初一线段题10道带答案

合集下载

初一数学线段的长短比较试题

初一数学线段的长短比较试题

初一数学线段的长短比较试题1.已知,如图:点P是直线a外的一点,点A、B、C在直线a上,且PB⊥a,垂足是B,PA⊥PC,则下列错误的语句是()A.线段PB的长是点P到直线a的距离B.PA、PB、PC三条线段中,PB最短C.线段AC的长是点A到直线PC的距离D.线段PC的长是点C到直线PA的距离【答案】C【解析】因为PA⊥PC,所以线段PA的长是点A到直线PC的距离,C错误.2.如图,线段AB="BC=CD=DE=1" cm,那么图中所有线段的长度之和等于________cm.【答案】20【解析】因为长为1 cm的线段共4条,长为2 cm的线段共3条,长为3 cm的线段共2条,长为4 cm的线段仅1条,所以图中所有线段长度之和为1×4+2×3+3×2+4×1=20(cm).3.已知线段a,利用尺规,求作一条线段AB,使AB=2a.【答案】【解析】本题考查的是基本作图以A为端点画射线,在射线上顺次截取AB=2a即可.如图:则AB=2a为所求.思路拓展:掌握在射线上作出所求线段为已知线段的整数倍的方法是解决本题的关键.4.在同一平面上有A、B、C三点,已知AB=5cm,BC=2cm,则AC的长是()A.7cmB.3cmC.7cm或3cmD.不能确定【答案】C【解析】本题考查的是线段的计算要求学生分情况讨论A,B,C三点的位置关系,即点C在线段AB内,点C在线段AB外.此题画图时会出现两种情况,即点C在线段AB内,点C在线段AB外,所以要分两种情况计算:第一种情况:在AB外,AC=AB+BC=5+2=7,第二种情况:在AB内,AC=AB-BC=5-2=3,故答案为7 cm或3cm,故选C.思路拓展:在未画图类问题中,正确画图很重要.本题渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.5.如图有三条线段,它们分别是线段、、,则图中最短的线段是 .【答案】线段【解析】本题考查的是线段的长短比较分别用刻度尺测量出各条线段的长,即可比较大小;也可从点C处折叠比较。

初一上册数学线段题

初一上册数学线段题

初一上册数学线段题一、试卷部分(一)单选题(每题5分,共30分)1. 已知线段AB = 8cm,点C在线段AB上,AC = 3cm,则BC 的长为()A. 5cmB. 11cmC. 3cmD. 8cm答案:A。

解析:因为BC = AB - AC,AB = 8cm,AC = 3cm,所以BC = 8 - 3 = 5cm。

2. 下列说法正确的是()A. 两点之间的连线中,直线最短B. 若AP = BP,则点P是线段AB的中点C. 若点C在线段AB外,则AC+BC>ABD. 两点之间的距离是指连接两点的线段答案:C。

解析:A选项,两点之间线段最短,不是直线最短;B选项,当AP = BP时,点P不一定是线段AB的中点,只有当点P在线段AB上时才是中点;D选项,两点之间的距离是指连接两点的线段的长度,而不是线段本身。

3. 延长线段AB到C,使BC = AB,再反向延长AB到D,使AD = 2AB,那么线段CD的长是线段AB长的()A. 3倍B. 4倍C. 5倍D. 6倍答案:C。

解析:设AB = x,则BC = x,AD = 2x,CD = AD+AB+BC = 2x+x+x = 4x,所以线段CD的长是线段AB长的5倍。

4. 一条直线上有A、B、C三点,线段AB = 10cm,BC = 4cm,则AC的长为()A. 14cmB. 6cmC. 14cm或6cmD. 无法确定答案:C。

解析:当点C在线段AB上时,AC = AB - BC = 10 - 4 = 6cm;当点C在线段AB的延长线上时,AC = AB+BC = 10 + 4 = 14cm。

5. 已知线段AB = 12cm,点C是线段AB的中点,点D是线段AC的中点,则线段BD的长为()A. 9cmB. 6cmC. 3cmD. 1.5cm答案:A。

解析:因为C是AB中点,所以AC = BC = 6cm,又因为D是AC中点,所以AD = DC = 3cm,BD = BC+CD = 6+3 = 9cm。

初一数学直线射线线段练习题附答案

初一数学直线射线线段练习题附答案

初⼀数学直线射线线段练习题附答案⼀、选择题1、数轴上表⽰整数的点称为整点,某数轴的单位长度是1厘⽶,若在这个数轴上随意画⼀条长15厘⽶的线段AB,则AB盖住的整数点的个数共有()个A.13或14个 B.14或15个 C.15或16个 D.16或17个3、如下图是某风景区的旅游路线⽰意图,其中,,为风景点,为两条路的交叉点,图中数据为相应两点的路程(单位:千⽶).⼀学⽣从处出发,以千⽶/时的速度步⾏观览景⾊,每个景点的逗留时间约为⼩时.(1)当他沿着路线游览回到处时,共⽤了⼩时,求的长;(2)若此学⽣打算从处出发,步⾏速度与在景点的逗留时间保持不变,且在最短时间内游览完三个景点返回处,请你为他设计⼀条步⾏路线,并说明这样设计的理由.(不考虑其他因素)4、如图,从A到B最短的路线是()A. A—G—E—BB. A—C—E—BC. A—D—G—E—BD. A—F—E—B5、已知线段AB=10cm,直线AB上有点C,且BC=4cm,M是线段AC的中点,则AM= cm。

6、平⾯内有三个点,过任意两点画⼀条直线,则可以画直线的条数是( )A.2条B.3条C.4条 D.1条或3条7、在直线上顺次取A、B、C三点,使得AB=5㎝,BC=3㎝,如果O是线段AC的中点,那么线段OB的长度是()A、0.5㎝B、1㎝C、1.5㎝D、2㎝8、点是直线外⼀点,为直线上三点,,则点到直线的距离是()A、 B、⼩于 C、不⼤于 D、9、如图所⽰, 把⼀根绳⼦对折成线段AB, 从P处把绳⼦剪断, 已知AP= PB, 若剪断后的各段绳⼦中最长的⼀段为40cm, 则绳⼦的原长为()A. 30 cmB. 60 cmC. 120 cmD.60 cm或120 cm11、下列说法不正确的是()A.若点C在线段的延长线上,则B.若点C在线段上,则C.若,则点⼀定在线段外D.若三点不在⼀直线上,则⼆、填空题12、若线段AB=10㎝,在直线AB上有⼀点C,且BC=4㎝,M是线段AC的中点,则AM= ㎝.13、在边长都是1的正⽅形⽅格纸上画有如图所⽰的折线,它们的各段依次标着①,②,③,④,…的序号.那么序号为24的线段长度是 .14、.在直线上取A、B、C三点,使得AB = 9 厘⽶,BC = 4 厘⽶,如果O是线段AC的中点,则线段OA的长为厘⽶.15、往返于甲、⼄两地的⽕车中途要停靠三个站,则有种不同的票价(来回票价⼀样),需准备种车票.17、如图,从学校A到书店B最近的路线是①号路线,其道理⽤⼏何知识解释应是________________。

七年级数学上册第四章第二节比较线段的长短练习题(附答案)

七年级数学上册第四章第二节比较线段的长短练习题(附答案)
A. 与 B. 与
C. 与 D. 与
10.黄河是中华民族的象征,被誉为母亲河,黄河壶口瀑布位于我省吉县城西 千米处,是黄河上最具气势的自然景观.其落差约 米,年平均流量 立方米/秒.若以小时作时间单位,则其年平均流量可用科学记数法表示为( )
A. 立方米/时 B. 立方米/时
C. 立方米/时 D. 立方米/时
火车往返于 两个城市,不同的车站往来需要不同的车票,所以共有30种不同的车票.
21.答案:5
解析:因为 互为相反数, 互为倒数,所以 ,
又m的绝对值为 ,所以 ,则原式 .
22.答案:2
解析:
23.答案:5cm或11cm
解析:有两种情况,如答图所示.
24.答案:0
解析:∵从数轴可知: ,
∴ , , ,
3.答案:B
解析:因为 的长为 ,点D为线段 的中点,所以 .
分两种情况:
(1)如图1,C为线段 的一个三等分点,所以
所以 ;
(2)如图2,因为C为线段 的一个三等分点,所以
所以 .故选B.
4.答案:B
解析:因为点M在线段 上,所以再加下列条件之一,即可确定点M是 的中点:① ;② ;③ .而无论点M在 上的什么位置,都有 ,所以选项B不能确定点M是 的中点.
24.已知有理数 表示的点在数轴上的位置如图所示,化简 =_______.
参考答案
1.答案:C
解析:从“数”“形”两个角度理解线段的中点.
(1)由形到数:若点M是线段 的中点,则 .
(2)由数到形:若点M在线段 上,且 或 ,则点M是线段 的中点.
2.答案:C
解析:两条直线相交最多有 (个)交点,三条直线相交最多有 (个)交点,四条直线相交最多有 (个)交点,五条直线相交最多有 (个)交点,六条直线相交最多有 (个)交点.故选C.

七年级数学线段长的计算(专题)(含答案)

七年级数学线段长的计算(专题)(含答案)

线段长的计算(专题)一、单选题(共10道,每道10分)1.如图,已知线段AB=16,M为AB的中点,N为BC的中点,NC=4,线段MN的长为( )A.12B.8C.4D.16答案:A解题思路:===8+4=12故选A试题难度:三颗星知识点:求线段的长2.如图,已知线段AB,点C是线段AB上一点,点M,N分别是线段AC,BC的中点,且MN=10,AB的长为( )A.10B.5C.15D.20答案:D解题思路:AB=AC+BC=2MC+2CN=2(MC+CN)=2MN=20故选D.试题难度:三颗星知识点:求线段的长3.在直线上任取一点A,截取AB=5cm,再截取BC=7cm,则线段AC的长为( )A.12cmB.1cm或12cmC.2cm或6cmD.2cm或12cm答案:D解题思路:分析:先作线段AB,因为点C的位置不确定,故需分以下两种情况:①点C在点B的右边,如图1,求线段AC的长度,设计方案:AC=AB+BC=5+7=12②点C在点B的左边,如图2,求线段AC的长度,设计方案:AC=BC-AB=7-5=2综上,线段AC的长为12cm或2cm.故选D.试题难度:三颗星知识点:求线段的长4.已知线段AB=40cm,点C在直线AB上,且BC=3AC,则线段AC的长为( )A.cm或120cmB.10cm或20cmC.10cm或30cmD.20cm或30cm答案:B解题思路:由题意可知点C的位置不确定,需要分类讨论.又因为BC=3AC,所以BC AC,则点C只能在点B的左边,所以分以下两种情况讨论.①当点C在线段AB上时,如图1所示,求线段AC的长,设计方案:设AC=x,则BC=3x,由题意得3x+x=40,所以x=10,即AC=10.②当点C在线段AB外时,如图2所示,求线段AC的长,设计方案:设AC=x,则BC=3x,由题意得3x-x=40,所以x=20,即AC=20.综上所述,线段AC的长为10cm或20cm.故选B.试题难度:三颗星知识点:求线段的长5.已知线段AB=32cm,点C在直线AB上,且AC=3BC,M,N分别为线段AB,BC的中点,则线段MN的长为( )A.16cm或20cmB.12cm或24cmC.18cm或24cmD.12cm或18cm答案:B解题思路:由题意可知,点C的位置不确定,因此需要分类讨论.①当点C位于点B的右侧时,如图1所示,求线段MN的长度,设计方案:由AB=32,AC=3BC,得BC=16,所以.②当点C位于线段AB上时,如图2所示,求线段MN的长度,设计方案:由AB=32,AC=3BC,得BC=8,所以.综上所述,线段MN的长为12cm或24cm.故选B.试题难度:三颗星知识点:求线段的长6.已知线段AB=8 cm,在直线AB上截取线段BC=3 cm,则线段AC的长为( )A.5 cmB.11 cmC.5 cm或11 cmD.14 cm答案:C解题思路:根据题意,画图,应分成两种情况:①点C在线段AB外,②点C在线段AB上,当为第①种情况时,当为第②种情况时,所以,线段AC的长为5 cm或11 cm.故选C.试题难度:三颗星知识点:求线段的长7.在直线上任取一点A,截取AB=20cm,再截取BC=15cm,则AC的中点D与BC的中点E 之间的距离为( )A.10cm或2.5cmB.2.5cm或17.5cmC.5cm或10cmD.10cm答案:D解题思路:分析:截取线段AB之后,因为点C的位置不确定,所以点C可能在点B的右边,也可能在点B的左边,需要分以下两种情况讨论.①当点C在点B的右边时,如图1所示,求线段DE的长度,设计方案:.②当点C在点B的左边时,如图2所示,求线段DE的长度,设计方案:.综上所述,AC的中点D与BC的中点E之间的距离为10cm.故选D.试题难度:三颗星知识点:中点8.在直线上任取一点A,截取AB=8cm,再截取AC=20cm,则AB的中点D与点C之间的距离为( )A.16cm或6cmB.16cm或24cmC.6cm或14cmD.14cm或24cm答案:B解题思路:分析:根据题意,先作线段AB,因为点C的位置不确定,且AC AB,故需分以下两种情况:①点C在点A的右边,如图1,求CD的长度,设计方案:②点C在点A的左边,如图2,求CD的长度,设计方案:综上,AB的中点D与点C之间的距离为16cm或24cm.故选B.试题难度:三颗星知识点:中点9.已知A,B,C三点在同一条直线上,AB=9,AC=16,M,N分别为线段AB,BC的中点,则线段MN的长为( )A.8B.C.8或D.8或答案:A解题思路:分析:根据题意,先作线段AB,因为点的位置不确定,且AC AB,故需分以下两种情况:①点在点A的右边,如图1,求线段MN的长,设计方案:由AB=9,AC=16,得BC=AC-AB=7.②点在点A的左边,如图2,求线段MN的长,设计方案:由AB=9,AC=16,得BC=AB+AC=25综上,线段MN的长为8.故选A.试题难度:三颗星知识点:中点10.已知线段AB=16,点C在直线AB上,若BC=3AC,M,N分别为线段AB,BC的中点,则线段MN的长为( )A.4B.2或14C.4或20D.2或4答案:D解题思路:分析:根据题意,先作线段AB,因为点C的位置不确定,由BC=3AC得,BC AC,故需分以下两种情况:①点C在线段AB上,如图1,求线段MN的长,设计方案:设AC=x,则BC=3x,由题意得x+3x=16,解得x=4,所以BC=12..②点C在点A的左边,如图2,求线段MN的长,设计方案:设AC=x,则BC=3x,由题意得3x-x=16,解得x=8,所以BC=24..综上,线段MN的长为2或4.故选D.试题难度:三颗星知识点:中点。

