六年级数学比的意义和基本性质练习题

合集下载

六年级数学上册《比的意义和基本性质》习题

六年级数学上册《比的意义和基本性质》习题

六年级数学上册《比的意义和基本性质》习题一、想一想,填一填。

1、()叫做两个数的比。

2.将比率的前后项乘以()或除以()(0除外),再除以比率()。

3、比的前项除以1/5,要使比值不变,比的后项应该()。

4、()∶1/12=3/5,4∶()=0.5。

5、4÷5=()/15=28∶()=()∶20=()(小数)。

二、请当裁判。

1、比的前项和后项同时乘一个相同的数,比值不变。

()2.如果a:B=8:3,那么a=8,B=3。

()3、爸爸和小明的年龄比是7∶2,3年后他们的年龄比不变。

()4.圆圆身高1米,母亲身高162厘米,母亲与圆圆身高之比为162:1。

()5、乙队在一场球赛中以4∶0的比分大胜甲队,这里的4∶0不是比。

()三、按号码就座。

1、a∶b=4/7,如果比的前项和后项同时除以3,比值是()。

a、 4/7第1页b、 4/21c、12/72.在下列比率中,等于0.5:0.6的比率为()。

a、1/5∶1/6b、1/2∶3/5c、25∶263.如果比率是最简单的整数比率,则比率的第一项和最后一项必须为()。

a、素数b、互质数c、整数4.如果在前一项3:7的基础上加9,为保持其比例不变,后一项应为()。

a、加上9b、加21C减去9四、求比值。

0.75∶1.52/5∶1/62∶1.84∶1/22/3小时:45分钟第2页0.3平方米:9平方分米五、把下面各比化成最简单的整数比。

12∶210.8∶2.45/8∶15/160.5∶0.751/8千克:500克15秒:1/3分钟六、请按要求写比。

1.a是B的8/17,B和a的比率是()。

2、在97克水里放入3克盐,盐与水的比是(),比值是();水与盐水的比是(),比值是()。

3、一个工程小组在四天内建造2022米的道路。

工程团队建造的总米数与道路施工时间的比率为(),比率为(),代表()。

七、走进生活,解决问题。

一.一批服装可由甲方单独在30天内完成,由乙方单独在20天内完成。

小学六年级数学上册练习题第四单元-比

小学六年级数学上册练习题第四单元-比

小学六年级数学上册练习题第四单元-比第一课时 比的意义班级: 姓名:巩固达标 一、填空。

(1)在4:7=中,( )是比的前项,( )是比的后项,比值是( )。

(2)43=( )÷( ) =( ):( )(3)人体血液中,红细胞的平均寿命是120天,血小板的平均寿命是10天。

红细胞与血小板的寿命的比是( )。

(4)--辆“复兴号”高铁3小时行驶了1050km,这列高铁行驶的路程和时间的比是( ) :( ),比值是( ),比值表示( )。

(5)一条公路已修了全长的125,已修的和未修的比是( ),未修的和全长的比是( )。

(6)比与分数、除法的联系。

( )(7) 甲数是乙数的4倍,甲、乙两数的比是( ),乙数与两数和的比是( )。

(8)在100克水中加入10克盐,盐和盐水的比是( )。

二、判断。

(对的画“√”,错的画“X”)(1)在今年一场足球比赛中,法国1:0战胜比利时,所以比的后项为0。

( )(2) 小明的身高125cm,弟弟的身高是1m,小明和弟弟身高的比是125:1。

( )三、求下面各比的比值。

0.36 : 0.45 1.5t:400kg 32:9420分: 0.25时能力拓展应用题。

1、小明体重40千克,相当于小军的910,小华的体重是小军的65。

小华体重多少千克?2、修一条工路,第一天修了全长的,第二天修的比第一天的少50米,两周共修了160米,这条路一共有多长?3、学校有彩色粉笔48盒,比白粉笔的少3盒,学校有白粉笔多少盒?4、一满杯糖水正好是200 g,其中含糖20g 。

从杯中倒出20g 糖水后,再往杯里加满水,这时杯子里的糖与水的质量比是多少?第二课时 比的基本性质班级: 姓名:巩固达标 1、填空(1).填表后再说一说比与分数、除法有怎样的关系。

