线面垂直、面面垂直知识点总结、经典例题及解析、高考题练习及答案(第4次补课)

合集下载

高中数学证明几何的题的知识点总结 线面垂直线面平行点面面面的证明

高中数学证明几何的题的知识点总结 线面垂直线面平行点面面面的证明

高中数学证明几何的题的知识点总结线面垂直线面平行点面面面的证明全文共四篇示例,供读者参考第一篇示例:高中数学中,证明几何是一个重要的部分,特别是涉及到线面垂直、线面平行、点面面面的证明。

这些知识点是我们理解几何学的基础,掌握了这些知识点,可以更好地应用几何学的相关定理解决问题。

下面我们来总结一下关于这些知识点的证明方法。

首先是线面垂直的证明,线面垂直是指一条直线与一个平面相交成直角。

在证明线面垂直的过程中,常常使用垂直于平面的直线与这条直线的夹角为90度,并结合相关的几何定理来进行证明。

在证明直线与平面的垂直时,可以利用平行线的性质来证明。

其次是线面平行的证明,线面平行是指一条直线与一个平面平行。

在证明线面平行的过程中,常常使用有平行性质的几何图形,比如平行线、平行四边形等。

通过利用这些性质,可以简单明了地证明线面平行的关系。

在证明这些知识点的时候,我们需要注意一些技巧和方法。

首先要善于利用已知条件,根据题目中给出的条件来进行推理。

其次要善于利用几何图形的性质,结合相关定理来进行推理。

最后要善于应用代数方法,通过代数运算来证明一些几何关系。

证明几何是高中数学中非常重要的内容,能够帮助我们更好地理解几何学的相关定理和性质。

通过掌握线面垂直、线面平行、点面面面的证明方法,我们可以更好地解决各种几何问题,并提高数学解题能力。

希望以上总结对大家有所帮助,让我们共同努力,提高数学水平!第二篇示例:在高中数学中,证明几何是一个非常重要的部分,它不仅考察了学生对数学知识的掌握程度,还培养了学生的逻辑思维能力和分析问题的能力。

线面垂直、线面平行、点面、面面等几何关系的证明是学习数学证明的一个重要内容。

下面我们就来看一下关于这些几何关系的证明的知识点总结。

我们来介绍线面垂直的证明。

在线面垂直的证明中,一般需要用到的有以下几个重要的定理:1. 垂直平分线定理:在一个平面内,若一条线段垂直于一条线段的中点,那么这条线段垂直于这条线段。

高中 直线、平面垂直的判定与性质 知识点+例题+练习

高中 直线、平面垂直的判定与性质 知识点+例题+练习

教学过程在四棱锥P-ABCD中,P A⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,P A=AB=BC,E是PC的中点.证明:(1)CD⊥AE;(2)PD⊥平面ABE.规律方法证明线面垂直的方法:一是线面垂直的判定定理;二是利用面面垂直的性质定理;三是平行线法(若两条平行线中一条垂直于这个平面,则另一条也垂直于这个平面).解题时,注意线线、线面与面面关系的相互转化;另外,在证明线线垂直时,要注意题中隐含的垂直关系,如等腰三角形的底边上的高、中线和顶角的角平分线三线合一、矩形的内角、直径所对的圆周角、菱形的对角线互相垂直、直角三角形(或给出线段长度,经计算满足勾股定理)、直角梯形等等.【训练1】(2013·江西卷改编)教学效果分析教学过程如图,直四棱柱ABCD-A1B1C1D1中,AB∥CD,AD⊥AB,AB=2,AD=2,AA1=3,E为CD上一点,DE=1,EC=3.证明:BE⊥平面BB1C1C.考点二平面与平面垂直的判定与性质【例2】(2014·深圳一模)如图,在三棱柱ABC-A1B1C1中,AA1⊥平面ABC,AB=BC=AA1,且AC=2BC,点D是AB的中点.证明:平面ABC1⊥平面B1CD.规律方法证明两个平面垂直,首先要考虑直线与平面的垂直,也教学效果分析教学过程可简单地记为“证面面垂直,找线面垂直”,是化归思想的体现,这种思想方法与空间中的平行关系的证明非常类似,这种转化方法是本讲内容的显著特征,掌握化归与转化思想方法是解决这类问题的关键.【训练2】如图,在长方体ABCDA1B1C1D1中,AB=AD=1,AA1=2,M是棱CC1的中点.证明:平面ABM⊥平面A1B1M.考点三平行、垂直关系的综合问题教学效果分析教学过程【例3】(2013·山东卷)如图,在四棱锥P-ABCD中,AB⊥AC,AB⊥P A,AB∥CD,AB=2CD,E,F,G,M,N分别为PB,AB,BC,PD,PC的中点.(1)求证:CE∥平面P AD;(2)求证:平面EFG⊥平面EMN.规律方法线面关系与面面关系的证明离不开判定定理和性质定理,而形成结论的“证据链”依然是通过挖掘题目已知条件来实现的,如图形固有的位置关系、中点形成的三角形的中位线等,都为论证提供了丰富的素材.【训练3】(2013·辽宁卷)如图,AB是圆O的直径,P A垂直圆O所在的平面,C是圆O上的点.(1)求证:BC⊥平面P AC;(2)设Q为P A的中点,G为△AOC的重心,求证:QG∥平面PBC.教学效果分析1.转化思想:垂直关系的转化2.在证明两平面垂直时一般先从现有的直线中寻找平面的垂线,若这样的直线图中不存在,则可通过作辅助线来解决.如有平面垂直时,一般要用性质定理,在一个平面内作交线的垂线,使之转化为线面垂直,然后进一步转化为线线垂直.故熟练掌握“线线垂直”、“面面垂直”间的转化条件是解决这类问题的关键.创新突破6——求解立体几何中的探索性问题【典例】(2012·北京卷)如图1,在Rt△ABC中,∠C=90°,D,E分别为AC,AB的中点,点F为线段CD上的一点.将△ADE沿DE折起到△A1DE的位置,使A1F⊥CD,如图2.(1)求证:DE∥平面A1CB;(2)求证:A1F⊥BE;(3)线段A1B上是否存在点Q,使A1C⊥平面DEQ?说明理由.[反思感悟] (1)解决探索性问题一般先假设其存在,把这个假设作已知条件,和题目的其他已知条件一起进行推理论证和计算,在推理论证和计算无误的前提下,如果得到了一个合理的结论,则说明存在,如果得到了一个不合理的结论,则说明不存在.(2)在处理空间折叠问题中,要注意平面图形与空间图形在折叠前后的相互位置关系与长度关系等,关键是点、线、面位置关系的转化与平面几何知识的应用,注意平面几何与立体几何中相关知识点的异同,盲目套用容易导致错误.【自主体验】(2014·韶关模拟)如图1,在直角梯形ABCD中,∠ADC=90°,CD∥AB,AD=CD=12AB=2,点E为AC中点,将△ADC沿AC折起,使平面ADC⊥平面ABC,得到几何体D-ABC,如图2.(1)求证:DA⊥BC;(2)在CD上找一点F,使AD∥平面EFB.基础巩固题组(建议用时:40分钟)一、填空题1.设平面α与平面β相交于直线m,直线a在平面α内,直线b 在平面β内,且b⊥m,则“α⊥β”是“a⊥b”的________条件.2.(2014·绍兴调研)设α,β为不重合的平面,m,n为不重合的直线,则下列正确命题的序号是________.①若α⊥β,α∩β=n,m⊥n,则m⊥α;②若m⊂α,n⊂β,m⊥n,则n⊥α;③若n⊥α,n⊥β,m⊥β,则m⊥α;④若m∥α,n∥β,m⊥n,则α⊥β.3.如图,AB是圆O的直径,P A垂直于圆O所在的平面,C是圆周上不同于A,B的任一点,则图形中有________对线面垂直.4.若M是线段AB的中点,A,B到平面α的距离分别是4 cm,6 cm,则M到平面α的距离为________.5.(2014·郑州模拟)已知平面α,β,γ和直线l,m,且l⊥m,α⊥γ,α∩γ=m,β∩γ=l,给出下列四个结论:①β⊥γ;②l⊥α;③m⊥β;④α⊥β.其中正确的是________.6.如图,在四棱锥P ABCD中,P A⊥底面ABCD,且底面各边都相等,M是PC上的一动点,当点M满足________时,平面MBD⊥平面PCD.(只要填写一个你认为正确的条件即可)7.设α,β是空间两个不同的平面,m,n是平面α及β外的两条不同直线.从“①m⊥n;②α⊥β;③n⊥β;④m⊥α”中选取三个作为条件,余下一个作为结论,写出你认为正确的一个命题:________(用代号表示).8.如图,P A⊥圆O所在的平面,AB是圆O的直径,C是圆O上的一点,E,F分别是点A在PB,PC上的正投影,给出下列结论:①AF⊥PB;②EF⊥PB;③AF⊥BC;④AE⊥平面PBC.其中正确结论的序号是________.二、解答题9.(2013·北京卷)如图,在四棱锥P ABCD中,AB∥CD,AB⊥AD,CD=2AB,平面P AD⊥底面ABCD,P A⊥AD.E和F分别是CD和PC的中点.求证:(1)P A⊥底面ABCD;(2)BE∥平面P AD;(3)平面BEF⊥平面PCD.10.(2013·泉州模拟)如图所示,在直四棱柱ABCD-A1B1C1D1中,DB=BC,DB⊥AC,点M是棱BB1上一点.(1)求证:B1D1∥平面A1BD;(2)求证:MD⊥AC;(3)试确定点M的位置,使得平面DMC1⊥平面CC1D1D.能力提升题组(建议用时:25分钟)一、填空题1.如图,在斜三棱柱ABCA1B1C1中,∠BAC=90°,BC1⊥AC,则C1在底面ABC上的射影H必在直线______上.2.如图,在四面体ABCD中,若截面PQMN是正方形,则在下列命题中,错误的为________.①AC⊥BD;②AC∥截面PQMN;③AC=BD;④异面直线PM与BD所成的角为45°.3.(2013·南通二模)如图,已知六棱锥P ABCDEF的底面是正六边形,P A⊥平面ABC,P A=2AB,则下列结论中:①PB⊥AE;②平面ABC⊥平面PBC;③直线BC∥平面P AE;④∠PDA=45°.其中正确的有________(把所有正确的序号都填上).二、解答题4.(2014·北京西城一模)。