初一数学线段题及解析

初一数学线段题及解析

初一数学线段题及解析1.题目:已知线段AB的长度是5cm,线段BC的长度是3cm,求线段AC的长度。

解析:根据题目已知条件,我们可以将线段AB和线段BC的长度相加得到线段AC的长度。

即AC = AB + BC = 5cm + 3cm = 8cm。

所以线段AC的长度是8cm。

2.题目:已知线段AB的长度是8cm,线段BC的长度是3cm,线段AC的长度是5cm,求线段BD的长度。

解析:我们可以利用线段的相等关系来求解。

根据题目已知条件,线段AC的长度等于线段AB的长度加上线段BC的长度,即AC = AB + BC。

将已知值代入得到5cm = 8cm + 3cm,即5cm = 11cm。

这个等式显然不成立,因此无法确定线段BD的长度。

3.题目:已知线段AB的长度是12cm,线段BC的长度是7cm,线段AC的长度是15cm,求线段BD的长度。

解析:我们可以利用线段的相等关系来求解。

根据题目已知条件,线段AC的长度等于线段AB的长度加上线段BC的长度,即AC = AB + BC。

将已知值代入得到15cm = 12cm + 7cm,即15cm = 19cm。

这个等式显然不成立,因此无法确定线段BD 的长度。

4.题目:已知线段AB的长度是10cm,线段BC的长度是6cm,线段AC的长度是8cm,求线段BD的长度。

解析:我们可以利用线段的相等关系来求解。

根据题目已知条件,线段AC的长度等于线段AB的长度加上线段BC的长度,即AC = AB + BC。

将已知值代入得到8cm = 10cm + 6cm,即8cm = 16cm。

这个等式显然不成立。

因此,无法确定线段BD的长度。

人教版数学七年级上册4.2直线 射线 线段测试带答案解析

人教版数学七年级上册4.2直线 射线 线段测试带答案解析

4.2直线、射线、线段小测验007(满分60)姓名:分数:一、客观题(每题3分,共33分)1.已知点A、B、P在一条直线上,则下列等式中,能判断点P是线段AB的中点的个数有()①AP=BP;②BP=AB;③AB=2AP;④AP+PB=AB.A.1个B.2个C.3个D.4个2.如图,用圆规比较两条线段AB和A′B′的长短,其中正确的是()A.A′B′>AB B.A′B′=ABC.A′B′<AB D.没有刻度尺,无法确定3.乘特快列车从济南西站出发,沿途经过泰安站、曲阜东站、滕州东站,最后到达枣庄站,那么从济南西站到枣庄站这段线路的火车票价格最多有()A.8种B.9种C.10种D.11种4.已知平面内有A、B、C、D四点,过其中的两点画一条直线,一共可以画直线.5.平面上有五条直线相交(没有互相平行的),则这五条直线最多有个交点,最少有个交点.6.平面上有任意三点,过其中两点画直线,共可以画条直线.7.如图1,图中共有条线段,它们是.如图2,图中共有条射线,指出其中的两条.8.要在墙上固定一根木条,至少要个钉子,根据的原理是.9.把一条弯曲的公路改成直道,可以缩短路程,其道理用几何知识解释应是.10.已知点A、B、C都是直线l上的点,且AB=5cm,BC=3cm,那么点A与点C之间的距离是.11.如图,有一种电子游戏,电子屏幕上有一条直线,在直线上有A,B,C,D四点,且AB=BC=CD,点P沿直线l从右向左移动,当出现点P与A,B,C,D四点中的至少两个点距离相等时,就会发出警报,则直线l上会发出警报的点P有个.二、解答题(共27分)12.(8分)点O是线段AB的中点,OB=14cm,点P将线段AB分为两部分,AP:PB=5:2.①求线段OP的长.②点M在线段AB上,若点M距离点P的长度为4cm,求线段AM的长.13.(9分)(1)如图1,在直线AB上,点P在A、B两点之间,点M为线段PB的中点,点N为线段AP的中点,若AB=n,且使关于x的方程(n﹣4)x=6﹣n无解.①求线段AB的长;②线段MN的长与点P在线段AB上的位置有关吗?请说明理由;(2)如图2,点C为线段AB的中点,点P在线段CB的延长线上,试说明的值不变.14.(10分)如图,B是线段AD上一动点,沿A→D→A以3cm/s的速度往返运动1次,C是线段BD的中点,AD=15cm,设点B运动时间为t秒(0≤t≤10).(1)当t=2时,求线段AB和CD的长度.(2)用含t的代数式表示运动过程中AB的长.(3)在运动过程中,若AB中点为E,则EC的长是否变化?若不变.求出EC的长;若发生变化,请说明理由.参考答案与试题解析1.已知点A、B、P在一条直线上,则下列等式中,能判断点P是线段AB的中点的个数有()①AP=BP;②BP=AB;③AB=2AP;④AP+PB=AB.A.1个B.2个C.3个D.4个【分析】根据题意画出图形,根据中点的特点即可得出结论.【解答】解:如图所示:①∵AP=BP,∴点P是线段AB的中点,故本小题正确;②点P可能在AB的延长线上时不成立,故本小题错误;③P可能在BA的延长线上时不成立,故本小题错误;④∵AP+PB=AB,∴点P在线段AB上,不能说明点P是中点,故本小题错误.故选:A.【点评】本题考查的是两点间的距离,熟知中点的特点是解答此题的关键.2.如图,用圆规比较两条线段AB和A′B′的长短,其中正确的是()A.A′B′>AB B.A′B′=ABC.A′B′<AB D.没有刻度尺,无法确定【分析】根据比较线段的长短进行解答即可.【解答】解:由图可知,A′B′<AB;故选:C.【点评】本题主要考查了比较线段的长短,解题的关键是正确比较线段的长短.3.乘特快列车从济南西站出发,沿途经过泰安站、曲阜东站、滕州东站,最后到达枣庄站,那么从济南西站到枣庄站这段线路的火车票价格最多有()A.8种B.9种C.10种D.11种【分析】根据题意确定出数学模型,五点确定出线段条数,计算即可得到结果.【解答】解:根据题意得:从济南西站到枣庄站这段线路的火车票价格最多有==10种,故选:C.【点评】此题考查了直线、射线、线段、从实际问题中抽象出数学模型是解本题的关键.4.已知平面内有A、B、C、D四点,过其中的两点画一条直线,一共可以画1条或4条或6条直线.【分析】分四点在同一直线上,当三点在同一直线上,另一点不在这条直线上,当没有三点共线时三种情况讨论即可.【解答】解:分三种情况:①四点在同一直线上时,只可画1条;②当三点在同一直线上,另一点不在这条直线上,可画4条;③当没有三点共线时,可画6条;故答案为:1条或4条或6条.【点评】本题考查了直线、射线、线段,在没有明确平面上四点是否在同一直线上时,需要运用分类讨论思想,解答时要分各种情况解答,要考虑到可能出现的所有情形,不要遗漏,否则讨论的结果就不全面.5.平面上有五条直线相交(没有互相平行的),则这五条直线最多有10个交点,最少有1个交点.【分析】直线交点最多时,根据公式,把直线条数代入公式求解即可,直线相交于同一个点时最少,是1个交点.【解答】解:最多时=10,相交于同一个点时最少,有1个交点.【点评】中学阶段记住公式在解题时会很方便,熟记公式是解题的关键.6.平面上有任意三点,过其中两点画直线,共可以画1或3条直线.【分析】先画图,由图可直接解答.【解答】解:如图所示:三点在一条直线上时可画一条,不在一条直线上时可画三条.【点评】本题考查了过平面上两点有且只有一条直线,体现了数形结合的思想.7.如图1,图中共有3条线段,它们是线段AC、线段AB、线段BC.如图2,图中共有4条射线,指出其中的两条射线AB、射线BA.【分析】直线上有三个点,过其中任意两个可以作为线段的端点作一条线段,即可以得出有三条;直线上有两点,过每一个点都可以得到两条射线,即过两个点可以找到4条射线.【解答】解:(1)根据线段的定义,可以找到3条,分别为:线段AC、线段AB、线段BC.(2)射线有一个端点,在直线上过每个点都可以得到2条射线,即如图所示,过两个点可以找到4条,其中包括:射线AB和射线BA.故图中共有4条射线,指出两条为:射线AB、射线BA.【点评】本题考查了线段和射线的性质,结合图形可以很明白的得出结论,注意数形结合的思想.8.要在墙上固定一根木条,至少要两个钉子,根据的原理是两点确定一条直线.【分析】根据两点确定一条直线解答.【解答】解:要在墙上固定一根木条,至少要两个钉子,根据的原理是两点确定一条直线.故答案为:两;两点确定一条直线.【点评】本题考查了直线的性质,熟记两点确定一条直线是解题的关键.9.把一条弯曲的公路改成直道,可以缩短路程,其道理用几何知识解释应是两点之间线段最短.【分析】根据两点之间线段最短解答.【解答】解:把一条弯曲的公路改成直道,可以缩短路程,其道理用几何知识解释应是:两点之间线段最短.故答案为:两点之间线段最短.【点评】本题考查了线段的性质,熟记两点之间线段最短是解题的关键.10.已知点A、B、C都是直线l上的点,且AB=5cm,BC=3cm,那么点A与点C之间的距离是8cm或2cm.【分析】分点B在线段AC上和点C在线段AB上两种情况,计算即可.【解答】解:当点B在线段AC上时,AC=AB+BC=8cm,当点C在线段AB上时,AC=AB﹣BC=2cm,故答案为:8cm或2cm.【点评】本题考查的是两点间的距离的计算,灵活运用分情况讨论思想是解题的关键.11.如图,有一种电子游戏,电子屏幕上有一条直线,在直线上有A,B,C,D四点,且AB=BC=CD,点P沿直线l从右向左移动,当出现点P与A,B,C,D四点中的至少两个点距离相等时,就会发出警报,则直线l上会发出警报的点P有5个.【分析】点P与A,B,C,D四点中的至少两个点距离相等时,也就是点P恰好是其中一条线段中点,而图中共有六条线段,所以出现报警的次数最多六次.【解答】解:根据题意可知:当点P经过任意一条线段中点时会发出报警,∵图中共有线段DC、DB、DA、CB、CA、BA,∵BC和AD中点是同一个∴发出警报的可能最多有5个.故答案为5.【点评】本题考查了两点间的距离,利用总体思想去思考线段的总条数是解决问题最巧妙的办法,可以减去不必要的讨论与分类.12.点O是线段AB的中点,OB=14cm,点P将线段AB分为两部分,AP:PB=5:2.①求线段OP的长.②点M在线段AB上,若点M距离点P的长度为4cm,求线段AM的长.【分析】①根据线段中点的性质,可得AB的长,根据比例分配,可得BP的长,根据线段的和差,可得答案;②分两种情况:M有P点左边和右边,分别根据线段和差进行计算便可.【解答】解:①∵点O是线段AB的中点,OB=14cm,∴AB=2OB=28cm,∵AP:PB=5:2.∴BP=cm,∴OP=OB﹣BP=14﹣8=6(cm);②如图1,当M点在P点的左边时,AM=AB﹣(PM+BP)=28﹣(4+8)=16(cm),如图2,当M点在P点的右边时,AM=AB﹣BM=AB﹣(BP﹣PM)=28﹣(8﹣4)=24(cm).综上,AM=16cm或24cm.【点评】本题考查了两点间的距离,利用了比例的性质,线段中点的性质,线段的和差.13.(1)如图1,在直线AB上,点P在A、B两点之间,点M为线段PB的中点,点N为线段AP的中点,若AB=n,且使关于x的方程(n﹣4)x=6﹣n无解.①求线段AB的长;②线段MN的长与点P在线段AB上的位置有关吗?请说明理由;(2)如图2,点C为线段AB的中点,点P在线段CB的延长线上,试说明的值不变.【分析】(1)①直接根据关于x的方程(n﹣4)x=6﹣n无解求出m的值即可;②根据题意画出图形,分别用BP,AP表示出PM与PN的值,进而可得出结论;(2)根据题意画出图形,由各线段之间的关系可得出结论.【解答】解:(1)①方程(n﹣4)x=6﹣n,∵关于x的方程(n﹣4)x=6﹣n无解,∴n﹣4=0,即n=4,∴线段AB的长为4;②如图1,∵点M为线段PB的中点,点N为线段AP的中点,AB=n,∴PM=BP,PN=AP,∴MN=MP+NP=AB=n;∴线段MN的长与点P在线段AB上的位置无关;(2)如图2,∵点C为线段AB的中点,∴AC=AB,∴P A+PB=PC﹣AC+PC+BC=2PC,∴=2,∴的值不变.【点评】本题考查的是两点间的距离,根据题意画出图形,利用数形结合求解是解答此题的关键.14.如图,B是线段AD上一动点,沿A→D→A以3cm/s的速度往返运动1次,C是线段BD的中点,AD=15cm,设点B运动时间为t秒(0≤t≤10).(1)当t=2时,求线段AB和CD的长度.(2)用含t的代数式表示运动过程中AB的长.(3)在运动过程中,若AB中点为E,则EC的长是否变化?若不变.求出EC的长;若发生变化,请说明理由.【分析】(1)①根据AB=2t即可得出结论;②先求出BD的长,再根据C是线段BD的中点即可得出CD的长;(2)分类讨论;(3)直接根据中点公式即可得出结论.【解答】解:(1)①∵B是线段AD上一动点,沿A→D→A以3cm/s的速度往返运动,∴当t=2时,AB=2×3=6cm;②∵AD=15cm,AB=6cm,∴BD=15﹣6=9cm,∵C是线段BD的中点,∴CD=BD=×9=4.5cm;(2)∵B是线段AD上一动点,沿A→D→A以3cm/s的速度往返运动,∴当0≤t≤5时,AB=3t;当5<t≤10时,AB=15﹣(3t﹣15)=30﹣3t;(3)不变.∵AB中点为E,C是线段BD的中点,∴EC=(AB+BD)=AD=×15=7.5cm.【点评】本题考查了两点间的距离,根据已知得出各线段之间的等量关系是解题关键.。

人教版七年级数学上册《求线段长度问题》期末专题训练-带答案

人教版七年级数学上册《求线段长度问题》期末专题训练-带答案

人教版七年级数学上册《求线段长度问题》期末专题训练-带答案学校: 班级: 姓名: 考号:一、单选题 1.如图,已知线段12AC =,延长线段CA 至点B ,使得23AB AC =,则线段BC 的长是( )A .14B .16C .18D .20 2.如图,C 为线段AB 上一点11AB =,7BC =则线段AC 的长为( )A .5B .4C .3D .23.如图,线段2cm CD =,点C 是AB 的中点,点D 是AC 的中点,则线段BD 的长是( )cm .A .5B .6C .8D .104.如图,C 为线段AD 上一点,点B 为CD 的中点,且9AD =,2BD =若点E 在直线AD 上,且1EA =,则BE 的长为()A .6B .6或4C .8D .8或65.如图,C D 、是线段AB 上两点,若5cm CB =,8cm DB =且点D 是AC 的中点,则AC 的长是( ).A .3cmB .6cmC .10cmD .11cm6.如图,线段16cm AB =,在AB 上取一点,C M 是AB 的中点,N 是AC 中点,若3cm MN =,则线段AC 的长是( )A .8B .10C .12D .147.如图,点C 、D 是线段AB 上两点,点M 、N 分别是线段AD 、BC 的中点.若10AB =,2CD =则线段MN 的长是( )A .3B .4C .5D .68.已知线段12cmBC=,若M为AB中点,则线段MC的长度为()AB=,点C是直线AB上一点4cmA.10cm B.4cm C.2cm或10cm D.4cm或8cm二、填空题311三、解答题MN=,求BD 17.如图,线段AB被点C,D分成2:4:7三部分,M,N分别是AC,DB的中点,若17cm的长.18.如图,点E 是线段AB 的中点,C 是线段EB 上一点30AC =.(1)若F 为BC 的中点,且18BC =,求EF 的长;(2)若:1:4EC CB =,求AB 的长.19.如图,已知点D 是线段AB 上一点,点C 是线段AB 的中点,若8cm 3cm AB BD ==,.(1)求线段CD 的长;(2)若点E 是直线AB 上一点,且13BE BD =,点F 是BE 的中点,求线段CF 的长.20.如图,点C 是线段AB 上的任意一点(不与点A ,B 重合),点D ,E 分别是AC ,BC 的中点.(1)如果86AC BC ==,,求线段DE 的长;(2)如果9DE =,请求出线段AB 的长.参考答案:1.【答案】D2.【答案】B3.【答案】B4.【答案】D。

(完整word版)线段的练习题(10道)答案

(完整word版)线段的练习题(10道)答案

1. 如图所示,点C分线段AB为5:7,点D分线段AB为5:11,若CD=10cm,求AB。

分析:观察图形可知,DC=AC-AD,根据已知的比例关系,AC、AD均可用所求量AB表示,这样通过已知量DC,即可求出AB。

解:因为点C分线段AB为5:7,点D分线段AB为5:11所以又又因为CD=10cm,所以AB=96cm2. 如图,已知线段AB=80cm,M为AB的中点,P在MB上,N为PB的中点,且NB =14cm,求PA的长。

分析:从图形可以看出,线段AP等于线段AM与MP的和,也等于线段AB与PB的差,所以,欲求线段PA的长,只要能求出线段AM与MP的长或者求出线段PB的长即可。

解:因为N是PB的中点,NB=14所以PB=2NB=2×14=28又因为AP=AB-PB,AB=80所以AP=80-28=52(cm)说明:在几何计算中,要结合图形中已知线段和所求线段的位置关系求解,要做到步步有根据。

3. 如图,一条直线上顺次有A、B、C、D四点,且C为AD的中点,,求BC是AB的多少倍?分析:题中已给出线段BC、AB、AD的一个方程,又C为AD的中点,即,观察图形可知,,可得到BC、AB、AD又一个方程,从而可用AD分别表示AB、BC。

解:因为C为AD的中点,所以因为,即又由<1>、<2>可得:即BC=3AB4. 如图,C、D、E将线段AB分成2:3:4:5四部分,M、P、Q、N分别是AC、CD、DE、EB的中点,且MN=21,求PQ的长。

分析:根据比例关系及中点性质,若设AC=2x,则AB上每一条短线段都可以用x的代数式表示。

观察图形,已知量MN=MC+CD+DE+EN,可转化成x的方程,先求出x,再求出PQ。

解:若设AC=2x,则于是有那么即解得:所以5. 已知线段AB=8cm,在直线AB上画线段BC=3cm,求AC的长。

分析:线段AB是固定不变的,而直线上线段BC的位置与C点的位置有关,C点可在线段AB上,也可在线段AB的延长线上,如图5。

初一数学直线射线线段练习题集附答案解析

初一数学直线射线线段练习题集附答案解析

一、选择题1、数轴上表示整数的点称为整点,某数轴的单位长度是1厘米,若在这个数轴上随意画一条长15厘米的线段AB,则AB盖住的整数点的个数共有()个A.13或14个 B.14或15个 C.15或16个 D.16或17个3、如下图是某风景区的旅游路线示意图,其中,,为风景点,为两条路的交叉点,图中数据为相应两点的路程(单位:千米).一学生从处出发,以千米/时的速度步行观览景色,每个景点的逗留时间约为小时.(1)当他沿着路线游览回到处时,共用了小时,求的长;(2)若此学生打算从处出发,步行速度与在景点的逗留时间保持不变,且在最短时间内游览完三个景点返回处,请你为他设计一条步行路线,并说明这样设计的理由.(不考虑其他因素)4、如图,从A到B最短的路线是()A. A—G—E—BB. A—C—E—BC. A—D—G—E—BD. A—F—E—B5、已知线段AB=10cm,直线AB上有点C,且BC=4cm,M是线段AC的中点,则AM= cm。

6、平面内有三个点,过任意两点画一条直线,则可以画直线的条数是()A.2条B.3条C.4条D.1条或3条7、在直线上顺次取A、B、C三点,使得AB=5㎝,BC=3㎝,如果O是线段AC的中点,那么线段OB的长度是()A、0.5㎝B、1㎝C、1.5㎝D、2㎝8、点是直线外一点,为直线上三点,,则点到直线的距离是()A、B、小于C、不大于D、9、如图所示, 把一根绳子对折成线段AB, 从P处把绳子剪断, 已知AP= PB, 若剪断后的各段绳子中最长的一段为40cm, 则绳子的原长为()A. 30 cmB. 60 cmC. 120 cmD. 60 cm或120 cm11、下列说法不正确的是()A.若点C在线段的延长线上,则B.若点C在线段上,则C.若,则点一定在线段外D.若三点不在一直线上,则二、填空题12、若线段AB=10㎝,在直线AB上有一点C,且BC=4㎝,M是线段AC的中点,则AM=㎝.13、在边长都是1的正方形方格纸上画有如图所示的折线,它们的各段依次标着①,②,③,④,…的序号.那么序号为24的线段长度是.14、.在直线上取A、B、C三点,使得AB = 9 厘米,BC = 4 厘米,如果O是线段AC 的中点,则线段OA的长为厘米.15、往返于甲、乙两地的火车中途要停靠三个站,则有种不同的票价(来回票价一样),需准备种车票.17、如图,从学校A到书店B最近的路线是①号路线,其道理用几何知识解释应是________________。

初一线段上的动点问题专题(含答案)

初一线段上的动点问题专题(含答案)