(2)如果把3: 7的前项加上12,要使比值不变,后项应加上( )。

(3)12:16=( ):4=18÷( )=( ):0.8=32(4)甲数的43等于乙数的32,那么甲、乙两数的最简整数比是( ):( )。

六年级上册数学试题比的意义和基本性质

六年级上册数学试题比的意义和基本性质

六年级上册数学试题比的意义和基本性质【知识点】1、两个数的比表示两个数相除2、在两个数的比中,比号前面的叫做比的前项,比前面的叫做比的后项,比的前项除以后项所得的商叫做比值3、比与比值的关系:比表示两个数量的相除关系,比值表示一个详细的数〔如分数和整数〕4、比的基本性质:比的前项和后项同时乘以或许除以一个相反的数比值不变5、最简整数比:比的前项和后项都是整数并且两者的最大公因数为1留意:比的后项不能为0【例题解说】例题1、两个数之间的数量关系可以用比来表示15比10 写作: 比值:20比14 写作: 比值:变式1、求下面各式的比值10:5 4:23 5.0:3.0 例题2、两个不同单位的数之间的比化简比4km:500m 5kg :1吨 600ml :5L变式2、40cm:1.2m 57分:2小时 780cm:24m例题3、分数化简比41:52 61:23 0.78:2 变式3、56:94 321:43 20:9.6 例题4、三个数的连比:单位1,中间量,设数甲数是乙数的103,乙数是丙数的94,求这三个数的连比? 变式4、奶糖是水果糖的51,水果糖是泡泡糖的61,求这三种糖果的连比? 例题5、处置实践效果两个盒子中都装有水果糖和奶糖,且两盒糖果的质量是相等,第一个盒子中的水果糖是奶糖的23,第二个盒子里的水果糖是奶糖的51,假定把这两个盒子里的糖果混合在一同,那么水果糖和奶糖的质量比是多少?变式5、在两个相反的瓶子里装满盐水,第一个瓶子中盐和水的比是1:8,第二个瓶子中的盐和水的比是3:15,把两个瓶子的盐水混合在一同,这时盐和盐水的质量比是多少?【基础达标】1、求比值2.0:52 1.5:35 43:85 2、判别(1)比的后项不能够为0 〔 〕(2)比值只能用分数表示 〔 〕(3)一场球赛的比分是2:0,所以比的后项可以是0 〔 〕(4)从学校到图书馆,甲用了7分钟,乙用了6分钟,甲速:乙速=7:6 〔 〕(5)2kg:500g 的比值是2501 〔 〕 3、大齿轮有100个齿,每分钟转25转,小齿轮有25个齿,每分钟转100转(1)写出大齿轮和小齿轮齿数的比,并求出比值(2)写出大齿轮和小齿轮每分钟转数的比,并求出比值4、假定甲比乙多41,那么甲:乙=〔 〕:〔 〕 5、假定a 是b 的四倍,c 是b 的51,那么a:b:c=〔 〕:〔 〕:〔 〕 【课堂稳固】1、化简比54:81 2.0:45.0 1.2米:10分米 1.2:532:65 41千米:60米 2、判别 (1)化简比就是求两个数的比值 〔 〕(2)最复杂的整数比就是比的前项和后项都是整数,并且这两个数的只要公因数1 〔 〕(3)把4:5的前项加上8,要使比值不变,后项也要加上8 〔 〕(4)平行四边形的底和高的比是5:7,说明平行四边形的底是5cm ,高是7cm 〔 〕(5)甲绳长1m ,乙绳长85cm ,甲绳长和乙绳长的比是1:85 〔 〕3、把下面的格比化成后项是100的比(1)一杯盐水,盐和盐水的质量比是9:25(2)某公司一月份的销量和二月份的销量比是178:2004、如以下图,两个长方形堆叠在一同,甲长方形没有堆叠的局部面积为S ,相当于甲长方形面积的65;乙长方形没有堆叠的局部的面积为B ,相当于乙长方形的面积的87,那么S 与B 的面积比是多少?【比的运用知识点】1、平均分法:总份数 总数量 每份是多少 各局部区分的数量举例2、转化法:总份数为单位1,各局部的量是分子,占总份数的几分之几,总数量乘以分率 举例规范量=比竞赛 分率。

六年级数学下册《比例的意义和性质》练习题(附答案解析)

六年级数学下册《比例的意义和性质》练习题(附答案解析)

六年级数学下册《比例的意义和性质》练习题(附答案解析)学校:___________姓名:___________班级:____________一、选择题1.能与11:34组成比例的是()。

A.4∶3B.3∶4C.1:43D.1:342.下面每组中的四个数,不能组成比例的是()。

A.2,0.25,3,0.375B.18,8,5.4,24C.5452,,,3767D.30,25,6,1253.下面能与3∶8组成比例的是()。

A.8∶3B.15∶40C.0.2∶0.6 4.下列哪个选项中的四个数不能组成比例。

()A.3,5,9,15B.1,2,3,4C.12,13,16,19D.2,4,7,145.如果a、b都是不为0的数,且56a=78b,则a和b的大小关系是()。