立体几何线面与面面垂直的证明

立体几何线面与面面垂直的证明

那么另一条也垂直于这个平 a 的无数条直线”是“ I 丄a B.必要不充分条件线面垂直与面面垂直专题复习【知识点】一.线面垂直(1) 直线与平面垂直的定义:如果直线l 和平面a 的 __________________ 一条直线都垂直,我们就说直线 I 与平面a 垂直,记作 _____________ .重要性质: ____________________________________________________________________________(2) 直线与平面垂直的判定方法:①判定定理:一条直线与一个平面的两条 ___________________ 都垂直,那么这条直线就垂直于这 个平面.用符号表示为:②常用结论:如果两条平行直线中的一条垂直于一个平面, 面.用符号可表示为:(3)直线与平面垂直的性质:① 由直线和平面垂直的定义知:直线与平面垂直,则直线垂直于平面的 ________ 直线.② 性质定理:垂直于同一平面的两条直线平行.用符号可表示为: 二、面面垂直(1) 平面与平面垂直的定义:两平面相交,如果它们所成的二面角是 _____________________ ,就说这两个平面互相垂直.(2) 平面与平面垂直的判定定理:如果一个平面经过另一个平面的一条 _____________________ ,那么这两个平面互相垂直.简述为 "线面垂直,则面面垂直”,用符号可表示为:(3)平面与平面垂直的性质:如果两个平面互相垂直,那么在一个平面垂直于它们交线的直线垂直于另一个平面. 用符号可表示为:【题型总结】 题型一小题:判断正误1. “直线I 垂直于平面 A.充分不必要条件C.充要条件D.既不充分又不必要条件2. 已知如图,六棱锥 P — ABCDE 的底面是正六边形, 下列结论不正确的是( ).A.CD// 平面 PAFB. DF 丄平面 PAFC. CF//平面 PAB 2.设m n, I 是三条不同的直线,,,是三个不同的平面,判断命题正误:理科数学复习专题立体几何①m,m ,则//⑥m n, m// ,则n②m,// ,则m⑦m n,n 1,则m//l③m,m//n,则n⑧, ,则〃④m,n ,则m//n⑨m n,n//I,则m 1⑤m,m n,则n//⑩,//,则题型「二证明线面垂直P归纳:①证明异面直线垂直的常用方法:_________________________________________②找垂线(线线垂直)的方法一:______________________________________________ 2.四棱锥P ABCD中,底面ABCD的边长PD PB 4, BAD 600, E 为PA 中点•1如图,四棱锥P-ABCD中,底面ABCD为平行四边形,/ DAB = 60° AB= 2AD, PD 丄底面ABCD .(1)证明:BD丄面PAD (2)证明:PA丄BD;求证:BD 平面PAC ;4的菱形,归纳:找垂线(线线垂直)的方法找垂线(线线垂直)的方法三:3、如图,AB是圆0的直径,C是圆0上不同于A, B的一点,PA 平面ABC , E是PC 的中点,AB 3 , PA AC 1.求证:AE PB•Z归纳:找垂线(线线垂直)的方法四:____________________________________4.如图,在三棱锥P ABC中,PA 底面ABC, BCA 900,AP=AC,点D , E分别为棱PB、PC的中点,且BC〃平面ADE求证:DE丄平面PAC ;归纳:_____________________________________________________________________________________ 题型三面面垂直的证明(关键:找线面垂直)1、如图所示,四边形ABCD是菱形,O是AC与BD 的交点,SA 平面ABCD.求证:平面SAC 平面SBD ;2. (2016理数)如图,在以A,B,C,D,E,F为顶点的五面体中面ABEF 为正方形,AF=2FD, AFD 90:,证明:平面ABEF 平面EFDC ;题型四面面垂直的性质(注意:交线)1、如图所示,平面EAD 平面ABCD , ADE是等边三角形,ABCD是矩形,F是AB的中点,G是AD的中点, 求证:EG 平面ABCD ;2、如图,平行四边形ABCD中,CD 1, BCD 600, BD CD,正方形ADEF,且面ADEF 面ABCD •求证:BD 平面ECD ;综合运用如图所示,PA丄矩形ABCD所在平面,M、N分别是AB、PC的中点.(1) 求证:MN //平面PAD.(2) 求证:MN丄CD.⑶若/ PDA = 45 °求证:面BMN丄平面PCD.【练习】1.设M表示平面,a、b表示直线,给出下列四个命题:金a〃b a M a M a//M① b M ②a//b ③b/ M ④b± Ma Mb M a b a b其中正确的命题是( )A.①②B.①②③C.②③④D.①②④2.给出以下四个命题:CD如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。

线面垂直、面面垂直

线面垂直、面面垂直

线面垂直、面面垂直及其证明一 线面垂直的判定定理(1)线面垂直定义:如果一条直线和一个平面内的任何一条直线都垂直,那么这条直线和这个平面垂直.(2(3)三垂线定理及其逆定理①三垂线定理:如果平面内一条直线和穿过该平面的一条斜线垂直,那么这条直线也垂直于这条斜线在平面内的射影.②三垂线逆定理:在平面内的一条直线,如果它和这个平面的一条斜线垂直,那么它也和这条斜线在平面内的射影垂直. (4)线面垂直的证明例1例2例3SDD 1ODBA C 1B 1A 1C例4在正方体1111ABCD A BC D -中,M 为1CC 的中点,AC 交BD 于点O ,求证:1AO ⊥平面MBD .练习1 在正方体1111ABCD A BC D -中. (1)求证:AC ⊥平面11B D BD .(2)求证:1BD ⊥平面1ACB .练习2在三棱锥A BCD -中,BC AC =,AD BD =,作BE CD ⊥,E 为垂足,作AH BE ⊥于H .求证:AH ⊥平面BCD .在四棱锥P ABCD -中,PA ⊥底面ABCD ,AB AD ⊥,AC CD ⊥,60ABC ︒∠=,PA AB BC ==,E 是PC 的中点.(1)求证:CD AE ⊥. (2)求证:PD ⊥面ABE .二 面面垂直(1条直线叫做二面角的棱,每个半平面叫做二面角的面,若棱为l ,两个面分别为,,αβ二面角记作为l αβ--.(2)二面角的平面角定义:在二面角l αβ--棱l 上取一点O ,在半平面α和β内,从点O 分别作垂直于棱l 的射线,OA OB ,射线组成AOB ∠.则AOB ∠叫做二面角的平面角.二面角的取值范围为[0,180]︒︒.(3)面面垂直定义:若两个平面的二面角为直二面角(平面角是直角的二面角),则这两个平面互相垂直.(4)面面判定定理:一个平面过另一个平面,则这两个面相互垂直. (5)面面垂直的正面即:面面垂直→线面垂直→线线垂直. 例1如图,在正方体1111ABCD A B C D -中,E 是1AA 的中点.(1)求证:1//AC 平面BDE ; (2)求证:平面1A AC ⊥平面BDE . .例2如图,直三棱柱111C B A ABC -中,侧棱垂直于底面,90ACB ︒∠=121AA BC AC ==,D 是棱1AA 的中点,求证:平面1BDC 平面BDC .AC B1B 1A D1C练习 如图,过S 引三条长度相等但不共面的线段,,SA SB SC ,且60ASB ASC ︒∠=∠=,90BSC ︒∠=,求证:平面ABC ⊥平面BSC .三 立体几何高考证明例1(2013江苏)如图,在三棱锥中,平面平面,,,过作,垂足为,点分别是棱的中点.求证:(1)平面平面; (2).例2(2012江苏)如图,在直三棱柱111ABC A B C -中,1111A B A C =,D E,分别是棱1BC CC ,上的点(点D 不同于点C ),且AD DE F⊥,为11B C 的中点.求证:(1) 平面ADE ⊥平面11BCC B ; (2) 直线1//A F 平面ADE .ABC S -⊥SAB SBC BC AB ⊥AB AS =A SB AF ⊥F G E ,SC SA ,//EFG ABC SA BC ⊥ABCSGFE例3如图,四棱锥P ABCD -中,底面ABCD 为平行四四边形,60DAB ︒∠=,2AB AD =,PD ⊥底面ABCD .(1)证明:PA BD ⊥(2)设1PD AD ==,求棱锥D PBC -的高.练习1如图,几何体E ABCD -是四棱锥,ABD 为正三角形,,CB CD EC BD =⊥.(Ⅰ)求证:BE DE =;(Ⅱ)若∠120BCD =︒,M 为线段AE 的中点,求证:DM ∥平面BEC .练习2(2011天津)如图,在四棱锥P ABCD -中,底面ABCD 是平行四边形,45ADC ∠=︒,1AD AC ==,O 为AC 的中点,PO ABCD ⊥平面,2PO =,M为PD 的中点.(Ⅰ) 证明://PB ACM 平面;MP(Ⅱ)(Ⅲ)。

数学线面垂直的知识点总结归纳

数学线面垂直的知识点总结归纳

数学线面垂直的知识点总结归纳数学是一座高山,哪怕是高考数学这样的小山丘,也让无数学子望其背而心戚戚,更有人混淆知识点。

下面是小编为大家整理的关于数学线面垂直的知识点,希望对您有所帮助!数学直线与平面平行、垂直知识点直线与平面垂直的判定定理一:如果一条直线和一个平面内的两条相交直线都垂直,那么这两条直线垂直于这个平面.(“线线垂直,线面垂直”)直线与平面垂直的判定定理二:如果平行线中一条直线垂直于一个平面,那么另一条也垂直于这个平面.推论:如果两条直线同垂直于一个平面,那么这两条直线平行.注:①垂直于同一平面的两个平面平行.(×)(可能相交,垂直于同一条直线的两个平面平行)②垂直于同一直线的两个平面平行.(√)(一条直线垂直于平行的一个平面,必垂直于另一个平面)③垂直于同一平面的两条直线平行.(√)5. ⑴垂线段和斜线段长定理:从平面外一点向这个平面所引的垂线段和斜线段中,①射影相等的两条斜线段相等,射影较长的斜线段较长;②相等的斜线段的射影相等,较长的斜线段射影较长;③垂线段比任何一条斜线段短.注:垂线在平面的射影为一个点. [一条直线在平面内的射影是一条直线.(×)]⑵射影定理推论:如果一个角所在平面外一点到角的两边的距离相等,那么这点在平面内的射影在这个角的平分线上高中数学线面垂直知识点1)直线垂直于平面内两条非平行的线,则直线垂直于该平面2)直线的两条不平行的垂线与平面平行,则直线垂直于该平面3)有A、B两个面都与C平面垂直,则A、B两个面的交线也垂直于C平面4)直线垂直于与A平面平行的B平面,则直线垂直于A平面5)直线任意点在平面上的投影都重合,则直线垂直于该平面6)直线上任意点到平面的距离,都等于这一点到线面交点的距离,则直线垂直于该平面线面垂直性质定理1:如果一条直线垂直于一个平面,那么该直线垂直于平面内的所有直线。