七年级(上)动点问题专题1.已知点A在数轴上对应的数为a,点B对应的数为b,且|2b﹣6|+(a+1)2=0,A、B之间的距离记作AB,定义:AB=|a﹣b|.(1)求线段AB的长.(2)设点P在数轴上对应的数x,当PA﹣PB=2时,求x的值.(3)M、N分别是PA、PB的中点,当P移动时,指出当下列结论分别成立时,x的取值范围,并说明理由:①PM÷PN的值不变,②|PM﹣PN|的值不变.2.如图1,已知数轴上两点A、B对应的数分别为﹣1、3,点P为数轴上的一动点,其对应的数为x.(1)PA=_________;PB=_________(用含x的式子表示)(2)在数轴上是否存在点P,使PA+PB=5?若存在,请求出x的值;若不存在,请说明理由.(3)如图2,点P以1个单位/s的速度从点D向右运动,同时点A以5个单位/s的速度向左运动,点B 以20个单位/s的速度向右运动,在运动过程中,M、N分别是AP、OB的中点,问:的值是否发生变化?请说明理由.3.如图1,直线AB上有一点P,点M、N分别为线段PA、PB的中点,AB=14.(1)若点P在线段AB上,且AP=8,求线段MN的长度;(2)若点P在直线AB上运动,试说明线段MN的长度与点P在直线AB上的位置无关;(3)如图2,若点C为线段AB的中点,点P在线段AB的延长线上,下列结论:①的值不变;②的值不变,请选择一个正确的结论并求其值.4.如图,P是定长线段AB上一点,C、D两点分别从P、B出发以1cm/s、2cm/s的速度沿直线AB向左运动(C在线段AP上,D在线段BP上)(1)若C、D运动到任一时刻时,总有PD=2AC,请说明P点在线段AB上的位置:(2)在(1)的条件下,Q是直线AB上一点,且AQ﹣BQ=PQ,求的值.(3)在(1)的条件下,若C、D运动5秒后,恰好有,此时C点停止运动,D点继续运动(D 点在线段PB上),M、N分别是CD、PD的中点,下列结论:①PM﹣PN的值不变;②的值不变,可以说明,只有一个结论是正确的,请你找出正确的结论并求值.5.如图1,已知数轴上有三点A、B、C,AB=AC,点C对应的数是200.(1)若BC=300,求点A对应的数;(2)如图2,在(1)的条件下,动点P、Q分别从A、C两点同时出发向左运动,同时动点R从A点出发向右运动,点P、Q、R的速度分别为10单位长度每秒、5单位长度每秒、2单位长度每秒,点M为线段PR的中点,点N为线段RQ的中点,多少秒时恰好满足MR=4RN(不考虑点R与点Q相遇之后的情形);(3)如图3,在(1)的条件下,若点E、D对应的数分别为﹣800、0,动点P、Q分别从E、D两点同时出发向左运动,点P、Q的速度分别为10单位长度每秒、5单位长度每秒,点M为线段PQ的中点,点Q 在从是点D运动到点A的过程中,QC﹣AM的值是否发生变化?若不变,求其值;若不变,请说明理由.6.如图1,已知点A、C、F、E、B为直线l上的点,且AB=12,CE=6,F为AE的中点.(1)如图1,若CF=2,则BE=_________,若CF=m,BE与CF的数量关系是(2)当点E沿直线l向左运动至图2的位置时,(1)中BE与CF的数量关系是否仍然成立?请说明理由.(3)如图3,在(2)的条件下,在线段BE上,是否存在点D,使得BD=7,且DF=3DE?若存在,请求出值;若不存在,请说明理由.7.已知:如图1,M是定长线段AB上一定点,C、D两点分别从M、B出发以1cm/s、3cm/s的速度沿直线BA向左运动,运动方向如箭头所示(C在线段AM上,D在线段BM上)(1)若AB=10cm,当点C、D运动了2s,求AC+MD的值.(2)若点C、D运动时,总有MD=3AC,直接填空:AM=_________AB.(3)在(2)的条件下,N是直线AB上一点,且AN﹣BN=MN,求的值.8.已知数轴上三点M,O,N对应的数分别为﹣3,0,1,点P为数轴上任意一点,其对应的数为x.(1)如果点P到点M,点N的距离相等,那么x的值是_________;(2)数轴上是否存在点P,使点P到点M,点N的距离之和是5?若存在,请直接写出x的值;若不存在,请说明理由.(3)如果点P以每分钟3个单位长度的速度从点O向左运动时,点M和点N分别以每分钟1个单位长度和每分钟4个单位长度的速度也向左运动,且三点同时出发,那么几分钟时点P到点M,点N的距离相等?9.如图,已知数轴上点A表示的数为6,B是数轴上一点,且AB=10.动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数_________,点P表示的数_________用含t的代数式表示);(2)动点R从点B出发,以每秒4个单位长度的速度沿数轴向左匀速运动,若点P、R同时出发,问点P 运动多少秒时追上点R?(3)若M为AP的中点,N为PB的中点.点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长;10.如图,已知数轴上点A表示的数为6,B是数轴上一点,且AB=10.动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)①写出数轴上点B表示的数_________,点P表示的数_________(用含t的代数式表示);②M为AP的中点,N为PB的中点.点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长;(2)动点Q从点A出发,以每秒1个单位长度的速度沿数轴向左匀速运动;动点R从点B出发,以每秒个单位长度的速度沿数轴向左匀速运动,若P、Q、R三动点同时出发,当点P遇到点R时,立即返回向点Q运动,遇到点Q后则停止运动.那么点P从开始运动到停止运动,行驶的路程是多少个单位长度?参考答案与试题解析一.解答题(共10小题)1.已知点A在数轴上对应的数为a,点B对应的数为b,且|2b﹣6|+(a+1)2=0,A、B之间的距离记作AB,定义:AB=|a﹣b|.(1)求线段AB的长.(2)设点P在数轴上对应的数x,当PA﹣PB=2时,求x的值.(3)M、N分别是PA、PB的中点,当P移动时,指出当下列结论分别成立时,x的取值范围,并说明理由:①PM÷PN的值不变,②|PM﹣PN|的值不变.考点:一元一次方程的应用;数轴;两点间的距离.分析:(1)根据非负数的和为0,各项都为0;(2)应考虑到A、B、P三点之间的位置关系的多种可能解题;(3)利用中点性质转化线段之间的倍分关系得出.解答:解:(1)∵|2b﹣6|+(a+1)2=0,∴a=﹣1,b=3,∴AB=|a﹣b|=4,即线段AB的长度为4.(2)当P在点A左侧时,|PA|﹣|PB|=﹣(|PB|﹣|PA|)=﹣|AB|=﹣4≠2.当P在点B右侧时,|PA|﹣|PB|=|AB|=4≠2.∴上述两种情况的点P不存在.当P在A、B之间时,﹣1≤x≤3,∵|PA|=|x+1|=x+1,|PB|=|x﹣3|=3﹣x,∴|PA|﹣|PB|=2,∴x+1﹣(3﹣x)=2.∴解得:x=2;(3)由已知可得出:PM=PA,PN=PB,当①PM÷PN的值不变时,PM÷PN=PA÷PB.②|PM﹣PN|的值不变成立.故当P在线段AB上时,PM+PN=(PA+PB)=AB=2,当P在AB延长线上或BA延长线上时,|PM﹣PN|=|PA﹣PB|=|AB|=2.点评:此题主要考查了一元一次方程的应用,渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.2.如图1,已知数轴上两点A、B对应的数分别为﹣1、3,点P为数轴上的一动点,其对应的数为x.(1)PA=|x+1|;PB=|x﹣3|(用含x的式子表示)(2)在数轴上是否存在点P,使PA+PB=5?若存在,请求出x的值;若不存在,请说明理由.(3)如图2,点P以1个单位/s的速度从点D向右运动,同时点A以5个单位/s的速度向左运动,点B 以20个单位/s的速度向右运动,在运动过程中,M、N分别是AP、OB的中点,问:的值是否发生变化?请说明理由.考点:一元一次方程的应用;数轴;两点间的距离.分析:(1)根据数轴上两点之间的距离求法得出PA,PB的长;(2)分三种情况:①当点P在A、B之间时,②当点P在B点右边时,③当点P在A点左边时,分别求出即可;(3)根据题意用t表示出AB,OP,MN的长,进而求出答案.解答:解:(1)∵数轴上两点A、B对应的数分别为﹣1、3,点P为数轴上的一动点,其对应的数为x,∴PA=|x+1|;PB=|x﹣3|(用含x的式子表示);故答案为:|x+1|,|x﹣3|;(2)分三种情况:①当点P在A、B之间时,PA+PB=4,故舍去.②当点P在B点右边时,PA=x+1,PB=x﹣3,∴(x+1)(x﹣3)=5,∴x=3.5;③当点P在A点左边时,PA=﹣x﹣1,PB=3﹣x,∴(﹣x﹣1)+(3﹣x)=5,∴x=﹣1.5;(3)的值不发生变化.理由:设运动时间为t分钟.则OP=t,OA=5t+1,OB=20t+3,AM=AP=+3t,OM=OA﹣AM=5t+1﹣(+3t)=2t+,ON=OB=10t+,∴MN=OM+ON=12t+2,∴==2,∴在运动过程中,M、N分别是AP、OB的中点,的值不发生变化.点评:此题主要考查了一元一次方程的应用,根据题意利用分类讨论得出是解题关键.3.如图1,直线AB上有一点P,点M、N分别为线段PA、PB的中点,AB=14.(1)若点P在线段AB上,且AP=8,求线段MN的长度;(2)若点P在直线AB上运动,试说明线段MN的长度与点P在直线AB上的位置无关;(3)如图2,若点C为线段AB的中点,点P在线段AB的延长线上,下列结论:①的值不变;②的值不变,请选择一个正确的结论并求其值.考点:两点间的距离.分析:(1)求出MP,NP的长度,即可得出MN的长度;(2)分三种情况:①点P在AB之间;②点P在AB的延长线上;③点P在BA的延长线上,分别表示出MN的长度即可作出判断;(3)设AC=BC=x,PB=y,分别表示出①、②的值,继而可作出判断.解答:解:(1)∵AP=8,点M是AP中点,∴MP=AP=4,∴BP=AB﹣AP=6,又∵点N是PB中点,∴PN=PB=3,∴MN=MP+PN=7.(2)①点P在AB之间;②点P在AB的延长线上;③点P在BA的延长线上,均有MN=AB=7.(3)选择②.设AC=BC=x,PB=y,①==(在变化);(定值).点评:本题考查了两点间的距离,解答本题注意分类讨论思想的运用,理解线段中点的定义,难度一般.4.如图,P是定长线段AB上一点,C、D两点分别从P、B出发以1cm/s、2cm/s的速度沿直线AB向左运动(C在线段AP上,D在线段BP上)(1)若C、D运动到任一时刻时,总有PD=2AC,请说明P点在线段AB上的位置:(2)在(1)的条件下,Q是直线AB上一点,且AQ﹣BQ=PQ,求的值.(3)在(1)的条件下,若C、D运动5秒后,恰好有,此时C点停止运动,D点继续运动(D 点在线段PB上),M、N分别是CD、PD的中点,下列结论:①PM﹣PN的值不变;②的值不变,可以说明,只有一个结论是正确的,请你找出正确的结论并求值.考点:比较线段的长短.专题:数形结合.分析:(1)根据C、D的运动速度知BD=2PC,再由已知条件PD=2AC求得PB=2AP,所以点P在线段AB上的处;(2)由题设画出图示,根据AQ﹣BQ=PQ求得AQ=PQ+BQ;然后求得AP=BQ,从而求得PQ与AB的关系;(3)当点C停止运动时,有,从而求得CM与AB的数量关系;然后求得以AB表示的PM与PN的值,所以.解答:解:(1)根据C、D的运动速度知:BD=2PC∵PD=2AC,∴BD+PD=2(PC+AC),即PB=2AP,∴点P在线段AB上的处;(2)如图:∵AQ﹣BQ=PQ,∴AQ=PQ+BQ;又AQ=AP+PQ,∴AP=BQ,∴,∴.当点Q'在AB的延长线上时AQ'﹣AP=PQ'所以AQ'﹣BQ'=3PQ=AB所以=;(3)②.理由:如图,当点C停止运动时,有,∴;∴,∵,∴,∴;当点C停止运动,D点继续运动时,MN的值不变,所以,.点评:本题考查了比较线段的长短.利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.5.如图1,已知数轴上有三点A、B、C,AB=AC,点C对应的数是200.(1)若BC=300,求点A对应的数;(2)如图2,在(1)的条件下,动点P、Q分别从A、C两点同时出发向左运动,同时动点R从A点出发向右运动,点P、Q、R的速度分别为10单位长度每秒、5单位长度每秒、2单位长度每秒,点M为线段PR的中点,点N为线段RQ的中点,多少秒时恰好满足MR=4RN(不考虑点R与点Q相遇之后的情形);(3)如图3,在(1)的条件下,若点E、D对应的数分别为﹣800、0,动点P、Q分别从E、D两点同时出发向左运动,点P、Q的速度分别为10单位长度每秒、5单位长度每秒,点M为线段PQ的中点,点Q在从是点D运动到点A的过程中,QC﹣AM的值是否发生变化?若不变,求其值;若不变,请说明理由.考点:一元一次方程的应用;比较线段的长短.分析:(1)根据BC=300,AB=AC,得出AC=600,利用点C对应的数是200,即可得出点A对应的数;(2)假设x秒Q在R右边时,恰好满足MR=4RN,得出等式方程求出即可;(3)假设经过的时间为y,得出PE=10y,QD=5y,进而得出+5y﹣400=y,得出﹣AM=﹣y原题得证.解答:解:(1)∵BC=300,AB=,所以AC=600,C点对应200,∴A点对应的数为:200﹣600=﹣400;(2)设x秒时,Q在R右边时,恰好满足MR=4RN,∴MR=(10+2)×,RN=[600﹣(5+2)x],∴MR=4RN,∴(10+2)×=4×[600﹣(5+2)x],解得:x=60;∴60秒时恰好满足MR=4RN;(3)设经过的时间为y,则PE=10y,QD=5y,于是PQ点为[0﹣(﹣800)]+10y﹣5y=800+5y,一半则是,所以AM点为:+5y﹣400=y,又QC=200+5y,所以﹣AM=﹣y=300为定值.点评:此题考查了一元一次方程的应用,根据已知得出各线段之间的关系等量关系是解题关键,此题阅读量较大应细心分析.6.如图1,已知点A、C、F、E、B为直线l上的点,且AB=12,CE=6,F为AE的中点.(1)如图1,若CF=2,则BE=4,若CF=m,BE与CF的数量关系是(2)当点E沿直线l向左运动至图2的位置时,(1)中BE与CF的数量关系是否仍然成立?请说明理由.(3)如图3,在(2)的条件下,在线段BE上,是否存在点D,使得BD=7,且DF=3DE?若存在,请求出值;若不存在,请说明理由.考点:两点间的距离;一元一次方程的应用.分析:(1)先根据EF=CE﹣CF求出EF,再根据中点的定义求出AE,然后根据BE=AB﹣AE代入数据进行计算即可得解;根据BE、CF的长度写出数量关系即可;(2)根据中点定义可得AE=2EF,再根据BE=AB﹣AE整理即可得解;(3)设DE=x,然后表示出DF、EF、CF、BE,然后代入BE=2CF求解得到x的值,再求出DF、CF,计算即可得解.解答:解:(1)∵CE=6,CF=2,∴EF=CE﹣CF=6﹣2=4,∵F为AE的中点,∴AE=2EF=2×4=8,∴BE=AB﹣AE=12﹣8=4,若CF=m,则BE=2m,BE=2CF;(2)(1)中BE=2CF仍然成立.理由如下:∵F为AE的中点,∴AE=2EF,∴BE=AB﹣AE,=12﹣2EF,=12﹣2(CE﹣CF),=12﹣2(6﹣CF),=2CF;(3)存在,DF=3.理由如下:设DE=x,则DF=3x,∴EF=2x,CF=6﹣x,BE=x+7,由(2)知:BE=2CF,∴x+7=2(6﹣x),解得,x=1,∴DF=3,CF=5,∴=6.点评:本题考查了两点间的距离,中点的定义,准确识图,找出图中各线段之间的关系并准确判断出BE 的表示是解题的关键.7.已知:如图1,M是定长线段AB上一定点,C、D两点分别从M、B出发以1cm/s、3cm/s的速度沿直线BA向左运动,运动方向如箭头所示(C在线段AM上,D在线段BM上)(1)若AB=10cm,当点C、D运动了2s,求AC+MD的值.(2)若点C、D运动时,总有MD=3AC,直接填空:AM=AB.(3)在(2)的条件下,N是直线AB上一点,且AN﹣BN=MN,求的值.考点:比较线段的长短.专题:分类讨论.分析:(1)计算出CM及BD的长,进而可得出答案;(2)根据图形即可直接解答;(3)分两种情况讨论,①当点N在线段AB上时,②当点N在线段AB的延长线上时,然后根据数量关系即可求解.解答:解:(1)当点C、D运动了2s时,CM=2cm,BD=6cm∵AB=10cm,CM=2cm,BD=6cm∴AC+MD=AB﹣CM﹣BD=10﹣2﹣6=2cm(2)(3)当点N在线段AB上时,如图∵AN﹣BN=MN,又∵AN﹣AM=MN∴BN=AM=AB,∴MN=AB,即.当点N在线段AB的延长线上时,如图∵AN﹣BN=MN,又∵AN﹣BN=AB∴MN=AB,即.综上所述=点评:本题考查求线段的长短的知识,有一定难度,关键是细心阅读题目,理清题意后再解答.8.已知数轴上三点M,O,N对应的数分别为﹣3,0,1,点P为数轴上任意一点,其对应的数为x.(1)如果点P到点M,点N的距离相等,那么x的值是﹣1;(2)数轴上是否存在点P,使点P到点M,点N的距离之和是5?若存在,请直接写出x的值;若不存在,请说明理由.(3)如果点P以每分钟3个单位长度的速度从点O向左运动时,点M和点N分别以每分钟1个单位长度和每分钟4个单位长度的速度也向左运动,且三点同时出发,那么几分钟时点P到点M,点N的距离相等?考点:一元一次方程的应用;数轴;两点间的距离.分析:(1)根据三点M,O,N对应的数,得出NM的中点为:x=(﹣3+1)÷2进而求出即可;(2)根据P点在N点右侧或在M点左侧分别求出即可;(3)分别根据①当点M和点N在点P同侧时,②当点M和点N在点P两侧时求出即可.解答:解:(1)∵M,O,N对应的数分别为﹣3,0,1,点P到点M,点N的距离相等,∴x的值是﹣1.(2)存在符合题意的点P,此时x=﹣3.5或1.5.(3)设运动t分钟时,点P对应的数是﹣3t,点M对应的数是﹣3﹣t,点N对应的数是1﹣4t.①当点M和点N在点P同侧时,因为PM=PN,所以点M和点N重合,所以﹣3﹣t=1﹣4t,解得,符合题意.②当点M和点N在点P两侧时,有两种情况.情况1:如果点M在点N左侧,PM=﹣3t﹣(﹣3﹣t)=3﹣2t.PN=(1﹣4t)﹣(﹣3t)=1﹣t.因为PM=PN,所以3﹣2t=1﹣t,解得t=2.此时点M对应的数是﹣5,点N对应的数是﹣7,点M在点N右侧,不符合题意,舍去.情况2:如果点M在点N右侧,PM=(﹣3t)﹣(1﹣4t)=2t﹣3.PN=﹣3t﹣(1+4t)=t﹣1.因为PM=PN,所以2t﹣3=t﹣1,解得t=2.此时点M对应的数是﹣5,点N对应的数是﹣7,点M在点N右侧,符合题意.综上所述,三点同时出发,分钟或2分钟时点P到点M,点N的距离相等.故答案为:﹣1.点评:此题主要考查了数轴的应用以及一元一次方程的应用,根据M,N位置的不同进行分类讨论得出是解题关键.9.如图,已知数轴上点A表示的数为6,B是数轴上一点,且AB=10.动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数﹣4,点P表示的数6﹣6t用含t的代数式表示);(2)动点R从点B出发,以每秒4个单位长度的速度沿数轴向左匀速运动,若点P、R同时出发,问点P 运动多少秒时追上点R?(3)若M为AP的中点,N为PB的中点.点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长;考点:数轴;一元一次方程的应用;两点间的距离.专题:方程思想.分析:(1)B点表示的数为6﹣10=﹣4;点P表示的数为6﹣6t;(2)点P运动x秒时,在点C处追上点R,然后建立方程6x﹣4x=10,解方程即可;(3)分类讨论:①当点P在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差易求出MN.解答:解:(1)答案为﹣4,6﹣6t;(2)设点P运动x秒时,在点C处追上点R(如图)则AC=6x,BC=4x,∵AC﹣BC=AB,∴6x﹣4x=10,解得:x=5,∴点P运动5秒时,在点C处追上点R.(3)线段MN的长度不发生变化,都等于5.理由如下:分两种情况:①当点P在点A、B两点之间运动时:MN=MP+NP=AP+BP=(AP+BP)=AB=5;②当点P运动到点B的左侧时:MN=MP﹣NP=AP﹣BP=(AP﹣BP)=AB=5,∴综上所述,线段MN的长度不发生变化,其值为5.点评:本题考查了数轴:数轴的三要素(正方向、原点和单位长度).也考查了一元一次方程的应用以及数轴上两点之间的距离.10.如图,已知数轴上点A表示的数为6,B是数轴上一点,且AB=10.动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)①写出数轴上点B表示的数﹣4,点P表示的数6﹣6t(用含t的代数式表示);②M为AP的中点,N为PB的中点.点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长;(2)动点Q从点A出发,以每秒1个单位长度的速度沿数轴向左匀速运动;动点R从点B出发,以每秒个单位长度的速度沿数轴向左匀速运动,若P、Q、R三动点同时出发,当点P遇到点R时,立即返回向点Q运动,遇到点Q后则停止运动.那么点P从开始运动到停止运动,行驶的路程是多少个单位长度?考点:一元一次方程的应用;数轴;两点间的距离.专题:动点型.分析:(1)①设B点表示的数为x,根据数轴上两点间的距离公式建立方程求出其解,再根据数轴上点的运动就可以求出P点的坐标;②分类讨论:当点P在点A、B两点之间运动时;当点P运动到点B的左侧时,利用中点的定义和线段的和差易求出MN;(2)先求出P、R从A、B出发相遇时的时间,再求出P、R相遇时P、Q之间剩余的路程的相遇时间,就可以求出P一共走的时间,由P的速度就可以求出P点行驶的路程.解答:解:(1)设B点表示的数为x,由题意,得6﹣x=10,x=﹣4∴B点表示的数为:﹣4,点P表示的数为:6﹣6t;②线段MN的长度不发生变化,都等于5.理由如下:分两种情况:当点P在点A、B两点之间运动时:MN=MP+NP=AP+BP=(AP+BP)=AB=5;当点P运动到点B的左侧时:MN=MP﹣NP=AP﹣BP=(AP﹣BP)=AB=5,∴综上所述,线段MN的长度不发生变化,其值为5.(2)由题意得:P、R的相遇时间为:10÷(6+)=s,P、Q剩余的路程为:10﹣(1+)×=,P、Q相遇的时间为:÷(6+1)=s,∴P点走的路程为:6×()=点评:本题考查了数轴及数轴的三要素(正方向、原点和单位长度).一元一次方程的应用以及数轴上两点之间的距离公式的运用,行程问题中的路程=速度×时间的运用.。