A.a<b B.a=b C.a>b6.能与13∶14组成比例的是()。

A.4∶13B.13∶4C.4∶3D.3∶47.下面各比中,能与0.14∶0.1组成比例的是()。

A.0.8∶0.25B.28∶20C.13∶35D.14∶18.在比例里,两个外项的积等于两个内项的积。

这叫做()。

A.比例的基本性质B.比例C.比例的外项9.根据下图中的信息判断,下列等式不成立的是()。

A.a∶c=d∶b B.a b=c dC.b d=c a10.如果a×3=b×4,那么a∶b=()。

A.4∶3B.3∶4C.1∶12二、填空题11.12的因数共有______个,选择其中的4个因数,把它们组成一个比例是______。

12.在30的因数中选择4个奇数组成一个比例:( )。

根据比例的基本性质把它改写成乘法等式:( )。

13.比值是2的一个比例是( )。

14.如果2a=3b(a、b≠0),那么a∶b=( )∶( );如果a∶b=5∶2 ,那么a∶5=( )∶( )。

15.比值是35的两个比可以为( ),( ),这两个比组成比例是( ).16.一个比例,等号左边的比和等号右边的比一定是( )的。

六年级数学:《比的意义和基本性质》试题

六年级数学:《比的意义和基本性质》试题
1、小明体重40千克,相当于小军的,小华的体重是小军的。小华体重多少千克?
其实,任何一门学科都离不开死记硬背,关键是记忆有技巧,“死记”之后会“活用”。不记住那些基础知识,怎么会向高层次进军?尤其是语文学科涉猎的范围很广,要真正提高学生的写作水平,单靠分析文章的写作技巧是远远不够的,必须从基础知识抓起,每天挤一点时间让学生“死记”名篇佳句、名言警句,以及丰富的词语、新颖的材料等。这样,就会在有限的时间、空间里给学生的脑海里注入无限的内容。日积月累,积少成多,从而收到水滴石穿,绳锯木断的功效。2、计划生产1800个零件,第一天生产了计划的,第二天生产了计划的。还剩下计划的几分之几没生产?还剩下多少个没生产?
六年级数学:《比的意义和基本性质》试题
二、求比值:
12:8 0.4:0.12
“教师”一称最接近的“老师”概念,最早也要追溯至宋元时期。金代元好问《示侄孙伯安》诗云:“伯安入小学,颖悟非凡貌,属句有夙性,说字惊老师。”于是看,宋元时期小学教师被称为“老师”有案可稽。清代称主考官也为“老师”,而一般学堂里的先生则称为“教师”或“教习”。可见,“教师”一说是比较晚的事了。如今体会,“教师”的含义比之“老师”一说,具有资历和学识程度上较低一些的差别。辛亥革命后,教师与其他官员一样依法令任命,故又称“教师”为“教员”。三、解决问题:
单靠“死”记还不行,还得“活”用,姑且称之为“先死后活”吧。让学生把一周看到或听到的新鲜事记下来,摒弃那些假话套话空话,写出自己的真情实感,篇幅可长可短,并要求运用积累的成语、名言警句等,定期检查点评,选择优秀篇目在班里朗读或展出。这样,即巩固了所学的材料,又锻炼了学生的写作能力,同时还培养了学生的观察能力、思维能力等等,达到“一石多鸟”的效果。以上就是六年级数学:《比的意义和基本性质》试题全文,希望能给大家带来帮助!

六年级数学小升初毕业考试总复习——比和比例专项训练(附答案)

六年级数学小升初毕业考试总复习——比和比例专项训练(附答案)

六年级小升初毕业考试总复习——比和比例专项训练一、比1.比的意义:两个数的比表示两个数要除。

2.比、分数、除法之间的联系:用字母表示三者之间的联系:a:b=a ÷b=ba(b ≠0) 3.比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。

4.按比分配:方法(一)先求出每份是多少,再用每份量乘各部分量所占的份数,求出各部分量。

方法(二)先求出总份数,再求出各部分量占总量的几分之几,最后求出各部分量。

考试真题:1.(朝阳区2019年小学毕业考试试卷)按要求完成。

A.张师傅要完成100个零件的加工任务,他已经完成了全部任务的41,他已经加工了多少个零件?B.一种零件的加工图纸的比例尺是4:1, 这个零件在图纸上的长度是100毫米,实际这个零件的长度是多少毫米?C.学校把养护100棵花苗的任务按照1:4分配给五年级和六年级同学,在这个任务中,五年级同学要养护多少棵花苗?D.学校合唱队有100名队员,其中男队员占41,学校合唱队有男队员多少名? ①在解决上面四个实际问题时,不能用“100×41”来解决的是( )。

