柯西不等式(原始版)题型分类

合集下载

柯西不等式各种形式的证明及其应用(一)

柯西不等式各种形式的证明及其应用(一)

柯西不等式各种形式的证明及其应用(一)柯西不等式各种形式的证明及其应用1. 柯西不等式的原始形式证明•柯西不等式的原始形式为:对任意的实数序列a1,a2,...,a n和b1,b2,...,b n,有下列不等式成立:(a1b1+a2b2+...+a n b n)2≤(a12+a22+...+a n2)(b12+b22+...+b n2)•证明思路:1.定义辅助函数f(t)=(a1t+a2t+...+a n t)2−(a12t2+a22t2+...+a n2t2)。

2.利用二次函数的性质证明f(t)≥0,即可得到柯西不等式的原始形式。

2. 柯西不等式的向量形式证明•柯西不等式的向量形式为:对任意的n维向量a=[a1,a2,...,a n]和b=[b1,b2,...,b n],有下列不等式成立:|a⋅b|2≤∥a∥2⋅∥b∥2•证明思路:1.将n维向量a和b表示为列向量形式。

2. 利用矩阵转置、乘法和内积的定义证明不等式成立。

3. 柯西不等式的积分形式证明• 柯西不等式的积分形式为:对任意的可积函数f (x )和g (x ),有下列不等式成立:|∫f b a (x )g (x )dx|2≤∫|f (x )|2b a dx ⋅∫|g (x )|2ba dx• 证明思路:1. 构造辅助函数ℎ(t )=∫(f (t )x +g (t ))2b a dt −∫|f (t )|2badt ⋅∫|g (t )|2b a dt 。

2. 利用积分和函数的性质证明ℎ(t )≥0,即可得到柯西不等式的积分形式。

应用一:线性代数中的向量内积• 柯西不等式可以用于证明向量内积的性质。

• 例如,在证明向量的模长定义中,可以利用柯西不等式证明模长的非负性。

• 另外,柯西不等式也广泛应用于线性代数中的向量正交、投影等问题。

应用二:凸函数的判定• 柯西不等式可以用于判定函数的凸性。

•若函数f(x)在区间[a,b]上满足柯西不等式中的积分形式,即″(x)dx≥0,则f(x)为该区间上的凸函数。

高中数学总复习 培优点1 柯西不等式与权方和不等式

高中数学总复习 培优点1 柯西不等式与权方和不等式

3.二维形式的柯西不等式的向量形式 |α·β|≤|α||β|(当且仅当β是零向量,或存在实数k,使α=kβ时,等号成立).
例1 已知x,y∈R,3x2+2y2≤6,求2x+y的最值.
0
方法一 由柯西不等式得
(2x+y)2≤[(
3x)2+(
2y)2]
232+
1
2
2
=(3x2+2y2)43+12≤11. 当且仅当 3x·12= 2y·23,
123456
跟踪训练2 (1)已知正数x,y满足x+y=1,则x12+y82 的最小值为__2_7___. x12+y82=1x23+2y23≥1x++2y23=27,当且仅当1x=2y,即 x=13,y=23时取等号.
(2)已知a+b+c=1,且a,b,c>0,则a+2 b+b+2 c+a+2 c 的最小值为
∴z=2x+ 3y 的最小值是-5.
123456
2.权方和不等式作为均值不等式的一个变化,在求二元变量最值时有很广 泛的应用,其表述如下:设 a,b,x,y>0,则ax2+by2≥ax++by2,当且仅当 ax=by时,等号成立.根据权方和不等式,函数 f(x)=2x+1-92x0<x<12的最小 值为
0
即x=4 1111,
y=3
11 11
或x=-4 1111,
y=-3
11 11
时等号成立,
于是 2x+y 的最大值为 11,最小值为- 11.
方法二 由柯西不等式得
|2x+y|≤ 3x2+ 2y2
232+
1
2
2
0
= 3x2+2y243+12≤ 11, 当且仅当 3x·12= 2y·23,
n
m>0,则

(完整版)柯西不等式

(完整版)柯西不等式

柯西不等式1☆学习目标: 1. 认识二维柯西不等式的几种形式,理解它们的几何意义; 2. 会证明二维柯西不等式及向量形式 ☻知识情景:1. 定理1 如果,a b R ∈, 那么222a b ab +≥. 当且仅当a b =时, 等号成立.当0,0a b >>时,由222a b ab +≥⇒基本不等式:2. 如果,,,a b c d R ∈, 那么222a b ab +≥,222c d cd +≥⇒2222()()a b c d ++≥ 另一方面,有22222()2ac bd a c b d abcd +=++≥问题:2222()()a b c d ++2()ac bd + ???☻新知建构:1. 柯西不等式:若,,,a b c d R ∈,则22222()()()a b c d ac bd +++.当且仅当 时, 等号成立.此即二维形式的柯西不等式.证法10.(综合法)222222222222()()a b c d a c a d b c b d ++=+++ 222()()()ac bd =++当且仅当 时, 等号成立. 证法20.(构造法) 分析:22222()()()ac bd a b c d +++⇐22222[2()]4()()0ac bd a b c d +-++而22222[2()]4()()ac bd a b c d +-++的结构特征 那么, 证:设22222()()2()f x a b x ac bd x c d =+-+++,∵ 22()()()f x ax c bx d =-+- 0 恒成立.∴ . 得证.证法30.(向量法)设向量(,)m a b =,(,)n c d =, 则||m =,||n =.∵ m n ⋅=,且><⋅⋅=⋅n m n m n m ,cos ||||,有||||||n m n m ⋅⋅.∴ . 得证. 2. 二维柯西不等式的变式:变式10.若,,,a b c d R ∈,则||2222bd ac d c b a ++⋅+ 或bd ac d c b a ++⋅+2222;变式20. 若,,,a b c d R ∈,;变式30. 若1122,,,x y x y R ∈,几何意义:3. 二维柯西不等式的应用: 4422332 ,()()()1a b a b a b a b ++≥+已知为实数,证明例*11,,b 1,42a b R a a b∈+=+≥设求证例3y =求函数例例4 22231,49,x y x y +=+若求的最小值并求最小值点.{222222222:(49)(11)(23)1,149.22131,23.12341231611149,(,)246x y x y x y x y x y x x y x y y x y ++≥+=∴+≥⋅=⋅=⎧=⎪=⎨+==⎪⎩∴+解由柯西不等式当且仅当即时取等号由得的最小值为最小值点为选修4-5练习221.,,10,( )a b R a b a b ∈+=-若且则的取值范围是A.⎡⎣.B ⎡-⎣.C ⎡⎣.D ⎡⎣.222.1,23( )x y x y +=+已知那么的最小值是 562536A. . . .63625B C D3.______y =函数224,,326,2______x y x y P x y +≤=+设实数满足则的最大值是22115.1,()()______a b a b a b+=+++若则的最小值是1.A 2、B 3.3 4. 5.2526、 求函数y =7、已知321x y +=,求22x y +的最小值.8、若,x y R +∈,2x y +=,求证:112x y+≥. 9、已知,,,x y a b R +∈,且1a bx y+=,则x y +的最小值. 10、若>b >,求证:ca cb b a -≥-+-411.11、 已知点()000,x y P 及直线:l 0x y C A +B += ()220A +B ≠ 用柯西不等式推导点到直线的距离公式12、已知,11122=-+-a b b a 求证:122=+b a 。

重点高中数学柯西不等式

重点高中数学柯西不等式

种类一:利用柯西不等式求最值例 1.求函数的最大值解:∵且,函数的定义域为,且,即时函数取最大值,最大值为法二:∵且,∴函数的定义域为由,得即,解得∴时函数取最大值,最大值为.当函数分析式中含有根号经常利用柯西不等式求解【变式 1】设且,求的最大值及最小值。

利用柯西不等式得, 故最大值为 10,最小值为 -10 【变式 2】已知,,求的最值.法一:由柯西不等式于是的最大值为,最小值为.法二:由柯西不等式于是的最大值为,最小值为.【变式 3】设 2x+3y+5z=29,求函数的最大值.依据柯西不等式,故。

当且仅当 2x+1=3y+4=5z+6,即时等号建立,此时,变式 4:设 a , , 22 2 的最大值为(1 0 2) , b (x ,y ,z) ,若 x y z 16,则 a b。

【解】∵ a (1 ,0, 2) , b (x ,y ,z) ∴ a . b x 2z由柯西不等式 [1 2 0 ( 2) 2](x 2 y 2 z 2 ) (x 0 2z) 25 16 (x2z) 24 5 x454 5 a . b 4 5 ,故 a . b 的最大值为 4 5 :变式 5:设 x , y , z R ,若 x 2 y 2 z 2 4,则 x 2y 2z 之最小值为时, (x ,y ,z)解(x 2y 2z)222 22224.9 36(x y z )[1 ( 2) 2 ]∴ x 2y 2z 最小值为 6,公式法求 (x , y , z) 此时xy z6 222∴ x 2 ,12222( 2)233y4, z433变式 6:设 x,y,z,若 2x 3y z 3,则 x 2( y 1)2 z 2 之最小值为 ________,又此时Ry ________。

分析: [ x 2 ( y 1) 2 z 2 ][ 22 ( 3) 2 12 ] ( 2x 3y 3 z) 2 [ x2( y 1) 2 z 2 ] 36 ∴最小值1832 147∴t∴y77变式 7:设 a , b , c 均为正数且 a b c 9,则4916之最小值为ab c解:(2a3 b4c )2(49 16)(a b c)abca bc( 4 9 16 ).9 (2 3 4) 2 814 916 81 9ab ca bc 9变式 8:设 a,b,c 均为正数,且 a2b 3c 2,则123之最小值为 ________a b c解:: [( a ) 2(2b) 2( 3c ) 2 ][( 1 )2 ( 2)2( 3)2](1 2 3) 2ab c∴(12 3) 18 ,最小值为 18 ab c精心整理变式 9:设 x , y , z R 且( x1) 2 ( y 2)2( z 3) 21,求 x y z 之最大、小值 :16 5 4【解】∵( x 1) 2 ( y 2)2( z 3) 216541由柯西不等式知[4 (5)22] ( x 1) 2 ( y 2) 2 ( z 3) 222452. x 1.y 2) 2. z 3225 1 (x y z 2)2∴4 ()5 (5()5 |x y z 2|5 x y z 2 5423 x y z 7故 x y z 之最大值为 7,最小值为 3种类二:利用柯西不等式证明不等式基本方法:( 1)巧拆常数(例 1)(2)从头安排某些项的序次(例 2)( 3)改变构造(例 3)(4)添项(例 4)例 1.设 、 、 为正数且各不相等,求证:又 、 、 各不相等,故等号不可以建立∴。

柯西不等式、反柯西不等式与权方和不等式(解析版)

柯西不等式、反柯西不等式与权方和不等式(解析版)