初一难点突破“线段的计算”50道(含详细解析)

初一难点突破“线段的计算”50道(含详细解析)

试卷第1页,总10页初一难点突破“线段的计算”50道(含详细解析)一.解答题(共50小题)1.如图所示,点A 在线段CB 上,AC=12AB ,点D 是线段BC 的中点.若CD=3,求线段AD 的长.2.已知线段AB=6,在直线AB 上取一点P ,恰好使AP=2PB ,点Q 为PB 的中点,求线段AQ 的长.3.已知线段MN=3cm ,在线段MN 上取一点P ,使PM=PN ;延长线段MN到点A ,使AN=12MN ;延长线段NM 到点B ,使BN=3BM . (1)根据题意,画出图形;(2)求线段AB 的长;(3)试说明点P 是哪些线段的中点.4.已知:点C 在直线AB 上.(1)若AB=2,AC=3,求BC 的长;(2)若点C 在射线AB 上,且BC=2AB ,取AC 的中点D ,已知线段BD 的长为1.5,求线段AB 的长.(要求:在备用图上补全图形)5.如图,已知AC=16cm ,AB=13BC ,点C 是BD 的中点,求AD 的长.6.如图,C 是线段AB 上一点,AB=20cm ,BC=8cm ,点P 从A 出发,以2cm/s的速度沿AB 向右运动,终点为B ;点Q 从点B 出发,以1cm/s 的速度沿BA 向左运动,终点为A .已知P 、Q 同时出发,当其中一点到达终点时,另一点也随之停止运功.设点P 运动时间为xs .(1)AC= cm ;(2)当x= s 时,P 、Q 重合;(3)是否存在某一时刻,使得C 、P 、Q 这三个点中,有一个点恰为另外两点所连线段的中点?若存在,求出所有满足条件的x 的值;若不存在,请说明理由.7.如图,线段AC=20cm,BC=3AB,N线段BC的中点,M是线段BN上的一点,且BM:MN=2:3.求线段MN的长度.8.已知m,n满足算式(m﹣6)2+|n﹣2|=0.(1)求m,n的值;(2)已知线段AB=m,在直线AB上取一点P,恰好使AP=nPB,点Q为PB 的中点,求线段AQ的长.9.如图1,已知点C在线段AB上,线段AC=10厘米,BC=6厘米,点M,N 分别是AC,BC的中点.(1)求线段MN的长度;(2)根据第(1)题的计算过程和结果,设AC+BC=a,其他条件不变,求MN的长度;(3)动点P、Q分别从A、B同时出发,点P以2cm/s的速度沿AB向右运动,终点为B,点Q以1cm/s的速度沿AB向左运动,终点为A,当一个点到达终点,另一个点也随之停止运动,求运动多少秒时,C、P、Q三点有一点恰好是以另两点为端点的线段的中点?10.定义:若线段上的一个点把这条线段分成1:2的两条线段,则称这个点是这条线段的三等分点.如图1,点C在线段AB上,且AC:CB=2:1,则点C是线段AB的一个三等分点,显然,一条线段的三等分点有两个.(1)已知:如图2,DE=15cm,点P是DE的三等分点,求DP的长.(2)已知,线段AB=15cm,如图3,点P从点A出发以每秒1cm的速度在射线AB上向点B方向运动;点Q从点B出发,先向点A方向运动,当与点P重合后立马改变方向与点P同向而行且速度始终为每秒2cm,设运动时间为t秒.①若点P点Q同时出发,且当点P与点Q重合时,求t的值.②若点P点Q同时出发,且当点P是线段AQ的三等分点时,求t的值.试卷第3页,总10页11.如图,点C 在线段AB 上,AC=8cm ,CB=6cm ,点M 、N 分别是AC 、BC的中点.(1)求线段MN 的长;(2)若C 为线段AB 上任一点,满足AC +CB=a cm ,其它条件不变,你能猜想MN 的长度吗?并说明理由;(3)若C 在线段AB 的延长线上,且满足AC ﹣BC=b cm ,M 、N 分别为AC 、BC 的中点,你能猜想MN 的长度吗?并说明理由;12.【新知理解】如图①,点C 在线段AB 上,图中共有三条线段AB 、AC 和BC ,若其中有一条线段的长度是另外一条线段长度的2倍,则称点C 是线段AB 的“巧点”.(1)线段的中点 这条线段的“巧点”;(填“是”或“不是”).(2)若AB=12cm ,点C 是线段AB 的巧点,则AC= cm ;【解决问题】(3)如图②,已知AB=12cm .动点P 从点A 出发,以2cm/s 的速度沿AB 向点B 匀速移动:点Q 从点B 出发,以1cm/s 的速度沿BA 向点A 匀速移动,点P 、Q 同时出发,当其中一点到达终点时,运动停止,设移动的时间为t (s ).当t 为何值时,A 、P 、Q 三点中其中一点恰好是另外两点为端点的线段的巧点?说明理由13.已知,点C 是线段AB 的中点,AC=6.点D 在直线AB 上,且AD=12BD .请画出相应的示意图,并求线段CD 的长.14.已知,如图B ,C 两点把线段AD 分成3:5:4三部分,M 为AD的中点,BM=9cm ,求CM 和AD 的长15.已知线段AB=10cm ,在直线AB 上有一点C ,且BC=4cm ,点D 是线段AC 的中点,试求线段AD 的长.16.已知线段AB ,延长AB 到C ,使BC=14AB ,D 为AC 的中点,若BD=6cm ,求AB 的长.17.如图,点A 、M 、B 、N 、C 在同一直线上顺次排列,点M 是线段AB 的中点,点N 是线段MC 的中点,点N 在点B 的右边.(1)填空:图中共有线段 条;(2)若AB=6,MC=7,求线段BN 的长;(3)若AB=a ,MC=7,将线段BN 的长用含a 的代数式表示出来.18.如图,已知线段AB 的长为x ,延长线段AB 至点C ,使BC=12AB . (1)用含x 的代数式表示线段BC 的长和AC 的长;(2)取线段AC 的中点D ,若DB=3,求x 的值.19.如图,延长线段AB 到点F ,延长线BA 到点E ,点M 、N 分别是线段AE 、BF 的中点,若AE :AB :BF=1:2:3,且EF=18cm ,求线段MN 的长.20.如图,已知线段AB 和CD 的公共部分为BD ,且BD=13AB=14CD ,线段AB 、CD 的中点E 、F 之间距离是20,求AB 、CD 的长.21.如图,点C 为线段AB 的中点,点E 为线段AB 上的点,点D 为线段AE的中点.(1)若线段AB=a ,CE=b ,且|a ﹣15|+(b ﹣4.5)2=0,求a ,b 的值.(2)在(1)的条件下,求线段CD 的长.22.如图,点C 是线段AB 上一点,点M ,N ,P 分别是线段AC ,BC ,AB的试卷第5页,总10页中点.(1)若AB=12cm ,则MN 的长度是 ;(2)若AC=3cm ,CP=1cm ,求线段PN 的长度.23.如图,B 是线段AD 上一动点,沿A→D 以2cm/s 的速度运动,C 是线段BD 的中点,AD=10cm ,设点B 运动时间为t 秒.(1)当t=2时,①AB= cm .②求线段CD 的长度.(2)在运动过程中,若AB 的中点为E ,则EC 的长是否变化?若不变,求出EC 的长;若发生变化,请说明理由.24.如图,点C 在线段AB 上,AC=8 cm ,CB=6 cm ,点M 、N 分别是AC 、BC的中点.(1)求线段MN 的长;(2)若C 为线段AB 上任一点,满足AC +CB=a cm ,其它条件不变,你能猜想MN 的长度吗?并说明理由;(3)若C 在线段AB 的延长线上,且满足AC ﹣BC=bcm ,M 、N 分别为AC 、BC 的中点,你能猜想MN 的长度吗?请画出图形,写出你的结论,并说明理由;(4)你能用一句简洁的话,描述你发现的结论吗?25.如图,点C 在线段AB 上,AC=6cm ,MB=10cm ,点M 、N 分别为AC 、BC 的中点.(1)求线段BC 、MN 的长;(2)若C 在线段AB 的延长线上,且满足AC ﹣BC=6cm ,M 、N 分别是线段AC 、BC 的中点,求MN 的长度.26.(1)已知线段AB=8cm ,在线段AB 上有一点C ,且BC=4cm ,M 为线段AC 的中点,求线段AM 的长?若点C 在线段AB 的延长线上,AM 的长度又是多少呢?(2)如图,AD=12DB ,E 是BC 的中点,BE=15AC=2cm ,求DE 的长.27.如图,已知线段AB ,延长AB 到C ,使BC=12AB ,D 为AC 的中点,DC=3cm ,求BD 的长.28.(1)如图,AB=5cm ,BC=3cm ,点M 是线段AC 的中点,点N 是线段BC的中点,求线段MN 的长.(2)如图(1)中,AB=a ,BC=b ,其他条件不变,求MN 的长,你发现了什么规律?请把它写出来.29.已知线段AB ,在AB 的延长线上取一点C ,使BC=2AB ,在BA 的延长线上取一点D ,使DA=AB ,取AB 中点E ,若DE=7.5cm ,求DC 的长.30.如图,已知点C 为AB 上一点,AC=15cm ,CB=35AC ,D ,E 分别为AC ,AB 的中点,求DE 的长.31.已知如图:线段AB=16cm ,点C 是AB 的中点,点D 在AC 的中点,求线段BD 的长.32.已知C 为线段AB 的中点,E 为线段AB 上的点,点D 为线段AE 的中点.(1)若线段AB=a ,CE=b ,|a ﹣15|+(b ﹣4.5)2=0,求a ,b 的值;(2)如图1,在(1)的条件下,求线段DE 的长;(3)如图2,若AB=15,AD=2BE ,求线段CE 的长.33.如图,已知数轴上A 、B 两点所表示的数分别为﹣2和8.(1)求线段AB 的长;(2)已知点P 为数轴上点A 左侧的一点,且M 为PA 的中点,N 为PB 的中点.请你画出图形,观察MN 的长度是否发生改变?若不变,求出线段MN 的长;若改变,请说明理由.试卷第7页,总10页34.如图所示,在数轴上原点O 表示数0,A 点在原点的左侧,所表示的数是a ;B 点在原点的右侧,所表示的数是b ,并且a 、b 满足|a +8|+|b ﹣4|=0(1)点A 表示的数为 ,点B 表示的数为(2)若点P 从点A 出发沿数轴向右运动,速度为每秒3个单位长度;点Q从点B 出发沿数轴向左运动,速度为每秒1个单位长度.P 、Q 两点同时运动,并且在点C 处相遇,试求点C 所表示的数.(3)在P 、Q 运动的过程中,当P 、Q 两点的距离为2个单位长度时,求点Q 表示的数.35.如图,已知线段AB=16 cm ,点M 在AB 上,AM :BM=1:3,P 、Q 分别以AM ,AB 的中点,求PQ 的值.36.如图,线段AB ,在AB 的延长线上取点C ,使BC=2AB ,D 是AC 的中点,若AB=60cm ,求BD 的长.37.如图,C 是线段AB 的中点.(1)若点D 在CB 上,且DB=2cm ,AD=8cm ,求线段CD 的长度;(2)若将(1)中的“点D 在CB 上”改为“点D 在CB 的延长线上”,其它条件不变,请画出相应的示意图,并求出此时线段CD 的长度.38.如图,已知AB=24cm ,CD=10cm ,E ,F 分别为AC ,BD 的中点,求EF的长.39.如图,已知线段AB 上有两点C 、D ,且AC=BD ,M ,N 分别是线段AC ,AD 的中点,若AB=acm ,AC=BD=bcm ,且a 、b满足(a ﹣10)2+|b 2﹣4|=0.(1)求a 、b 的值;(2)求线段MN 的长度.40.已知:在一条东西向的双轨铁路上迎面驶来一快一慢两列火车,快车长AB=2(单位长度).慢车长CD=4(单位长度),设正在行驶途中的某一时刻,如图,以两车之间的某点O 为原点,取向右方向为正方向画数轴,此时快车A 在数轴上表示的数是a ,慢车头C 在数轴上表示的数是b ,若快车AB 以6个单位长度/秒的速度向右匀速继续行驶,同时慢车CD 以4个单位长度/秒的速度向左匀速继续行驶,且|a +6|与(b ﹣18)2互为相反数. (1)求此时刻快车头A 与慢车头C 之间相距多少单位长度?(2)从此时刻开始算起,问再行驶多少秒两列火车行驶到车头A 、C 相距8个单位长度?(3)此时在快车AB 上有一位爱到脑筋的七年级学生乘客P ,他发现行驶中有一段时间,他的位置P 到两列火车头A 、C 的距离和加上到两列火车尾B 、D 的距离和是一个不变的值(即PA +PC +PB +PD 为定值),你认为学生P 发现的这一结论是否正确?若正确,求出定值及所持续的时间;若不正确,请说明理由.41.如图,线段AB=12,动点P 从A 出发,以每秒2个单位的速度沿射线AB运动,M 为AP 的中点.(1)出发多少秒后,PB=2AM ?(2)当P 在线段AB 上运动时,试说明2BM ﹣BP 为定值.(3)当P 在AB 延长线上运动时,N 为BP 的中点,下列两个结论:①MN 长度不变;②MA +PN 的值不变,选择一个正确的结论,并求出其值.42.如图,已知直线l 有两条可以左右移动的线段:AB=m ,CD=n ,且m ,n满足|m ﹣4|+(n ﹣8)2=0.(1)求线段AB ,CD 的长;(2)线段AB 的中点为M ,线段CD 中点为N ,线段AB 以每秒4个单位长度试卷第9页,总10页向右运动,线段CD 以每秒1个单位长度也向右运动,若运动6秒后,MN=4,求线段BC 的长;(3)将线段CD 固定不动,线段AB 以每秒4个单位速度向右运动,M 、N分别为AB 、CD 中点,BC=24,在线段AB 向右运动的某一个时间段t 内,始终有MN +AD 为定值.求出这个定值,并直接写出t 在那一个时间段内.43.如图,点C 在线段AB 上,线段AC=8,BC=6,点M 、N 分别是AC 、BC的中点,求MN 的长度.(2)根据(1)的计算过程与结果,设AC +BC=a ,其它条件不变,你能猜想出MN 的长度吗?(3)若把(1)中的“点C 在线段AB 上”改为“点C 在线段AB 的延长线上,且满足AC ﹣BC=b ,你能猜想出MN 的长度吗?写出你的结论,并说明理由.44.如图,已知线段AB=6cm ,延长线段AB 到C ,使BC=2AB ,若点D 是AC上一点,且AD 比DC 短4cm ,点E 是BC 的中点,求线段DE 的长.45.如图,M 是线段AB 的中点,点C 在线段AB 上,且AC=8cm ,N 是AC的中点,MN=6cm ,求线段AB 的长. 46.已知B 是线段AC 上不同于A 或C 的任意一点,M 、N 、P 分别是AB 、BC 、AC 的中点,问:(1)MP=12BC 是否成立?为什么? (2)是否还有与(1)类似的结论?47.如图,已知线段AB 的长为12,点C 在线段AB 上,AC=12BC ,D 是AC 的中点,求线段BD 的长.48.如图,C 是AB 中点,D 是BC 上一点,E 是BD 的中点,AB=20,CD=2,求EB ,CE 的长.49.已知A 、B 两点在数轴上表示的数为a 和b ,M 、N均为数轴上的点,且OA <OB .(1)若A 、B 的位置如图所示,试化简:|a |﹣|b |+|a +b |+|a ﹣b |.(2)如图,若|a |+|b |=8.9,MN=3,求图中以A 、N 、O 、M 、B 这5个点为端点的所有线段长度的和;(3)如图,M 为AB 中点,N 为OA 中点,且MN=2AB ﹣15,a=﹣3,若点P为数轴上一点,且PA=23AB ,试求点P 所对应的数为多少?50.如图,点P 是定长线段AB 上一定点,C 点从P 点、D 点从B 点同时出发分别以每秒a 、b 厘米的速度沿直线AB 向左运动,并满足下列条件: ①关于m 、n 的单项式2m 2n a 与﹣3m b n 的和仍为单项式.②当C 在线段AP 上,D 在线段BP 上时,C 、D 运动到任一时刻时,总有PD=2AC .(1)直接写出:a= ,b= .(2)判断ABAP = ,并说明理由.(3)在C 、D 运动过程中,M 、N 分别是CD 、PB 的中点,运动t 秒时,恰好t 秒时,恰好3AC=2MN ,求此时AB CD的值.1初一难点突破“线段的计算”50道(含详细解析)答案一.解答题(共50小题)1.如图所示,点A 在线段CB 上,AC=12AB ,点D 是线段BC 的中点.若CD=3,求线段AD 的长.【解答】解:∵点D 是线段BC 的中点,CD=3, ∴BC=2CD=6,∵AC=12AB ,AC +AB=CB ,∴AC=2,AB=4, ∴AD=CD ﹣AC=3﹣2=1, 即线段AD 的长是1.2.已知线段AB=6,在直线AB 上取一点P ,恰好使AP=2PB ,点Q 为PB 的中点,求线段AQ 的长.【解答】解:如图1所示,∵AP=2PB ,AB=6,∴PB=13AB=13×6=2,AP=23AB=23×6=4;∵点Q 为PB 的中点,∴PQ=QB=12PB=12×2=1;∴AQ=AP +PQ=4+1=5.如图2所示,∵AP=2PB ,AB=6, ∴AB=BP=6,∵点Q 为PB 的中点, ∴BQ=3,∴AQ=AB +BQ=6+3=9. 故AQ 的长度为5或9.3.已知线段MN=3cm ,在线段MN 上取一点P ,使PM=PN ;延长线段MN到点A ,使AN=12MN ;延长线段NM 到点B ,使BN=3BM .(1)根据题意,画出图形;(2)求线段AB 的长;(3)试说明点P 是哪些线段的中点. 【解答】解:(1)如图所示:(2)∵MN=3cm ,AN=12MN ,∴AN=1.5cm , ∵BN=3BM ,∴BM=12MN=1.5cm ,∴AB=BM +MN +AN=6cm ;(3)∵点P 在线段MN 上,PM=PN , ∴点P 是线段MN 的中点, ∵BM=AN=1.5cm ,PM=PN=1.5cm , ∴BP=AP=3cm ,∴点P 是线段AB 的中点. 4.已知:点C 在直线AB 上. (1)若AB=2,AC=3,求BC 的长;(2)若点C 在射线AB 上,且BC=2AB ,取AC 的中点D ,已知线段BD 的长为1.5,求线段AB 的长.(要求:在备用图上补全图形)【解答】解:(1)若C 在A 的左边,则 BC=AB +AC=5; 若C 在A 的右边,则 BC=AC ﹣AB=1. 故BC 的长为5或1; (2)如图所示:∵点C 在射线AB 上,且BC=2AB ,D 是AC 的中点,∴AD=32AB ,∴BD=12AB ,3∵线段BD 的长为1.5, ∴线段AB 的长为3.5.如图,已知AC=16cm ,AB=13BC ,点C 是BD 的中点,求AD 的长.【解答】解:∵AC=16cm ,AB=13BC ,∴AB=14AC=4cm ,BC=16cm ﹣4cm=12cm ,∵点C 是BD 的中点, ∴CD=BC=12cm ,∴AD=AB +BC +CD=4cm +12cm +12cm=28cm .6.如图,C 是线段AB 上一点,AB=20cm ,BC=8cm ,点P 从A 出发,以2cm/s 的速度沿AB 向右运动,终点为B ;点Q 从点B 出发,以1cm/s 的速度沿BA 向左运动,终点为A .已知P 、Q 同时出发,当其中一点到达终点时,另一点也随之停止运功.设点P 运动时间为xs . (1)AC= 12 cm ;(2)当x= 203s 时,P 、Q 重合;(3)是否存在某一时刻,使得C 、P 、Q 这三个点中,有一个点恰为另外两点所连线段的中点?若存在,求出所有满足条件的x 的值;若不存在,请说明理由.【解答】解:(1)AC=AB ﹣BC=20﹣8=12(cm ),(2)20÷(2+1)=203(s ).故当x=203s 时,P 、Q 重合;(3)存在,①C 是线段PQ 的中点,得 2x +20﹣x=2×12,解得x=4; ②P 为线段CQ 的中点,得12+20﹣x=2×2x ,解得x=325;③Q 为线段PC 的中点,得 2x +10=2×(20﹣x ),解得x=7;综上所述:x=4或x=325或x=7. 故答案为:12;203.7.如图,线段AC=20cm ,BC=3AB ,N 线段BC 的中点,M 是线段BN 上的一点,且BM :MN=2:3.求线段MN 的长度.【解答】解:∵AC=20cm ,BC=3AB ,∴BC=34×20=15cm ,∴AB=5cm , ∵N 为BC 的中点, ∴BN=CN=7.5cm , ∵BM :MN=2:3,∴MN=35×7.5=4.5cm .8.已知m ,n 满足算式(m ﹣6)2+|n ﹣2|=0. (1)求m ,n 的值;(2)已知线段AB=m ,在直线AB 上取一点P ,恰好使AP=nPB ,点Q 为PB 的中点,求线段AQ 的长.【解答】解:(1)由条件可得(m ﹣6)2=0,|n ﹣2|=0, 所以m=6,n=2.(2)当点P 在线段AB 之间时,AP=2PB , 所以AP=4,PB=2,而Q 为PB 的中点, 所以PQ=1,故AQ=AP +PQ=5. 当点P 在线段AB 的延长线上时, AP ﹣PB=AB , 即2PB ﹣PB=6, 所以PB=6, 而Q 为PB 的中点,所以BQ=3,AQ=AB +BQ=6+3=9. 故线段AQ 的长为5或9.9.如图1,已知点C 在线段AB 上,线段AC=10厘米,BC=6厘米,点M ,N 分别是AC ,BC 的中点.5(1)求线段MN 的长度;(2)根据第(1)题的计算过程和结果,设AC +BC=a ,其他条件不变,求MN 的长度;(3)动点P 、Q 分别从A 、B 同时出发,点P 以2cm/s 的速度沿AB 向右运动,终点为B ,点Q 以1cm/s 的速度沿AB 向左运动,终点为A ,当一个点到达终点,另一个点也随之停止运动,求运动多少秒时,C 、P 、Q 三点有一点恰好是以另两点为端点的线段的中点?