②请你把上面不能..用“100×41”解决的问题解答出来。

2.(朝阳区2019年小学毕业考试试卷)按照这种截取的方法,第四天截取的长度与原来木棍的长度的最简单整数比是多少?请你用喜欢的方式展示你的思考过程。

3.(大兴区2019年小学毕业考试)按要求画一画。

(下面每个小方格的边长都代表1厘米)①画一个周长是20厘米的长方形,且长与宽的比是3:2. ②画出这个长方形的所有对称轴。

4.(东城区2019年小学数学毕业考试试卷)( )÷16=()21=0.875=( )%=7:( ).5.(东城区2019年小学数学毕业考试试卷)下图中平行四边形的面积是20cm 2,甲和丙面积的比是( )。

《庄子·天下篇》中写道: “一尺之棰, 日取其半, 万世不竭” 这句话意思是:一根一尺的木棍,如果第一天截取它长度的一半,以后每天截取它前一天剩下长度的一半,那么将永远也截取不完。

数学六年级上册比的意义和基本性质一课一练(含答案)

数学六年级上册比的意义和基本性质一课一练(含答案)

4.1比的意义和基本性质一、填空题1.两个数相除又叫两个数的( )。

2.在2:3中,( )是比例前项,( )是比例后项,比值是( )。

3.六年一班有男生20人,女生19人,男生人数与女生人数的比是( ),女生人数与男生人数的比是( )。

4.甲数是5,乙数是6,甲数与甲、乙两数的和的比是( ),乙数与甲、乙两数差的比是( )。

5.甲、乙两个数的比值是23,如果甲数乘以3,要使比值不变,乙数( )。

6.甲、乙两个数的比值是37,如果甲、乙两数都同时除以5,比值是( )。

7.甲数除以乙数的商是47,甲数与乙数的比是( ),乙数与甲数的比是( )。

二、判断对错,对的画”✓”,错的画”×”。

1.如果甲数与乙数的比是1:52,那么乙数:甲数=5:2。

( ) 2.一杯盐水,盐占盐水的101,盐和水的比是1:9。

( ) 3.有药水303克,药和水的比是1:100,其中水有30克。

( )4.小明买5本练习本用去2.50元,练习本的总价与个数的比是2.50:5。

( )5.7与5的比可以记作57。

( ) 6.比的后项不能是0。

( )7.六年三班有男生25人,女生28人,女生和全班人数的比是28:25。

( )三、选择正确答案,将序号填在括号里。

1.在d ÷b=b=a:b 中,( )不能为0。

A.aB.bC.a 和b 2.61∶92化成最简比是( )。

A.34 B.0.75 C.43 3.甲数相当于乙数的53,甲、乙两个数的比是( )。

A.3:5 B.5:3 C.3:8 D.5:84.甲数比乙数大24,甲、乙两个数的比是5:3,甲、乙两个数的和是( )。

A.12B.60C.36D.96四。

求比值。

1. 51∶0.82. 5∶1.23. 74∶0.754. 8∶32 5. 41∶51 6. 0.6:1.8五、化简下列各比。

1. 16:202. 25∶103.191144. 1:0.455. 4:0.86. 0.125:0.257.54∶158 8. 125∶910 9. 107∶14六、应用题。