2.2.1柯西不等式、反柯西不等式与权方和不等式知识点一:柯西不等式、反柯西不等式1.柯西不等式的二维形式:()()22222()a b cd ac bd ++≥+,当且仅当ad =bc 时,等号成立.2.柯西不等式的一般情形:222222212121122()()()n n n n a a a b b b a b a b a b +++++++++ ,当且仅当a i =kb i (i =1,2,…,n )时,等号成立.3.柯西不等式的向量形式:αβαβ→→→→≥⋅,当且仅当β是零向量,或存在实数k ,使α=kβ时,等号成立.4.柯西不等式的三角形式:()()222222a b c d a c b d +++≥-+-5.反柯西不等式()()()22222a b c d ac bd --≤-考点1:利用柯西不等式求函数最值及变量范围求整式【例1.1.】已知,,R x y z ∈,且225x y z -+=,则222(5)(1)(3)x y z ++-++的最小值是()A .20B .25C .36D .47【答案】C【分析】结合已知条件,利用柯西不等式即可求得答案.【详解】由于225x y z -+=,故()()()()()222222513122x y z ⎡⎤⎡⎤++-+++-+⎢⎥⎣⎦⎣⎦()()()()225212(22133324)x y z x y z ⎡⎤≥++--++-⎣+=⎦=+,【例1.2.】已知,,R x y z ∈,且22x y +=,则222x y z ++的最小值是.【例1.3.】已知22232424x y z ++=,则75W x y z =++的最大值为.【例1.4.】已知实数,x y 满足方程()2221x y ++=,则2x y -的最大值为.求分式【例1.5.】已知a ,b ,c 均为正数,若1a b c ++=,则111a b c++的最小值为()A .9B .8C .3D .13【例1.6.】已知x ,y ,z ∈(0,+∞),且1,x y z ++=则23x ++的最小值为()A.5B.6C.8D.9【答案】C【解析】因为23a b +=,所以()()41211a b -+-=由柯西不等式()()()211114121219121121a b a b a b ⎛⎫+=+-+-≥+=⎡⎤ ⎪⎣⎦----⎝⎭当且仅当112221a b =--,即72,63a b ==时,等号成立,故选C.【例1.8.】已知,,x y z R +∈且1x y z ++=则2222y+32323x y z z z x x y++++的最小值是()A .1B .15C .25D .35【例1.9.】为提高学生的数学核心素养和学习数学的兴趣,学校在高一年级开设了《数学探究与发现》选修课.在某次主题是“向量与不等式”的课上,学生甲运用平面向量的数量积知识证明了著名的柯西不等式(二维);当向量()()1122,,,a x y b x y ==时,有222a b a b ⋅≤ ,即()()()2222212121122x x y y x y xy +≤++,当且仅当1221x y x y =时等号成立;学生乙从这个结论出发.作一个代数变换,得到了一个新不等式:()()()2222212121122x x y y x y x y -≥--,当且仅当1221x y x y =时等号成立,并取名为“类柯西不等式”.根据前面的结论可知:当x ∈R 时,2212211x x -的最小值是.求根式【例1.10.】函数y =的最大值是()A B C .3D .5【例1.11.】已知,x y 10,=2x y -的最大值为.【答案】200【解析】()()222222121x y x y ⎡⎤⎡⎤-=--=--⎢⎥⎢⎥⎣⎦⎣⎦222200≤==≥==当且仅当1=,即400,100x y ==时取等号,故2x y -的最大值为200.【例1.12.】已知1()2f x =的最大值为m ,则m =.【例1.13.】已知M =M 的最大值为.【例1.14.】已知0x >,R y ∈,且2530x xy x y +-+=,的最大值为()AB C .D .【答案】C,进而由柯西不等式 求三角函数式【例1.16.】设x R ∈,则3sin 2cos xx-的最大值为.【答案】【例1.17.】若()sin cos sin 2y x y x +++=,则sin x 的最小值是()A .0B .2C .3D .12求变量范围(值)【例1.19.】已知实数a b c d ,,,满足222232445a b c d a b c d +++=+++=,,则a 的最大值为()A .1B .2C .3D .4知识点二:权方和不等式1.二维形式的权方和不等式:若0,,,>y x b a ,则y x b a y b x a ++≥+222)(,当且仅当ybx a =时,等号成立.推广1:,)(2222zy x c b a z c y b x a ++++≥++当z c y b x a ==时,等号成立.推广2:若0,0>>i i b a ,则nn n n b b b a a a b a b a b a ++++++≥+++ 212212222121)(,当i i b a λ=时,等号成立.2.一般形式的权方和不等式:若0,0,0>>>m b a i i ,则()mn m n m m n m m m m b b b b a b a b a n +++≥+++++++ 2112111211)(21i i b a λ=时,等号成立.考点2:利用权方和不等式求最值【例2.1.】已知,,a b c R +∈,则a b c b c c a a b++的最小值为.【详解】()2222()()()2()a b c a b c a b c b c c a a b a b c b c a c a b ab bc ca ++++=++≥++++++++3()32()2ab bc ca ab bc ca ++≥=++当且仅当a b c ==时,等号成立所以答案为:3 2【例2.2.】已知正数,x y满足434xy+=,则11321yxy xy⎛⎫+⎪++⎝⎭的最小值为.【例2.3.】对任意11,2x y>>,()22224121(1)x ya y a x+≥--恒成立,则实数a的最大值为.【答案】8【详解】因为()22224121(1)x y a y a x +≥--恒成立,所以2224211x y a y x ≤+--,对任意11,2x y >>恒成立,所以222min4()211x y a y x ≤+--()()()22224211211x y x y y x y x ++≥---+-设22,(0)x y t t +-=>,则()()()()2222224448211211x y t x y t y x y x t t +++≥==++≥---+-当且仅当2222211x y x y y x +-=⎧⎪⎨=⎪--⎩,即21x y =⎧⎨=⎩时,两个等号同时成立故答案为8【例2.4.】若正数,,m n p 满足4m n p ++=,且()()()222222mn mn p n pn m p mp mnp λ+++++≥,则实数λ的取值范围为()A .(],6-∞B .(],4-∞C .(],12-∞D .(],8-∞。

柯西不等式常见题型解法例说

柯西不等式常见题型解法例说

上海中学数学2014年第3期柯西不等式常见题型解法例说315500浙江省奉化中学陈晴应向明柯西不等式≥:d;≥:研≥f≥]ni.6。

1‘是基本百鬲、百7而重要的不等式,是推证其他许多不等式的基础,不仅形式优美,而且还具有非常重要的应用价值.它原先只在数学竞赛中出现,但在2003年颁布的高中数学课程标准选修系列(4—5)《不等式选讲》里,已经加进了柯西不等式,也就是说它将成为选修学生的日常教学要求.用柯西不等式解决某些不等关系问题时往往比较简捷明了,但求解时灵活性较大,技巧性较强.其中一些常见的问题,其解决策略往往与其呈现方式直接相关.笔者就以其在近几年高考中的常见三维类型进行分类,例析对应的解决策略.三维的柯西不等式(盘;+丑;+口;)(躇+6;+鹾)≥(n。

6,+口:6:+a。

63)2揭示了任意两组数组即(n。

,n。

,n。

)、(6,,6。

,63)的平方和之积与实数积之和的平方的大小关系.应用时要解决的核心问题就是如何通过变换不等式,向柯西不等式“逼近”,构造出不等式所需要的两组数组(乜,,乜。

,以。

)、(6。

,6:,6。

),这也是运用柯西不等式解题的基本策略.1一次与二次例1(2013湖南高考)已知口、6、c∈R,盘+26 +3c一6,则n2+462+9c2的最小值为——.解:n+26+3c一6,由柯西不等式得(n2+462 +9c2)(12+12+12)≥(n+26+3c)2,可知n。

+462+9c。

≥婺一12,即最小值为12.例2设.r,y,z∈R,且满足T2+y2+z2—5,则Lr+2y+3z之最大值为——.解:(.f r+2y+32)2≤(L z’2+y2+z2)(12+22+ 32)一70,.‘.Ir+2y+3z最大值为√而.例3如啪2∈R且与≯+≮型+竖j翌一1,求T+y+z的最大值、最小值.解:与竽+≮型+半一,,由柯西不等式得[4z+渺+22]『c孚)2+c警)2+c字,2]≥…孚)惭(害)+z.(字)]2号25×1≥b+y+z一2)2≥5≥l L r+y+z一2≥一5≤z+y+z一2≤5..‘.一3≤T+y+z≤7.故T+y+z之最大值为7,最小值为一3.评注:这类题型的最大特征就是条件与结论中分别出现了一次式与两次式,而要实现一次与两次不等关系的关键就是根据柯西不等式的形态进行构造,让其中一个数组为常数组,这样问题往往可以奏效.2整式与分式2.1两组数组对应的数分别为倒数型例4(2012福建高考)已知函数厂(T)一m—z一2I,m∈R且,(z+2)≥o的解集为[一1,1].(1)求m的值;(2)若口,6,c∈R,且丢+去+去一m,求证:n+26+3c≥9.解:(1)厂(.r+2)一m—f.r},/(T+2)≥o等价于I T l≤m,由I T l≤m有解,得m≥O,且其解集为{丁l —m≤z≤m1),又,(z+2)≥o的解集为[一1,1],故m一1.(2)由(1)知丢+去+去一1,又&,6,c∈R,由柯西不等式得Ⅱ+26+3c一(n+26+3c)f丢+去+去)≥F‘去+何‘去+厄’去)2姐评注:这类题型从结构来讲,两组数组分别是整式类型(口,,n z,n。

柯西不等式

柯西不等式

柯西不等式【摘要】本文将给出柯西不等式及其应用时需注意的几点说明、柯西不等式的几种形式和证明以及关于柯西不等式的几种题型。

我们知道,柯西不等式非常重要,灵活巧妙地应用它,可以使一些较为困难的问题迎刃而解。

柯西不等式在证明不等式、解三角形、求函数最值、解方程组等问题上得到应用。

【关键词】柯西(Cauchy )不等式;函数最值;解三角形问题;不等式的证明;不等式的应用。

【正文】一、柯西不等式及其证明。

定理: 设i a ,i b ∈R (i=1,2,3........,n ),则2112n 1i 2⎪⎭⎫ ⎝⎛≥⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛∑∑∑===ni i i n i i i b a b a ,当且仅当i a =λi b ,即11a b =22a b =nn b a =λ等号成立。

此不等式称为柯西不等式。

说明1:由于“∑==ni i a 120,∑==ni i b 120,∑==ni i i b a 10”情况之一出现时,不等式显然成立,因此,在下面的讨论中不妨设∑=≠ni i a 120,∑=≠ni i b 120,∑=≠ni i i b a 10都成立。

说明2:柯西不等式取等号的条件常常写成比例形式11a b =22a b =nn b a ,并约定:分母为0时,相应的分子也为0。

“等号成立”是柯西不等式应用的一个重要组成部分。

说明3:使用柯西不等式的方便之处在于,对任意的两组实数都成立,这个不等式告诉我们,任意两组数 1a ,2a , n a , 1b ,2b , n b ,其对应项“相乘”之后、“求和”、再“平方”这三种运算不满足交换律,先各自平方,然后求和,最后相乘,运算的结果不会变小。