2:经过空间内一点,有且只有一条直线垂直已知平面。

高中数学证明几何的题的知识点总结 线面垂直线面平行点面面面的证明

高中数学证明几何的题的知识点总结 线面垂直线面平行点面面面的证明

高中数学证明几何的题的知识点总结线面垂直线面平行点面面面的证明几何证明是高中数学中的重要组成部分,它不仅锻炼了学生的逻辑思维能力,还培养了严密的数学推理能力。

本文针对高中数学中常见的线面垂直、线面平行以及点面、面面关系证明的知识点进行总结,以帮助学生更好地掌握几何证明的技巧和方法。

一、线面垂直的证明1.定义:如果一条直线与一个平面内的任意一条直线都垂直,则这条直线与该平面垂直。

2.判定定理:如果一条直线与一个平面内的两条相交直线垂直,则这条直线与该平面垂直。

3.证明方法:(1)利用垂直的定义,找出直线与平面内任意一条直线垂直的关系。

(2)利用判定定理,找出直线与平面内两条相交直线垂直的关系。

二、线面平行的证明1.定义:如果一条直线与一个平面内的任意一条直线都没有公共点,则这条直线与该平面平行。

2.判定定理:如果一条直线与一个平面内的两条平行直线都平行,则这条直线与该平面平行。

3.证明方法:(1)利用平行的定义,找出直线与平面内任意一条直线没有公共点的关系。

(2)利用判定定理,找出直线与平面内两条平行直线都平行的关系。

三、点面关系的证明1.定义:如果一点在一个平面内,则这个点与该平面有公共点。

2.判定定理:如果一点与一个平面内的任意一条直线都有且只有一个公共点,则这个点在该平面内。

3.证明方法:(1)利用定义,找出点与平面内任意一条直线有公共点的关系。

(2)利用判定定理,找出点与平面内任意一条直线有且只有一个公共点的关系。

四、面面关系的证明1.定义:如果两个平面有公共点,则这两个平面相交。

2.判定定理:如果两个平面内分别有两条相交直线互相平行,则这两个平面平行。

3.证明方法:(1)利用定义,找出两个平面有公共点的关系。

(2)利用判定定理,找出两个平面内分别有两条相交直线互相平行的关系。

通过以上对高中数学几何证明知识点的总结,相信同学们在解决相关问题时会更加得心应手。

线面垂直练习题及答案

线面垂直练习题及答案

线面垂直练习题及答案线面垂直是几何学中的一项基本概念,用于描述线段、射线、直线和平面之间的垂直关系。

理解线面垂直的概念对于解决几何问题至关重要。

本文将为读者提供一些线面垂直练习题及答案,帮助读者巩固对该概念的理解。

练习题一:1. AB为一条线段,m是一平面。

如果AB与m垂直,判断下列命题的真假:a) 线段AB垂直于平面mb) 平面m垂直于线段ABc) 线段AB平行于平面m2. P是平面XYZ的内点,AP的延长线与平面XYZ有几个交点?练习题二:1. 给出下列命题的定义:a) 垂线b) 垂直平分线c) 垂直平面2. 在平面上画一条线段AB和一条直线l,求证:若线段AB与直线l垂直,则直线l过点A和点B的垂直平分线。

1. 已知直线l与平面P垂直,直线m过l上一点,那么直线m与平面P的关系是什么?2. 在长方形ABCD中,线段AC和线段BD相交于点O。

求证:线段AC与平面ABCD垂直。

答案及解析:练习题一:1. a) 假,线段AB无法垂直于平面m,因为线段只有两个端点而不是无限延伸。

b) 真,平面m可以垂直于线段AB。

c) 假,线段和平面不可能平行。

2. AP的延长线与平面XYZ有且只有一个交点。

练习题二:1. a) 垂线是与给定线段或直线垂直的线段或直线。

b) 垂直平分线是将给定线段或直线垂直平分的线段或直线。

c) 垂直平面是与给定平面垂直的平面。

2. 假设直线l过点A和点B的垂直平分线交线段AB于点M,则根据垂直平分线的定义,我们可以得出线段AM和线段BM的长度相等,且直线l与线段AM和线段BM都垂直。

1. 直线m与平面P平行。

2. 连接线段AC的中点和线段BD的中点,设为点O'。

根据长方形的性质,线段OO'相等且垂直于两个平行线段AC和BD。

因此,线段OO'垂直于平面ABCD,而线段OO'与线段AC相等,所以线段AC与平面ABCD垂直。

通过以上练习题及答案,我们可以加深对线面垂直概念的理解。

线面垂直练习题及答案

线面垂直练习题及答案

线面垂直练习题及答案线面垂直是几何学中一个重要的概念,它涉及到直线和平面之间的关系。

在几何学中,我们经常需要判断线和平面是否垂直,以及如何确定它们的垂直关系。

为了帮助大家更好地理解和掌握线面垂直的概念,本文将介绍一些线面垂直的练习题及答案。

1. 练习题:判断线段和平面是否垂直题目:已知线段AB的两个端点分别为A(1, 2, 3)和B(4, 5, 6),平面P的法向量为(2, -1, 3),判断线段AB是否垂直于平面P。

解答:要判断线段AB是否垂直于平面P,只需判断线段AB的方向向量是否与平面P的法向量垂直。

线段AB的方向向量为AB = B - A = (4, 5, 6) - (1, 2, 3) = (3, 3, 3)。

两个向量的点积为3*2 + 3*(-1) + 3*3 = 9,不等于0。

因此,线段AB不垂直于平面P。

2. 练习题:确定两平面之间的垂直关系题目:已知平面P1的法向量为(1, 2, -1),平面P2的法向量为(2, -1, 3),判断平面P1和平面P2之间的垂直关系。

解答:两个平面垂直的条件是它们的法向量垂直,即两个法向量的点积为0。

计算两个法向量的点积为1*2 + 2*(-1) + (-1)*3 = 0,等于0。

因此,平面P1和平面P2垂直。

3. 练习题:求垂直平面上的直线题目:已知平面P的方程为2x + 3y - z = 6,求过点A(1, 2, 3)且垂直于平面P的直线的方程。

解答:垂直于平面P的直线的方向向量应该与平面P的法向量垂直。

由平面P的方程可知,平面P的法向量为(2, 3, -1)。

因此,过点A(1, 2, 3)且垂直于平面P 的直线的方向向量为(2, 3, -1)。

直线的方程可以表示为x = 1 + 2t,y = 2 + 3t,z = 3 - t,其中t为参数。

4. 练习题:判断直线和平面是否垂直题目:已知直线L的方程为x = 1 + 2t,y = 2 + 3t,z = 3 - t,平面P的方程为2x + 3y - z = 6,判断直线L是否垂直于平面P。

高一数学线面、面面垂直的判定知识点复习

高一数学线面、面面垂直的判定知识点复习

高一数学线面、面面垂直的判定知识点复习线面、面面垂直垂直关系是高中数学的重要内容之一,线面、面面垂直垂直关系知识点有哪些呢?下面是店铺为大家整理的高一数学必修2线面、面面垂直的判定知识点复习资料,希望对大家有所帮助!一、高一数学必修2线面、面面垂直的判定知识点复习二、高一数学必修2线面、面面垂直的判定重难点分析1.怎样理解线面垂直的判定定理?直线和平面垂直的判定定理,应抓住“两条”和“相交”这两个关键词语.要判断一条已知直线和一个平面是否垂直,取决于在这平面内能否找出两条相交直线和已知直线垂直,至于这两条相交直线是否和已知直线有公共点,是无关紧要的.2.怎样理解直线和平面所成的角?直线和平面所成的角问题中主要是斜线和平面所成角问题.斜线和平面所成角的定义中给出了求解斜线和平面所成角的步骤:①确定斜线和平面的交点(即斜足);②经过斜线上除斜足以外的任意一点作平面的垂线,从而确定斜线的射影;③由垂线段、斜线段及其射影构成的直角三角形,通过解此三角形,得到斜线和平面所成的角,同时要注意直线和平面所成角的范围.在求解斜线和平面所成角的过程中,确定点在直线上或平面上的射影是关键,确定点在平面上射影位置有以下几种方法:①斜线上任意一点在平面上的射影必在斜线在平面上的射影上;②利用垂直关系得出线面垂直,确定射影.3.如何用两平面垂直的定义证明平面与平面垂直?两平面垂直实际上是由直线与平面垂直和线线垂直来定义的,利用这个定义可直接证明两平面垂直,其步骤为:(1)找到两个相交平面α,β的交线a及这两个平面与第三个平面γ相交所得到的两条交线b,c;(2)证明a⊥γ,b⊥c;(3)根据定义,得到α⊥β.4.在二面角的学习中应注意什么问题?(1)二面角的平面角的概念应注意强调:顶点在二面角的棱上,两条边分别在二面角的两个面内,且这两条边都垂直于二面角的棱,这样选取的角的大小与角的位置的选取无关.(2)画二面角的平面角时,使平面角的两边分别平行于表示两个半平面的平行四边形的一组对边,即表明垂直于二面角的棱,平面角∠AOB的大小与D点的位置无关.(3)二面角的计算方法:①定义.作二面角的平面角——在棱上取一点,分别在两个面内作棱的垂线,这两条射线组成二面角的平面角.利用定义作二面角的平面角,关键在于找棱及棱上的特殊点.学习时要特别注意平移和补形方法的灵活运用.②用垂面法.作二面角的平面角——作垂直于二面角的棱或二面角的两个半平面的垂面,则该垂面与二面角的两个半平面交线所成的角就是二面角的平面角.三、高一数学必修2线面、面面垂直的判定大腿规律1.直线与直线垂直两直线垂直是指它们的交角或平移后的交角为直角,两条直线不一定相交.在平面几何中,两直线垂直时,它们一定相交.2.直线和平面垂直(1)直线和平面垂直的定义可以用来判定线线垂直,即当直线和平面垂直时,该直线就垂直于这个平面内的任何直线,可以把它作为线线垂直的判定定理.(2)要判定一条直线是否和一个平面垂直,取决于在这个平面内能否找出两条相交直线和已知直线垂直,至于这两条相交直线是否和已知直线有公共点,则无关紧要.(3)教材中例1可以作为结论使用:过一点和已知平面垂直的直线只有一条.(4)如果两条直线垂直于同一个平面,则这两条直线平行,可作为两直线平行的一种判定方法.3.(1)线面垂直的定义中的“任何一条直线”这一词语,它与“所有直线”是同义词,即直线和平面内的所有直线垂直.(2)线面垂直的判定定理的条件中,“平面内的两条相交直线”是关键性词语,证明时一定要明确指出,弄清定理的条件是掌握好定理的关键.(3)转化思想在本学案中的应用:在转化时要弄清相互转化的条件,根据具体问题灵活选取恰当的证明方法.4.证面面垂直的方法:(1)证明两平面构成的二面角的平面角为90°.(2)证明一个平面经过另一个平面的一条垂线,将证明“面面垂直”的问题转化为证明线面垂直的问题.(3)证明一个平面垂直于另一个平面内的一条直线,将证明“面面垂直”的问题转化为证明“线面垂直”的问题.5.空间中角的概念及计算是立体几何的重要内容,求角的步骤是:(1)找出或作出有关的图形;(2)证明它符合定义;(3)计算.即“一作、二证、三计算”.。