六年级比的意义和基本性质练习题

六年级比的意义和基本性质练习题

比的意义和基本性质练习题一、基本知识储备1、比的意义:两个数()又叫做两个数的比。

2、比与除法、分数之间的区别与联系。

3、比的基本性质:比的前项和( )同时乘上或( )相同的数(0除外),比值不变。

4、“化简比”与“求比值”的区别。

二、经典例题 例1:用字母表示三者之间的内在联系。

a ︰b =( )÷( )=()()()0b ≠,比的后项()为0。

(填“能”或“不能”)举一反三1:一袋洗衣粉重320克,一块香皂重80克。

洗衣粉与香皂的重量比是(),比值是();香皂与洗衣粉的重量比是(),比值是()。

例2:盐与水的比是1︰10,则盐︰盐水=(︰),水︰盐=(︰),盐水︰水=(︰)。

举一反三2:两个正方形边长比是1︰3,这两个正方形的周长比是(︰)面积比是(︰)。

例3:男生与女生的人数比是3︰4,男生比女生少() ()。

举一反三3:1、某班有男生20人,女生30人,男生与全班人数的比是(),女生比男生多() ()。

2、甲数除以乙数的商是43,甲数与乙数的比是()。

例4:易错题分析1、在4︰9中,如果比的前项加上8,要使比值不变,后项应加上()。

易错题分析2、A ︰B=2︰3,B ︰C=4︰5,那么A ︰B ︰C=(︰︰)。

易错题分析3、一项工程,甲单独完成需要6小时完成,乙单独完成需要5小时完成,甲、乙工作效率之比是(︰)。

举一反三4:1、在3︰8中,如果比的前项加上15,要使比值不变,后项应加上()。

2、A ︰B=3︰4,B ︰C=5︰6,那么A ︰B ︰C =(︰︰)。

3、一辆汽车从甲地开往乙地,3小时到达,返回时4小时到达,前往速度与返回速度的比是(︰)。

三、迁移拓展 例1、如果532CB A ==(其中A 、B 、C 都不等于0),那么A ︰B ︰C=(︰︰)。

举一反三7:如果2A=3B=4C (其中A 、B 、C 都不等于0),那么A ︰B ︰C=(︰︰)。

例2、有两个重叠的正方形,大正方形的边长是5厘米,小正方形的边长是4厘米,重叠部分的面积是9平方厘米,求阴影部分面积。

六年级数学比的意义和基本性质例题

六年级数学比的意义和基本性质例题

比的意义和性质☆知识要点:(1)比的意义:两个数相除,又叫两个数的比.例如:某车间有男工人15人,女工人有11人.求男工是女工的几倍?可以写成15÷11,也可以说男工与女工人数的比是15∶11.求女工是男工的几分之几,可以写成11÷15,也可写成女工和男工人数的比是11∶15.比号前面的数叫比的前项,比号后面的数叫比的后项.注意:写比时要认真审题,弄清谁与谁相比,确定哪个量作比的前项,哪个量作比的后项前项和后项的位置不能颠倒.(2)比和除法,分数的关系.比和除法,分数之间既有联系,又有区别.因为比与分数有一定的联系,所以比也可以写成分数形式,例如,3比2,可以写成3∶2也可以写成32,仍读3比2.区别:比,除法,分数,意义不一样除法是一种运算,除号是运算符号.分数是一种数,分数线有除号,比号,括号的作用.比是两个数相除,表示两数的关系,比号是关系的符号.比值:比的前项除以比的后项,所得的商叫做比值.(3)比的基本性质:比的前项和后项同时乘以或者同时除以相同的数,(零除外)比值不变.应用比的基本性质,可以把比化成最简单的整数比.例如①300∶3.2=3000∶32=125∶2.先把它们化成整数比,然后再化简,使比的前项和后项互质,例如②:3小时∶18分.有单位名称的要先统一单位名称,然后去掉单位名称,再化简成最简单的整数比,3小时∶18分=180分∶18分=180∶18=10∶1(4)求比值和化简比的区别.①意义不同:求比值是用比的前项除以比的后项所得的商.化简比是把一个比化成最简单的整数比,使比的前项和后项成为互质数.②结果不同, 求比值,结果是商,它是一个数,这个数可以是整数,也可以是小数或分数.化简比结果仍是一个比,写成比的形式,也可以写成分数形式.注:化简比也可以用求比值的方法.☆基础练习:练习:1、求比值:3、填空:4填空:①5只羊重280千克,写出羊的总重量与羊的只数的最简单的整数比是().②甲数比乙数少20%,乙数与甲数的比是().③甲数与乙数的比是9∶4,甲比乙多()%.④20克糖加200克水,溶成糖水,糖和糖水的比是().⑩如图:甲乙两个三角形重叠部分的面积相当于甲三角形的面积的,相当于乙三角形的,甲乙两三角形面积的比是()。

六年级下册数学总复习试题-比的性质、比与分数和除法的关系专项练 通用版(含答案)

六年级下册数学总复习试题-比的性质、比与分数和除法的关系专项练  通用版(含答案)

比的性质、比与分数和除法的关系一、单选题1.在3:2中,如果前项加上6,要使比值不变,后项应( )A. 加上6B. 乘以6C. 乘以32.比的前项扩大到原来的2倍,后项不变,比值( )A. 不变B. 扩大到原来的4倍C. 扩大到原来的2倍 3.9()=2736 括号里应填的数是( )A. 8B. 10C. 12D. 24.________∶________= 178 =________÷________5.(2015•长沙)两个数的比值是1.2,如果比的前项扩大2倍,后项缩小两倍,比值是( )A. 1.2B. 2.4C. 4.8D. 9.66.化简比36∶42= ( )A. 8∶6B. 32C. 6∶7D. 5∶27.如果A :B= 19 ,那么(A×9):(B×9)=( )。

A. 1B. 19C. 1:1D. 无法确定8.80∶ =400∶50( )A. 8B. 10C. 12D. 29.100千克稻谷可以碾出大米75千克.则大米重量与稻谷重量的比是________,化成最简整数比是________.( )A. 55∶120,2∶3B. 100∶75,4∶3C. 75∶100,3∶4D. 95∶150,2∶510.选择题(1)甲数是乙数的 3344 ,则甲乙两数的最简整数比是( )A. 43B. 211C. 34D. 112(2)乙数是丙数的 22121 ,则乙丙两数的最简整数比是( )A. 43B. 211C. 34D. 112 二、判断题11.小明与小丽的年龄比是6﹕7,五年后他们的年龄比不变.12.判断对错.0.28:4=140:200.13.判断对错.3∶5的前项和后项都除以35,它们的比值不变.14.比的前项和后项都增加或减少相同的数,比值不变。