现将它的证明介绍如下:证明1:构造二次函数()()()2222211)(nn b x a b x a b x a x f ++++++= =222221......x a a a n )(+++x b a b a b a n n )(++++......22211)(22221......n b b b ++++0 (2)2221>++n a a a ,0)(≥x f 恒成立,∴)......()......(4 (42)22212222122211n n n n b b b a a a b a b a b a +++∙+++-+++=∆)(0≤即22211......)(n n b a b a b a +++≤)......( (2)222122221n n b b b a a a ++++++)( 当且仅当 0=+i i b x a ),....,2,1(n i =即1212n na a ab b b ===时等号成立证明2 数学归纳法(1)当1n =时 ,右式=()211a b ,左式=2121b a ,显然 ,左式=右式。

柯西不等式6个基本题型高中

柯西不等式6个基本题型高中

柯西不等式6个基本题型高中
柯西不等式是一种重要的数学定理,常用于证明平方和、积和、平方和积、平方和差、积和差以及积和积之间的不等式关系。

它在高中数学中常被用来解决以下6种基本题型:
平方和不等式:当$a,b>0$时,$(a+b)^2>a^2+b^2$。

积和不等式:当$a,b>0$时,$\sqrt{ab}<\frac{a+b}{2}$。

平方和积不等式:当$a,b>0$时,$(a+b)(a+b)>a^2+b^2$。

平方和差不等式:当$a,b>0$时,$(a-b)^2<a^2-b^2$。

积和差不等式:当$a,b>0$时,
$\sqrt{a}-\sqrt{b}<\sqrt{a-b}<\sqrt{a}+\sqrt{b}$。

积和积不等式:当$a,b>0$时,$\sqrt{ab}>\frac{a-b}{2}$。

注意:以上不等式的符号均为“大于”或“小于”,不包含“大于等于”或“小于等于”的情况。

柯西不等式的应用(整理篇).doc

柯西不等式的应用(整理篇).doc

柯西不等式的应⽤(整理篇).doc柯西不等式的证明及相关应⽤摘要:柯西不等式是⾼中数学新课程的⼀个新增容,也是⾼中数学的⼀个重要知识点,它不仅历史悠久,形式优美,结构巧妙,也是证明命题、研究最值问题的⼀个强有⼒的⼯具。

关键词:柯西不等式柯西不等式变形式最值⼀、柯西( Cauchy )不等式:a 1b 1 a 2 b 2 a n b n2a 12 a 22a n 2b 12 b 22 b n 2 a i ,b i R, i 1,2 n等号当且仅当 a 1 a 2 a n0 或 b ika i 时成⽴( k 为常数, i 1,2n )现将它的证明介绍如下:⽅法 1 证明:构造⼆次函数f ( x) a x b 2a x b2a x b21122nn= a 12 a 22a n 2 x 2 2 a 1b 1 a 2 b 2由构造知f x0 恒成⽴⼜ Q a 12 a 22 L a n n4 a 1b 1 a 2 b 2a nb n 2 4 a 12 a 22 a n 2 b 12 b 22 b n 2即 a 1b 1a 2b 2a nb n2a 12 a 22a n 2b 12 b 22b n 2当且仅当 a i xb i 0 i 1,2n即a1a 2 L a n 时等号成⽴b 1b 2 b n⽅法 2证明 :数学归纳法( 1)当 n 1 时左式 = a 1b 1 22显然左式 =右式当 n2 时a 12 a 22b 12 b 22a 1b 1 2 a 2 b 22a 12b 22右式a 22b 12222a a bb2 左式a ba b2a b a b1 12 212 1 1 222故 n 1,2时不等式成⽴( 2)假设 n k k, k 2 时,不等式成⽴即 a 1b 1 a 2 b 2 a k b k2b 12 b 22b k 2当 b i ma i , m 为常数, i 1,2 k 或 a 1a 2 L a k0 时等号成⽴设 A= a 12 a 22a k 2B= b 12 b 22b k 2C a 1b 1 a 2b 2 L a k b kAB C 2则 A a k21 B b k21 AB Ab k21 Ba k21 a k21b k21C 2 2Ca k 1b k 1 a k2 1b k2 1C 2ak 1bk 1a12 a22 L a k2 a k2 b12 b22 L b k2 b k21 a1b1 21 a2b2Lakbkak 1bk 1当b i ma i,m为常数, i 1,2 k 1 或 a1 a2 a k 1时等号成⽴即n k 1时不等式成⽴综合( 1)(2)可知不等式成⽴式结构和谐,应⽤灵活⼴泛,常通过适当配凑,直接套⽤柯西不等式解题,常见的有两⼤类型:1、证明相关数学命题( 1)证明不等式例 1 已知正数a, b, c满⾜a b c 1 证明a3 b3 c3 a2 b2 c23证明:利⽤柯西不等式2 3 1 3 1 3 12323232a2 b2 c2 a 2 a 2 b 2b 2 c2 c2 a2 b2 c 2 a b ca3 b3 c32Q a b c 1 a b c⼜因为a2 b2 c2 ab bc ca 在此不等式两边同乘以2,再加上 a2 b2 c2 得:3 a2 b2 c2 a2 b2 c2 2ab 2bc 2ac a b c 2a2 b2 c2 2 a3 b3 c3 a b c 2 a3 b3 c3 3 a2 b2 c2故 a3 b3 c3 a2 b2 c23(2)三⾓形的相关问题例 2 设p是VABC的⼀点,x, y, z是p到三边a,b, c的距离,R是VABC外接圆的半径,证明 xyz 1 a2 b2 c22R证明:由柯西不等式得:xyzax1 by 1ax by czg 1 11ab ca b c记 S 为 VABC 的⾯积,则ax by cz 2S2g abcabc4R2Rxyzabc ab bc ca 1 ab bc ca1a 2b 2c 22R abc 2R2R故不等式成⽴。

(完整版)柯西不等式各种形式的证明及其应用

(完整版)柯西不等式各种形式的证明及其应用

柯西不等式各种形式的证明及其应用柯西不等式是由大数学家柯西(Cauchy)在研究数学分析中的“流数”问题时得到的。

但从历史的角度讲,该不等式应当称为Cauchy-Buniakowsky-Schwarz 不等式,因为,正是后两位数学家彼此独立地在积分学中推而广之,才将这一不等式应用到近乎完善的地步。

柯西不等式非常重要,灵活巧妙地应用它,可以使一些较为困难的问题迎刃而解。

柯西不等式在证明不等式、解三角形、求函数最值、解方程等问题的方面得到应用。

一、柯西不等式的各种形式及其证明 二维形式在一般形式中,12122,,,,n a a a b b c b d =====令,得二维形式()()()22222bd ac d c b a+≥++等号成立条件:()d c b a bc ad //== 扩展:()()()222222222123123112233nn n n a a a a b b b b a b a b a b a b +++⋅⋅⋅++++⋅⋅⋅+≥+++⋅⋅⋅+等号成立条件:1122000::::,1,2,3,,i i i i n n i i a b a b a b a b a b a b i n ==⎛⎫==⋅⋅⋅= ⎪=⋅⋅⋅⎝⎭当或时,和都等于,不考虑二维形式的证明:()()()()()()22222222222222222222222,,,220=ab c d a b c d R a c b d a d b c a c abcd b d a d abcd b c ac bd ad bc ac bd ad bc ad bc ++∈=+++=+++-+=++-≥+-=等号在且仅在即时成立三角形式ad bc=等号成立条件:三角形式的证明:222111nn n k k k k k k k a b a b ===⎛⎫≥ ⎪⎝⎭∑∑∑()()22222222222222222-2a b c d a b c d ac bd a ac c b bd d a c b d =++++≥+++++≥-+++=-+-≥注:表示绝对值向量形式()()()()123123=,,,,,,,,2=n n a a a a b b b b n N n R αβαβαββαλβλ≥⋅⋅⋅⋅=⋅⋅⋅∈≥∈,等号成立条件:为零向量,或向量形式的证明:()()123123112233222222312322222222112233123123=,,,,,,,,,cos ,cos ,cos ,1n n n n n n n n n nm a a a a n b b b b m n a b a b a b a b m n m na a ab b b b m nm n a b a b a b a b a a a a b b b b =⋅=++++==++++++++≤∴++++≤++++++++令一般形式211212⎪⎭⎫ ⎝⎛≥∑∑∑===n k k k nk k nk k b a b a 1122:::n n i i a b a b a b a b ==⋅⋅⋅=等号成立条件:,或 、均为零。

柯西不等式、反柯西不等式与权方和不等式(十一大题型)(解析版)