【解答】解:(1)∵线段AC=10厘米,BC=6厘米,点M ,N 分别是AC ,BC 的中点,∴CM=12AC=5厘米,CN=12BC=3厘米,∴MN=CM +CN=8厘米;(2)∵点M ,N 分别是AC ,BC 的中点,∴CM=12AC ,CN=12BC ,∴MN=CM +CN=12AC +12BC=12a ;(3)①当0<t ≤5时,C 是线段PQ 的中点,得 10﹣2t=6﹣t ,解得t=4;②当5<t ≤163时,P 为线段CQ 的中点,2t ﹣10=16﹣3t ,解得t=265;③当163<t ≤6时,Q 为线段PC 的中点,6﹣t=3t ﹣16,解得t=112;④当6<t ≤8时,C 为线段PQ 的中点,2t ﹣10=t ﹣6,解得t=4(舍),综上所述:t=4或265或112.10.定义:若线段上的一个点把这条线段分成1:2的两条线段,则称这个点是这条线段的三等分点.如图1,点C 在线段AB 上,且AC :CB=2:1,则点C 是线段AB 的一个三等分点,显然,一条线段的三等分点有两个. (1)已知:如图2,DE=15cm ,点P 是DE 的三等分点,求DP 的长. (2)已知,线段AB=15cm ,如图3,点P 从点A 出发以每秒1cm 的速度在射线AB 上向点B 方向运动;点Q 从点B 出发,先向点A 方向运动,当与点P 重合后立马改变方向与点P 同向而行且速度始终为每秒2cm ,设运动时间为t 秒.①若点P 点Q 同时出发,且当点P 与点Q 重合时,求t 的值.②若点P 点Q 同时出发,且当点P 是线段AQ 的三等分点时,求t 的值.【解答】解:(1)当DP=2PE 时,DP=23DE=10cm ;当2DP=PE 时,DP=13DE=5cm .综上所述:DP 的长为5cm 或10cm . (2)①根据题意得:(1+2)t=15, 解得:t=5.答:当t=5秒时,点P 与点Q 重合. ②(I )点P 、Q 重合前: 当2AP=PQ 时,有t +2t +2t=15, 解得:t=3;当AP=2PQ 时,有t +12t +2t=15,解得:t=307;(II )点P 、Q 重合后,当AP=2PQ 时,有t=2(t ﹣5), 解得:t=10;当2AP=PQ 时,有2t=(t ﹣5), 解得:t=﹣5(不合题意,舍去).综上所述:当t=3秒、307秒或10秒时,点P 是线段AQ 的三等分点.11.如图,点C 在线段AB 上,AC=8cm ,CB=6cm ,点M 、N 分别是AC 、BC 的中点.(1)求线段MN 的长;(2)若C 为线段AB 上任一点,满足AC +CB=a cm ,其它条件不变,你能猜想MN 的长度吗?并说明理由;(3)若C 在线段AB 的延长线上,且满足AC ﹣BC=b cm ,M 、N 分别为AC 、7BC 的中点,你能猜想MN 的长度吗?并说明理由;【解答】解:(1)∵点M 、N 分别是AC 、BC 的中点,AC=8cm ,CB=6cm ,∴CM=12AC=4cm ,CN=12BC=3cm ,∴MN=CM +CN=4+3=7cm , 即线段MN 的长是7cm ;(2)∵点M 、N 分别是AC 、BC 的中点,AC +CB=acm ,∴CM=12AC ,CN=12BC ,∴MN=CM +CN=12AC +12BC=12(AC +BC )=12acm ,即线段MN 的长是12acm ;(3)如图:MN=12b ,理由是:∵点M 、N 分别是AC 、BC 的中点,AC ﹣CB=bcm ,∴CM=12AC ,CN=12BC ,∴MN=CM ﹣CN=12AC ﹣12BC=12(AC ﹣BC )=12bcm ,即线段MN 的长是12bcm .12.【新知理解】如图①,点C 在线段AB 上,图中共有三条线段AB 、AC 和BC ,若其中有一条线段的长度是另外一条线段长度的2倍,则称点C 是线段AB 的“巧点”. (1)线段的中点 是 这条线段的“巧点”;(填“是”或“不是”). (2)若AB=12cm ,点C 是线段AB 的巧点,则AC= 4或6或8 cm ; 【解决问题】(3)如图②,已知AB=12cm .动点P 从点A 出发,以2cm/s 的速度沿AB 向点B 匀速移动:点Q 从点B 出发,以1cm/s 的速度沿BA 向点A 匀速移动,点P 、Q 同时出发,当其中一点到达终点时,运动停止,设移动的时间为t (s ).当t 为何值时,A 、P 、Q三点中其中一点恰好是另外两点为端点的线段的巧点?说明理由【解答】解:(1)∵线段的长是线段中线长度的2倍, ∴线段的中点是这条线段的“巧点”. 故答案为:是;(2)∵AB=12cm ,点C 是线段AB 的巧点,∴AC=12×13=4cm 或AC=12×12=6cm 或AC=12×23=8cm ;故答案为:4或6或8;(3)t 秒后,AP=2t ,AQ=12﹣t (0≤t ≤6)①由题意可知A 不可能为P 、Q 两点的巧点,此情况排除. ②当P 为A 、Q 的巧点时,Ⅰ.AP=13AQ ,即2t =13(12−t),解得t =127s ;Ⅱ.AP=12AQ ,即2t =12(12−t),解得t =125s ;Ⅲ.AP=23AQ ,即2t =23(12−t),解得t=3s ;③当Q 为A 、P 的巧点时,Ⅰ.AQ=13AP ,即(12−t)=2t ×13,解得t =365s (舍去);Ⅱ.AQ=12AP ,即(12−t)=2t ×12,解得t=6s ;Ⅲ.AQ=23AP ,即(12−t)=2t ×23,解得t =367s .13.已知,点C 是线段AB 的中点,AC=6.点D 在直线AB 上,且AD=12BD .请画出相应的示意图,并求线段CD 的长.【解答】解:∵点C 是线段AB 的中点,AC=6, ∴AB=2AC=12,①如图,若点D 在线段AC 上,∵AD=12BD ,∴AD=13AB=4,9∴CD=AC ﹣AD=6﹣4=2.②如图,若点D 在线段AC 的反向延长线上,∵AD=12BD ,∴AD=AB=12,∴CD=AC +AD=6+12=18.综上所述,CD 的长为2或18.14.已知,如图B ,C 两点把线段AD 分成3:5:4三部分,M 为AD 的中点,BM=9cm ,求CM 和AD 的长【解答】解:设AB=3xcm ,BC=5xcm ,CD=4xcm , ∴AD=AB +BC +CD=12xcm , ∵M 是AD 的中点,∴AM=MD=12AD=6xcm ,∴BM=AM ﹣AB=6x ﹣3x=3xcm , ∵BM=9 cm , ∴3x=9, 解得,x=3,∴CM=MD ﹣CD=6x ﹣4x=2x=2×3=6(cm ), AD=12x=12×3=36(cm ).15.已知线段AB=10cm ,在直线AB 上有一点C ,且BC=4cm ,点D 是线段AC 的中点,试求线段AD 的长. 【解答】解:分两种情况:①如图1,当点C 在线段 AB 上时,AC=AB ﹣BC=10﹣4=6cm . ∵点D 是AC 的中点,∴AD=12AC=3cm .②如图2,当点C 在线段 AB 的延长线上时,AC=AB +BC=10+4=14cm . ∵点D 是AC 的中点,∴AD=12AC=7cm .16.已知线段AB ,延长AB 到C ,使BC=14AB ,D 为AC 的中点,若BD=6cm ,求AB 的长.【解答】解:设BC=x ,则AB=4x , ∵D 为AC 中点, ∴AD=CD=2.5x , ∵BD=CD ﹣BC=6cm , ∴2.5x ﹣x=6, 解得x=4, ∴AB=16cm .17.如图,点A 、M 、B 、N 、C 在同一直线上顺次排列,点M 是线段AB 的中点,点N 是线段MC 的中点,点N 在点B 的右边.(1)填空:图中共有线段 10 条; (2)若AB=6,MC=7,求线段BN 的长;(3)若AB=a ,MC=7,将线段BN 的长用含a 的代数式表示出来. 【解答】解:(1)图中共有线段1+2+3+4=10条; 故答案为:10;(2)∵AB=6,点M 是线段AB 的中点,∴BM=12AB=3,∵MC=7,点N 是线段MC 的中点,∴NC=12MC=3.5,BC=MC ﹣BM=7﹣3=4,∴BN=BC ﹣NC=4﹣3.5=0.5;(3)∵AB=a ,点M 是线段AB 的中点,11∴BM=12AB=12a ,∵MC=7,点N 是线段MC 的中点,∴NC=12MC=3.5,BC=MC ﹣BM=7﹣12a ,∴BN=BC ﹣NC=7﹣12a ﹣3.5=3.5﹣12a .18.如图,已知线段AB 的长为x ,延长线段AB 至点C ,使BC=12AB .(1)用含x 的代数式表示线段BC 的长和AC 的长; (2)取线段AC 的中点D ,若DB=3,求x 的值.【解答】解:(1)∵AB=x ,BC=12AB ,∴BC=12x ,∵AC=AB +BC ,∴AC=x +12x=32x .(2)∵AD=DC=12AC ,AC=32x ,∴DC=34x ,∵DB=3,BC=12x ,∵DB=DC ﹣BC ,∴3=34x ﹣12x ,∴x=12.19.如图,延长线段AB 到点F ,延长线BA 到点E ,点M 、N 分别是线段AE 、BF 的中点,若AE :AB :BF=1:2:3,且EF=18cm ,求线段MN 的长.【解答】解:设EA=xcm ,则AB=2xcm ,BF=3xcm ,EF=6xcm . ∵点M ,N 分别是线段EA ,BF 的中点,∴EM=MA=12xcm ,BN=NF=32xcm .∵AB=2xcm ,∴MN=MA +AB +BN=4xcm . ∵EF=18cm ,∴6x=18, 解得:x=3, ∴MN=4x=12cm .20.如图,已知线段AB 和CD 的公共部分为BD ,且BD=13AB=14CD ,线段AB 、CD 的中点E 、F 之间距离是20,求AB 、CD 的长.【解答】解:设BD=x ,则AB=3x ,CD=4x . ∵点E 、点F 分别为AB 、CD 的中点,∴AE=12AB=1.5x ,CF=12CD=2x ,AC=AB +CD ﹣BD=3x +4x ﹣x=6x .∴EF=AC ﹣AE ﹣CF=6x ﹣1.5x ﹣2x=2.5x . ∵EF=20, ∴2.5x=20, 解得:x=8.∴AB=3x=24,CD=4x=32.21.如图,点C 为线段AB 的中点,点E 为线段AB 上的点,点D 为线段AE 的中点.(1)若线段AB=a ,CE=b ,且|a ﹣15|+(b ﹣4.5)2=0,求a ,b 的值. (2)在(1)的条件下,求线段CD 的长.【解答】解:(1)∵|a ﹣15|+(b ﹣4.5)2=0, ∴|a ﹣15|=0,(b ﹣4.5)2=0, ∵a 、b 均为非负数, ∴a=15,b=4.5,(2)∵点C 为线段AB 的中点,AB=15,CE=4.5,∴AC=12AB=7.5,∴AE=AC +CE=12,∵点D 为线段AE 的中点,∴DE=12AE=6,13∴CD=DE ﹣CE=6﹣4.5=1.5.22.如图,点C 是线段AB 上一点,点M ,N ,P 分别是线段AC ,BC ,AB 的中点.(1)若AB=12cm ,则MN 的长度是 6cm ; (2)若AC=3cm ,CP=1cm ,求线段PN 的长度.【解答】解:(1)∵M 、N 分别是AC 、BC 的中点,∴MC=12AC ,CN=12BC ,∴MN=MC +CN=12AC +12BC=12(AC +BC )=12AB=6cm .故答案为6cm ;(2)∵AC=3cm ,CP=1cm , ∴AP=AC +CP=4cm , ∵P 是线段AB 的中点, ∴AB=2AP=8cm . ∴CB=AB ﹣AC=5cm ,∵N 是线段CB 的中点,CN=12CB=2.5cm ,∴PN=CN ﹣CP=1.5cm .23.如图,B 是线段AD 上一动点,沿A→D 以2cm/s 的速度运动,C 是线段BD 的中点,AD=10cm ,设点B 运动时间为t 秒. (1)当t=2时,①AB= 4 cm .②求线段CD 的长度.(2)在运动过程中,若AB 的中点为E ,则EC 的长是否变化?若不变,求出EC 的长;若发生变化,请说明理由.【解答】解:(1)①∵B 是线段AD 上一动点,沿A→D 以2cm/s 的速度运动, ∴当t=2时,AB=2×2=4cm . 故答案为:4;②∵AD=10cm ,AB=4cm , ∴BD=10﹣4=6cm , ∵C 是线段BD 的中点,∴CD=12BD=12×6=3cm ;(2)不变;∵AB 中点为E ,C 是线段BD 的中点,∴EB=12AB ,BC=12BD ,∴EC=EB +BC=12(AB +BD )=12AD=12×10=5cm . 24.如图,点C 在线段AB 上,AC=8 cm ,CB=6 cm ,点M 、N 分别是AC 、BC 的中点.(1)求线段MN 的长;(2)若C 为线段AB 上任一点,满足AC +CB=a cm ,其它条件不变,你能猜想MN 的长度吗?并说明理由;(3)若C 在线段AB 的延长线上,且满足AC ﹣BC=bcm ,M 、N 分别为AC 、BC 的中点,你能猜想MN 的长度吗?请画出图形,写出你的结论,并说明理由;(4)你能用一句简洁的话,描述你发现的结论吗?【解答】解:(1)∵M 、N 分别是AC 、BC 的中点,∴MC=12AC ,CN=12BC ,∵MN=MC +CN ,AB=AC +BC ,∴MN=12AB=7cm ;(2)MN=a2,∵M 、N 分别是AC 、BC 的中点,∴MC=12AC ,CN=12BC ,又∵MN=MC +CN ,AB=AC +BC ,∴MN=12(AC +BC )=a2;15(3)∵M 、N 分别是AC 、BC 的中点,∴MC=12AC ,NC=12BC ,又∵AB=AC ﹣BC ,NM=MC ﹣NC ,∴MN=12(AC ﹣BC )=b2;(4)如图,只要满足点C 在线段AB 所在直线上,点M 、N 分别是AC 、BC 的中点.那么MN 就等于AB 的一半.25.如图,点C 在线段AB 上,AC=6cm ,MB=10cm ,点M 、N 分别为AC 、BC 的中点.(1)求线段BC 、MN 的长;(2)若C 在线段AB 的延长线上,且满足AC ﹣BC=6cm ,M 、N 分别是线段AC 、BC 的中点,求MN 的长度.【解答】解:(1)∵AC=6cm ,M 是AC 的中点,∴AM=MC=12AC=3cm ,∵MB=10cm , ∴BC=MB ﹣MC=7cm , ∵N 为BC 的中点,∴CN=12BC=3.5cm ,∴MN=MC +CN=6.5cm ;(2)如图,∵M 是AC 中点,N 是BC 中点,∴MC=12AC ,NC=12BC ,∵AC ﹣BC=bcm , ∴MN=MC ﹣NC=12AC ﹣12BC =12(AC ﹣BC )=12×6 =3(cm ).26.(1)已知线段AB=8cm ,在线段AB 上有一点C ,且BC=4cm ,M 为线段AC 的中点,求线段AM 的长?若点C 在线段AB 的延长线上,AM 的长度又是多少呢?(2)如图,AD=12DB ,E 是BC 的中点,BE=15AC=2cm ,求DE 的长.【解答】解:(1)①当点C 在线段AB 上时,∵AB=8cm ,BC=4cm , ∴AC=AB ﹣BC=8﹣4=4cm , ∵M 是AC 中点,∴AM=12AC=2cm .②当点C 在线段AB 的延长线上时,∵AB=8cm ,BC=4cm , ∴AC=AB +BC=8+4=12cm , ∵M 是AC 中点,∴AM=12AC=6cm .(2)∵BE=15AC=2cm ,∴AC=10cm , ∵E 是BC 中点, ∴BC=2BE=4cm ,∴AB=AC ﹣BC=10﹣4=6cm ,∵AD=12BD ,AD +BD=AB ,∴12BD +BD=AB=6cm ,17∴BD=4cm ,∴DE=BD +BE=4+2=6cm .27.如图,已知线段AB ,延长AB 到C ,使BC=12AB ,D 为AC 的中点,DC=3cm ,求BD 的长.【解答】解:∵D 为AC 的中点,DC=3cm , ∴AC=2DC=6cm ,∵BC=12AB ,∴BC=13AC=2cm ,∴BD=CD ﹣BC=1cm .28.(1)如图,AB=5cm ,BC=3cm ,点M 是线段AC 的中点,点N 是线段BC 的中点,求线段MN 的长.(2)如图(1)中,AB=a ,BC=b ,其他条件不变,求MN 的长,你发现了什么规律?请把它写出来.【解答】解:(1)∵AB=5cm ,BC=3cm , ∴AC=AB +BC=8cm ,∵点M 是线段AC 的中点,点N 是线段BC 的中点,∴MC=12AC=4cm ,NC=12BC=1.5cm ,∴MN=MC ﹣NC=4cm ﹣1.5cm=2.5cm ;(2)∵AB=a ,BC=b , ∴AC=AB +BC=a +b ,∵点M 是线段AC 的中点,点N 是线段BC 的中点,∴MC=12AC=12(a +b ),NC=12BC=12b ,∴MN=MC ﹣NC=12(a +b )﹣12b=12a ;规律是:MN=12AB .29.已知线段AB ,在AB 的延长线上取一点C ,使BC=2AB ,在BA 的延长线上取一点D ,使DA=AB ,取AB 中点E ,若DE=7.5cm ,求DC 的长.【解答】解:∵E是AB中点,∴AE=EB,设AE=x,则AB=2x,又∵DA=AB,∴DA=2x,∵BC=2AB,∴BC=4x,∵DE=7.5cm,∴3x=7.5,解得:x=2.5,∴DC=DA+AB+BC=2x+2x+4x=8x=8×2.5=20(cm).30.如图,已知点C为AB上一点,AC=15cm,CB=35AC,D,E分别为AC,AB的中点,求DE的长.【解答】解:∵AC=15cm,CB=35 AC,∴CB=35×15=9cm,∴AB=15+9=24cm.∵D,E分别为AC,AB的中点,∴AE=BE=12AB=12cm,DC=AD=12AC=7.5cm,∴DE=AE﹣AD=12﹣7.5=4.5cm.31.已知如图:线段AB=16cm,点C是AB的中点,点D在AC的中点,求线段BD的长.【解答】解:∵AB=16cm,点C是AB的中点,∴AC=BC=16÷2=8(cm);∵点D在AC的中点,∴CD=8÷2=4(cm),∴BD=BC+CD=8+4=12(cm).32.已知C为线段AB的中点,E为线段AB上的点,点D为线段AE的中点.19(1)若线段AB=a ,CE=b ,|a ﹣15|+(b ﹣4.5)2=0,求a ,b 的值;(2)如图1,在(1)的条件下,求线段DE 的长; (3)如图2,若AB=15,AD=2BE ,求线段CE 的长. 【解答】解:(1)∵|a ﹣15|+(b ﹣4.5)2=0, ∴|a ﹣15|=0,(b ﹣4.5)2=0, ∵a 、b 均为非负数, ∴a=15,b=4.5,(2)∵点C 为线段AB 的中点,AB=15,CE=4.5,∴AC=12AB=7.5,∴AE=AC +CE=12,∵点D 为线段AE 的中点,∴DE=12AE=6,(3)设EB=x ,则AD=2BE=2x , ∵点D 为线段AE 的中点, ∴AD=DE=2x , ∵AB=15, ∴AD +DE +BE=15, ∴x +2x +2x=15,解方程得:x=3,即BE=3, ∵AB=15,C 为AB 中点,∴BC=12AB=7.5,∴CE=BC ﹣BE=7.5﹣3=4.5.33.如图,已知数轴上A 、B 两点所表示的数分别为﹣2和8. (1)求线段AB 的长;(2)已知点P 为数轴上点A 左侧的一点,且M 为PA 的中点,N 为PB 的中点.请你画出图形,观察MN 的长度是否发生改变?若不变,求出线段MN 的长;若改变,请说明理由.【解答】解:(1)∵A ,B 两点所表示的数分别为﹣2和8, ∴OA=2,OB=8, ∴AB=OA +OB=10.(2)如图,线段MN 的长度不发生变化,其值为5.理由如下: ∵M 为PA 的中点,N 为PB 的中点,∴NP=12BP ,MP=12AP ,∴MN =NP −MP =12BP −12AP =12AB=5.34.如图所示,在数轴上原点O 表示数0,A 点在原点的左侧,所表示的数是a ;B 点在原点的右侧,所表示的数是b ,并且a 、b 满足|a +8|+|b ﹣4|=0(1)点A 表示的数为 ﹣8 ,点B 表示的数为 4(2)若点P 从点A 出发沿数轴向右运动,速度为每秒3个单位长度;点Q 从点B 出发沿数轴向左运动,速度为每秒1个单位长度.P 、Q 两点同时运动,并且在点C 处相遇,试求点C 所表示的数.(3)在P 、Q 运动的过程中,当P 、Q 两点的距离为2个单位长度时,求点Q 表示的数.【解答】解:(1)∵在数轴上原点O 表示数0,A 点在原点的左侧,所表示的数是a ;B 点在原点的右侧,所表示的数是b ,a 、b 满足|a +8|+|b ﹣4|=0, ∴a +8=0,b ﹣4=0, 解得:a=﹣8,b=4,则点A 表示的数为:﹣8,点B 表示的数为:4;(2)设x 秒时两点相遇, 则3x +x=4﹣(﹣8),21解得:x=3,即3秒时,两点相遇,此时点C 所表示的数为:﹣8+3×3=1;(3)当两点相遇前的距离为2个单位长度时, 3x +x=10,解得:x=52,此时此时点Q 所表示的数为:4﹣1×52=1.5;当两点相遇后的距离为2个单位长度时, 3x +x=14,解得:x=72,此时此时点Q 所表示的数为:4﹣1×72=0.5;综上所述:点Q 表示的数为:1.5或0.5.35.如图,已知线段AB=16 cm ,点M 在AB 上,AM :BM=1:3,P 、Q 分别以AM ,AB 的中点,求PQ 的值.【解答】解:∵AB=16cm ,AM :BM=1:3, ∴AM=4cm .BM=12cm ,∵P ,Q 分别为AM ,AB 的中点,∴AP=12AM=2cm ,AQ=12AB=8cm ,∴PQ=AQ ﹣AP=6cm .36.如图,线段AB ,在AB 的延长线上取点C ,使BC=2AB ,D 是AC 的中点,若AB=60cm ,求BD 的长.【解答】解:因为BC=2AB ,且AB=60cm , 所以BC=120cm .所以AC=AB +BC=120+60=180cm . 因为D 为AC 中点,所以 AD=12AC=90cm .。