15.判断,正确的填“正确”,错误的填“错误”.化简下面各比。

(1)1m∶80cm=1∶80(2)1 2:18=416.比的前项和后项同时加上同一个不是0的数,比值不变.(判断对错)17.判断对错.除数不能为0,分母不能为0,比的后项也不能为0.18.判断对错.一个圆的半径与它的周长的比是1∶2π.19.判断对错.在4∶3的前项和后项同时加上18,比值不变.20.判断对错比的前项和后项都乘一个相同的数,比值不变.三、填空题21.3:4=________:32 0.8:5=________:15.22.4÷5=8/________=________/40=________/20=________填小数.23. ________/40=________÷24=0.375=________:________ =________%24. ________÷15= 23=10:________ =6/________.25.(2015·黑龙江齐齐哈尔) 35÷=________÷45=3:________=________%=________(填小数)=________折。

人教版六年级数学上册四单元比的知识点和习题练习

人教版六年级数学上册四单元比的知识点和习题练习

比的基本概念和化简一、比的基本概念1、比的意义:两个数的比表示两个数相除(旧:两个数相除又叫做两个数的比)两个同类量的比表示这两个量之间的倍数关系,两个有联系的不同类量的比表示一个新的量。

2、比的符号和读、写法37是分数形式的比,是比的另一种书写形式。

3、比的各部分名称(1)比的前项:在两个数的比中,比号前面的数; (2)比的后项:在两个数的比中,比号后面的数; (3)比值:比的前项除以后项所得的商。

4、求比值的计算方法:比的前项除以比的后项;比值可用分数、小数或整数表示。

5、比和比值的联系与区别都可以用分数形式表示:53既可表示3:5,又可表示3:5的比值;比表示两个数的一种关系;比值是一个数;比只能写成b a :或ba的形式,比值可以是分数、小数、整数。

6、比与分数、除法的关系 (1)联系 a:b=a ÷b=ba(b ≠0) 除法 被除数 ÷ 除数 商 分数 分子 — 分母 分数值 比 前项 : 后项 比值(2)区别①意义不同:比表示两个量的一种关系;除法是一种运算;分数则是一个数②表示方法不同:除法算式不能用分数表示;比可以用分数表示;但分数不一定表示两个量的比 ③结果表达不同:除法的结果为商;比的结果为比值;分数本身就是一个数值 7、求比中未知项的方法比的前项=比的后项×比值 比的后项=比的前项÷比值二、比的基本性质(与“商不变”性质类同)1、比的基本性质比的前项和后项同时乘或除以相同的数(0除外),比值不变。

同样适用于连比 2、化简比的意义(1)最简整数比:比的前项和后项是互质数的比 (2)化简比: 把两个数的比化成最简单的整数比3、整数比的化简方法:把比的前项和后项同时除以它们的最大公因数4、分数比的化简方法(1)比的前项和后项同时乘它们的分母的最小公倍数,变整数比,再化简 (2)先求比值,再把结果写成比的形式5、小数比的化简方法:先把前项和后项的小数点同时向右移动相同的位数,变成整数比,再化简6、求连比甲数和乙数的比是3:4,乙数和丙数的比是5:6,求甲、乙、丙的连比关键是找中间量(“桥梁”),显然为乙。

苏教国标版六年级上册比的意义和基本性质练习

苏教国标版六年级上册比的意义和基本性质练习

1、A是B的 3 倍,B和A的比是( A占两数和的( )。
2 5
),
2、在5:8中,如果前项增加6倍,要使 比值不变,后项应扩大( )倍。
3、在32:80中,如果后项减少10,要使 比值不变,前项应减少( )。
4 4、甲占甲乙两数和的 ,乙比甲多 9

), 甲比乙少(
)。
5、食堂有大米120袋,面粉的袋数是大 7 ,大米和面粉的比是( 米的 )。 4 5 6、一条水渠,已修好了 ,还剩下60米, 8 已修的和剩下的长度之比是( ).
⒊ 量出三角尺上30。角所对的边和斜边的长, 再写出它们长度的比,并计算比值。
1.5cm
1 1.5∶3=1.5÷3= 2
我们发现:直角三角形中30°角所对的对 边的长度是斜边长度的一半。
练习十三
⒋ 在右边的方格图上,画出两个大小 不同的长方形,使长方形的长与宽的 比都是2∶1。
?厘米 6厘米
?厘米 3厘米能为0。 ( ×)
②哥哥身高170厘米,弟弟身高1米,则哥哥与
弟弟的身高之比是17:10。
(√ )
③我们经常在体育比赛中看到比赛结果也是一
个比。
( ×)
火眼金睛:哪些照片与第一张照片(A)形状相同?
6厘米 8厘米 A 6厘米 8厘米
12厘米 B
6厘米 C 3厘米
12厘米
=16:( 20 )=( 80 )%
两个正方形边长的比是5:3,周长的比是 ( ),面积的比是( )。
二、根据比的基本性质回答问题。
1、一个比的比值是40,如果它的前项扩大2倍, 后项不变,比值是( )。 80 2、一个比的比值是40,如果它的后项扩 大2倍,前项不变,比值是( 20 )。