柯西不等式、反柯西不等式与权方和不等式(十一大题型)(解析版)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~不等式柯西不等式、反柯西不等式与权方和不等式目录1方法技巧与总结 12题型归纳与总结 2题型一:柯西不等式之直接套公式型 2题型二:柯西不等式之根式下有正负型 3题型三:柯西不等式之高次定求低次型 4题型四:柯西不等式之低次定求高次型 5题型五:柯西不等式之整式与分式型 6题型六:柯西不等式之多变量型 7题型七:柯西不等式之三角函数型 8题型八:Aczel 不等式 9题型九:权方和不等式之整式与分式综合型 10题型十:权方和不等式之三角函数型 11题型十一:权方和不等式之杂合型 123过关测试 131方法技巧与总结1、柯西不等式(Cauchy 不等式)(1)二元柯西不等式:对于任意的a ,b ,c ,d ∈R ,都有(ac +bd )2≤(a 2+b 2)(c 2+d 2).(2)n 元柯西不等式:(a 21+a 22+⋯+a 2n )(b 21+b 22+⋯+b 2n )≥(a 1b 1+a 2b 2+⋯+a n b n )2,取等条件:a i =λb i 或b i =λa i (i =1,2,⋯,n ).2、Aczel 不等式(反柯西不等式)设a 1,a 2,⋯,a n ;b 1,b 2,⋯,b n 均为实数,a 21-a 22-⋯-a 2n >0或b 21-b 22-⋯-b 2n >0,则有(a 21-a 22-⋯-a 2n )(b 21-b 22-⋯-b 2n )≤(a 1b 1-a 2b 2-⋯-a n b n )2.当且仅当a k ,b k 成比例时取等.3、权方和不等式(1)二维形式的权方和不等式对于任意的a ,b ,x ,y >0,都有a 2x +b 2y ≥(a +b )2x +y .当且仅当a x =by时,等号成立.(2)一般形式的权方和不等式若a i >0,b i >0,m >0,则a m +11b m 1+a m +12b m 2+⋯+a m +1nb m n ≥(a 1+a 2+⋯a n )m +1(b 1+b 2+⋯b n )m,当a i =λb i 时等号成立.2题型归纳与总结题型一:柯西不等式之直接套公式型1已知x ,y ,z ∈R +且x +y +z =1则x 2+y 2+z 2的最小值是()A.1B.13C.23D.2【答案】B【解析】由柯西不等式可得:x 2+y 2+z 2 ×12+12+12 ≥x +y +z 2=1,即3x 2+y 2+z 2 ≥1所以x 2+y 2+z 2≥13,当且仅当x =y =z x +y +z =1 即x =y =z =13时取等号,故x 2+y 2+z 2的最小值为13,故选:B .2若a 21+a 22+⋯+a 2n =8,则a 1a 2+a 2a 3+a 3a 4+⋯+a n -1a n +a n a 1的最小值为()A.25B.8C.-8D.-25【答案】C【解析】由柯西不等式,得(a 21+a 22+⋯+a 2n -1+a 2n )(a 22+a 23+⋯+a 2n +a 21)≥(a 1a 2+a 2a 3+⋯+a n -1a n +a n a 1)2,∴(a 1a 2+a 2a 3+⋯+a n -1a n +a n a 1)2≤8×8,∴-8≤a 1a 2+a 2a 3+a 3a 4+⋯+a n -1a n +a n a 1≤8,当a 1a 2=a 2a 3=a 3a 4=⋯=a n -1a n =a n a 1=-1且a 21+a 22+⋯+a 2n =8时,即a 1 =a 2 =a 3 =⋯=a n -1 =a n =22nn,且a 1,a 3,a 5,⋯与a 2,a 4,a 6,⋯异号时,a 1a 2+a 2a 3+a 3a 4+⋯+a n -1a n +a n a 1=-8,则a 1a 2+a 2a 3+a 3a 4+⋯+a n -1a n +a n a 1的最小值为-8.选:C .3已知a ,b ,c ∈R ,满足a +2 2+b 2+c +1 2=12,则a +b +c 的最大值为()A.2B.3C.4D.6【答案】B【解析】设a +2=w ,b =v ,c +1=u ,可得w 2+v 2+u 2=12,所以a +b +c =w +v +u -3.因为w +v +u 2≤12+12+12 w 2+v 2+u 2 =36,所以-6≤w +v +u ≤6,当且仅当w =v =u =2,w +v +u 取得最大值6,此时a +2=b =c +1=2,所以a +b +c 的最大值为6-3=3.故选:B4(2024·高三·山东青岛·期中)柯西不等式(Caulhy -Schwarz Lnequality )是法国数学家柯西与德国数学家施瓦茨分别独立发现的,它在数学分析中有广泛的应用.现给出一个二维柯西不等式:a 2+b 2c 2+d 2≥ac +bd 2,当且仅当a c =b d时等号成立.根据柯西不等式可以得知函数f x =34-3x +3x -2的最大值为()A.25 B.23 C.12 D.20【答案】A 【解析】由4-3x ≥03x -2≥0,解得23≤x ≤43,所以函数f x 的定义域为23,43,由柯西不等式得,f x =34-3x +3x -2≤32+12 4-3x +3x -2=25,当且仅当34-3x=13x -2,即x =1115时等号成立,所以f x 的最大值为25.故选:A .5柯西不等式是数学家柯西(Cauchy )在研究数学分析中的“流数”问题时得到的一个重要不等式,而柯西不等式的二维形式是同学们可以利用向量工具得到的:已知向量a =x 1,y 1 ,b =x 2,y 2 ,由a ⋅b≤a b 得到(x 1x 2+y 1y 2)2≤(x 21+y 21)(x 22+y 22),当且仅当x 1y 2=x 2y 1时取等号.现已知a ≥0,b ≥0,a +b =5,则2a +2+b +3的最大值为()A.18B.9C.23D.33【答案】D【解析】因为(x 1x 2+y 1y 2)2≤(x 21+y 21)(x 22+y 22),令x 1=2,y 1=1,x 2=a +1,y 2=b +3,又a ≥0,b ≥0,a +b =5,所以2a +2+b +3 2=2⋅a +1+1⋅b +3 2≤2 2+12 ⋅a +1+b +3 =27,当且仅当2⋅b +3=1⋅a +1即a =5,b =0时等号成立,即2a +2+b +3≤33,故选:D .6(2024·浙江·模拟预测)已知x >0,y ∈R ,且x 2+xy -x +5y =30,则2-x +30-3y 的最大值为()A.3 B.6C.26D.32【答案】C【解析】由x 2+xy -x +5y =30可得x 2-x -30+xy +5y =0,即x +5 x +y -6 =0.由x >0可知x +y =6,所以2-x +30-3y =2-x +12+3x =2-x +3⋅4+x .由x >0,2-x ≥0可得0<x ≤2,由柯西不等式得2-x +3⋅4+x 2≤12+3 2⋅2-x 2+4+x 2=24,所以2-x +3⋅4+x ≤26,当4+x3=2-x 1即x =12时,取等号.所以2-x +30-3y 的最大值为26.故选:C .7设a ,b ,c 为正数,且a 2+b 2+c 2=1,则a (a +b +c )的最大值为()A.3+12B.2+12C.32D.22【答案】A【解析】解法一根据题意,有a (a +b +c )≤a 2+λa 2+1λb 22+μa 2+1μc 22=1+λ2+μ2 a 2+12λb 2+12μc 2,其中λ,μ>0,令1+λ2+μ2=12λ=12μ,解得λ=μ=3-12,于是a (a +b +c )≤12λa 2+b 2+c 2 =3+12,等号当a :b :c =(3+1):2:2时取得,因此所求最大值为3+12.解法二令a =cos φ,b =sin φsin θ,c =sin φcos θ,其中0≤φ≤π,0≤θ<2π,则a (a +b +c )=cos 2φ+sin φcos φ(sin θ+cos θ)≤cos 2φ+2sin φcos φ=22sin2φ+12cos2φ+12≤3+12,等号当a :b :c =(3+1):2:2时取得,因此所求最大值为3+12.解法三根据题意,有a (a +b +c )≤a a +2b 2+c 2 =a 2+2a 21-a 2 =a 2-12 2+2⋅14-a 2-12 2+12≤3+12,等号当b 2=c 2,且14a 2-12 2=2a 2-12 2即a :b :c =(3+1):2:2时取得,因此所求最大值为3+12.故选:A .8(2024·全国·模拟预测)柯西不等式最初是由大数学家柯西(Cauchy )在研究数学分析中的“流数”问题时得到的.而后来有两位数学家Buniakowsky 和Schwarz 彼此独立地在积分学中推而广之,才能将这一不等式应用到近乎完善的地步.该不等式的三元形式如下:对实数 a 1,a 2,a 3 和 b 1,b 2,b 3 ,有a 21+a 22+a 23 b 21+b 22+b 23 ≥a 1b 1+a 2b 2+a 3b 3 2等号成立当且仅当a 1b 1=a 2b 2=a 3b 3已知 x 2+y 2+z 2=14 ,请你用柯西不等式,求出 x +2y +3z 的最大值是()A.14B.12C.10D.8【答案】A【解析】由题干中柯西不等式可得x +2y +3z 2≤x 2+y 2+z 2 12+22+32 =14×14=196,所以x +2y +3z 的最大值为14,当且仅当x =1,y =2,z =3时取等号.故选:A9已知实数a i i =1,2,3,4,5 满足(a 1-a 2)2+(a 2-a 3)2+(a 3-a 4)2+(a 4-a 5)2=1,则a 1-2a 2-a 3+2a 5的最大值是()A.22B.25C.5D.10【答案】D【解析】设c =a 1-a 2,b =a 2-a 3,c =a 3-a 4,d =a 4-a 5,则条件为a 2+b 2+c 2+d 2=1,所以a 1-2a 2-a 3+2a 5=a -b -2c -2d ≤12+-1 2+-2 2+-2 2⋅a 2+b 2+c 2+d 2=10,等号当a 1=b -1=c-2=d -2且a >0时取得,因此所求代数式的最大值为10.故选:D10若实数a ,b ,c ,d 满足ab +bc +cd +da =1,则a 2+2b 2+3c 2+4d 2的最小值为()A.1B.2C.3D.以上答案都不对【答案】B【解析】根据题意,有ab +bc +cd +da =1⇒(a +c )(b +d )=1,而a 2+3c 2 1+13 ≥a +c 2,当且仅从a =3c 时等号成立.同理2b 2+4d 2 12+14≥b +d 2,当且仅当2b =4d 式等号成立,记题中代数式为M ,于是M =a 2+3c 2 +2b 2+4d 2≥(a +c )21+13+(b +d )212+14=34(a +c )2+43(b +d )2≥2(a +c )(b +d )=2,等号当a c =3,b d =2,a +c b +d =43,⇒a :b :c :d =3:2:1:1时取得,因此所求代数式的最小值为2.故选:B .11已知空间向量OA =1,12,0 ,OB =1,2,0 ,OC =0,1,12,OP =xOA +yOB +zOC ,且x +2y +z =2,则OP的最小值为()A.2B.3C.2D.4【答案】B【解析】因为OP =xOA +yOB +zOC =x 1,12,0 +y 1,2,0 +z 0,1,12=x +y ,12x +2y +z ,12z ,所以OP 2=x +y 2+12x +2y +z 2+12z 2=13x +y 2+12x +2y +z 2+12z 2 1+1+1 ≥13x +y +12x +2y +z +12z 2=1332x +3y +32z 2=34x +2y +z 2=3,当且仅当x +y =12x +2y +z =12z 时等号成立,即x =2,y =-1,z =2时等号成立.所以OP ≥3,所以OP 的最小值为3.故选:B12已知a ,b ,c 为实数,且a +b +c =5,则a 2+2b 2+c 2的最小值为()A.5B.1C.2D.52【答案】C【解析】由三维柯西不等式:a 12+a 22+a 32b 12+b 22+b 32 ≥a 1b 1+a 2b 2+a 2b 2 2当且仅当a 1b 1=a 2b 2=a 3b 3时取等,所以12+222+12 a 2+2b 2+c 2 ≥1×a +22×2b +c ×1 2=a +b +c 2=5所以a 2+2b 2+c 2≥552=2,当且仅当a 1=2b 22=c1时取等,所以a 2+2b 2+c 2的最小值为:2故选:C题型五:柯西不等式之整式与分式型13(2024·高三·浙江台州·期末)已知正实数a ,b 满足a +2b =1,则a 4b+32b 4a 的最小值为.【答案】12/0.5【解析】由柯西不等式a 4b +32b 4a =a 4b+32b 4a (2b +a )≥(2a 2+42b 2)2=2(a 2+4b 2)2而a 2+4b 2=12(a 2+4b 2)(1+1)≥12(a +2b )2=12,所以a 4b+32b 4a ≥2a 2+4b 2 2≥12,a =12,b =14时等号成立,故答案为:12.14已知a 、b 、c ∈R +,且满足a +2b +3c =1,则1a +12b+13c 的最小值为.