固定一负点电荷,一电量为Q的正点电荷置于O点时,G点处的电场强度恰好为零.静电力常量用k表示.若将该正点电荷移到G点,则H点处场强的大小和方向分别为()A.3kQ4a2,沿y轴正向 B.3kQ4a2,沿y轴负向C.5kQ4a2,沿y轴正向 D.5kQ4a2,沿y轴负向[例2](2016·全国大联考押题卷)(多选)如图所示,虚线为某电场中的三条电场线1、2、3,实线表示某带电粒子仅在电场力作用下的运动轨迹,a、b是轨迹上的两点,则下列说法中正确的是()A.粒子在a点的加速度大小小于在b点的加速度大小B.粒子在a点的电势能大于在b点的电势能C.粒子在a点的速度大小大于在b点的速度大小D.a点的电势高于b点的电势电场性质的判断方法1.电场强度的判断方法:(1)根据电场线的疏密程度进行判断. (2)根据等差等势面的疏密程度进行判断. (3)根据E =Fq 进行判断.2.电势高低的判断方法:(1)由沿电场线方向电势逐渐降低进行判断. (2)若q 和W AB 已知,由U AB =W ABq进行判断. 3.电势能大小的判断根据电场力做功的正负判断电势能的变化或动能的变化.1.(多选)两个固定的等量异种点电荷所形成电场的等势线如图中虚线所示,一带电粒子以某一速度从图中f 点进入电场,其运动轨迹如图中实线所示,若粒子只受静电力作用,则下列说法中正确的是( )A .f 、b 、c 、d 、e 五点中,c 点电场强度最大B .带电粒子的加速度逐渐变大C .带电粒子的速度先增大后减小D .粒子经过b 点和d 点时的速度大小相同2.(多选)两个相同的负电荷和一个正电荷附近的电场线分布如图所示,c 是两负电荷连线的中点,d 点在正电荷的正上方,c 、d 到正电荷的距离相等,则( )A .a 点的电场强度比b 点的大B .a 点的电势比b 点的高C .c 点的电场强度比d 点的大D .c 点的电势比d 点的低3.(2016·湖北武汉调研)在真空中某区域有一电场,电场中有一点O,经过O点的一条直线上有P、M、N三点,到O点的距离分别为r0、r1、r2,直线上各点的电势φ分布如图所示,r 表示该直线上某点到O点的距离,下列说法中正确的是()A.O、P两点间电势不变,O、P间场强一定为零B.M点的电势低于N点的电势C.M点的电场强度大小小于N点的电场强度大小D.在将正电荷沿该直线从M移到N的过程中,电场力做负功高频考点二平行板电容器问题知能必备1.电容的定义式和决定式、板间电场强度的计算式.2.引起电容器电容变化的因素及动态分析问题的两种结论及处理方法.[例3]已知均匀带电的无穷大平面在真空中激发电场的场强大小为σ2ε0,其中σ为平面上单位面积所带的电荷量,ε0为常量.如图所示的平行板电容器,极板正对面积为S,其间为真空,带电荷量为Q.不计边缘效应时,极板可看做无穷大导体板,则极板间的电场强度大小和两极板间相互的静电引力大小分别为()A.Qε0S和Q2ε0S B.Q2ε0S和Q2ε0SC.Q2ε0S和Q22ε0S D.Qε0S和Q22ε0S[例4](2016·山西名校联盟)(多选)如图所示,平行板电容器与电动势为E′的直流电源(内阻不计)连接,下极板接地,静电计所带电荷量很少,可被忽略.一带负电油滴被固定于电容器中的P点.现将平行板电容器的下极板竖直向下移动一小段距离,则下列说法中正确的是()A.平行板电容器的电容将变小B.静电计指针张角变小C.带电油滴的电势能将减少D.若先将上极板与电源正极的导线断开,再将下极板向下移动一小段距离,则带电油滴所受电场力不变1.如图所示,平行板电容器与一电动势为E的直流电源(内阻不计)连接,一带电油滴位于电容器中的P点且恰好处于平衡状态.在其他条件不变的情况下,现将平行板电容器的两极板缓慢地错开一些,那么在错开的过程中()A.电容器的电容C增大B.电容器所带电荷量Q增多C.油滴将向下加速运动,电流计中的电流从N流向MD.油滴静止不动,电流计中的电流从N流向M2.