初一线段上的动点问题专题(含答案)

初一线段上的动点问题专题(含答案)

七年级(上)动点问题专题1.已知点A在数轴上对应的数为a,点B对应的数为b,且|2b﹣6|+(a+1)2=0,A、B之间的距离记作AB,定义:AB=|a﹣b|.(1)求线段AB的长.(2)设点P在数轴上对应的数x,当PA﹣PB=2时,求x的值.(3)M、N分别是PA、PB的中点,当P移动时,指出当下列结论分别成立时,x的取值范围,并说明理由:①PM÷PN的值不变,②|PM﹣PN|的值不变.2.如图1,已知数轴上两点A、B对应的数分别为﹣1、3,点P为数轴上的一动点,其对应的数为x.(1)PA=_________;PB=_________(用含x的式子表示)(2)在数轴上是否存在点P,使PA+PB=5?若存在,请求出x的值;若不存在,请说明理由.(3)如图2,点P以1个单位/s的速度从点D向右运动,同时点A以5个单位/s的速度向左运动,点B 以20个单位/s的速度向右运动,在运动过程中,M、N分别是AP、OB的中点,问:的值是否发生变化?请说明理由.3.如图1,直线AB上有一点P,点M、N分别为线段PA、PB的中点,AB=14.(1)若点P在线段AB上,且AP=8,求线段MN的长度;(2)若点P在直线AB上运动,试说明线段MN的长度与点P在直线AB上的位置无关;(3)如图2,若点C为线段AB的中点,点P在线段AB的延长线上,下列结论:①的值不变;②的值不变,请选择一个正确的结论并求其值.4.如图,P是定长线段AB上一点,C、D两点分别从P、B出发以1cm/s、2cm/s的速度沿直线AB向左运动(C在线段AP上,D在线段BP上)(1)若C、D运动到任一时刻时,总有PD=2AC,请说明P点在线段AB上的位置:(2)在(1)的条件下,Q是直线AB上一点,且AQ﹣BQ=PQ,求的值.(3)在(1)的条件下,若C、D运动5秒后,恰好有,此时C点停止运动,D点继续运动(D 点在线段PB上),M、N分别是CD、PD的中点,下列结论:①PM﹣PN的值不变;②的值不变,可以说明,只有一个结论是正确的,请你找出正确的结论并求值.5.如图1,已知数轴上有三点A、B、C,AB=AC,点C对应的数是200.(1)若BC=300,求点A对应的数;(2)如图2,在(1)的条件下,动点P、Q分别从A、C两点同时出发向左运动,同时动点R从A点出发向右运动,点P、Q、R的速度分别为10单位长度每秒、5单位长度每秒、2单位长度每秒,点M为线段PR的中点,点N为线段RQ的中点,多少秒时恰好满足MR=4RN(不考虑点R与点Q相遇之后的情形);(3)如图3,在(1)的条件下,若点E、D对应的数分别为﹣800、0,动点P、Q分别从E、D两点同时出发向左运动,点P、Q的速度分别为10单位长度每秒、5单位长度每秒,点M为线段PQ的中点,点Q 在从是点D运动到点A的过程中,QC﹣AM的值是否发生变化?若不变,求其值;若不变,请说明理由.6.如图1,已知点A、C、F、E、B为直线l上的点,且AB=12,CE=6,F为AE的中点.(1)如图1,若CF=2,则BE=_________,若CF=m,BE与CF的数量关系是(2)当点E沿直线l向左运动至图2的位置时,(1)中BE与CF的数量关系是否仍然成立?请说明理由.(3)如图3,在(2)的条件下,在线段BE上,是否存在点D,使得BD=7,且DF=3DE?若存在,请求出值;若不存在,请说明理由.7.已知:如图1,M是定长线段AB上一定点,C、D两点分别从M、B出发以1cm/s、3cm/s的速度沿直线BA向左运动,运动方向如箭头所示(C在线段AM上,D在线段BM上)(1)若AB=10cm,当点C、D运动了2s,求AC+MD的值.(2)若点C、D运动时,总有MD=3AC,直接填空:AM=_________AB.(3)在(2)的条件下,N是直线AB上一点,且AN﹣BN=MN,求的值.。