【答案】9【解析】因为a 、b 、c ∈R +,且满足a +2b +3c =1,所以,1a +12b+13c =a +2b +3c 1a +12b +13c ≥a a +2b 2b +3c 3c 2=9,当且仅当a =2b =3c =13时,等号成立,故1a +12b+13c 的最小值为9.故答案为:9.15已知a ,b ,c ∈(0,1),且ab +bc +ac =1,则11-a +11-b+11-c 的最小值为()A.3-32B.9-32C.6-32D.9+332【答案】D【解析】因为a ,b ,c ∈(0,1)且ab +bc +ac =1,∴(a +b +c )2≥3(ab +bc +ca )=3,∴a +b +c ≥3,因为11-a +11-b +11-c(1-a +1-b +1-c )≥1+1+1 2所以11-a +11-b +11-c ≥9(1-a +1-b +1-c )≥93-3=9+332,当且仅当a =b =c =33时,11-a +11-b+11-c 的最小值为9+332.故选:D .题型六:柯西不等式之多变量型16已知x ,y ,z >0且x +y +z =1,a ,b ,c 为常数,则a 2x +b 2y +c 2z的最小值为()A.a 2+b 2+c 2B.3a 2+b 2+c 2C.(a +b +c )3D.前三个答案都不对【答案】D【解析】根据柯西不等式,有a 2x +b 2y +c 2z ≥(a +b +c )2x +y +z=(a +b +c )2,等号当a x =b y =cz >0时取得,因此所求最小值为(a +b +c )2.故选:D .17已知实数a ,b ,c ,d ,e 满足a +b +c +d +e =8,a 2+b 2+c 2+d 2+e 2=16, 则e 的取值范围是()A.[-2,2]B.[0,1]C.[0,2)D.以上答案都不对【答案】D【解析】根据柯西不等式,有-4⋅a 2+b 2+c 2+d 2≤a +b +c +d ≤4⋅a 2+b 2+c 2+d 2,从而|8-e |≤216-e 2⇒0≤e ≤165,因此e 的取值范围是0,165.故选:D .18已知a ,b ,c ∈R +,且(a +b -c )1a +1b-1c =3,则a 4+b 4+c 4 1a 4+1b 4+1c4 的最小值是()A.417+2403B.417-2403C.417D.以上答案都不对【答案】A【解析】由(a +b -c )1a +1b-1c=3可得a 2+b 2ab ×1a +b =c ×1ab+1c ,由对称性可设ab =1,则条件即(a +b -c )a +b -1c =3即c +1c =a 2+b 2a +b,从而a 2+b 2a +b≥2⇒a +b ≥1+3,根据柯西不等式a 4+b 4+c 4 a 4+b 4+1c4 ≥a 4+b 4+1 2=(a +b )4-4(a +b )2+32≥417+2403,等号当c =1,a +b =1+3时取得.因此所求最小值为417+2403.故选:A .题型七:柯西不等式之三角函数型19函数3+23cosθ+cos2θ+5-23cosθ+cos2θ+4sin2θ的最大值为()A.2+3B.22+3C.2+23D.前三个答案都不对【答案】D【解析】题中代数式为3+cosθ+10-(3cos+1)2=3cosθ+13+10-(3cosθ+1)2+23≤13+1×10+23=210+23,等号当10-(3cosθ+1)23cosθ+1=3⇒cosθ=10-223时可以取得,因此所求最大值为210+23.故选:D.20(2024·浙江·一模)若sin x+cos y+sin x+y=2,则sin x的最小值是() A.0 B.2-3 C.3-7 D.12【答案】C【解析】由已知sin x+cos y+sin x cos y+cos x sin y=2整理得2-sin x=sin x+1cos y+cos x sin y,由柯西不等式得sin x+1cos y+cos x sin y≤1+sin x2+cos2x⋅cos2y+sin2y=2+2sin x,当sin x+1sin y=cos y cos x时取等号,所以2-sin x2≤2+2sin x,即sin2x-6sin x+2≤0,解得3-7≤sin x≤1,所以sin x的最小值为3-7.故选:C.21函数y=2cos x+31-cos2x的最大值为()A.22B.5C.4D.13【答案】A【解析】利用柯西不等式进行求最值.y=2cos x+31-cos2x=2cos x+32sin2x ≤cos2x+sin2x22+(32)2=22当且仅当cos xsin2x=232,即tan x=±322时,函数有最大值22.故选:A.题型八:Aczel 不等式22f (x )=5x -4-x -4的最小值为.【答案】855【解析】f (x )=5x -4-x -4=5⋅x -45-1⋅x -4≥(5-1)x -45 -(x -4)=4×165=85当且仅当x -45x -4=51即x =245时取等号,故f (x )=5x -4-x -4的最小值为855.23为提高学生的数学核心素养和学习数学的兴趣,学校在高一年级开设了《数学探究与发现》选修课.在某次主题是“向量与不等式”的课上,学生甲运用平面向量的数量积知识证明了著名的柯西不等式(二维);当向量a =x 1,y 1 ,b =x 2,y 2 时,有a ⋅b 2≤a 2b 2,即x 1x 2+y 1y 2 2≤x 21+y 21 x 22+y 22 ,当且仅当x 1y 2=x 2y 1时等号成立;学生乙从这个结论出发.作一个代数变换,得到了一个新不等式:x 1x 2-y 1y 2 2≥x 21-y 21 x 22-y 22 ,当且仅当x 1y 2=x 2y 1时等号成立,并取名为“类柯西不等式”.根据前面的结论可知:当x ∈R 时,12x 2+1-2x 2+1的最小值是.【答案】-1【解析】由题意得12x 2+1-2x 2+1=12x 2+1-42x 2+2,则12x 2+1-42x 2+22x 2+1 -2x 2+2 =12x 2+1 2-22x 2+222x 2+1 2-2x 2+2 2 ≤12x 2+1⋅2x 2+1-22x 2+2⋅2x 2+22=1,当且仅当12x 2+1⋅2x 2+2=22x 2+2⋅2x 2+1,即x =0时,等号成立,即12x 2+1-42x 2+22x 2+1 -2x 2+2 ≤1,则-12x 2+1-42x 2+2 ≤1,所以12x 2+1-2x 2+1=12x 2+1-42x 2+2≥-1,最小值为-1,此时x =0.故答案为:-1.题型九:权方和不等式之整式与分式综合型24已知正数x ,y ,z 满足x +y +z =1,则x 2y +2z +y 2z +2x +z 2x +2y的最小值为【答案】13【解析】因为正数x ,y 满足x +y +z =1,所以x 2y +2z +y 2z +2x +z 2x +2y ≥x +y +z 2y +2z +z +2x +x +2y =13,当且仅当x y +2z =y z +2x =z x +2y 即x =y =z =13时取等号.故答案为:13.25权方和不等式作为基本不等式的一个变化,在求二元变量最值时有很广泛的应用,其表述如下:设a ,b ,x ,y >0,则a 2x +b 2y ≥a +b 2x +y ,当且仅当a x =b y 时等号成立.根据权方和不等式,函数f (x )=2x+91-2x 0<x <12的最小值为()A.16 B.25 C.36 D.49【答案】B【解析】因a ,b ,x ,y >0,则a 2x +b 2y ≥a +b 2x +y ,当且仅当a x =by时等号成立,又0<x <12,即1-2x >0,于是得f (x )=222x +321-2x ≥(2+3)22x +(1-2x )=25,当且仅当22x =31-2x ,即x =15时取“=”,所以函数f (x )=2x +91-2x 0<x <12的最小值为25.故选:B26已知a ,b ,c 为正实数,且满足a +4b +9c =4,则1a +1+1b +1+1c +1的最小值为.【答案】2【解析】由权方和不等式,可知1a +1+1b +1+1c +1=1a +1+44b +4+99c +9≥1+2+3 2a +1 +4+4b +9c +9=3618=2,当且仅当a =2,b =12,c =0时等号成立,所以1a +1+1b +1+1c +1的最小值为2.故答案为:2.27已知正实数x 、y 且满足x +y =1,求1x 2+8y2的最小值.【答案】27【解析】设x =cos 2α,y =sin 2α,α∈0,π2,由权方和不等式,可知1x 2+8y 2=13cos 2α 2+23sin 2α 2≥1+2 3cos 2α+sin 2α2=27,当且仅当1cos 2α=2sin 2α,即x =13,y =23时取等号,所以1x 2+8y2的最小值为27.故答案为:2728已知θ为锐角,则1sin θ+8cos θ的最小值为.【答案】55【解析】1sin θ+8cos θ=132sin2θ12+432cos2θ12≥1+4 32sin2θ+cos 2θ12=532=55当且仅当1sin 2θ=4cos 2θ即sin θ=55,cos θ=255时取“=”.故答案为:5529(2024·四川·模拟预测)“权方和不等式”是由湖南理工大学杨克昌教授于上世纪80年代初命名的.其具体内容为:设a n >0,b n >0,n ∈N *,m >0,则a m +11b m 1+a m +12b m 2+a m +13b m3+⋯+a m +1n b m n ≥a 1+a 2+a 3+⋯+a nm +1b 1+b 2+b 3+⋯+b n m,当且仅当a 1b 1=a 2b 2=a 3b 3=⋯=a n b n 时,等号成立.根据权方和不等式,若x ∈0,π2 ,当33sin x +1cos x取得最小值时,x 的值为()A.π12 B.π6 C.π3D.5π12【答案】C【解析】由题意得,sin x >0,cos x >0,则33sin x +1cos x=332sin 2x 12+132cos 2x 12≥(3+1)32sin 2x +cos 2x 12=432=8,当且仅当3sin 2x =1cos 2x ,即cos x =12时等号成立,所以x =π3.故选:C .30已知x ,y >0,1x +22y=1,则x 2+y 2的最小值是.【答案】33【解析】由题意得,1=1x +22y =132x 2 12+232y 2 12≥1+2 32x 2+y 212=33x 2+y 2.(权方和的一般形式为:a m +11b m 1+a m +12b m 2+a m +13b m 3+⋯+a m +1nb m n ≥a 1+a 2+a 3+⋯+a n m +1b 1+b 2+b 3+⋯+b n m ,a i >0,b i >0,当且仅当a i =λb i 时等号成立)当1x 2=2y 21x +22y =1 ,即x =3,y =32时,x 2+y 2取得最小值33.故答案为:3331已知x +2y +3z +4u +5v =30,求x 2+2y 2+3z 2+4u 2+5v 2的最小值为【答案】60【解析】x 2+2y 2+3z 2+4u 2+5v 2=x 21+2y 22+3z 23+4u 24+5v 25≥x +2y +3z +4u +5v 21+2+3+4+5=30215=60当且仅当x =y =z =u =v 时取等号故答案为:6032求f x =x 2-3x +2+2+3x -x 2的最大值为【答案】22【解析】f (x )=x 2-3x +2+2+3x -x 2=x 2-3x +2 121-12+2+3x -x 2 121-12≤x 2-3x +2+2+3x -x 2 121+1-12=22当且仅当x 2-3x +2=2+3x -x 2,即x =0或x =3时取等号故答案为:2 2.3过关测试33(2024·吉林白山·一模)权方和不等式作为基本不等式的一个变化,在求二元变量最值时有很广泛的应用,其表述如下:设正数a ,b ,x ,y ,满足a 2x +b 2y ≥a +b 2x +y ,当且仅当a x =by时,等号成立.则函数f x =3x +161-3x 0<x <13的最小值为()A.16 B.25 C.36 D.49【答案】D【解析】因为a ,b ,x ,y ,则a 2x +b 2y ≥a +b 2x +y ,当且仅当a x =by时等号成立,又0<x <13,即1-3x >0,于是得f x =323x +421-3x ≥3+4 23x +1-3x =49,当且仅当1x =41-3x ,即x =17时取“=”,所以函数的f x =3x +161-3x 0<x <13最小值为49.