线面垂直知识点总结

线面垂直知识点总结

一、线面垂直概念及性质1.1 线面垂直的定义及基本概念线面垂直是指两条直线或者一条直线与一个平面之间的特定关系。

当一条直线与一个平面相交,并且相交形成的两个角相互垂直的时候,我们称这条直线与该平面垂直。

线面垂直是几何中非常重要的一个概念,它涉及到了平面几何和立体几何两个方面的知识。

线面垂直在现实生活和数学问题中都有广泛的应用,因此对线面垂直的概念和性质的理解是非常重要的。

1.2 线面垂直的性质线面垂直的性质包括以下几点:(1)垂直直线的特点:两条垂直的直线所形成的两对相邻角互为补角。

(2)垂直平面的性质:一个平面上的两条直线如果与另一个平面相交,且这两条直线分别与另一个平面垂直,则这两条直线在原平面上相交的直线垂直。

(3)垂直平面的性质:一个平面内任意一条直线与另一平面垂直,则这条直线与另一平面垂直。

二、线面垂直的判定方法2.1 使用直线方程进行线面垂直的判定在平面直角坐标系中,通过直线的斜率来判定直线与坐标平面的垂直关系。

如果两条直线的斜率之积为-1,那么这两条直线相互垂直。

2.2 使用向量进行线面垂直的判定在向量的运算中,可以通过两条直线的方向向量的点积来判断两条直线的垂直关系。

如果两条直线的方向向量的点积为0,那么这两条直线相互垂直。

2.3 使用距离或者坐标进行线面垂直的判定通过直线的距离公式或者坐标的关系来判定直线与平面的垂直关系。

如果直线上某点到平面的距离等于这条直线在平面上的高度,那么这条直线与平面垂直。

2.4 使用角度进行线面垂直的判定通过角度的关系来判定两条直线或者直线与平面的垂直关系。

如果两条直线所形成的两对相邻角相互垂直,则这两条直线垂直。

同样,如果一条直线与一个平面所形成的角为90度,则这条直线与该平面垂直。

3.1 平行线垂直平面交角的性质线面垂直的性质在平行线与垂直平面的交角问题中有非常重要的应用。

例如,在平行线与平面相交的问题中,我们可以利用线线平行的条件来求得角的关系,从而应用线面垂直的性质判断角的大小。

数学线面垂直知识点总结

数学线面垂直知识点总结

数学线面垂直知识点总结一、线面垂直关系的定义1. 在平面几何中,两条线段或者两条直线如果所成的角度为90度,那么它们就是垂直的。

具体来说,如果两条线段或者两条直线相交,并且它们所成的角度为90度,那么它们就是垂直的。

2. 在空间几何中,两个平面如果它们的法向量垂直于彼此,那么这两个平面就是垂直的。

具体来说,如果两个平面的法向量的内积为0,那么这两个平面就是垂直的。

二、线面垂直关系的性质1. 垂直线的性质(1)垂直线的斜率乘积为-1(2)垂直线的两条直线的斜率相乘等于-1。

2. 垂直平面的性质(1)垂直平面的法向量垂直(2)垂直平面的法向量的内积为0(3)垂直平面的法向量可以确定平面的方向三、线面垂直关系的判定方法1. 通过角度判断在平面几何中,可以通过计算两条直线所成的角度来判断它们是否垂直。

如果两条直线所成的角度为90度,那么这两条直线就是垂直的。

2. 通过斜率判断在平面几何中,可以通过计算两条直线的斜率来判断它们是否垂直。

如果两条直线的斜率乘积为-1,那么这两条直线就是垂直的。

3. 通过向量判断在空间几何中,可以通过计算两个平面的法向量来判断它们是否垂直。

如果两个平面的法向量的内积为0,那么这两个平面就是垂直的。

四、线面垂直关系的应用1. 在几何中的应用垂直关系在几何中有着广泛的应用。

比如在平面几何中,通过垂直关系可以求解直角三角形的性质,可以求解平行四边形的性质,可以求解垂直线的交点等等。

在空间几何中,通过垂直关系可以求解平面的交点,可以求解两个平面之间的夹角等等。

2. 在物理中的应用垂直关系在物理中有着重要的应用。

比如在力学中,地面垂直于斜面,可以用来计算重力加速度的分量;在光学中,光的传播方向与光的入射面垂直;在工程中,建筑物的结构中垂直关系是非常重要的。

3. 在工程中的应用垂直关系在工程中也有着重要的应用。

比如在建筑物的设计中,垂直关系常用来确定建筑物的结构,确定建筑物的垂直方向,确定建筑物的支撑结构等等。

线线垂直与线面垂直知识点加习题

线线垂直与线面垂直知识点加习题
行与垂直关系的转化,有时也需要把问题从空间转化到一个平面上去,从而使问题获得解决. 2.平面垂线的作法:面面垂直的性质定理给出了作平面垂线的一种方法,这是在求角与距离的过程
中常用的方法,也是立体几何的难点.其思路是:先确定面面垂直,然后在一平面内作交线的垂线, 则得到平面的垂线.这一思路在求角和距离时应用较广泛,在垂直转化中也常用到,在解题中要 注意灵活运用. 知识链接:、
注意:①两个定理中“平面内”这个条件不能省略,否则不一定成立。三垂线定理及其逆定理 共涉及“四线一面”。其中平面的垂线、平面的斜线及射影这三条直线都是平面内的一条直线的垂 线。
②利用三垂线定理及其逆定理的关键是要善于从各种图形中找出“平面的垂线”、“平面的斜 线”、“斜线的射影” 。
③从两个定理的作用上区分,三垂线定理解决已知共面直线垂直证明异面直线垂直,逆定理相 反。
(2)直线与平面垂直的判定:常用方法有:
① 判定定理: a ,b , a b P, l a,l b l .
② b⊥α, a∥b a⊥α;(线面垂直性质定理) ③α∥β,a⊥β a⊥α(面面平行性质定理) ④α⊥β,α∩β=l,a⊥l,a β a⊥α(面面垂直性质定理)
(3)直线与平面垂直的性质定理: ① 如果两条直线同垂直于一个平面,那么这两条直线平行。( a⊥α,b⊥α⇒ a∥b) ② 直线和平面垂直时,那么该直线就垂直于这个平面内的任何直线
4.点到平面距离:过一点作平面的垂线,则
叫做点到平面的距离.
5.直线到平面的距离
一条直线与一个平面平行时,这条直线上
到这个平面的距离叫做直线到平面距离.
两个平面垂直的定义:如果两个平面相交所成二面角为
二面角,则这两个平面互相垂直.
6.两个平面垂直的判定:如果一个平面经过另一个平面的一条 线,则这两个平面互相垂直.

面面垂直的知识点总结

面面垂直的知识点总结

面面垂直的知识点总结1. 平面的垂直性质在平面几何中,平面的垂直性质是指两个平面相交的交线与这两个平面的法线垂直。

根据这一性质,可以得出平面上任意一条直线与另一个平面垂直的条件。

2. 向量的垂直性在向量空间中,向量的垂直性是指两个向量的点积为0。

具体地,给定两个向量a和b,如果它们的点积满足a·b=0,则称这两个向量垂直。

这一性质在几何向量的运算中有很重要的应用,例如求向量的投影、求平面的垂直距离等。

3. 几何图形的垂直关系在平面几何中,直线和平面之间的垂直关系是指直线与平面的交线垂直于这个平面。

根据这一性质,可以得出求直线和平面的垂直距离的公式,以及判断直线和平面是否垂直的条件。

4. 解析几何中的垂直关系在解析几何中,可以通过向量的内积和外积来判断两个向量的垂直关系。

具体地,给定两个向量a和b,如果它们的内积为0,则这两个向量垂直;如果它们的外积为0,则这两个向量平行。

这一性质在解析几何中有着广泛的应用,例如求直线的斜率、求平面的法向量等。

5. 高维空间的垂直性质在高维空间中,向量之间的垂直关系可以通过内积和外积来判断。

给定两个向量a和b,如果它们的内积为0,则这两个向量垂直;如果它们的外积为0,则这两个向量平行。

这一性质在高维空间的几何运算中有着重要的应用,例如求高维空间中平面的法向量、求高维空间中向量的垂直投影等。

综上所述,面面垂直是数学中的一个重要概念,涉及到平面的垂直性质、向量的垂直性、几何图形的垂直关系、解析几何中的垂直关系以及高维空间中的垂直性质等方面。

掌握这些知识点可以帮助我们更好地理解和运用面面垂直的概念,进而应用到实际问题中。

线面垂直与面面垂直

线面垂直与面面垂直

m n B, l
m
l m,l n,
B
n
强调:(1)两条相交直线;
(2)要判断一条直线与一个平面是否垂直,取决于在这 个平面内能否找到两条相交直线和已知直线垂直.
2. 性质定理: 垂直于同一平面的两条直线平行.
a ,b ,
a // b
ab
判断题:
(1)一直线和一平面内的两条直线都垂直,则直线和这个
A
β 注:1、AO ⊥l,BO ⊥l
2、二面角的大小与点O的选取无关 3、平面角为直角的二面角叫做直二面角
二面角的范围:[00,1800]
B
α
A
O
B
β
A
二面角的大小用其平面角来度量,平面角需 具备如下三个特征: (1)角的顶点在棱上; (2)角的两边在两面内; (3)角的两边垂直于棱.
【练习】
1、如图,自空间一点分别向二面角的两个面引垂线, 两垂线所成的角与二面角的平面角的关系是( )
练习1如图自空间一点分别向二面角的两个面引垂线两垂线所成的角与二面角的平面角的关系是a相等b互补d既不相等又不互补也不互余定义
2.3 直线、平面垂直 的判定及其性质
一. 直线与平面垂直的判定和性质定理
1. 判定定理: 一条直线与一个平面内的两条相交直线 都垂直,则该直线与此平面垂直.
m ,n ,
l
直角三角形的个数有
()
(A) 1个
(B) 2个
(C) 3个
P
(D) 4个
A
B
D C
平面与平面垂直的 判定和性质定理
半平面
定义:从一条直线出发
的两个半平面所组成的 图形叫做二面角
记号:二面角α-l-β或α-