六年级数学(上)第三章 比和比例

六年级数学(上)第三章  比和比例

第三章 比和比例 3.1比的意义-3.2比的基本性质一、填空题(每题3分,3×10=30分)1.一个比的前项是10,后项是9,则这个比是 .2.两个正方形的边长分别为3cm 和1dm,则这两边长的比是 .3.比的前项是43,比的后项是217,它们的比值是 .4.15cm ∶1.3m 的比值是 .6.把22∶0.25化成后项为100的比 .7()=819∶5,()++=34232.9. 把连比化为最简整数比:2∶4∶8= ;21∶31∶61= ; 0.3∶0.15∶0.45= ;10. 化简比:120分∶1.2小时∶1小时20分钟= . 二、选择题(每题3分,3×4=12分)11.下列各数中,与3∶2不相等的是…………………………………( ) (A )1.5 (B )32 (C )23 (D )81212.一段绳子,原长14米,一次用去了2.8米,余下的绳子长与原来的绳长的最简整数比是…………………………………( )(A )5∶1 (B )1∶5 (C )4∶5 (D )5∶4 13.一项工程甲队单独做3天完成,乙队单独做5天完成,丙队单独做6天完成,那么 甲、乙、丙三队的工作效率比是………………………………( )(A )3∶5∶6 (B )1∶5∶2 (C )10∶6∶5 (D )31∶51∶6114.若三角形三个内角之比为2∶3∶1,则其中最大的角为 ……( ) (A )︒60 (B )︒90 (C )︒120 (D )︒150 三、解答题(满分58分)15.求下列各比的比值. (每小题4分,4×4=16分) (1) 4∶36 (2) 21∶31(3) 211 ∶ 322 (4)211 ∶ 2316.求下列各比的比值. (每小题4分,4×4 =16分)(1) 1g ∶0.3kg (2) 30分钟∶1小时45分钟(3) 5天∶72小时 (4) 375毫升∶1.25升17.利用已知条件,求a ∶b ∶c (每小题5分,2×4=8分)(1). a ∶b =2∶3,b ∶c =6∶5; (2). a ∶b =2∶3,b ∶c =4∶318. 甲、乙两人加工300个同样的零件甲10分钟内完成6个,乙在5分钟内完成6个,求 :(1)甲、乙两人完成300个零件的速度比;(2)甲、乙两人完成300个零件的时间比.(6分+6分)19. 在一次植树活动中,甲组植树256棵,乙组植树320棵,丙组植树216棵.求甲乙丙植树的最简整数连比.(6分)四、拓展题(每小题5分,2×5=10分)20. 六年级有230人参加电脑、美术、健美操三个兴趣小组,已知参加电脑班的人数∶参加美术班的人数=2∶3,参加电脑班的人数∶参加健美班的人数=3∶4,问参加电脑、美术、健美操三个兴趣小组的人数各是多少?21.如图是某公园的设计图,其中正方形的43是草地,圆的76是竹林,求正方形与圆的面积比.3.3比例-3.4百分比的意义根据比例的基本性质,写,比例外项是 .3. 写出外项是1和3,内项是6和2的一个比例: .. 5. 一辆汽车2小时行驶130米,照这样的速度,从甲地到乙地共驶3.5小时,甲、乙两地间的公路长 千米6. 养鸡场的公鸡与母鸡的只数比是3∶2,已知公鸡有450只,母鸡有 只.7. 在1.34,⋅31.,10031,131%四个数中最大的数是 ., 最小的数是 .8. 把431化成百分数是 ,把25%化成小数是 . 9. 比较大小::0.34 0.34%;0.24%241. 10. 今年的房价比去年同期上涨了40%,今年的房价是去年房价的 % 二、选择题(每题3分,3×4=12分)11.已知yx 52=,下列各式成立的是…………………………………( )(A )2x =5y (B )xy =10 (C )25=x y (D )25=y x 12.下列四组数中,不能组成比例的是…………………………………( ) (A )2,3,4,6 (B )1,2,2,4 (C )0.1, 0.3 ,0.5 ,1.5 (D )51,41,31,2113.两地的实际距离是500千米,地图上的距离是5厘米,则比例尺是( ) (A )5:500 (B )5:5000000(C )1:0000000 (D )1:100 14.在832、221%、2.2、2.5%中,最大的数是……………………………( )(A )832 (B )221%(C)2.2、 (D )2.5%三、解答题15.(每题5分,满分20分)求下列各式中的x(1) x ∶16=5∶12 (2) 6515=x (3) 3226=+x . (4) 2x ∶3=(x-1)∶4 .16.将15本厚度相同的书叠起来,他们的高度为33厘米,将40本同样的书叠起来,高度是多少厘米? (6分)17.如图,A 圆的52与B 圆的41重叠在一起,求B 圆面积与A 圆面积之比.(5分)18. 把下列各数化成百分数:(6分)(1)100 (2)0.05 (3)85219. 把下列百分数化成整数或小数: (6分)(1)3% (2)150% (3)1.75%20 .把百分数化成最简分数: (6分)(1)0.4% (2)12% (3)21.05%21. 求下列各题的商,并把所得的商化成百分比.(除不尽的保留一位小数) (9分)(1)240 ÷600 (2)2÷3.2 (3)5÷8.2四、附加题(10分)22.如果x能与4,5,6,这三个数组成比例,求x的值.。