故选:D34已知a ,b ,c 均大于1,log a 3+log b 9+log c 27=12,则ab 2c 3的最小值为()A.243B.27C.81D.9【答案】B【解析】由log a 3+log b 9+log c 27=12得log a 3+2log b 3+3log c 3=12,所以log 3ab 2c 3 =log 3a +log 3b 2+log 3c 3=log 3a +2log 3b +3log 3c =112log 3a +2log 3b +3log 3c log a 3+2log b 3+3log c 3 ≥112log 3a ⋅log a 3+2log 3b ⋅2log b 3+3log 3c ⋅3log c 3 2=1121+2+3 2=3,当且仅当log 3a log a 3=log 3b log b 3=log 3clog c 3时取等,所以log 3ab 2c 3 ≥3=log 327,所以ab 2c 3≥27,即ab 2c 3的最小值为27,故选:B35(2024·福建·模拟预测)设p 、q ∈R +,x ∈0,π2,则psin x+qcos x的最小值是()A.p 35+q 3553B.p 45+q4554C.p 12+q 122 D.p 14+q144【答案】B 【解析】设f =psin x+q cos x,因为x ∈0,π2 ,则0<sin x <1且0<cos x <1,因为sin 2x +cos 2x =1,构造数字式5=1+4=1+4p f sin x +qf cos x=4p f sin x +sin 2x +4q f cos x+cos 2x≥55p f sin x4⋅sin 2x +55q f cos x4⋅cos 2x =5⋅5p 4+5q 45f4,所以,5f 4≥5p 4+5q 4=p 45+q 45,故f ≥p 45+q 4554,当且仅当p f sin x =sin 2x q f cos x =cos 2x ,即当tan x =pq25时,等号成立,因此,psin x+q cos x的最小值是p 45+q 45 54.故选:B .36由柯西不等式,当x +2y +z =4时,求x +y +z 的最大值为()A.10 B.4C.2D.10【答案】D【解析】由柯西不等式,得(x +2y +z )(4+2+4)≥(2x +2y +2z )2,当且仅当x 4=2y 2=z 4,即x =z =82,y =25时,等号成立.因为x +2y +z =4,所以(x +y +z )2≤10,则x +y +z ≤10,故x +y +z 的最大值为10.故选:D37已知3x +2y +z =3,则x 2+y 2+2z 2的取最小值时,xyz 为()A.7B.83C.3D.73【答案】B【解析】由柯西不等式得:3=3x +2y +z ≤32+22+122⋅x 2+y 2+2z 2则x 2+y 2+2z 2≥23.则根据等号成立条件知3x +2y +z =33x =2y =12z⇒x =23,y =49,z =19,所以xy z =23×4919=83故选:B38已知:a 2+b 2=1,x 2+y 2=1,则ax +by 的取值范围是()A.0,2B.-1,1C.-2,2D.0,1【答案】B【解析】利用柯西不等式,可得1≥ax +by 2,解不等式即可.解:利用柯西不等式,得a 2+b 2=1,1=a 2+b 2 x 2+y 2 ≥ax +by 2,解得-1≤ax +by ≤1.故选:B39实数x 、y 满足3x 2+4y 2=12,则z =2x +3y 的最小值是()A.-5B.-6C.3D.4【答案】A【解析】∵实数x 、y 满足3x 2+4y 2=12,∴x 24+y 23=1,∴x 24+y 2316+9 ≥2x +3y 2,-5≤2x +3y ≤5,当且仅当33x =8y 时取等号,∴z =2x +3y 的最小值是-5.故选:A .40已知a ,b >0,a +b =5,则a +1+b +3的最大值为()A.18B.9C.32D.23【答案】C【解析】由题意,a +1+b +3 2≤1+1 a +1+b +3 =18,当且仅当a +1=b +3时等号成立,∴当a =72,b =32时,故a +1+b +3的最大值为3 2.故选:C .41若实数x +2y +3z =1,则x 2+y 2+z 2的最小值为()A.14B.114C.29D.129【答案】B【解析】根据柯西不等式:x 2+y 2+z 2 1+4+9 ≥2+2y +3z =1,即x 2+y 2+z 2≥114,当且仅当x =114,y =17,z =314时等号成立.故选:B .42函数y =x 2-2x +3+x 2-6x +14的最小值是A.10B.10+1C.11+210D.210【答案】B【解析】y =x 2-2x +3+x 2-6x +14=(x -1)2+2+(3-x )2+5根据柯西不等式,得y 2=(x -1)2+2+(3-x )2+5+2(x -1)2+2 (3-x )2+5 ≥(x -1)2+2+(3-x )2+5+2[(x -1)(3-x )+10]=[(x -1)+(3-x )]2+2+5+210=11+210当且仅当x -13-x =25,即x =210-13时等号成立.此时,y min =11+210=10+1 2=10+1,故选:B .43若x 2+4y 2+9z 2=4,则x +y +3z 的最大值()A.3 B.6C.9D.27【答案】A【解析】根据柯西不等式可得:(x +2y +3z )2≤(x 2+4y 2+9z 2)12+122+12 =4×94=9∴x +y +3z ≤3,当且仅当x =4y =3z ,即x =43,y =13,z =49时,等号成立.故选:A .44函数y =x -5+26-x 的最大值是()A.3B.5C.3D.5【答案】B【解析】利用柯西不等式求解.因为y =x -5+26-x ≤x -5 2+6-x 212+22 =5当且仅当x -5=6-x 2,即x =265时,取等号.故选:B45已知a 21+a 22+⋯+a 2n =1,x 21+x 22+⋯+x 2n =1,则a 1x 1+a 2x 2+⋯+a n x n 的最大值是()A.1B.2C.3D.4【答案】A【解析】利用柯西不等式求解.a 1x 1+a 2x 2+⋯+a n x n 2≤a 21+a 22+⋯+a 2n x 21+x 22+⋯+x 2n =1×1=1,当且仅当x 1a 1=x 2a 2=⋯=xn a n=1时取等号.∴a 1x 1+a 2x 2+⋯+a n x n 的最大值是1故选:A46函数f x =1-cos2x +cos x ,则f x 的最大值是()A.3B.2C.1D.2【答案】A【解析】将f x 化为f x =2sin 2x +cos x ,利用柯西不等式即可得出答案.因为f x =1-cos2x +cos x所以f x =2sin 2x +cos x ≤2+1 sin 2x +cos 2x=3当且仅当cos x =33时取等号.故选:A47(2024·高三·河北衡水·期末)已知a ,b ,c >0,且a +b +c =1,则3a +1+3b +1+3c +1的最大值为()A.3B.32C.18D.9【答案】B【解析】由柯西不等式得:3a +1+3b +1+3c +1 2≤12+12+12 3a +1 2+3b +1 2+3c +1 2=3×3a +b +c +3 =18,所以3a +1+3b +1+3c +1≤32,当且仅当a =b =c =13时,等号成立,故选B .48已知x ,y 均为正数,且x +y =2,则x +4xy +4y 的最大值是()A.8 B.9C.10D.11【答案】C【解析】x +4xy +4y =x +2y 2≤x +2y 2+2x -y 2=5x +y =10当且仅当2x =y ,即x =25,y =85时,等式成立.故选:C49(2024·广西南宁·二模)设实数a ,b ,c ,d ,e 满足关系:a +b +c +d +e =8,a 2+b 2+c 2+d 2+e 2=16,则实数e 的最大值为A.2 B.165C.3D.25【答案】B【解析】根据柯西不等式知:4(a 2+b 2+c 2+d 2)=(1+1+1+1)(a 2+b 2+c 2+d 2)≥(a +b +c +d )2,当且仅当a =b =c =d 时等号成立,所以4(16-e 2)≥(8-e )2,即64-4e 2≥64-16e +e 2,所以5e 2-16e ≤0,解得0≤e ≤165,即实数e 的最大值为165.故选:B .50(2024·山西·二模)柯西不等式是数学家柯西(Cauchy )在研究数学分析中的“流数”问题时得到的一个重要不等式,而柯西不等式的二维形式是同学们可以利用向量工具得到的:已知向量a=x 1,y 1 ,b =x 2,y 2 ,由a ⋅b ≤a b 得到x 1x 2+y 1y 2 2≤x 21+y 21 x 22+y 22 ,当且仅当x 1y 2=x 2y 1时取等号.现已知a ≥0,b ≥0,a +b =9,则2a +4+b +1的最大值为.【答案】6【解析】令x 1=2,y 1=1,x 2=a +2,y 2=b +1,又a ≥0,b ≥0,a +b =9,所以2a +4+b +1 2≤2+1 a +2+b +1 =3×12=36,所以2a +4+b +1≤6,当且仅当2⋅b +1=a +2,即a =6,b =3时取等号,所以2a +4+b +1的最大值为6.故答案为:651若不等式x +y ≤k 5x +y 对任意正实数x ,y 都成立,则实数k 的最小值为.【答案】305/1530【解析】由柯西不等式的变形可知5x +y =x215+y21≥x +y15+1,整理得x +y5x +y≤305,当且仅当x15=y1,即y=25x时等号成立,则k的最小值为30 5.故答案为:30 552已知x,y,z>0,且x+y+z=9,则x2+4y2+z2的最小值为.【答案】36【解析】由柯西不等式可得x2+4y2+z212+122+12≥(x+y+z)2,所以94x2+4y2+z2≥81,即x2+4y2+z2≥36,当且仅当x1=2y12=z1即x=4y=z也即x=4,y=1,z=4时取得等号,故答案为:36.53(2024·高三·江苏苏州·开学考试)设角α、β均为锐角,则sinα+sinβ+cosα+β的范围是.【答案】1,3 2【解析】因为角α、β均为锐角,所以sinα,cosα,sinβ,cosβ的范围均为0,1,所以sinα+β=sinαcosβ+cosαsinβ<sinα+sinβ,所以sinα+sinβ+cosα+β>sinα+β+cosα+β=2sinα+β+π4因为0<α<π2,0<β<π2,π4<α+β+π4<3π4,所以2sinα+β+π4>2×22=1,sinα+sinβ+cosα+β=sinα+sinβ+cosαcosβ-sinαsinβ=1-sinβsinα+cosαcosβ+sinβ≤1-sinβ2+cos2β+sinβ=21-sinβ+sinβ,当且仅当1-sinβcosα=sinαcosβ时取等,令1-sinβ=t,t∈0,1,sinβ=1-t2,所以=21-sinβ+sinβ=2t+1-t2=-t-2 22+32≤32.则sinα+sinβ+cosα+β的范围是:1,3 2.故答案为:1,3 254在锐角△ABC中,tan A tan B+2tan B tan C+3tan C tan A的最小值是.【答案】6+22+23+26【解析】记题中代数式为M,我们熟知三角形中的三角恒等式:cot A cot B+cot B cot C+cot C cot A= 1,于是M=tan A tan B+2tan B tan C+3tan C tan A≥(1+2+3)2cot A cot B+cot B cot C+cot C cot A=(1+2+3)2=6+22+23+26,等号当tan A tan B =2tan B tan C =3tan C tan A ⇒tan A :tan B :tan C =2:3:1时取得,因此所求最小值为6+22+23+26故答案为:6+22+23+2655函数f (x )=2020-x +x -2010的最大值与最小值之积为.【答案】102【解析】函数f (x )的定义域为[2010,2020],一方面,2020-x +x -2010≥(2020-x )+(x -2010)=10,等号当x =2010,2020时取得;另一方面,2020-x +x -2010≤2⋅(2020-x )+(x -2010)=20,当且仅当x =2015时等号成立,于是最大值为20,最小值为10,所求乘积为102.故答案为:10 2.56(2024·高三·天津南开·期中)已知正实数a ,b 满足a +b =1,则1a +2a b +1的最小值为.【答案】52/2.5【解析】由题设,a =1-b ,则1a +2a b +1=1a +2-2b b +1=1a +4b +1-2,又(a +b +1)1a +4b +1 =a ⋅1a +b +1⋅2b +12=9,∴1a +4b +1≥92,当且仅当a =b +12时等号成立,∴1a +2a b +1≥92-2=52,当且仅当a =b +12=23时等号成立.∴1a +2a b +1的最小值为52.故答案为:52.57已知a >1,b >1,则a 2b -1+b 2a -1的最小值是.【答案】8【解析】令a +b -2=t >0,则a 2b -1+b 2a -1≥a +b 2a +b -2=t +2 2t =t +4t +4≥24+4=8,当a +b -2=2a b -1=b a -1时,即a =2,b =2时,两个等号同时成立,原式取得最小值8.故答案为:858已知x >0,y >0,且12x +y +1y +1=1,则x +2y 的最小值为.【答案】3+12【解析】解法一:设x +2y =λ1(2x +y )+λ2(y +1)+t ,可解得λ1=12,λ2=32,t =-32,从而x +2y =12(2x +y )+32(y +1)-32=12(2x +y )+32(y +1)12x +y +1y +1 -32≥3+12,当且仅当x =12+33,y =33时取等号.故答案为:3+12.解法二:考虑直接使用柯西不等式的特殊形式,即权方和不等式:a 2x +b 2y ≥(a +b )2x +y,1=12x +y +33y +3≥(1+3)22x +4y +3⇒2x +4y +3≥4+23,所以x +2y ≥3+12,当且仅当x =12+33,y =33时取等号.故答案为:3+12.。