新人教版七年级数学上册专题训练:线段的计算(含答案)

新人教版七年级数学上册专题训练:线段的计算(含答案)

新人教版七年级数学上册专题训练:线段的计算(含答案)一、选择题1. 已知线段AB的长度为5cm,线段BC的长度为9cm,求线段AC的长度是多少?A) 4cmB) 6cmC) 10cmD) 14cm答案: B) 6cm2. 已知线段DE的长度为7cm,线段EF的长度为3cm,求线段DF的长度是多少?A) 4cmB) 7cmC) 10cmD) 14cm答案: A) 4cm3. 正方形ABCD的一条边长为10cm,求它的对角线的长度是多少?A) 5cmB) 10cmC) 14cmD) 20cm答案: C) 14cm二、填空题1. 直线段AB的长度为15cm,点P在AB上,且AP与PB的比例为2:3,则AP的长度为__ cm。

答案: 6 cm2. 直线段CD的长度为12cm,点P在CD上,且CP与PD的比例为1:4,则PD的长度为__ cm。

答案: 9 cm三、解答题1. 三角形ABC中,线段AB的长度为8cm,线段AC的长度为10cm,求线段BC的长度。

答案: 使用勾股定理计算,BC = √(AB² + AC²) = √(8² + 10²) = √(64 + 100) = √(164) ≈ 12.81cm2. 线段EF的长度为15cm,点P在EF上,且PE与PF的比例为3:4,求PE和PF的长度。

答案: 根据比例关系,PE = (3/7) * EF = (3/7) * 15 = 6.43cm,PF = (4/7) * EF = (4/7) * 15 = 8.57cm以上为新人教版七年级数学上册专题训练中关于线段的计算的题目及答案。

希望能够帮助到你!。

线段的练习题(10道)答案

线段的练习题(10道)答案

1. 如图所示,点C分线段AB为5:7,点D分线段AB为5:11,若CD=10cm,求AB。

分析:观察图形可知,DC=AC-AD,根据已知的比例关系,AC、AD均可用所求量AB表示,这样通过已知量DC,即可求出AB。

解:因为点C分线段AB为5:7,点D分线段AB为5:11所以又又因为CD=10cm,所以AB=96cm2. 如图,已知线段AB=80cm,M为AB的中点,P在MB上,N为PB的中点,且NB =14cm,求PA的长。

分析:从图形可以看出,线段AP等于线段AM与MP的和,也等于线段AB与PB的差,所以,欲求线段PA的长,只要能求出线段AM与MP的长或者求出线段PB的长即可。

解:因为N是PB的中点,NB=14所以PB=2NB=2×14=28又因为AP=AB-PB,AB=80所以AP=80-28=52(cm)说明:在几何计算中,要结合图形中已知线段和所求线段的位置关系求解,要做到步步有根据。

3. 如图,一条直线上顺次有A、B、C、D四点,且C为AD的中点,,求BC是AB的多少倍?分析:题中已给出线段BC、AB、AD的一个方程,又C为AD的中点,即,观察图形可知,,可得到BC、AB、AD又一个方程,从而可用AD分别表示AB、BC。

解:因为C为AD的中点,所以因为,即又由<1>、<2>可得:即BC=3AB4. 如图,C、D、E将线段AB分成2:3:4:5四部分,M、P、Q、N分别是AC、CD、DE、EB的中点,且MN=21,求PQ的长。

分析:根据比例关系及中点性质,若设AC=2x,则AB上每一条短线段都可以用x的代数式表示。

观察图形,已知量MN=MC+CD+DE+EN,可转化成x的方程,先求出x,再求出PQ。

解:若设AC=2x,则于是有那么即解得:所以5. 已知线段AB=8cm,在直线AB上画线段BC=3cm,求AC的长。

分析:线段AB是固定不变的,而直线上线段BC的位置与C点的位置有关,C点可在线段AB上,也可在线段AB的延长线上,如图5。

初一线段上的动点问题专题(含答案)

初一线段上的动点问题专题(含答案)

七年级(上)动点问题专题1.已知点A在数轴上对应的数为a,点B对应的数为b,且|2b﹣6|+(a+1)2=0,A、B之间的距离记作AB,定义:AB=|a﹣b|.(1)求线段AB的长.(2)设点P在数轴上对应的数x,当PA﹣PB=2时,求x的值.(3)M、N分别是PA、PB的中点,当P移动时,指出当下列结论分别成立时,x的取值范围,并说明理由:①PM÷PN的值不变,②|PM﹣PN|的值不变.2.如图1,已知数轴上两点A、B对应的数分别为﹣1、3,点P为数轴上的一动点,其对应的数为x.(1)PA=_________;PB=_________(用含x的式子表示)(2)在数轴上是否存在点P,使PA+PB=5?若存在,请求出x的值;若不存在,请说明理由.(3)如图2,点P以1个单位/s的速度从点D向右运动,同时点A以5个单位/s的速度向左运动,点B 以20个单位/s的速度向右运动,在运动过程中,M、N分别是AP、OB的中点,问:的值是否发生变化?请说明理由.3.如图1,直线AB上有一点P,点M、N分别为线段PA、PB的中点,AB=14.(1)若点P在线段AB上,且AP=8,求线段MN的长度;(2)若点P在直线AB上运动,试说明线段MN的长度与点P在直线AB上的位置无关;(3)如图2,若点C为线段AB的中点,点P在线段AB的延长线上,下列结论:①的值不变;②的值不变,请选择一个正确的结论并求其值.4.如图,P是定长线段AB上一点,C、D两点分别从P、B出发以1cm/s、2cm/s的速度沿直线AB向左运动(C在线段AP上,D在线段BP上)(1)若C、D运动到任一时刻时,总有PD=2AC,请说明P点在线段AB上的位置:(2)在(1)的条件下,Q是直线AB上一点,且AQ﹣BQ=PQ,求的值.(3)在(1)的条件下,若C、D运动5秒后,恰好有,此时C点停止运动,D点继续运动(D 点在线段PB上),M、N分别是CD、PD的中点,下列结论:①PM﹣PN的值不变;②的值不变,可以说明,只有一个结论是正确的,请你找出正确的结论并求值.5.如图1,已知数轴上有三点A、B、C,AB=AC,点C对应的数是200.(1)若BC=300,求点A对应的数;(2)如图2,在(1)的条件下,动点P、Q分别从A、C两点同时出发向左运动,同时动点R从A点出发向右运动,点P、Q、R的速度分别为10单位长度每秒、5单位长度每秒、2单位长度每秒,点M为线段PR的中点,点N为线段RQ的中点,多少秒时恰好满足MR=4RN(不考虑点R与点Q相遇之后的情形);(3)如图3,在(1)的条件下,若点E、D对应的数分别为﹣800、0,动点P、Q分别从E、D两点同时出发向左运动,点P、Q的速度分别为10单位长度每秒、5单位长度每秒,点M为线段PQ的中点,点Q 在从是点D运动到点A的过程中,QC﹣AM的值是否发生变化?若不变,求其值;若不变,请说明理由.6.如图1,已知点A、C、F、E、B为直线l上的点,且AB=12,CE=6,F为AE的中点.(1)如图1,若CF=2,则BE=_________,若CF=m,BE与CF的数量关系是(2)当点E沿直线l向左运动至图2的位置时,(1)中BE与CF的数量关系是否仍然成立?请说明理由.(3)如图3,在(2)的条件下,在线段BE上,是否存在点D,使得BD=7,且DF=3DE?若存在,请求出值;若不存在,请说明理由.7.已知:如图1,M是定长线段AB上一定点,C、D两点分别从M、B出发以1cm/s、3cm/s的速度沿直线BA向左运动,运动方向如箭头所示(C在线段AM上,D在线段BM上)(1)若AB=10cm,当点C、D运动了2s,求AC+MD的值.(2)若点C、D运动时,总有MD=3AC,直接填空:AM=_________AB.(3)在(2)的条件下,N是直线AB上一点,且AN﹣BN=MN,求的值.8.已知数轴上三点M,O,N对应的数分别为﹣3,0,1,点P为数轴上任意一点,其对应的数为x.(1)如果点P到点M,点N的距离相等,那么x的值是_________;(2)数轴上是否存在点P,使点P到点M,点N的距离之和是5?若存在,请直接写出x的值;若不存在,请说明理由.(3)如果点P以每分钟3个单位长度的速度从点O向左运动时,点M和点N分别以每分钟1个单位长度和每分钟4个单位长度的速度也向左运动,且三点同时出发,那么几分钟时点P到点M,点N的距离相等?9.如图,已知数轴上点A表示的数为6,B是数轴上一点,且AB=10.动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数_________,点P表示的数_________用含t的代数式表示);(2)动点R从点B出发,以每秒4个单位长度的速度沿数轴向左匀速运动,若点P、R同时出发,问点P 运动多少秒时追上点R?(3)若M为AP的中点,N为PB的中点.点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长;10.如图,已知数轴上点A表示的数为6,B是数轴上一点,且AB=10.动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)①写出数轴上点B表示的数_________,点P表示的数_________(用含t的代数式表示);②M为AP的中点,N为PB的中点.点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长;(2)动点Q从点A出发,以每秒1个单位长度的速度沿数轴向左匀速运动;动点R从点B出发,以每秒个单位长度的速度沿数轴向左匀速运动,若P、Q、R三动点同时出发,当点P遇到点R时,立即返回向点Q运动,遇到点Q后则停止运动.那么点P从开始运动到停止运动,行驶的路程是多少个单位长度?参考答案与试题解析一.解答题(共10小题)1.已知点A在数轴上对应的数为a,点B对应的数为b,且|2b﹣6|+(a+1)2=0,A、B之间的距离记作AB,定义:AB=|a﹣b|.(1)求线段AB的长.(2)设点P在数轴上对应的数x,当PA﹣PB=2时,求x的值.(3)M、N分别是PA、PB的中点,当P移动时,指出当下列结论分别成立时,x的取值范围,并说明理由:①PM÷PN的值不变,②|PM﹣PN|的值不变.考点:一元一次方程的应用;数轴;两点间的距离.分析:(1)根据非负数的和为0,各项都为0;(2)应考虑到A、B、P三点之间的位置关系的多种可能解题;(3)利用中点性质转化线段之间的倍分关系得出.解答:解:(1)∵|2b﹣6|+(a+1)2=0,∴a=﹣1,b=3,∴AB=|a﹣b|=4,即线段AB的长度为4.(2)当P在点A左侧时,|PA|﹣|PB|=﹣(|PB|﹣|PA|)=﹣|AB|=﹣4≠2.当P在点B右侧时,|PA|﹣|PB|=|AB|=4≠2.∴上述两种情况的点P不存在.当P在A、B之间时,﹣1≤x≤3,∵|PA|=|x+1|=x+1,|PB|=|x﹣3|=3﹣x,∴|PA|﹣|PB|=2,∴x+1﹣(3﹣x)=2.∴解得:x=2;(3)由已知可得出:PM=PA,PN=PB,当①PM÷PN的值不变时,PM÷PN=PA÷PB.②|PM﹣PN|的值不变成立.故当P在线段AB上时,PM+PN=(PA+PB)=AB=2,当P在AB延长线上或BA延长线上时,|PM﹣PN|=|PA﹣PB|=|AB|=2.点评:此题主要考查了一元一次方程的应用,渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.2.如图1,已知数轴上两点A、B对应的数分别为﹣1、3,点P为数轴上的一动点,其对应的数为x.(1)PA=|x+1|;PB=|x﹣3|(用含x的式子表示)(2)在数轴上是否存在点P,使PA+PB=5?若存在,请求出x的值;若不存在,请说明理由.(3)如图2,点P以1个单位/s的速度从点D向右运动,同时点A以5个单位/s的速度向左运动,点B 以20个单位/s的速度向右运动,在运动过程中,M、N分别是AP、OB的中点,问:的值是否发生变化?请说明理由.考点:一元一次方程的应用;数轴;两点间的距离.分析:(1)根据数轴上两点之间的距离求法得出PA,PB的长;(2)分三种情况:①当点P在A、B之间时,②当点P在B点右边时,③当点P在A点左边时,分别求出即可;(3)根据题意用t表示出AB,OP,MN的长,进而求出答案.解答:解:(1)∵数轴上两点A、B对应的数分别为﹣1、3,点P为数轴上的一动点,其对应的数为x,∴PA=|x+1|;PB=|x﹣3|(用含x的式子表示);故答案为:|x+1|,|x﹣3|;(2)分三种情况:①当点P在A、B之间时,PA+PB=4,故舍去.②当点P在B点右边时,PA=x+1,PB=x﹣3,∴(x+1)(x﹣3)=5,∴x=3.5;③当点P在A点左边时,PA=﹣x﹣1,PB=3﹣x,∴(﹣x﹣1)+(3﹣x)=5,∴x=﹣1.5;(3)的值不发生变化.理由:设运动时间为t分钟.则OP=t,OA=5t+1,OB=20t+3,AM=AP=+3t,OM=OA﹣AM=5t+1﹣(+3t)=2t+,ON=OB=10t+,∴MN=OM+ON=12t+2,∴==2,∴在运动过程中,M、N分别是AP、OB的中点,的值不发生变化.点评:此题主要考查了一元一次方程的应用,根据题意利用分类讨论得出是解题关键.3.如图1,直线AB上有一点P,点M、N分别为线段PA、PB的中点,AB=14.(1)若点P在线段AB上,且AP=8,求线段MN的长度;(2)若点P在直线AB上运动,试说明线段MN的长度与点P在直线AB上的位置无关;(3)如图2,若点C为线段AB的中点,点P在线段AB的延长线上,下列结论:①的值不变;②的值不变,请选择一个正确的结论并求其值.考点:两点间的距离.分析:(1)求出MP,NP的长度,即可得出MN的长度;(2)分三种情况:①点P在AB之间;②点P在AB的延长线上;③点P在BA的延长线上,分别表示出MN的长度即可作出判断;(3)设AC=BC=x,PB=y,分别表示出①、②的值,继而可作出判断.解答:解:(1)∵AP=8,点M是AP中点,∴MP=AP=4,∴BP=AB﹣AP=6,又∵点N是PB中点,∴PN=PB=3,∴MN=MP+PN=7.(2)①点P在AB之间;②点P在AB的延长线上;③点P在BA的延长线上,均有MN=AB=7.(3)选择②.设AC=BC=x,PB=y,①==(在变化);(定值).点评:本题考查了两点间的距离,解答本题注意分类讨论思想的运用,理解线段中点的定义,难度一般.4.如图,P是定长线段AB上一点,C、D两点分别从P、B出发以1cm/s、2cm/s的速度沿直线AB向左运动(C在线段AP上,D在线段BP上)(1)若C、D运动到任一时刻时,总有PD=2AC,请说明P点在线段AB上的位置:(2)在(1)的条件下,Q是直线AB上一点,且AQ﹣BQ=PQ,求的值.(3)在(1)的条件下,若C、D运动5秒后,恰好有,此时C点停止运动,D点继续运动(D 点在线段PB上),M、N分别是CD、PD的中点,下列结论:①PM﹣PN的值不变;②的值不变,可以说明,只有一个结论是正确的,请你找出正确的结论并求值.考点:比较线段的长短.专题:数形结合.分析:(1)根据C、D的运动速度知BD=2PC,再由已知条件PD=2AC求得PB=2AP,所以点P在线段AB上的处;(2)由题设画出图示,根据AQ﹣BQ=PQ求得AQ=PQ+BQ;然后求得AP=BQ,从而求得PQ与AB的关系;(3)当点C停止运动时,有,从而求得CM与AB的数量关系;然后求得以AB表示的PM与PN的值,所以.解答:解:(1)根据C、D的运动速度知:BD=2PC∵PD=2AC,∴BD+PD=2(PC+AC),即PB=2AP,∴点P在线段AB上的处;(2)如图:∵AQ﹣BQ=PQ,∴AQ=PQ+BQ;又AQ=AP+PQ,∴AP=BQ,∴,∴.当点Q'在AB的延长线上时AQ'﹣AP=PQ'所以AQ'﹣BQ'=3PQ=AB所以=;(3)②.理由:如图,当点C停止运动时,有,∴;∴,∵,∴,∴;当点C停止运动,D点继续运动时,MN的值不变,所以,.点评:本题考查了比较线段的长短.利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.5.如图1,已知数轴上有三点A、B、C,AB=AC,点C对应的数是200.(1)若BC=300,求点A对应的数;(2)如图2,在(1)的条件下,动点P、Q分别从A、C两点同时出发向左运动,同时动点R从A点出发向右运动,点P、Q、R的速度分别为10单位长度每秒、5单位长度每秒、2单位长度每秒,点M为线段PR的中点,点N为线段RQ的中点,多少秒时恰好满足MR=4RN(不考虑点R与点Q相遇之后的情形);(3)如图3,在(1)的条件下,若点E、D对应的数分别为﹣800、0,动点P、Q分别从E、D两点同时出发向左运动,点P、Q的速度分别为10单位长度每秒、5单位长度每秒,点M为线段PQ的中点,点Q在从是点D运动到点A的过程中,QC﹣AM的值是否发生变化?若不变,求其值;若不变,请说明理由.考点:一元一次方程的应用;比较线段的长短.分析:(1)根据BC=300,AB=AC,得出AC=600,利用点C对应的数是200,即可得出点A对应的数;(2)假设x秒Q在R右边时,恰好满足MR=4RN,得出等式方程求出即可;(3)假设经过的时间为y,得出PE=10y,QD=5y,进而得出+5y﹣400=y,得出﹣AM=﹣y原题得证.解答:解:(1)∵BC=300,AB=,所以AC=600,C点对应200,∴A点对应的数为:200﹣600=﹣400;(2)设x秒时,Q在R右边时,恰好满足MR=4RN,∴MR=(10+2)×,RN=[600﹣(5+2)x],∴MR=4RN,∴(10+2)×=4×[600﹣(5+2)x],解得:x=60;∴60秒时恰好满足MR=4RN;(3)设经过的时间为y,则PE=10y,QD=5y,于是PQ点为[0﹣(﹣800)]+10y﹣5y=800+5y,一半则是,所以AM点为:+5y﹣400=y,又QC=200+5y,所以﹣AM=﹣y=300为定值.点评:此题考查了一元一次方程的应用,根据已知得出各线段之间的关系等量关系是解题关键,此题阅读量较大应细心分析.6.如图1,已知点A、C、F、E、B为直线l上的点,且AB=12,CE=6,F为AE的中点.(1)如图1,若CF=2,则BE=4,若CF=m,BE与CF的数量关系是(2)当点E沿直线l向左运动至图2的位置时,(1)中BE与CF的数量关系是否仍然成立?请说明理由.(3)如图3,在(2)的条件下,在线段BE上,是否存在点D,使得BD=7,且DF=3DE?若存在,请求出值;若不存在,请说明理由.考点:两点间的距离;一元一次方程的应用.分析:(1)先根据EF=CE﹣CF求出EF,再根据中点的定义求出AE,然后根据BE=AB﹣AE代入数据进行计算即可得解;根据BE、CF的长度写出数量关系即可;(2)根据中点定义可得AE=2EF,再根据BE=AB﹣AE整理即可得解;(3)设DE=x,然后表示出DF、EF、CF、BE,然后代入BE=2CF求解得到x的值,再求出DF、CF,计算即可得解.解答:解:(1)∵CE=6,CF=2,∴EF=CE﹣CF=6﹣2=4,∵F为AE的中点,∴AE=2EF=2×4=8,∴BE=AB﹣AE=12﹣8=4,若CF=m,则BE=2m,BE=2CF;(2)(1)中BE=2CF仍然成立.理由如下:∵F为AE的中点,∴AE=2EF,∴BE=AB﹣AE,=12﹣2EF,=12﹣2(CE﹣CF),=12﹣2(6﹣CF),=2CF;(3)存在,DF=3.理由如下:设DE=x,则DF=3x,∴EF=2x,CF=6﹣x,BE=x+7,由(2)知:BE=2CF,∴x+7=2(6﹣x),解得,x=1,∴DF=3,CF=5,∴=6.点评:本题考查了两点间的距离,中点的定义,准确识图,找出图中各线段之间的关系并准确判断出BE 的表示是解题的关键.7.已知:如图1,M是定长线段AB上一定点,C、D两点分别从M、B出发以1cm/s、3cm/s的速度沿直线BA向左运动,运动方向如箭头所示(C在线段AM上,D在线段BM上)(1)若AB=10cm,当点C、D运动了2s,求AC+MD的值.(2)若点C、D运动时,总有MD=3AC,直接填空:AM=AB.(3)在(2)的条件下,N是直线AB上一点,且AN﹣BN=MN,求的值.考点:比较线段的长短.专题:分类讨论.分析:(1)计算出CM及BD的长,进而可得出答案;(2)根据图形即可直接解答;(3)分两种情况讨论,①当点N在线段AB上时,②当点N在线段AB的延长线上时,然后根据数量关系即可求解.解答:解:(1)当点C、D运动了2s时,CM=2cm,BD=6cm∵AB=10cm,CM=2cm,BD=6cm∴AC+MD=AB﹣CM﹣BD=10﹣2﹣6=2cm(2)(3)当点N在线段AB上时,如图∵AN﹣BN=MN,又∵AN﹣AM=MN∴BN=AM=AB,∴MN=AB,即.当点N在线段AB的延长线上时,如图∵AN﹣BN=MN,又∵AN﹣BN=AB∴MN=AB,即.综上所述=点评:本题考查求线段的长短的知识,有一定难度,关键是细心阅读题目,理清题意后再解答.8.已知数轴上三点M,O,N对应的数分别为﹣3,0,1,点P为数轴上任意一点,其对应的数为x.(1)如果点P到点M,点N的距离相等,那么x的值是﹣1;(2)数轴上是否存在点P,使点P到点M,点N的距离之和是5?若存在,请直接写出x的值;若不存在,请说明理由.(3)如果点P以每分钟3个单位长度的速度从点O向左运动时,点M和点N分别以每分钟1个单位长度和每分钟4个单位长度的速度也向左运动,且三点同时出发,那么几分钟时点P到点M,点N的距离相等?考点:一元一次方程的应用;数轴;两点间的距离.分析:(1)根据三点M,O,N对应的数,得出NM的中点为:x=(﹣3+1)÷2进而求出即可;(2)根据P点在N点右侧或在M点左侧分别求出即可;(3)分别根据①当点M和点N在点P同侧时,②当点M和点N在点P两侧时求出即可.解答:解:(1)∵M,O,N对应的数分别为﹣3,0,1,点P到点M,点N的距离相等,∴x的值是﹣1.(2)存在符合题意的点P,此时x=﹣3.5或1.5.(3)设运动t分钟时,点P对应的数是﹣3t,点M对应的数是﹣3﹣t,点N对应的数是1﹣4t.①当点M和点N在点P同侧时,因为PM=PN,所以点M和点N重合,所以﹣3﹣t=1﹣4t,解得,符合题意.②当点M和点N在点P两侧时,有两种情况.情况1:如果点M在点N左侧,PM=﹣3t﹣(﹣3﹣t)=3﹣2t.PN=(1﹣4t)﹣(﹣3t)=1﹣t.因为PM=PN,所以3﹣2t=1﹣t,解得t=2.此时点M对应的数是﹣5,点N对应的数是﹣7,点M在点N右侧,不符合题意,舍去.情况2:如果点M在点N右侧,PM=(﹣3t)﹣(1﹣4t)=2t﹣3.PN=﹣3t﹣(1+4t)=t﹣1.因为PM=PN,所以2t﹣3=t﹣1,解得t=2.此时点M对应的数是﹣5,点N对应的数是﹣7,点M在点N右侧,符合题意.综上所述,三点同时出发,分钟或2分钟时点P到点M,点N的距离相等.故答案为:﹣1.点评:此题主要考查了数轴的应用以及一元一次方程的应用,根据M,N位置的不同进行分类讨论得出是解题关键.9.如图,已知数轴上点A表示的数为6,B是数轴上一点,且AB=10.动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数﹣4,点P表示的数6﹣6t用含t的代数式表示);(2)动点R从点B出发,以每秒4个单位长度的速度沿数轴向左匀速运动,若点P、R同时出发,问点P 运动多少秒时追上点R?(3)若M为AP的中点,N为PB的中点.点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长;考点:数轴;一元一次方程的应用;两点间的距离.专题:方程思想.分析:(1)B点表示的数为6﹣10=﹣4;点P表示的数为6﹣6t;(2)点P运动x秒时,在点C处追上点R,然后建立方程6x﹣4x=10,解方程即可;(3)分类讨论:①当点P在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差易求出MN.解答:解:(1)答案为﹣4,6﹣6t;(2)设点P运动x秒时,在点C处追上点R(如图)则AC=6x,BC=4x,∵AC﹣BC=AB,∴6x﹣4x=10,解得:x=5,∴点P运动5秒时,在点C处追上点R.(3)线段MN的长度不发生变化,都等于5.理由如下:分两种情况:①当点P在点A、B两点之间运动时:MN=MP+NP=AP+BP=(AP+BP)=AB=5;②当点P运动到点B的左侧时:MN=MP﹣NP=AP﹣BP=(AP﹣BP)=AB=5,∴综上所述,线段MN的长度不发生变化,其值为5.点评:本题考查了数轴:数轴的三要素(正方向、原点和单位长度).也考查了一元一次方程的应用以及数轴上两点之间的距离.10.如图,已知数轴上点A表示的数为6,B是数轴上一点,且AB=10.动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)①写出数轴上点B表示的数﹣4,点P表示的数6﹣6t(用含t的代数式表示);②M为AP的中点,N为PB的中点.点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长;(2)动点Q从点A出发,以每秒1个单位长度的速度沿数轴向左匀速运动;动点R从点B出发,以每秒个单位长度的速度沿数轴向左匀速运动,若P、Q、R三动点同时出发,当点P遇到点R时,立即返回向点Q运动,遇到点Q后则停止运动.那么点P从开始运动到停止运动,行驶的路程是多少个单位长度?考点:一元一次方程的应用;数轴;两点间的距离.专题:动点型.分析:(1)①设B点表示的数为x,根据数轴上两点间的距离公式建立方程求出其解,再根据数轴上点的运动就可以求出P点的坐标;②分类讨论:当点P在点A、B两点之间运动时;当点P运动到点B的左侧时,利用中点的定义和线段的和差易求出MN;(2)先求出P、R从A、B出发相遇时的时间,再求出P、R相遇时P、Q之间剩余的路程的相遇时间,就可以求出P一共走的时间,由P的速度就可以求出P点行驶的路程.解答:解:(1)设B点表示的数为x,由题意,得6﹣x=10,x=﹣4∴B点表示的数为:﹣4,点P表示的数为:6﹣6t;②线段MN的长度不发生变化,都等于5.理由如下:分两种情况:当点P在点A、B两点之间运动时:MN=MP+NP=AP+BP=(AP+BP)=AB=5;当点P运动到点B的左侧时:MN=MP﹣NP=AP﹣BP=(AP﹣BP)=AB=5,∴综上所述,线段MN的长度不发生变化,其值为5.(2)由题意得:P、R的相遇时间为:10÷(6+)=s,P、Q剩余的路程为:10﹣(1+)×=,P、Q相遇的时间为:÷(6+1)=s,∴P点走的路程为:6×()=点评:本题考查了数轴及数轴的三要素(正方向、原点和单位长度).一元一次方程的应用以及数轴上两点之间的距离公式的运用,行程问题中的路程=速度×时间的运用.。