高三数学一轮复习线面垂直面面垂直

高三数学一轮复习线面垂直面面垂直
这是因为AB1⊥DF,AB1⊥C1D, DF∩C1D=D,所以AB1⊥平面C1DF.
题型二
两个平面垂直的判定 ①利用定义证明两个平面所成的二面角 是直角 ②利用面面垂直的判定定理证明一个平 面经过另一个平面的一条垂线
思维提示
例2
如图所示,△ ABC 为正三角形, EC⊥ 平面 ABC ,
BD∥CE,且CE=CA=2BD,M是EA的中点.
第三节 直线和平面垂直、平面与平面垂直
最新考纲
高考热点
1.掌握直线和平面垂直的判定定理和性 质定理. 2.掌握斜线在平面上的射影的概念. 3.掌握三垂线定理及其逆定理. 4.掌握两个平面垂直的判定定理和性 质定理. 1.以选择题形式考查线面、面面位置关 系的判定和性质. 2.以解答题的形式考查多面体中的线 面垂直或面面垂直.
求证:(1)DE=DA;
(2)平面MDB⊥平面ECA; (3)平面DEA⊥平面ECA. [分析](1)要证明DE=DA,只需证明 Rt△DEF≌Rt△DAB.(2)注意到M为EA中点,可取CA中点N,先
证明N点在平面BDM内,再证明BN与平面ECA垂直即可.(3)
仍需证明平面DEA经过平面ECA的一条垂线.
题型四 思维提示
三垂线定理及其逆定理的应用 ①线线垂直、线面垂直的判定与性质 ②三垂线定理及其逆定理
例4
如图所示,△ ADB 和△ ADC 都以 D 为直角顶点的
直角三角形,且AD=BD=CD,∠BAC=60°.
(1)求证:BD⊥平面ADC; (2) 若 H 为△ ABC 的垂心,求证: H 是 D 在平面 ABC 内的 射影;
[规律总结]
在证明两平面垂直时, 一般方法是先从现
有的直线中寻找平面的垂线,若这样的直线图中不存在,则

最新线面垂直、面面垂直的知识点地总结、经典例的题目及解析汇报、高考的题目练习及问题详解

最新线面垂直、面面垂直的知识点地总结、经典例的题目及解析汇报、高考的题目练习及问题详解

直线、平面垂直的判定与性质【考纲说明】1、能够认识和理解空间中线面垂直的有关性质和判定定理。

2、能够运用公理、定理和已获得的结论证明一些空间图形的位置关系的简单命题。

【知识梳理】一、直线与平面垂直的判定与性质 1、 直线与平面垂直(1)定义:如果直线l 与平面α内的任意一条直线都垂直,我们就说直线l 与平面α互相垂直,记作l ⊥α,直线l 叫做平面α的垂线,平面α叫做直线l 的垂面。

如图,直线与平面垂直时,它们唯一公共点P 叫做垂足。

(2)判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。

结论:如果两条平行直线中的一条垂直于一个平面,那么另一条也垂直于这个平面,记作.//a b b a αα⎫⇒⊥⎬⊥⎭(3)性质定理:垂直于同一个平面的两条直线平行。

即,//a b a b αα⊥⊥⇒.由定义知:直线垂直于平面内的任意直线。

2、 直线与平面所成的角平面的一条斜线和它在平面上的射影所成的锐角叫做这条直线和这个平面所成的角。

一条直线垂直于平面,该直线与平面所成的角是直角;一条直线和平面平行,或在平面内,则此直线与平面所成的角是00的角。

3、 二面角的平面角从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,这两个半平面叫做二面角的面。

如果记棱为l ,那么两个面分别为αβ、的二面角记作l αβ--.在二面角的棱上任取一点,以该点为垂足,在两个半平面内分别作垂直于棱的射线,则两射线所构成的角叫做叫做二面角的平面角。

其作用是衡量二面角的大小;范围:00180θ<<.二、平面与平面垂直的判定与性质1、定义:一般地,两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面垂直.2、判定:一个平面过另一个平面的垂线,则这两个平面垂直。