(2016·陕西宝鸡高三二模)如图所示,一带电小球悬挂在平行板电容器内部,闭合电键S,电容器充电后,细线与竖直方向夹角为φ,则下列说法中正确的是()A.保持电键S闭合,使两极板靠近一些,φ将减小B.保持电键S闭合,将滑动变阻器滑片向右移动,φ将减小C.打开电键S,使两极板靠近一些,φ将不变D.轻轻将细线剪断,小球将做斜抛运动3.(创新题)如图所示,理想二极管(具有单向导电性)、平行板电容器、电源组成闭合电路,带电液滴P置于水平放置的平行板电容器的正中间而静止,则下列说法中正确的是()A .若将极板A 向下移动少许,则液滴的电势能将减小B .若将极板A 向上移动少许,则液滴将向上运动C .若将极板B 向上移动少许,则液滴的电势能将增大D .若将极板A 、B 错开少许,使两极板正对面积变小,则液滴将向下运动高频考点三 带电粒子在电场中的运动知能必备1.牛顿第二定律和运动学方程.2.动能定理及功能关系.3.类平抛运动的处理方法.4.类平抛运动的两个推论.[忽略不计)被加速后从金属板的小孔穿出进入偏转电场(小孔与上、下极板间的距离相等).已知偏转电场两极板间距离为d ,当加速电压为U 1、偏转电压为U 2时,电子恰好打在下极板的右边缘M 点,现将偏转电场的下极板向下平移d2.(1)如何只改变加速电压U 1,使电子打在下极板的中点? (2)如何只改变偏转电压U 2,使电子仍打在下极板的M 点?[例6] 如图甲所示,A 、B 两板竖直放置,两板之间的电压U 1=100 V ,M 、N 两板水平放置,两板之间的距离d =0.1 m ,板长L =0.2 m .一个质量m =2×10-12kg 、电荷量q =+1×10-8C的带电粒子(不计重力)从靠近A 板处由静止释放,经加速电场加速后从B 板的小孔穿出,沿着M 、N 两板的中轴线垂直进入偏转电场.如果在M 、N 两板之间加上如图乙所示的偏转电压,当t =T4时,带电粒子刚开始进入偏转电场,则:(1)带电粒子从B板的小孔穿出时的速度为多大?(2)要使带电粒子能够从M、N两板之间(不沿中轴线)穿出,并且穿出后的速度方向保持水平,则交流电U2的周期T为多少?(3)在满足(2)条件的情况下,它在偏转电场中的最大偏移量是多少?(结果保留一位有效数字) 解决带电粒子在电场中运动问题的基本思路及注意问题2.(多选)如图所示,氕核、氘核、氚核三种粒子从同一位置无初速地飘入电场线水平向右的加速电场E1,之后进入电场线竖直向下的匀强电场E2发生偏转,最后打在屏上.整个装置处于真空中,不计粒子重力及其相互作用,那么()A.偏转电场E2对三种粒子做功一样多B.三种粒子打到屏上时的速度一样大C.三种粒子运动到屏上所用时间相同D.三种粒子一定打到屏上的同一位置3.(2016·陕西五校联考)如图甲所示,两平行金属板MN、PQ的板长和板间距离相等,板间存在如图乙所示的随时间周期性变化的电场,电场方向与两板垂直,在t=0时刻,一不计重力的带电粒子沿板间中线垂直电场方向射入电场,粒子射入电场时的速度为v 0,t =T 时刻粒子刚好沿MN 板右边缘射出电场.则( )A .该粒子射出电场时的速度方向一定是沿垂直电场方向的B .在t =T2时刻,该粒子的速度大小为2v 0C .若该粒子在T2时刻以速度v 0进入电场,则粒子会打在板上D .若该粒子的入射速度变为2v 0,则该粒子仍在t =T 时刻射出电场4 (2016·高考全国乙卷)一平行板电容器两极板之间充满云母介质,接在恒压直流电源上.若将云母介质移出,则电容器( )A .极板上的电荷量变大,极板间电场强度变大B .极板上的电荷量变小,极板间电场强度变大C .极板上的电荷量变大,极板间电场强度不变D .极板上的电荷量变小,极板间电场强度不变5 (2016·高考全国甲卷)如图,P 是固定的点电荷,虚线是以P 为圆心的两个圆.带电粒子Q 在P 的电场中运动,运动轨迹与两圆在同一平面内,a 、b 、c 为轨迹上的三个点.