初一几何考试题及答案

初一几何考试题及答案

初一几何考试题及答案一、选择题(每题2分,共10分)1. 下列哪个选项是线段的属性?A. 可度量B. 可延伸C. 可弯曲D. 可旋转答案:A2. 一个角的度数是90度,这个角被称为:A. 锐角B. 直角C. 钝角D. 周角答案:B3. 在平面几何中,两条直线相交于一点,这个点被称为:A. 顶点B. 交点C. 端点D. 极点答案:B4. 一个三角形的三个内角之和是:A. 90度B. 180度C. 360度D. 720度答案:B5. 一个圆的直径是10厘米,那么它的半径是:A. 5厘米B. 10厘米C. 15厘米D. 20厘米答案:A二、填空题(每题2分,共10分)1. 一个正方形的对角线长度是边长的______倍。

答案:√22. 一个等腰三角形的两个底角相等,如果一个底角是45度,那么顶角是______度。

答案:903. 一个圆的周长是62.8厘米,那么它的直径是______厘米。

答案:204. 如果一个角是30度,那么它的补角是______度。

答案:1505. 一个长方形的长是10厘米,宽是5厘米,那么它的面积是______平方厘米。

答案:50三、解答题(每题10分,共20分)1. 一个三角形的三个内角分别是x度、y度和z度,已知x度是y度的两倍,z度是x度的三分之一。

求x、y和z的值。

答案:设y度为a,则x度为2a,z度为2/3a。

根据三角形内角和定理,我们有:x + y + z = 1802a + a + 2/3a = 1805/3a = 180a = 108所以,x = 216度,y = 108度,z = 72度。

2. 一个圆的半径是7厘米,求它的周长和面积。

答案:周长= 2πr = 2 × 3.14 × 7 = 43.96厘米面积= πr² = 3.14 × 7² = 153.86平方厘米。

初一上册线段试题题库及答案

初一上册线段试题题库及答案

初一上册线段试题题库及答案一、选择题1. 在平面几何中,线段是由两个端点确定的直线部分,下列哪一项不是线段的特点?A. 线段是直线的一部分B. 线段的长度是固定的C. 线段可以无限延伸D. 线段有且仅有两个端点答案:C2. 如果线段AB的长度为5厘米,线段BC的长度为3厘米,那么线段AC的长度至少是多少厘米?A. 2厘米B. 5厘米C. 8厘米D. 无法确定答案:B3. 线段的垂直平分线具有以下哪个性质?A. 垂直平分线是线段的中点B. 垂直平分线将线段分成两个相等的部分C. 垂直平分线是线段的垂直线D. 垂直平分线是线段的延长线答案:B二、填空题1. 线段的中点是指将线段等分的点,如果线段AB的长度为10厘米,那么线段AB的中点到端点A的距离是______厘米。

答案:52. 如果线段MN的垂直平分线与线段MN相交于点O,那么点O到端点M和端点N的距离相等,这个距离是线段MN长度的______。

答案:一半三、解答题1. 如图所示,线段AB的长度为8厘米,线段BC的长度为6厘米,且点B是线段AC的中点。

求线段AC的长度。

解:由于点B是线段AC的中点,根据中点的定义,线段AB和线段BC的长度之和等于线段AC的长度。

因此,线段AC的长度为8厘米 + 6厘米 = 14厘米。

2. 已知线段DE上有一点P,使得点P到端点D和端点E的距离相等。

如果线段DE的长度为10厘米,求点P到端点D的距离。

解:由于点P到端点D和端点E的距离相等,根据垂直平分线的性质,点P是线段DE的中点。

因此,点P到端点D的距离等于线段DE 长度的一半,即5厘米。

结束语:本试题题库涵盖了初一上册线段的基本概念、性质以及相关的计算问题,旨在帮助学生巩固和深化对线段知识的理解和应用。

希望同学们通过练习这些题目,能够更好地掌握线段的相关知识。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初一线段题10道带答案
做题先画图,否则思路没弄明白,容易出做的。

1线段AB=3cm,在线段AB上取一点M,使AM=BM,在线段AB的延长线上取一点C,使AC=3BC,在线段BA的延长线上取一点D,使AD=1/2AB。

(1)求线段BC DC的长,(2)点M是哪些线段的中点?
解由题意可得下图:
1)因为AC=3BC
又因为AM=BM
所以AM=MB=BC=AB/2=1.5CM
又因为AD=1/2AB
所以DA=AM=MB=BC
所以BC=DA+AB+BC=1.5+1.5+3=6CM
2)由第一问已经求得
DA=AM=MB=BC
所以DA+AM=MB+BC
即DM=MC
所以M是AB的中点,同时也是线段DC 的中点。

2已知线段AB=100,P为AB上一点,M为AB的中点,N为AP 的中点,若MN=15,求AP的长?
由题意可得下图
图①
图②
1当P靠近B,图1
因为N是AP中点,M是AB的中点
所以AP=2AN=2(AM-MN)
即=2(100/2-15)
=70
2当P更靠近A 如上图2
同理: AP=2AN=2(AM-MN)=70
这里如果AP=70 ,那么AB>100
所有P这个点在MB 之间。

(AP<100,AP的中点N只能在AM之
间,否则就会出现AP >100的情况,还是有一定的挑战性的)
3.已知AB:AC=1:3,AC:AD=1:4,且AB+AC+AD=40,则AB,BC,CD的长分别是多少?
解:由题意可得
因为AB:AC=1:3
则AC=3AB
又因为AC:AD=1:4
所以3AB:AD=1:4
则AD=12AB
所以AB+AC+AD=40
AB+3AB+12AB=40
即AB=2.5
所以AC=7.5
AD=30
所以BC=2AB=5
CD=DA-AC=22.5
4.已知线段AB,延长AB到点C,使BC=3分之1AB,D为AC中点,若DC=4CM,求AB的长度?
解由题意可得
因为BC=1 /3 AB
又因为D是AC中点
所以AC=2AC=8
AB=AC-BC
AB=8-1 /3 AB
所以AB=6
5 线段AB被分成2:3:4三部分,第一部分中点和第三部分中点之间的距离为4.2cm,求AB的长度
解由题意可得下图
因为E是AC的中心F是DB 中点
因为AC:CD:DB=2:3:4
2EC:CD:2DF=2:3:4
DC=3EC DC=3/2DF
因为EF=4.2
EC+CD+DF=4.2
EC+3EC+2EC=4.2
所有EC=0.7
DF=1.4
CD=2.1
所AB=AC+CD+DB
AB= 2EC+CD+2DF=2*0.7+2.1+1.4*2=6.3CM
6 B,C是线段AD上的两点,且CD=1/2AD,AC=3厘米,BD=4厘米,求线段AB的长
解:按题意得
由CD=1/2AD
C是AD的中点
即CD=AC=3
AD=2CD=6
AB=AD-BD=6-4=2CM
7点B,C在线段AD上,M是线段AB的中点,N是线段CD的中点,若MN=a,BC=b,则AD的长度是多少?
解:由题可得
MF=a,BC=b
MB+CN+BC=a
MB+CN=a-b
所以AD=AB+BC+CD
因为M是线段AB的中点,N是线段CD的中点
AD=2MB+BC+2CN=2(a-b)+b
所以AD=2a-b
8 点C、E、F在线段AB上,一共有多少条线段?
解由题意可得
4+3+2+1=10
简单的画图理解
也可以记住n*(n-1)/2=5*4/2=10
不能理解就多画基础,画着画着就理解了
9 已知线段AC和BC在一条直线上,如果AC=5.6cm,BC=2.4cm。

求线段AC和BC的中点间的距离?
解:由题意可得
M是AB 的中点,N 是BC的中点
所以MN=MB+BC=1/2 AB+1/2 BC
=2.8+1.2
=4
10线段AB=4,点O是线段AB上一点,C、D分别是线段OA、OB的中点,小明据此很轻松的求的CD=2,若点O在AB的延长线上,原结论“CD=2”是否仍然成立?
证明:先按题得到图形,假设成立即根据O是AB延长线上的点,
AB=4,可设OB=x,则OA=AB+OB=4+x 因为C是OA中点
所以OC=1/2*OA=1/2*(4+x)=2+0.5x
因为D是OB中点
所以OD=1/2*OB=0.5x
所以CD=OC-OD=2+0.5x-0.5x=2
所以原结论仍然成立
码字不容易,有用就好。

相关文档
最新文档