简述为“线面垂直,则面面垂直”,记作l l βαβα⊥⎫⇒⊥⎬⊂⎭.3、性质:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直,记作l m m m lαβαββα⊥⎫⎪=⎪⇒⊥⎬⊂⎪⎪⊥⎭.【经典例题】【例1】(2012浙江文)设l 是直线,a,β是两个不同的平面 ( )A .若l ∥a,l ∥β,则a ∥βB .若l ∥a,l ⊥β,则a ⊥βC .若a ⊥β,l ⊥a,则l ⊥βD .若a ⊥β, l ∥a,则l ⊥β 【答案】B【解析】利用排除法可得选项B 是正确的,∵l ∥a,l ⊥β,则a ⊥β.如选项A:l ∥a,l ∥β时, a ⊥β或a ∥β;选项C:若a ⊥β,l ⊥a,l ∥β或l β⊂;选项D:若若a ⊥β, l ⊥a,l ∥β或l ⊥β.【例2】(2012四川文)下列命题正确的是 ( )A .若两条直线和同一个平面所成的角相等,则这两条直线平行B .若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C .若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D .若两个平面都垂直于第三个平面,则这两个平面平行 【答案】C【解析】若两条直线和同一平面所成角相等,这两条直线可能平行,也可能为异面直线,也可能相交,所以A 错;一个平面不在同一条直线的三点到另一个平面的距离相等,则这两个平面平行,故B 错;若两个平面垂直同一个平面两平面可以平行,也可以垂直;故D 错;故选项C 正确. 【例3】(2012山东)已知直线m 、n 及平面α,其中m ∥n ,那么在平面α内到两条直线m 、n 距离相等的点的集合可能是:①一条直线;②一个平面;③一个点;④空集.其中正确的是 ( )A .①②③B .①④C .①②④D .②④ 【答案】C【解析】如图1,当直线m 或直线n 在平面α内时有可能没有符合题意的点;如图2,直线m 、n 到已知平面α的距离相等且所在平面与已知平面α垂直,则已知平面α为符合题意的点;如图3,直线m 、n 所在平面与已知平面α平行,则符合题意的点为一条直线,从而选C.【例4】(2012四川理)如图,在正方体1111ABCD A B C D -中,M 、N 分别是CD 、1CC 的中点,则异面直线1A M 与DN 所成的角的大小是____________. 【答案】90º N MB 1A 1C 1D 1D C【解析】方法一:连接D 1M,易得DN ⊥A 1D 1 ,DN ⊥D 1M,所以,DN ⊥平面A 1MD 1,又A 1M ⊂平面A 1MD 1,所以,DN ⊥A 1D 1,故夹角为90º方法二:以D 为原点,分别以DA, DC, DD 1为x, y, z 轴,建立空间直角坐标系D —xyz.设正方体边长为2,则D(0,0,0),N(0,2,1),M(0,1,0)A 1(2,0,2)故,),(),(2,121,2,01-== 所以,cos<|MA ||DN |111MA DN ∙=〉〈 = 0,故DN ⊥D 1M,所以夹角为90º【例5】(2012大纲理)三棱柱111ABC A B C -中,底面边长和侧棱长都相等,1160BAA CAA ∠=∠=︒,则异面直线1AB 与1BC 所成角的余弦值为_____________.【解析】设该三棱柱的边长为1,依题意有1111,AB AB AA BC AC AA AB =+=+-,则22221111||()222cos603AB AB AA AB AB AA AA =+=+⋅+=+︒=2222211111||()2222BC AC AA AB AC AA AB AC AA AC AB AA AB =+-=+++⋅-⋅-⋅=而1111()()AB BC AB AA AC AA AB ⋅=+⋅+-1111111111112222AB AC AB AA AB AB AA AC AA AA AA AB =⋅+⋅-⋅+⋅+⋅-⋅=+-++-=111111cos ,6||||2AB BC AB BC AB BC ⋅∴<>=== 【例6】(2011·福建)如图,正方体ABCD -A 1B 1C 1D 1中,AB =2,点E 为AD 的中点,点F 在CD上,若EF ∥平面AB 1C ,则线段EF 的长度等于________.【答案】 2【解析】∵EF ∥面AB 1C ,∴EF ∥AC .又E 是AD 的中点,∴F 是DC 的中点.∴EF =12AC = 2.【例7】(2012年山东文)如图,几何体E ABCD -是四棱锥,△ABD 为正三角形,,CB CD EC BD =⊥.(1)求证:BE DE =;(2)若∠120BCD =︒,M 为线段AE 的中点, 求证:DM ∥平面BEC .【解析】(1)设BD 中点为O ,连接OC ,OE ,则由BC CD =知CO BD ⊥,又已知CE BD ⊥,所以BD ⊥平面OCE .所以BD OE ⊥,即OE 是BD 的垂直平分线,所以BE DE =.(2)取AB 中点N ,连接,MN DN ,∵M 是AE 的中点,∴MN ∥BE ,∵△ABD 是等边三角形,∴DN AB ⊥.由∠BCD =120°知,∠CBD =30°, 所以∠ABC =60°+30°=90°,即BC AB ⊥,所以ND ∥BC ,所以平面MND ∥平面BEC ,又DM ⊂平面MND ,故DM ∥平面BEC . 另证:延长BC AD ,相交于点F ,连接EF.因为CB=CD,090=∠ABC . 因为△ABD 为正三角形,所以090,60=∠=∠ABC BAD ,则030=∠AFB , 所以AF AB 21=,又AD AB =, 所以D 是线段AF 的中点,连接DM,又由点M 是线段AE 的中点知EF DM //,而⊄DM 平面BEC , ⊂EF 平面BEC ,故DM ∥平面BEC . 【例8】(2011天津)如图,在四棱锥P -ABCD 中,底面ABCD 为平行四边形∠ADC =45°,AD =AC =1,O 为AC 的中点,PO ⊥平面ABCD ,PO =2,M 为PD 的中点.(1)证明:PB ∥平面ACM ; (2)证明:AD ⊥平面P AC ;(3)求直线AM 与平面ABCD 所成角的正切值.【解析】(1)证明:连接BD ,MO ,在平行四边形ABCD 中,因为O 为AC 的中点,所以O 为BD 的中点.又M 为PD 的中点,所以PB ∥MO .因为PB ⊄平面ACM ,MO ⊂平面ACM ,所以PB ∥平面ACM . (2)证明:因为∠ADC =45°,且AD =AC =1,所以∠DAC =90°,即AD ⊥AC ,又PO ⊥平面ABCD ,AD ⊂平面ABCD ,所以PO ⊥AD .而AC ∩PO =O ,所以AD ⊥平面P AC .(3)取DO 中点N ,连接MN ,AN .因为M 为PD 的中点,所以MN ∥PO ,且MN =12PO =1.由PO ⊥平面ABCD,得MN ⊥平面ABCD ,所以∠MAN 是直线AM 与平面ABCD 所成的角,在Rt △DAO 中,AD =1,AO =12,所以DO=52,从而AN =12DO =54.在Rt △ANM 中, tan ∠MAN =MN AN =154=455,即直线AM 与平面ABCD 所成角的正切值为455.【例9】(2012湖南文)如图,在四棱锥P-ABCD 中,PA ⊥平面ABCD,底面ABCD 是等腰梯形,AD ∥BC,AC ⊥BD.(1)证明:BD ⊥PC;(2)若AD=4,BC=2,直线PD 与平面PAC 所成的角为30°,求四棱锥P-ABCD 的体积.D【解析】(1)因为,,.PA ABCD BD ABCD PA BD ⊥⊂⊥平面平面所以又,,AC BD PA AC ⊥是平面PAC 内的两条相较直线,所以BD ⊥平面PAC, 而PC ⊂平面PAC,所以BD PC ⊥.(2)设AC 和BD 相交于点O,连接PO,由(Ⅰ)知,BD ⊥平面PAC, 所以DPO ∠是直线PD 和平面PAC 所成的角,从而DPO ∠30=. 由BD ⊥平面PAC,PO ⊂平面PAC,知BD PO ⊥. 在Rt POD 中,由DPO ∠30=,得PD=2OD. 因为四边形ABCD 为等腰梯形,AC BD ⊥,所以,AOD BOC 均为等腰直角三角形,从而梯形ABCD 的高为111(42)3,222AD BC +=⨯+=于是梯形ABCD 面积 1(42)39.2S =⨯+⨯=在等腰三角形AOD 中,2OD AD == 所以2 4.PD OD PA ===故四棱锥P ABCD -的体积为11941233V S PA =⨯⨯=⨯⨯=.【例10】(2012新课标理)如图,直三棱柱111ABC A B C -中,112AC BC AA ==,D 是棱1AA 的中点,BD DC ⊥1(1)证明:BC DC ⊥1(2)求二面角11C BD A --的大小. 【解析】(1)在Rt DAC ∆中,AD AC =得:45ADC ︒∠=同理:1114590A DC CDC ︒︒∠=⇒∠=得:111,DC DC DC BD DC ⊥⊥⇒⊥面1BCD DC BC ⇒⊥ (2)11,DC BC CC BC BC ⊥⊥⇒⊥面11ACC A BC AC ⇒⊥ 取11A B 的中点O ,过点O 作OH BD ⊥于点H ,连接11,C O C H1111111AC B C C O A B =⇒⊥,面111A B C ⊥面1A BD 1C O ⇒⊥面1A BD 1OH BD C H BD ⊥⇒⊥ 得:点H 与点D 重合且1C DO ∠是二面角11C BD A --的平面角设AC a =,则12C O =,111230C D C O C DO ︒==⇒∠= 既二面角11C BD A --的大小为30︒【课堂练习】1.(2012浙江理)已知矩形ABCD ,AB =1,BC 将∆ABD 沿矩形的对角线BD 所在的直线进行翻着,在翻着过程中( )A .存在某个位置,使得直线AC 与直线BD 垂直B .存在某个位置,使得直线AB 与直线CD 垂直C .存在某个位置,使得直线AD 与直线BC 垂直D .对任意位置,三直线“AC 与BD ”,“AB 与CD ”,“AD 与BC ”均不垂直 2.(2012四川理)下列命题正确的是( ) A .若两条直线和同一个平面所成的角相等,则这两条直线平行B .若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C .若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D .若两个平面都垂直于第三个平面,则这两个平面平行 3.(2011重庆)到两互相垂直的异面直线的距离相等的点( )A .只有1个B .恰有3个C .恰有4个D .有无穷多个 4.(2012上海)已知空间三条直线l ,m ,n 若l 与m 异面,且l 与n 异面,则 ( )A .m 与n 异面.B .m 与n 相交.C .m 与n 平行.D .m 与n 异面、相交、平行均有可能. 5.(2011烟台)已知m ,n 是两条不同的直线,α,β为两个不同的平面,有下列四个命题:①若m ⊥α,n ⊥β,m ⊥n ,则α⊥β;②若m ∥α,n ∥β,m ⊥n ,则α∥β;③若m ⊥α,n ∥β,m ⊥n ,则α∥β;④若m ⊥α,n ∥β,α∥β,则m ⊥n .其中正确命题的个数为( ) A .1 B .2 C .3 D .4 6.(2011潍坊)已知m 、n 是两条不同的直线,α、β、γ是三个不同的平面,则下列命题正确的是( )A .若α⊥γ,α⊥β,则γ∥βB .若m ∥n ,m ⊂α,n ⊂β,则α∥βC .若m ∥n ,m ∥α,则n ∥αD .若n ⊥α,n ⊥β,则α∥β 7.(2010全国卷文)直三棱柱111ABC A B C -中,若90BAC ∠=︒,1AB AC AA ==,则异面直线1BA 与1AC 所成的角等于( )A .30°B .45°C .60°D .90°8.(2010全国卷)正方体ABCD-1111A B C D 中,B 1B 与平面AC 1D 所成角的余弦值为( )A .3B .3C .23D .39.(2010全国Ⅱ卷理)已知正四棱锥S ABCD -中,SA =,那么当该棱锥的体积最大时,它的高为( )A .1BC .2D .310.(2010全国Ⅰ卷)已知在半径为2的球面上有A .B .C .D 四点,若AB=CD=2,则四面体ABCD 的体积的最大值为( )A .B C . D . 11.(2010江西理)过正方体1111ABCD A B C D -的顶点A 作直线L ,使L 与棱AB ,AD ,1AA 所成的角都相等,这样的直线L 可以作( )A .1条B .2条C .3条D .4条12.(2012大纲)已知正方形1111ABCD A B C D -中,,E F 分别为1BB ,1CC 的中点,那么异面直线AE 与1D F 所成角的余弦值为___ _.13.(2010上海文)已知四棱椎P ABCD -的底面是边长为6 的正方形,侧棱PA ⊥底面ABCD ,且8PA =,则该四棱椎的体积是 .α∙AB∙β14.(2010四川卷)如图,二面角l αβ--的大小是60°,线段AB α⊂. B l ∈,AB 与l 所成的角为30°.则AB 与平面β所成的角的正弦值是 . 15.(江西卷文)长方体1111ABCD A B C D -的顶点均在同一个球面上, 11A B A A==,BC =A ,B 两点间的球面距离为16.(2010湖南理)如图所示,在正方体ABCD -A 1B 1C 1D 1中,E 是棱DD 1的中点。

第五讲 线面、面面垂直的判定与性质常见题型与方法归纳

第五讲 线面、面面垂直的判定与性质常见题型与方法归纳

2 第五讲 线面、面面垂直的判定与性质常见题型与方法归纳考点一 直线与平面垂直的判定与性质一.直线与平面垂直定义1.(1)定义:如果直线l 与平面α内的任意一条直线都垂直,则直线l 与平面α垂直;(2)判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直;2.直线、平面垂直的判定方法:(1)利用判定定理;(2)如果两条平行直线的一条直线垂直于一个平面,那么另一条直线也垂直于这个平面.(3)如果一条直线垂直于两个平行平面中的一个平面,那么它也垂直于另一个平面.(4)利用面面垂直的性质。

二.直线与平面垂直判定题型讲解题型一 概念巩固【例1-1】设,是两条不同的直线,是一个平面,则下列命题正确的是( )(A )若,,则 (B )若,,则(C )若,,则 (D )若,,则题型二 线面垂直的判定【例1-2】如图,P 为△ABC 所在平面外一点,P A ⊥平面ABC ,∠ABC =90°,AE ⊥PB 于E ,AF ⊥PC 于F .求证: (1)BC ⊥平面P AB ;(2)AE ⊥平面PBC ;(3)PC ⊥平面AEF .图1-2 图1-3 图1-3【例1-3】如图,在△ABC 中,∠ABC =90°,D 是AC 的中点,S 是△ABC 所在平面外一点,且SA =SB =SC .(1)求证:SD ⊥平面ABC ;(2)若AB =BC ,求证:BD ⊥平面SAC .【例1-4】如图,在棱长均为1的直三棱柱ABC -A 1B 1C 1中,D 是BC 的中点.(1) 求证:AD ⊥平面BCC 1B 1;(2)求直线AC 1与平面BCC 1B 1所成角的正弦值.三 直线与平面垂直的性质 性质:垂直于同一个平面的两条直线互相平行。