柯西不等式(原始版)题型分类

柯西不等式(原始版)题型分类

柯西不等式(原始版)的习题分类 柯西不等式已经成为高考当中的新贵,去年全国卷II 的选修4-5不等式选讲,已经出现了柯西不等式命题,因此对柯西不等式几种典型习题加以分类,有助于知识的掌握。

一、柯西不等式(原始版)1、()()()2221122212221b a b a b b a a +≥++,当且仅当向量()21,a a a = ,()21,b b b = 同向时候成立,如果0,21≠b b 时,那么当且仅当2211b a b a =时成立。

2、(21a +3、12∑=n k k a 1、次⨯1例1解析一定是a 1b ,这样11=+b a 4。

例2、若⎭⎝解析:可以直接应用柯西不等式 ()91111112=⎪⎪⎭⎫ ⎝⎛⋅+⋅+⋅≥++⎪⎭⎫ ⎝⎛++c c b b a ac b a c b a ,当且仅当1===c b a 时等号成立。

练习:1、已知0,,>c b a ,证明:c b a c b a ++≥++9111。

2、已知0,,>c b a ,证明:()c b a a c c b b a ++≥+++++29111。

提示:()()()()a c c b b a c b a +++++=++2。

3、已知0,,>c b a ,并且1=++c b a ,求ac b c b a b a c +++++的最小值。

提示:b a b a c +=++11;c b c b a +=++11;ac a c b +=++11。

4:已知c b a >>,证明c a c b b a -≥-+-411。

提示:设b a x -=,c b y -=,则y x c a +=-,且0,>y x 。

例3、已知1422=+y x ,求y x +的取值范围。

解析21,k k 2x ,22k y =⋅所以24x ⎝⎛例4、分析有12k x ⋅解:(2x +。

例5解析:(x 当且仅当12121z y x ==,即51,52===y z x ,或时等号成立,所以2222z y x ++的最小值为52。

十项全能之柯西不等式

十项全能之柯西不等式

第三讲柯西不等式【思维导图】【自主学习导航】本节是人教A版选修4-5不等式选讲的内容,是学习平均不等式后的又一经典不等式,学习本节一方面为可以巩固对不等式的基本证明方法的掌握,也为学习三角不等式,排序不等式打下基础。

运用柯西不等式可解决比较典型的数学问题,如:证明不等式、求最值等。

【目标定位】理解柯西不等式的二维形式和向量形式能运用柯西不等式的二维形式解决一些简单问题了解柯西的主要贡献,贯穿数学史教育【名师点拨】本节不等式的证明当中,也运用了之前所学的比较法、分析法、综合法、反证法、放缩法等,注意每种方法的特点、使用范围、及解题格式。

通过探索柯西不等式的特点体会其在解不等式题型的优越性。

向量的数量积的这个性质正是柯西不等式的向量形式,是本节内容的“知识生长点”,是学生思维的“最近发展区”。

【典例析悟】类型一:求函数或表达式的最值。

例1:求函数51102y x x =-+-的最大值分析:利用不等式解决极值问题,通常设法在不等式一边得到一个常数,并寻找不等式取等号的条件,观察此题形式是ac+bd ,就能利用柯西不等式求其最大值。

解析:的定义域是[1,5],且y>0. 51102y x x =-+- ≤5•1x -+12727x ==22225(2)(1)(5)x x +⨯-+- =27463⨯=当且仅当2155x x ∙-=∙-时,等号成立,即12727x =时函数取得最大值63 变式训练1 .若实数,,x y z 满足23()x y z a a ++=为常数,则222x y z ++的最小值为∵22222222(123)()(23)x y z x y z a ++++≥++= 即222214()x y z a ++≥,∴222214a x y z ++≥答案:214a变式训练2 求函数3546y x x =-+-的最大值,∵函数的定义域为[5,6],且0y >3546y x x =⨯-+⨯-222234(5)(6)5x x ≤+⨯-+-= ∴max 5y =变式训练3 若,,x y z 是正数,且满足()1xyz x y z ++=,则()()x y y z ++的最小值为______∵2()()()2()2x y y z xy y yz zxy x y z zxy x y z zx ++=+++=+++≥++=类型二:证明等式或不等式例2:求证:点P(x 0,y 0)到直线Ax+By+C=0的距离d=2200||BA C By Ax +++.分析:设任意点,从一般到特殊。

柯西不等式6个基本公式和例题

柯西不等式6个基本公式和例题

柯西不等式是一个重要的数学不等式,广泛应用于数学分析、概率论和其他领域。

它由法国数学家奥古斯丁·路易·柯西在1821年提出,是数学分析中的一项重要成果。

柯西不等式在实际问题中具有重要的应用价值,特别是在概率论和统计学中的应用,能够帮助人们更好地理解和解决实际问题。

一、柯西不等式的基本原理1. 柯西不等式是数学分析中的一个重要定理,它描述了内积空间中向量的长度和夹角之间的关系。

具体来说,对于内积空间中的任意两个向量a和b,柯西不等式可以表达为:|⟨a, b⟨| ≤ ||a|| ||b||2. 其中,⟨a, b⟨表示向量a和b的内积(或称点积),||a||和||b||分别表示向量a和b的长度。

柯西不等式告诉我们,两个向量的内积的绝对值不会大于它们长度的乘积。

二、柯西不等式的六个基本公式3. 柯西不等式有许多不同的形式和推广,但最基本的形式是针对实数向量空间的柯西不等式。

具体来说,对于实数向量空间中的任意两个向量a=(a1, a2, ..., an)和b=(b1, b2, ..., bn),柯西不等式可以表达为:|a1b1 + a2b2 + ... + anbn| ≤ √(a1^2 + a2^2 + ... + an^2)√(b1^2 + b2^2 + ... + bn^2)4. 在复数向量空间中,柯西不等式的形式稍有不同。

对于复数向量空间中的任意两个向量a=(a1, a2, ..., an)和b=(b1, b2, ..., bn),柯西不等式可以表达为:|a1b1* + a2b2* + ... + anbn*| ≤ √(|a1|^2 + |a2|^2 + ... + |an|^2) √(|b1|^2 + |b2|^2 + ... + |bn|^2)5. 在积分的应用中,柯西不等式的形式也有所不同。

对于连续函数f和g,柯西不等式可以表达为:|∫(f*g)dx| ≤ √(∫f^2 dx) √(∫g^2 dx)6. 这些是柯西不等式的基本形式,它们描述了向量的长度和夹角之间的关系,以及函数的积分之间的关系。

柯西不等式6个基本公式和例题

柯西不等式6个基本公式和例题

柯西不等式6个基本公式和例题柯西不等式,也称为柯西-施瓦茨不等式,是线性代数中非常重要的不等式之一,广泛应用于数学、物理学和工程学等领域。

它是由法国数学家奥古斯特·柯西在1829年发现的,之后由德国数学家赫尔曼·施瓦茨得到了更加一般化的形式。

柯西不等式的基本形式是: 对于任意的实数 a1,a2,...,an 和b1,b2,...,bn,有:(a1*b1 + a2*b2 + ... + an*bn)^2 ≤ (a1^2 + a2^2 + ... + an^2)(b1^2 + b2^2 + ... + bn^2)换句话说,对于具有有限个分量的两个向量a和b,它们的内积的平方不会超过它们的平方长度之积。

下面是柯西不等式的6个基本公式和相关参考内容的例子:公式1: (a1*b1 + a2*b2)^2 ≤ (a1^2 + a2^2)(b1^2 + b2^2)这是柯西不等式最基本形式之一,适用于两个二维向量的情况。

例如:对于向量a=(2,3)和向量b=(4,1),根据柯西不等式,有:(2*4 + 3*1)^2 ≤ (2^2 + 3^2)(4^2 + 1^2),即(11)^2 ≤ (13)(17)。

经计算得到121≤221,结论成立。

公式2: (a1^2 + a2^2)^2 ≤ (1^2 + 1^2)(a1^4 + a2^4)这是柯西不等式在平方项上的进一步推广形式。

该式可通过公式1推导得到。

例如:对于任意的实数a1和a2,根据柯西不等式,有:(a1^2 + a2^2)^2 ≤ (1^2 + 1^2)(a1^4 + a2^4)。

公式3: (a1*b1 + a2*b2 + a3*b3)^2 ≤ (a1^2 + a2^2 + a3^2)(b1^2 + b2^2 + b3^2)柯西不等式的三维形式。

例如:对于向量a=(1,2,3)和向量b=(4,5,6),根据柯西不等式,有:(1*4 + 2*5 + 3*6)^2 ≤ (1^2 + 2^2 + 3^2)(4^2 + 5^2 + 6^2),即(32)^2 ≤ (14)(77),经计算得到1024≤1078,结论成立。

柯西不等式习题

柯西不等式习题

一、二维形式的柯西不等式 二、二维形式的柯西不等式的变式 三、二维形式的柯西不等式的向量形式借用一句革命口号说:有条件要用;没有条件,创造条件也要用。

比如说吧,对a^2 + b^2 + c^2,并不是不等式的形状,但变成(1/3) * (1^2 + 1^2 + 1^2) * (a^2 + b^2 + c^2)就可以用柯西不等式了。

基本方法 (1)巧拆常数:例1:设a 、b 、c 为正数且各不相等。

求证:cb a ac c b b a ++>+++++9222 (2)重新安排某些项的次序:例2:a 、b 为非负数,a +b =1,+∈R x x 21,求证:212121))((x x ax bx bx ax ≥++ (3)改变结构:例3、若a >b >c 求证:ca cb b a -≥-+-411 (4)添项:例4:+∈R c b a ,,求证:23≥+++++b a c a c b c b a 【1】、设6 ),2,1,2(=-=b a,则b a ⋅之最小值为________;此时=b ________。