若Q 仅受P 的电场力作用,其在a 、b 、c 点的加速度大小分别为a a 、a b 、a c ,速度大小分别为v a 、v b 、v c .则( )A .a a >a b >a c ,v a >v c >v bB .a a >a b >a c ,v b >v c >v aC .a b >a c >a a ,v b >v c >v aD .a b >a c >a a ,v a >v c >v b7 如图所示,两个带等量正电的点电荷分别固定于P 、Q 两点,它们连线的中点是O ,A 、B 是P 、Q 连线的中垂线上的两点,OA <OB .则下列说法正确的是( )A.A点场强大小一定大于B点的场强大小B.A、B所在直线是一条等势线,等势线左右对称点电势相等C.将一正试探电荷分别置于A和B点,该试探电荷在A点的电势能等于在B点的电势能D.将一负试探电荷分别置于A和B点,该试探电荷在A点的电势能小于在B点的电势能“等势线(电场线)+运动轨迹”模型的处理思路1.(多选)在光滑绝缘的水平桌面上,存在着方向水平向右的匀强电场,电场线如图中实线所示.一初速度不为零的带电小球从桌面上的A点开始运动,到C点时,突然受到一个外加的水平恒力F作用而继续运动到B点,其运动轨迹如图中虚线所示,v表示小球经过C点时的速度.则()A.小球带正电B.恒力F的方向可能水平向左C.恒力F的方向可能与v方向相反D.在A、B两点处小球的速率不可能相等2.(多选)如图所示,虚线为某电场中的三个等差等势面1、2、3,实线表示某带电粒子仅在电场力作用下的运动轨迹,a、b是轨迹上的两点,则下列说法中正确的是()A.等势面1的电势最高B.粒子在a点的加速度大小小于在b点的加速度大小C.粒子在a点的电势能大于在b点的电势能D.粒子在a点的速度大小大于在b点的速度大小即时练习1.(多选)如图所示,直线是一簇未标明方向的由点电荷产生的电场线,曲线是某一带电粒子通过电场区域时的运动轨迹,a、b是轨迹上两点.若带电粒子运动中只受电场力作用,根据此图可以作出的判断是()A.带电粒子所带电荷的符号B.带电粒子在a、b两点的受力方向C.带电粒子在a、b两点的加速度何处大D.带电粒子在a、b两点的加速度方向2.(多选)如图所示的虚线为电场中的三条等势线,三条虚线平行且等间距,电势分别为10 V、19 V、28 V,实线是仅受电场力的带电粒子的运动轨迹,a、b、c是轨迹上的三个点,a到中间虚线的距离大于c到中间虚线的距离,下列说法正确的是()A.粒子在a、b、c三点受到的电场力方向相同B.粒子带负电C.粒子在a、b、c三点的电势能大小关系为E p c>E p b>E p aD.粒子从a运动到b与从b运动到c,电场力做的功可能相等3.如图所示,边长为L=1 m的等边三角形ABC置于匀强电场中,电场线的方向平行于△ABC 所在平面,其中A点电势为1 V,AC中点电势为2 V,BC中点的电势为4 V,则该匀强电场的场强大小是()A.1 V/m B.32V/mC.3 V/m D.4 V/m4.带有等量异种电荷的两块等大的平行金属板M、N水平正对放置.两板间有一带电微粒以速度v0沿直线运动,当微粒运动到P点时,将M板迅速向上平移一小段距离后,则此后微粒的可能运动情况是()A.沿轨迹①运动B.沿轨迹②运动C.沿轨迹③运动D.沿轨迹④运动5.(2016·湖北八市联考)如图,M和N是两个带有异种电荷的带电体(M在N的正上方,图示平面为竖直平面),P和Q是M表面上的两点,S是N表面上的一点.在M和N之间的电场中画有三条等势线.现有一个带正电的液滴从E点射入电场,它先后经过了F点和W点.已知油滴在F点时的机械能大于在W点时的机械能,E、W两点在同一等势面上,不计油滴对原电场的影响,不计空气阻力,则以下说法正确的是()A.P和Q两点的电势不相等B.P点的电势高于S点的电势C.油滴在F点的电势能高于在E点的电势能D.