题型一 利用线面垂直的性质证明平行问题【总结】当题中垂直条件很多,但又需证两直线平行关系时,考虑线面垂直的性质定理【例1-5】如图,正方体A 1B 1C 1D 1-ABCD 中,EF 与异面直线AC 、A 1D 都垂直相交.求证:EF ∥BD 1.图1-5 练习1【练习1】如图,已知平面α∩平面β=l ,EA ⊥α,垂足为A ,EB ⊥β,B 为垂足,直线a ⊂β,a ⊥AB .求证:a ∥l .题型二 利用线面垂直的性质证明垂直问题 方法: 线面垂直性质判定线线垂直.【例1-6】已知α∩β=AB ,PQ ⊥α于Q ,PO ⊥β于O ,OR ⊥α于R .求证:QR ⊥AB .l m αl m ⊥m α⊂l α⊥l α⊥l m //m α⊥l α//m α⊂l m //l α//m α//l m //2题型三 等体积法在垂直中的应用【例1-7】如图,三棱柱ABC -A 1B 1C 1中,已知AB ⊥侧面BB 1C 1C ,AB =BC =1,BB 1=2,∠BCC 1=60°.(1)求证:BC 1⊥平面ABC ;(2)E 是棱CC 1上的一点,若三棱锥E -ABC 的体积为312,求线段CE 的长. 1-7图考点二.直线和平面所成的角一.直线和平面所成的角概念(1)斜线在平面上的射影 (2)直线与平面所成角范围 02πθ≤≤方法:关键是求斜线在平面内的射影,最终转化为找面的垂线二 典型例题题型(一)概念理解【例2-1】(1)两条平行直线在平面内的射影可能是①两条平行线;②两条相交直线;③一条直线;④两个点. 上述四个结论中,可能成立的个数是( )(A )1个 (B )2个 (C )3个 (D )4个(2)从平面外一点P 引与平面相交的直线,使P 点与交点的距离等于1,则满足条件的直线条数不可能是( )(A )0条或 (B )0条或无数条(C )1条或2条 (D )0条或1条或无数条(3)若P 为⊿ABC 所在平面外一点,且PA =PB =PC ,求证P 在⊿ABC 所在平面内的射影是⊿ABC 的 心题型(二) 求直线和平面所成的角 方法一:利用定义。

线线垂直、线面垂直、面面垂直判定和性质

线线垂直、线面垂直、面面垂直判定和性质

空间中的垂直关系1.线面垂直直线与平面垂直的判断定理:假如,那么这条直线垂直于这个平面。

推理模式:直线和平面垂直的性质定理:假如两条直线同垂直于一个平面,那么这两条直线。

2.面面垂直两个平面垂直的定义:订交成的两个平面叫做相互垂直的平面。

两平面垂直的判断定理:(线面垂直面面垂直)假如,那么这两个平面相互垂直。

推理模式:两平面垂直的性质定理:(面面垂直线面垂直)若两个平面相互垂直,那么在一个平面内垂直于它们的的直线垂直于另一个平面。

一般来说,线线垂直或面面垂直都可转变为线面垂直来剖析解决,其关系为:线线垂直判断判断线面垂直面面垂直.这三者之间的关系特别亲密,性质性质能够相互转变,以前面推出后边是判断定理,而从后边推出前面是性质定理.同学们应该学会灵巧应用这些定理证明问题.在空间图形中,高一级的垂直关系中包含着低一级的垂直关系,下边举例说明.例题: 1.如图, AB 是圆 O 的直径, C 是圆周上一点, PA⊥平面 ABC.(1)求证:平面 PAC⊥平面 PBC;(2)若 D 也是圆周上一点,且与 C 分居直径 AB 的双侧,试写出图中全部相互垂直的各对平面.2、如图,棱柱ABC A1BC11 的侧面BCC1B1 是菱形,B1C A1B证明:平面 AB1C平面 A1 BC13、如下图,在长方体ABCD A1B1C1D1中,AB=AD=1,AA1=2,M是棱CC1的中点(Ⅰ)求异面直线A1M 和 C1D1所成的角的正切值;(Ⅱ)证明:平面ABM⊥平面 A1B1M 14、如图,AB是圆O的直径,C是圆周上一点,PA平面 ABC.若 AE⊥ PC ,E为垂足,F是 PB 上随意一点,求证:平面 AEF⊥平面 PBC.5、如图,直三棱柱 ABC— A1B1C1中,AC = BC =1,∠ACB = 90°,AA1=2 ,D是 A1B1中点.( 1)求证 C1D ⊥平面 A1B ;(2)当点 F 在 BB1上什么地点时,会使得 AB1⊥平面 C1DF 并证明你的结论6、 S 是△ ABC所在平面外一点, SA⊥平面 ABC,平面 SAB⊥平面 SBC,求证 AB⊥BC.B7、在四棱锥中,底面ABCD 是正方形,侧面VAD 是正三角形,平面VAD⊥底面ABCD证明 :AB⊥平面 VADVD CAB8、如图,平行四边形ABCD 中,DAB60 ,AB2, AD 4 ,将CBD 沿BD 折起到EBD 的地点,使平面EDB平面ABD .求证:AB DE9、如图,在四棱锥P ABCD 中,平面 PAD⊥平面 ABCD, AB=AD,∠ BAD=60°,E、 F 分别是 AP、 AD 的中点求证:( 1)直线 EF‖平面 PCD;(2)平面 BEF⊥平面 PAD10、如图,在三棱锥S ABC 中,平面 SAB平面 SBC , AB BC, AS AB.过A 作 AF SB,垂足为 F ,点 E, G 分别是棱 SA, SC 的中点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

直线、平面垂直的判定与性质【知识梳理】一、直线与平面垂直的判定与性质 1、 直线与平面垂直(1)定义:如果直线l 与平面α内的任意一条直线都垂直,我们就说直线l 与平面α互相垂直,记作l ⊥α,直线l 叫做平面α的垂线,平面α叫做直线l 的垂面。

如图,直线与平面垂直时,它们唯一公共点P 叫做垂足。

(2)判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。

结论:如果两条平行直线中的一条垂直于一个平面,那么另一条也垂直于这个平面,记作.//a b b a αα⎫⇒⊥⎬⊥⎭(3)性质定理:垂直于同一个平面的两条直线平行。

即,//a b a b αα⊥⊥⇒.由定义知:直线垂直于平面内的任意直线。

2、 直线与平面所成的角平面的一条斜线和它在平面上的射影所成的锐角或者直角叫做这条直线和这个平面所成的角。

一条直线垂直于平面,该直线与平面所成的角是直角;一条直线和平面平行,或在平面内,则此直线与平面所成的角是00的角。

3、 二面角的平面角从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,这两个半平面叫做二面角的面。

如果记棱为l ,那么两个面分别为αβ、的二面角记作l αβ--.在二面角的棱上任取一点,以该点为垂足,在两个半平面内分别作垂直于棱的射线,则两射线所构成的角叫做叫做二面角的平面角。

其作用是衡量二面角的大小;范围:00180θ≤≤.二、平面与平面垂直的判定与性质1、定义:一般地,两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面垂直.2、判定:一个平面过另一个平面的垂线,则这两个平面垂直。