答案:-18; )4,2,4(-- 解析:b a b a ≤⋅ ∴18≤⋅b a∴1818≤⋅≤-b ab a⋅之最小值为-18,此时)4,2,4(2--=-=a b 【2】 设a = (1,0,- 2),b = (x ,y ,z),若x 2 + y 2 + z 2= 16,则a b 的最大值为 。

【解】∵ a = (1,0,- 2),b = (x ,y ,z) ∴ a .b= x - 2z由柯西不等式[12 + 0 + (- 2)2](x 2 + y 2 + z 2) ≥ (x + 0 - 2z)2⇒ 5 ⨯ 16 ≥ (x - 2z)2 ⇒ - 45≤ x ≤ 45⇒ - 45≤ a .b ≤ 45,故a .b的最大值为45【3】空间二向量(1,2,3)a =,(,,)b x y z =,已知56b =,则(1)a b ⋅的最大值为多少?(2)此时b =? Ans :(1) 28:(2) (2,4,6)【4】设a 、b 、c 为正数,求4936()()a b c a b c++++的最小值。

高考数学复习:柯西不等式

高考数学复习:柯西不等式

1 )2 (1 a1
n2 )2 a1 (n2 1)2
n
n
n
n
2、 a,b, c, d R ,且满足 a b c d 3 , a2 2b2 3c2 6d 2 5 ,求证:1 a 2 证明:由柯西不等式有 5 a2 (1 1 1)(2b2 3c2 6d 2 ) (b c d )2 (3 a)2
1 9
证明:1
a2 (
a)2 ab ac ad bc bd cd 2
1 a2 4 a2
而 ab ac ad bc bd cd 66 (abcd )3 6 abcd 有 6 abcd 2 abcd 1 9
12、已知: a,b, c 0 ,且 1 1 1 1求证: a b c ab bc ca a b1 bc 1 c a 1
证明:由柯西不等式有
(a
b
1)(a
b
c2
)
(a
b
cБайду номын сангаас2

a
1 b
1
a (a
b b
c2 c)2
故有
a (a
b b
c2 c)2
1
2 a
a2
a2
2 bc
a
bc
《每周一讲》
13、已知: x, y, z 0 ,且 x y z xy yz zx ,
16
64
4
4
6、已知: a,b, c 0 ,求证: a b c 3 bc ca ab 2
证明: LHS a2 b2 c2 (a b c)2 3(ab bc ca) 3 ab ac bc ab ac bc 2(ab bc ca) 2(ab bc ca) 2
7、已知 a,b, c, d 0 ,且满足 ab bc cd da 1 ,求证:

柯西不等式专题课件高三数学一轮复习

柯西不等式专题课件高三数学一轮复习
4b+1+ 4c+1的最大值为 21.
方法总结 1.高幂因式在柯西不等式里位于不等号较大的一侧,所以低幂部分有 最大值.这里的高幂、低幂是相对的,比如二次相对于一次是高幂,而 一次相对于根式也算高幂. 2.低幂因式在柯西不等式里位于不等号较小的一侧,所以高幂部分有 最小值.
跟踪训练
6.已知 a,b∈R+,且 a+b=1,则( 4a+1+ 4b+1)2 的最大值是 ____1_2_____.
[证明] 构造二次函数 f(x)=(a1x+b1)2+(a2x+b2)2+…+(anx+bn)2
=(a21+a22+…+a2n)x2+2(a1b1+a2b2+…+anbn)x+(b21+b22+…+b2n), 由构造知 f(x)≥0 恒成立, 又∵a21+a22+…+a2n≥0, ∴Δ=4(a1b1+a2b2+…+anbn)2-4(a21+a22+…+a2n)(b21+b22+…+b2n)≤0, 即(a1b1+a2b2+…+anbn)2≤(a21+a22+…+a2n)(b21+b22+…+b2n), 当且仅当 aix+bi=0(i=1,2…n)即ab11=ab22=…=abnn时等号成立.
题型三 一般形式的柯西不等式及证明 柯西不等式:设 a1,a2,a3,…,an,b1,b2,b3,…,bn 是实数,则 (a21+a22+a23+…+a2n)·(b21+b22+b23+…+b2n)≥(a1b1+a2b2+…+anbn)2, 当且仅当 bi=0(i=1,2,3,…,n)或存在一个数 k,使得 ai=kbi(i=1, 2,3,…,n)时,等号成立. 例3 利用函数知识证明柯西不等式.
[证明] 由柯西不等式得 a2+b2· 12+12≥a+b, 即 2 a2+b2≥a+b. 同理 2 b2+c2≥b+c, 2 a2+c2≥a+c. 将上面三个同向不等式相加得

高中数学柯西不等式试题汇编解析

高中数学柯西不等式试题汇编解析

M
1 2a2 2
5 2 12
b2
的最小值.
5.(2017
年四川高联预赛)已知在
△ABC
中,AB
BC
3CA AB
,则
AC AB
BC
的最大值是( A. 5
2
). B. 3
C.2
D. 5 .
6.(2017 年福建高联预赛)函数 f x 2x 7 12 x 44 x 的最大值
为_______.
abc
参考答案:6.
解析:由题可得, a2 2b 12 3c 2 2 3 ,
由柯西不等式可得,(微信公众号:乐思数学研究)
a2 2b 12 3c 2 2 12 +12 +12 a+2b 1+3c 2 2 ,
即 a+2b+3c 32 9 .因而, a+2b+3c 6 .
再由柯西不等式可得,
2
2
3
因而 f x 的最大值为 2 3 .
4 .( 2018 年 湖 北 高 联 预 赛 ) 已 知 正 数 a, b 满 足 ab 1 , 求
M
1 2a2 2
5 2 12
b2
的最小值.
参考答案: 5 34 .
12
解析:待定系数法,引入参数 , .
由柯西不等式,可得,(微信公众号:乐思数学研究)
2a2 1
1 2
2
a
2

b2
5 12
2
1 2
b
5 12
2

因而
1 2a2 2
5 12
2
b2
a
b 5
2 12 .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

柯西不等式(原始版)的习题分类
柯西不等式已经成为高考当中的新贵,去年全国卷II 的选修4-5不等式选讲,已经出现了柯西不等式命题,因此对柯西不等式几种典型习题加以分类,有助于知识的掌握。

一、柯西不等式(原始版)
1、()()()2
22112
22
12
22
1b a b a b b a a +≥++,当且仅当向量()21,a a a = ,()21,b b b = 同向时候成立,如果0,21≠b b 时,那么当且仅当2
211b a b a =时成立。

2、()()
()2332211232221232221b a b a b a b b b a a a ++≥++++,当且仅当321321::::b b b a a a =时等号成立。

3、211212⎪⎭
⎫ ⎝⎛≥⋅∑∑∑===n k k k n k k n k k b a b a ,当且仅当n n b b b b a a a a :...::::...:::321321=时等号成立。

由以上柯西不等式(原始版)来看,柯西不等式是齐次,不等式左右两边的式子的次数相等,因此做题的时候可以抓住这个关键进行应用。

二、常见题型
1、()常数次次≥-⨯11。

例1、已知1=+b a ,且0,>b a ,求b
a 11+的最小值。

解析:这道题的方法非常多,利用二元的均值定理可以求解,但是应用柯西不等式更加方便。

考虑最后求解的形式一定是k b
a ≥+11,k 为某个常数,那么不等式左边1-次,右边为0次,并不相等,所以左边要乘以
b a +,这样左边变成了()⎪⎭⎫ ⎝
⎛++b a b a 11,次数就成为了0,就可以应用柯西不等式。

()41111112=⎪⎪⎭
⎫ ⎝⎛⋅+⋅≥+⎪⎭⎫ ⎝⎛+=+b b a a b a b a b a ,当且仅当21==b a 时等号成立,所以b a 11+的最小值为4。

显然以上对例1的求解,柯西不等式比均值定理更为简单,有些优势,而且柯西不等式的应用范围更加广泛。

例2、若0,,>c b a ,求证()9111≥++⎪⎭⎫ ⎝
⎛++c b a c b a 。

解析:可以直接应用柯西不等式 ()91111112=⎪⎪⎭
⎫ ⎝⎛⋅+⋅+⋅≥++⎪⎭⎫ ⎝⎛++c c b b a a c b a c b a ,当且仅当1===c b a 时等号成立。

练习:
1、已知0,,>c b a ,证明:
c b a c b a ++≥++9111。

2、已知0,,>c b a ,证明:()
c b a a c c b b a ++≥+++++29111。

提示:()()()()a c c b b a c b a +++++=++2。

3、已知0,,>c b a ,并且1=++c b a ,求
a
c b c b a b a c +++++的最小值。

提示:b a b a c +=++11;c b c b a +=++11;a
c a c b +=++11。

4:已知c b a >>,证明c a c b b a -≥-+-411。

提示:设b a x -=,c b y -=,则y x c a +=-,且0,>y x 。

2、次常数次12≥⨯
例3、已知14
22
=+y x ,求y x +的取值范围。

解析:这道题可以用椭圆求切线的方法,也可以利用参数方程,但是利用柯西不等式会更简单。

这类问题是转化形如()()221224y x k k y x +≥+⎪⎪⎭
⎫ ⎝⎛+(21,k k 为某两个常数)的柯西不等式进行求解,关键是常数21,k k 的确定。

观察柯西不等式()()()22211222
1222
1b a b a b b a a +≥++,有()222i i i i b a b a =,2,1=i ,相应的2124
x k x =⋅,222y k y =⋅,易得1,421==k k 。

所以()()222144y x y x +≥+⎪⎪⎭
⎫ ⎝⎛+,即()251y x +≥⨯,所以55≤+≤-y x 。

例4、已知1222=++z y x ,求z y x 32++的取值范围。

分析:需要转化为形如()()()2
32122232z y x k k k z y x ++≥++++的柯西不等式, 有212x k x =⋅,2224y k y =⋅,2329z k z =⋅,解得9,4,1321===k k k 。

解:()
()()222232941z y x z y x ++≥++++,即()13322≤++z y x ,所以133213≤++≤-z y x 。

例5、已知1=++z y x ,求2222z y x ++的最小值。

解析:()()222221211z y x z y x ++⎪⎭⎫ ⎝⎛
++≤++,即()
2222251z y x ++≤,所以522222≥++z y x , 当且仅当1
2
121z y x ==,即51,52===y z x ,或时等号成立,所以2222z y x ++的最小值为52。

例6、求函数x x y 241-++=
的最大值。

解析:设x b x a -=+=2,1,则322=+b a (一定要是其平方和为常数),则b a y 2+=,由柯西不等式,()()()222221b a b a +≥++,即233y ≥⨯,所以3≤y ,当且仅当2
1b a =,即0=x 时等号成立。

练习:
1、已知22=++z y x ,求22223z y x ++的最小值。

2、如果1=++z y x ,则3
1222≥++z y x 。

3、求函数34212++-=x x y 的最大值。

相关文档
最新文档