油滴在E、F、W三点的机械能和电势能之和不变6.(2016·浙江宁波高三联考)如图所示,分别在M、N两点固定放置两个点电荷,电荷量均为+Q,MN连线的中点为O.正方形ABCD以O点为中心,E、F、G、H是正方形四边的中点,取无穷远处电势为0,则下列说法正确的是()A.A点电势低于B点电势B.正点电荷沿直线从F到H,电势能先增大后减小C.O点的电场强度为零,电势也为零D.沿路径A→D→C移动一负点电荷比沿路径A→B移动同一负点电荷克服电场力做的功多7.(多选)静电场在x轴上的场强E随x的变化关系如图所示,x轴正向为场强正方向,带正电的点电荷沿x轴运动,则点电荷()A .在x 2和x 4处电势能相等B .由x 1运动到x 3的过程中电势能增大C .由x 1运动到x 4的过程中电场力先增大后减小D .由x 1运动到x 4的过程中电场力先减小后增大8.如图所示,平行板电容器的两金属板A 、B 竖直放置,电容器所带电荷量为Q ,一液滴从A 板上边缘由静止释放,液滴恰好能击中B 板的中点O ,若电容器所带电荷量增加Q 1,液滴从同一位置由静止释放,液滴恰好击中OB 的中点C ,若电容器所带电荷量减小Q 2,液滴从同一位置由静止释放,液滴恰好击中B 板的下边缘D 点,则Q 1Q 2=( )A .1B .2C .3D .49.(2016·河南开封二模)(多选)如图所示,一带电粒子在匀强电场中从A 点抛出,运动到B 点时速度方向竖直向下,且在B 点时粒子的速度为粒子在电场中运动的最小速度,已知电场方向和粒子运动轨迹在同一竖直平面内,粒子的重力和空气阻力与电场力相比可忽略不计,则( )A .电场方向一定水平向右B .电场中A 点的电势一定高于B 点的电势C .从A 到B 的过程中,粒子的电势能一定增加D .从A 到B 的过程中,粒子的电势能与动能之和一定不变10.如图所示是一对等量异种点电荷的电场线分布图,图中两点电荷P 、Q 连线长度为r ,M 点、N 点到两点电荷P 、Q 的距离都为r ,S 点到点电荷Q 的距离也为r ,由此可知( )A .M 点的电场强度为2k q r2 B .M 、N 、S 三点的电势可能相等C .把同一试探电荷放在M 点,其所受电场力等于放在S 点所受的电场力D .沿图中虚线,将一试探电荷从N 点移到M 点,电场力一定不做功11.(多选)如图所示,半圆槽光滑、绝缘、固定,圆心是O ,最低点是P ,直径MN 水平,a 、b 是两个完全相同的带正电小球(视为点电荷),b 固定在M 点,a 从N 点静止释放,沿半圆槽运动经过P 点到达某点Q (图中未画出)时速度为零,则小球a ( )A .从N 到Q 的过程中,重力与库仑力的合力先增大后减小B .从N 到P 的过程中,速率先增大后减小C .从N 到Q 的过程中,电势能一直增加D .从P 到Q 的过程中,动能减少量小于电势能增加量12.在xOy 平面内,有沿y 轴负方向的匀强电场,场强大小为E (图中未画出),由A 点斜射出一质量为m ,带电荷量为+q 的粒子,B 和C 是粒子运动轨迹上的两点,如图所示,其中l 0为常数.粒子所受重力忽略不计.求:(1)粒子从A 到C 过程中电场力对它做的功;(2)粒子从A 到C 过程所经历的时间;(3)粒子经过C 点时的速率.14.如图甲所示,水平放置的平行金属板A 和B 的距离为d ,它们的右端安放着垂直于金属板的靶MN ,现在A 、B 板上加上如图乙所示的方波形电压,电压的正向值为U 0,反向电压值为U 02,且每隔T 2变向1次.现将质量为m 的带正电且电荷量为q 的粒子束从AB 的中点O 以平行于金属板的方向OO ′射入,设粒子能全部打在靶上,而且所有粒子在A 、B 间的飞行时间均为T .不计重力的影响,试求:(1)定性分析在t=0时刻从O点进入的粒子,在垂直于金属板的方向上的运动情况.(2)在距靶MN的中心O′点多远的范围内有粒子击中?