简述为“线面垂直,则面面垂直”,记作l l βαβα⊥⎫⇒⊥⎬⊂⎭. 3、性质:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直,记作l m m m lαβαββα⊥⎫⎪=⎪⇒⊥⎬⊂⎪⎪⊥⎭I .【经典例题】【例1】(2012浙江文)设l 是直线,a,β是两个不同的平面( )A .若l ∥a,l ∥β,则a ∥βB .若l ∥a,l ⊥β,则a ⊥βC .若a ⊥β,l ⊥a,则l ⊥βD .若a ⊥β, l ∥a,则l ⊥β 【答案】B【解析】利用排除法可得选项B 是正确的,∵l ∥a,l ⊥β,则a ⊥β.如选项A:l ∥a,l ∥β时, a ⊥β或a ∥β;选项C:若a ⊥β,l ⊥a,l ∥β或l β⊂;选项D:若若a ⊥β, l ⊥a,l ∥β或l ⊥β.【例2】(2012四川文)下列命题正确的是 ( )A .若两条直线和同一个平面所成的角相等,则这两条直线平行B .若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C .若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D .若两个平面都垂直于第三个平面,则这两个平面平行 【答案】C【解析】若两条直线和同一平面所成角相等,这两条直线可能平行,也可能为异面直线,也可能相交,所以A 错;一个平面不在同一条直线的三点到另一个平面的距离相等,则这两个平面平行,故B 错;若两个平面垂直同一个平面两平面可以平行,也可以垂直;故D 错;故选项C 正确. 【例3】(2012山东)已知直线m 、n 及平面α,其中m ∥n ,那么在平面α内到两条直线m 、n 距离相等的点的集合可能是:①一条直线;②一个平面;③一个点;④空集.其中正确的是 ( )A .①②③B .①④C .①②④D .②④ 【答案】C【解析】如图1,当直线m 或直线n 在平面α内时有可能没有符合题意的点;如图2,直线m 、n 到已知平面α的距离相等且所在平面与已知平面α垂直,则已知平面α为符合题意的点;如图3,直线m 、n 所在平面与已知平面α平行,则符合题意的点为一条直线,从而选C.【例4】(2012四川理)如图,在正方体1111ABCD A B C D -中,M 、N 分别是CD 、1CC 的中点,则异面直线1A M 与DN 所成的角的大小是____________.【答案】90º 【解析】方法一:连接D 1M,易得DN ⊥A 1D 1 ,DN ⊥D 1M,所以,DN ⊥平面A 1MD 1,又A 1M ⊂平面A 1MD 1,所以,DN ⊥A 1D 1,故夹角为90º方法二:以D 为原点,分别以DA, DC, DD 1为x, y, z 轴,建立空间直角坐标系D —xyz.设正方体边长为2,则D(0,0,0),N(0,2,1),M(0,1,0)A 1(2,0,2)故,),(),(2,121,2,01-==MA DN 所以,cos<|MA ||DN |111MA •=〉〈 = 0,故DN ⊥D 1M,所以夹角为90º【例5】(2012大纲理)三棱柱111ABC A B C -中,底面边长和侧棱长都相等,1160BAA CAA ∠=∠=︒,则异面直线1AB 与1BC 所成角的余弦值为_____________.N MB 1A 1C 1D 1B D C【答案】66【解析】设该三棱柱的边长为1,依题意有1111,AB AB AA BC AC AA AB =+=+-u u u r u u u r u u u r u u u u r u u u r u u u r u u u r,则22221111||()222cos603AB AB AA AB AB AA AA =+=+⋅+=+︒=u u u r u u u r u u u r u u u r u u u r u u u r u u u r2222211111||()2222BC AC AA AB AC AA AB AC AA AC AB AA AB =+-=+++⋅-⋅-⋅=u u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r而1111()()AB BC AB AA AC AA AB ⋅=+⋅+-u u u r u u u u r u u u r u u u r u u u r u u u r u u u r 1111111111112222AB AC AB AA AB AB AA AC AA AA AA AB=⋅+⋅-⋅+⋅+⋅-⋅=+-++-=u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r11111116cos ,6||||23AB BC AB BC AB BC ⋅∴<>===⋅u u u r u u u u ru u u r u u u u r u u u r u u u u r 【例6】(2011·福建)如图,正方体ABCD -A 1B 1C 1D 1中,AB =2,点E 为AD 的中点,点F 在CD 上,若EF ∥平面AB 1C ,则线段EF 的长度等于________.【答案】 2【解析】∵EF ∥面AB 1C ,∴EF ∥AC .又E 是AD 的中点,∴F 是DC 的中点.∴EF =12AC = 2.【例7】(2012年山东文)如图,几何体E ABCD -是四棱锥,△ABD 为正三角形,,CB CD EC BD =⊥.(1)求证:BE DE =;(2)若∠120BCD =︒,M 为线段AE 的中点, 求证:DM ∥平面BEC .【解析】(1)设BD 中点为O ,连接OC ,OE ,则由BC CD =知CO BD ⊥,又已知CE BD ⊥,所以BD ⊥平面OCE .所以BD OE ⊥,即OE 是BD 的垂直平分线,所以BE DE =.(2)取AB 中点N ,连接,MN DN ,∵M 是AE 的中点,∴MN ∥BE ,∵△ABD 是等边三角形,∴DN AB ⊥.由∠BCD =120°知,∠CBD =30°,所以∠ABC =60°+30°=90°,即BC AB ⊥,所以ND ∥BC ,所以平面MND ∥平面BEC ,又DM ⊂平面MND ,故DM ∥平面BEC . 另证:延长BC AD ,相交于点F ,连接EF.因为CB=CD,090=∠ABC . 因为△ABD 为正三角形,所以090,60=∠=∠ABC BAD ,则030=∠AFB , 所以AF AB 21=,又AD AB =, 所以D 是线段AF 的中点,连接DM,又由点M 是线段AE 的中点知EF DM //,而⊄DM 平面BEC , ⊂EF 平面BEC ,故DM ∥平面BEC . 【例8】(2011天津)如图,在四棱锥P -ABCD 中,底面ABCD 为平行四边形∠ADC =45°,AD =AC =1,O 为AC 的中点,PO ⊥平面ABCD ,PO =2,M 为PD 的中点.(1)证明:PB ∥平面ACM ; (2)证明:AD ⊥平面P AC ;(3)求直线AM 与平面ABCD 所成角的正切值.【解析】(1)证明:连接BD ,MO ,在平行四边形ABCD 中,因为O 为AC 的中点,所以O 为BD 的中点.又M 为PD 的中点,所以PB ∥MO .因为PB ⊄平面ACM ,MO ⊂平面ACM ,所以PB ∥平面ACM . (2)证明:因为∠ADC =45°,且AD =AC =1,所以∠DAC =90°,即AD ⊥AC ,又PO ⊥平面ABCD ,AD ⊂平面ABCD ,所以PO ⊥AD .而AC ∩PO =O ,所以AD ⊥平面P AC .(3)取DO 中点N ,连接MN ,AN .因为M 为PD 的中点,所以MN ∥PO ,且MN =12PO =1.由PO ⊥平面ABCD ,得MN ⊥平面ABCD ,所以∠MAN 是直线AM 与平面ABCD 所成的角,在Rt △DAO 中,AD =1,AO =12,所以DO=52,从而AN =12DO =54.在Rt △ANM 中, tan ∠MAN =MN AN =154=455,即直线AM 与平面ABCD 所成角的正切值为455.【例9】(2012湖南文)如图,在四棱锥P-ABCD 中,PA ⊥平面ABCD,底面ABCD 是等腰梯形,AD ∥BC,AC ⊥BD.(1)证明:BD ⊥PC;(2)若AD=4,BC=2,直线PD 与平面PAC 所成的角为30°,求四棱锥P-ABCD 的体积.PEA DC【解析】(1)因为,,.PA ABCD BD ABCD PA BD ⊥⊂⊥平面平面所以又,,AC BD PA AC ⊥是平面PAC 内的两条相较直线,所以BD ⊥平面PAC, 而PC ⊂平面PAC,所以BD PC ⊥.(2)设AC 和BD 相交于点O,连接PO,由(Ⅰ)知,BD ⊥平面PAC, 所以DPO ∠是直线PD 和平面PAC 所成的角,从而DPO ∠30=o . 由BD ⊥平面PAC,PO ⊂平面PAC,知BD PO ⊥. 在Rt POD V中,由DPO ∠30=o ,得PD=2OD. 因为四边形ABCD 为等腰梯形,AC BD ⊥,所以,AOD BOC V V 均为等腰直角三角形,从而梯形ABCD 的高为111(42)3,222AD BC +=⨯+=于是梯形ABCD 面积 1(42)39.2S =⨯+⨯=在等腰三角形AOD 中,2,22,2OD AD == 所以22242, 4.PD OD PA PD AD ===-=故四棱锥P ABCD -的体积为11941233V S PA =⨯⨯=⨯⨯=. 【例10】(2012新课标理)如图,直三棱柱111ABC A B C -中,112AC BC AA ==,D 是棱1AA 的中点,BD DC ⊥1 (1)证明:BC DC ⊥1(2)求二面角11C BD A --的大小. 【解析】(1)在Rt DAC ∆中,AD AC =得:45ADC ︒∠=同理:1114590A DC CDC ︒︒∠=⇒∠=得:111,DC DC DC BD DC ⊥⊥⇒⊥面1BCD DC BC ⇒⊥ (2)11,DC BC CC BC BC ⊥⊥⇒⊥面11ACC A BC AC ⇒⊥ 取11A B 的中点O ,过点O 作OH BD ⊥于点H ,连接11,C O C H1111111AC B C C O A B =⇒⊥,面111A B C ⊥面1A BD 1C O ⇒⊥面1A BD 1OH BD C H BD ⊥⇒⊥ 得:点H 与点D 重合且1C DO ∠是二面角11C BD A --的平面角设AC a =,则1C O =,111230C D C O C DO ︒==⇒∠= 既二面角11C BD A --的大小为30︒【课堂练习】1.(2012浙江理)已知矩形ABCD ,AB =1,BC 将∆ABD 沿矩形的对角线BD 所在的直线进行翻着,在翻着过程中( )A .存在某个位置,使得直线AC 与直线BD 垂直B .存在某个位置,使得直线AB 与直线CD 垂直C .存在某个位置,使得直线AD 与直线BC 垂直D .对任意位置,三直线“AC 与BD ”,“AB 与CD ”,“AD 与BC ”均不垂直2.(2012四川理)下列命题正确的是 ( )A .若两条直线和同一个平面所成的角相等,则这两条直线平行B .若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C .若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D .若两个平面都垂直于第三个平面,则这两个平面平行 3.(2011重庆)到两互相垂直的异面直线的距离相等的点( )A .只有1个B .恰有3个C .恰有4个D .有无穷多个 4.(2012上海)已知空间三条直线l ,m ,n 若l 与m 异面,且l 与n 异面,则 ( )A .m 与n 异面.B .m 与n 相交.C .m 与n 平行.D .m 与n 异面、相交、平行均有可能. 5.(2011烟台)已知m ,n 是两条不同的直线,α,β为两个不同的平面,有下列四个命题:①若m ⊥α,n ⊥β,m ⊥n ,则α⊥β;②若m ∥α,n ∥β,m ⊥n ,则α∥β;③若m ⊥α,n ∥β,m ⊥n ,则α∥β;④若m ⊥α,n ∥β,α∥β,α•AB•β则m ⊥n .其中正确命题的个数为( ) A .1 B .2 C .3 D .4 6.(2011潍坊)已知m 、n 是两条不同的直线,α、β、γ是三个不同的平面,则下列命题正确的是( )A .若α⊥γ,α⊥β,则γ∥βB .若m ∥n ,m ⊂α,n ⊂β,则α∥βC .若m ∥n ,m ∥α,则n ∥αD .若n ⊥α,n ⊥β,则α∥β7.(2010全国卷文)直三棱柱111ABC A B C -中,若90BAC ∠=︒,1AB AC AA ==,则异面直线1BA 与1AC 所成的角等于( )A .30°B .45°C .60°D .90°8.(2010全国卷)正方体ABCD-1111A B C D 中,B 1B 与平面AC 1D 所成角的余弦值为()A .3B .3C .23D .39.(2010全国Ⅱ卷理)已知正四棱锥S ABCD -中,SA = )A .1B C .2 D .310.(2010全国Ⅰ卷)已知在半径为2的球面上有A .B .C .D 四点,若AB=CD=2,则四面体ABCD 的体积的最大值为()A .BC .D . 11.(2010江西理)过正方体1111ABCD A B C D -的顶点A 作直线L ,使L 与棱AB ,AD ,1AA 所成的角都相等,这样的直线L 可以作( )A .1条B .2条C .3条D .4条12.(2012大纲)已知正方形1111ABCD A B C D -中,,E F 分别为1BB ,1CC 的中点,那么异面直线AE 与1D F 所成角的余弦值为___ _.13.(2010上海文)已知四棱椎P ABCD -的底面是边长为6 的正方形,侧棱PA ⊥底面ABCD ,且8PA =,则该四棱椎的体积是 .14.(2010四川卷)如图,二面角l αβ--的大小是60°,线段AB α⊂. B l ∈,AB 与l 所成的角为30°.则AB 与平面β所成的角的正弦值是 . 15.(江西卷文)长方体1111ABCD A B C D -的顶点均在同一个球面上,11AB AA ==,BC =A ,B 两点间的球面距离为16.(2010湖南理)如图所示,在正方体ABCD -A 1B 1C 1D 1中,E 是棱DD 1的中点。

相关文档
最新文档