(3)要使粒子能全部打在靶MN上,电压U0的数值应满足什么条件?(写出U0、m、d、q、T的关系式即可)第2讲磁场及带电体在磁场中的运动微网构建核心再现知识规律(1)掌握“两个磁场力”.①安培力:F=BIL sin θ,其中θ为B与I的夹角.②洛伦兹力:F=q v B sin θ,其中θ为B与v的夹角.(2)明确“两个公式”.①带电粒子在磁场中做匀速圆周运动的半径公式:R=m vqB.②带电粒子在磁场中做匀速圆周运动的周期公式:T=2πRv=2πmqB.(3)用准“两个定则”.①对电流的磁场用准安培定则.②对安培力和洛伦兹力用准左手定则.(4)画好“两个图形”.①对安培力作用下的平衡、运动问题画好受力分析图.②对带电粒子的匀速圆周运动问题画好与圆有关的几何图形.思想方法(1)物理思想:等效思想.(2)物理方法:理想化模型法、比值定义法、对称法、临界法等.高频考点一磁场的性质知能必备1.磁感应强度的定义,磁场的叠加原理.2.电流磁场方向的判断方法,磁感线的用途.3.磁场对通电电流作用大小计算及方向的判断.1.如图所示,两根互相平行的长直导线过纸面上的M、N两点,且与纸面垂直,导线中通有大小相等、方向相反的电流.a、O、b在M、N的连线上,O为MN的中点,c、d位于MN的中垂线上,且a、b、c、d到O点的距离均相等.关于以上几点处的磁场,下列说法正确的是()A.O点处的磁感应强度为零B.a、b两点处的磁感应强度大小相等,方向相反C.c、d两点处的磁感应强度大小相等,方向相同D.a、c两点处磁感应强度的方向不同2.如图所示,用绝缘细线悬挂一个导线框,导线框是由两同心半圆弧导线和直导线ab、cd(ab、cd在同一条水平直线上)连接而成的闭合回路,导线框中通有图示方向的电流,处于静止状态.在半圆弧导线的圆心处沿垂直于导线框平面的方向放置一根长直导线P.当P中通以方向向外的电流时()A.导线框将向左摆动B.导线框将向右摆动C.从上往下看,导线框将顺时针转动D.从上往下看,导线框将逆时针转动4.(2016·湖北三市六校二联)(多选)如图所示,两根光滑金属导轨平行放置,导轨所在平面与水平面间的夹角为θ.质量为m、长为L的金属杆ab垂直导轨放置,整个装置处于垂直ab方向的匀强磁场中.当金属杆ab中通有从a到b的恒定电流I时,金属杆ab保持静止.则磁感应强度的方向和大小可能为()A.竖直向上,mg tan θ/(IL) B.平行导轨向上,mg cos θ/(IL)C.水平向右,mg/(IL) D.水平向左,mg/(IL)磁场性质分析的两点技巧1.判断电流磁场要正确应用安培定则,明确大拇指、四指及手掌的放法.2.分析磁场对电流的作用要做到“一明、一转、一分析”.即:高频考点二带电粒子在匀强磁场中的运动知能必备1.洛伦兹力大小的计算及方向的判断方法.2.洛伦兹力作用下带电粒子的运动特点及规律.[例2](原创题)图甲所示有界匀强磁场Ⅰ的宽度与图乙所示圆形匀强磁场Ⅱ的半径相等,一不计重力的粒子从左边界的M点以一定初速度水平向右垂直射入磁场Ⅰ,从右边界射出时速度方向偏转了θ角,该粒子以同样的初速度沿半径方向垂直射入磁场Ⅱ,射出磁场时速度方向偏转了2θ角.已知磁场Ⅰ、Ⅱ的磁感应强度大小分别为B1、B2,则B1与B2的比值为()A.2cos θB.sin θC.cos θD.tan θ[例3]如图甲所示,M、N为竖直放置彼此平行的两块平板,板间距离为d,两板中央各有一个小孔O、O′正对,在两板间有垂直于纸面方向的磁场,磁感应强度随时间的变化如图乙所示,设垂直纸面向里的磁场方向为正方向.有一群正离子在t=0时垂直于M板从小孔O射入磁场.已知正离子质量为m、带电荷量为q,正离子在磁场中做匀速圆周运动的周期与磁感应强度变化的周期都为T0,不考虑由于磁场变化而产生的电场的影响.求:(1)磁感应强度B0的大小;(2)要使正离子从O′孔垂直于N板射出磁场,正离子射入磁场时的速度v0的可能值.1.带电粒子在匀强磁场中做匀速圆周运动的分析方法(1)圆心的确定:轨迹圆心总是位于入射点和出射点所受洛伦兹力作用线的交点上或过这两点的弦中垂线与任一个洛伦兹力作用线的交点上.(2)半径的确定:利用平面几何关系,求出轨迹圆的半径.(3)运动时间的确定:t=α2πT,其中α为偏转角度.2.作带电粒子运动轨迹时需注意的问题(1)四个点:分别是入射点、出射点、轨迹圆心和入射速度直线与出射速度直线的交点.(2)六条线:圆弧两端点所在的轨迹半径,入射速度直线和出射速度直线,入射点与出射点的连线,圆心与两条速度直线交点的连线.前面四条边构成一个四边形,后面两条为对角线.(3)三个角:速度偏转角、圆心角、弦切角,其中偏转角等于圆心角,也等于弦切角的两倍.即时练习1.(多选)如图所示,在正方形区域abcd内有沿水平方向的、垂直于纸面向里的匀强磁场,一个带电荷量为q的离子垂直于EF自O点沿箭头方向进入磁场.当离子运动到F点时,突然吸收了若干个电子,接着沿另一圆轨道运动到与OF在一条直线上的E点.已知OF的长度为EF长度的一半,电子电荷量为e(离子吸收电子时不影响离子的速度,电子重力不计),下列说法中正确的是()A.此离子带正电B.离子吸收电子的个数为q2eC.当离子吸收电子后所带电荷量增多D.离子从O到F的时间与从F到E的时间相等3.如图甲所示,比荷qm=k的带正电的粒子(可视为质点),以速度v0从A点沿AB方向射入长方形磁场区域,长方形的长AB=3L,宽AD=L.取粒子刚进入长方形区域的时刻为0时刻,垂直于长方形平面的磁感应强度按图乙所示规律变化(以垂直纸面向外的磁场方向为正方向),粒子仅在洛伦兹力的作用下运动.(1)若带电粒子在通过A点后的运动过程中不再越过AD边,要使其恰能沿DC方向通过C点,求磁感应强度B0及其磁场的变化周期T0为多少?(2)要使带电粒子通过A点后的运动过程中不再越过AD边,求交变磁场磁感应强度B0和变化周期T0的乘积B0T0应满足什么关系?4(2015·高考全国卷Ⅰ)两相邻匀强磁场区域的磁感应强度大小不同、方向平行.一速度方向与磁感应强度方向垂直的带电粒子(不计重力),从较强磁场区域进入到较弱磁场区域后,粒子的( )A .轨道半径减小,角速度增大B .轨道半径减小,角速度减小C .轨道半径增大,角速度增大D .轨道半径增大,角速度减小5 (2016·高考全国甲卷)一圆筒处于磁感应强度大小为B 的匀强磁场中,磁场方向与筒的轴平行,筒的横截面如图所示.图中直径MN 的两端分别开有小孔,筒绕其中心轴以角速度ω顺时针转动.在该截面内,一带电粒子从小孔M 射入筒内,射入时的运动方向与MN 成30°角.当筒转过90°时,该粒子恰好从小孔N 飞出圆筒.不计重力.若粒子在筒内未与筒壁发生碰撞,则带电粒子的比荷为( )A.ω3BB.ω2BC.ωBD.2ωB6 (2016·高考全国丙卷)平面OM 和平面ON 之间的夹角为30°,其横截面(纸面)如图所示,平面OM 上方存在匀强磁场,磁感应强度大小为B ,方向垂直于纸面向外.一带电粒子的质量为m ,电荷量为q (q >0).粒子沿纸面以大小为v 的速度从OM 的某点向左上方射入磁场,速度与OM 成30°角.已知该粒子在磁场中的运动轨迹与ON 只有一个交点,并从OM 上另一点射出磁场.不计重力.粒子离开磁场的出射点到两平面交线O 的距离为( )A.m v 2qBB.3m v qBC.2m v qBD.4m v qB7 如图,在x 轴上方存在垂直纸面向里的磁感应强度为B 的匀强磁场,x 轴下方存在垂直纸面向外的磁感应强度为B 2的匀强磁场.一带负电的粒子从原点O 以与x 轴成60°角的方向斜向上射入磁场,且在上方运动半径为R (不计重力),则( )A .粒子经偏转一定能回到原点OB .粒子在x 轴上方和下方两磁场中运动的半径之比为2∶1C .粒子再次回到x 轴上方所需的时间为2πm Bq。

相关文档
最新文档