《比的意义和基本性质》练习题

《比的意义和基本性质》练习题

比的意义和基本性质(一)一、细心填写:1、鸡有80只,鸭有100只,鸡和鸭只数的比是( ),比值是( )。

2、长方形长3分米,宽12厘米,长与宽的比是( ),比值是( )。

3、小李5小时加工60个零件,加工个数与时间的比是( ),比值是( )。

4、一本书读了55页,45页没有读,已读与总数的比是( ),比值是( )。

5、甲数相当于乙数的92,甲数与乙数的比是( ),乙数与甲数的比是( )。

6、三好学生占全班人数的81,三好学生与全班人数的比是( )。

7、白兔只数的31与黑兔相等。

白兔与黑兔的比是( ),白兔与黑兔的比是( ) 8、若A ÷B =5(A 、B 都不等于0)则A :B =( ):( )若A =B (A 、B 都不等于0) 则A :B =( ):( )9、 填写比、除法和分数的关系。

比 比的前项除法 除数分数 --- 分数线 分数值10、( )又叫做两个数的比。

( )叫做比值。

11、43=( ):( ) =( )÷( )12、在100克水中加入10克盐,盐和盐水的比是( )。

13、男工人数是女工人数的52,男、女工人数的比是( )。

14、甲数是乙数的4倍,甲、乙两数的比是( ),乙数与两数和的比是( )。

15、甲数比乙数多41,甲数与乙数的比是( ),比值是( )。

16、( ),叫做比的基本性质。

17、16:20=32:( ) =( )÷10 =()4=()80=1.6( ) =( ):0.218、火车4小时行驶了600千米,路程和时间的最简整数比是( ),比值是( )。

19、甲数是乙数的3倍乙数与甲数的比是( ),比值是( )。

20、601班男生与女生人数的比是2:3,女生占全班的( ),男生占全班的( )。

21、甲数是乙数的32,乙数与甲数的比是( ),甲数与乙数的比是( )。

二、求比值:12:8 0.4:0.12 5: 41 4.5:0.9 31:65 32:910 0.75:41 4: 41 35:45 360:450 0.3:0.15 18: 32 6:0.36 203:54 0.6:52 32:6 三、化简比:35:45 360:450 0.3:0.15 18: 32 6:0.36 203:54 0.6:52 32:683:21 0.75: 43 24: 31 6.4:0.16 2.25:9 815:32 54:83 31:41四、判断是否:1、54可以读作“6比7”。

六年级数学比的意义和基本性质练习题

六年级数学比的意义和基本性质练习题

六年级数学比的意义和基本性质练习题
39、比的意义和基本性质(一)
一、细心填写:
1、鸡有80 只,鸭有100 只,鸡和鸭只数的比是(),比值是()。

2、长方形长3 分米,宽12 厘米,长与宽的比是(),比值是()。

3、小李5 小时加工60 个零件,加工个数与时间的比是(),比值是()。

4、一本书读了55 页,45 页没有读,已读与总数的比是(),比值是()。

5、甲数相当于乙数的,甲数与乙数的比是(),乙数与甲数的比是()。

6、三好学生占全班人数的,三好学生与全班人数的比是()。

7、白兔只数的与黑兔相等。

白兔与黑兔的比是(),白兔与黑兔的比是()
8、若A÷B=5(A、B 都不等于0)则A:B=( ):( )
若A=B(A、B 都不等于0)则A:B=( ):( )
二、求比值:
:0.3:0.02
: 0.21:6.3
48:36 0.5:
7:3.5 3:1:0.125 三、解决问题:。

人教版六年级数学上册第四单元第1课比的意义同步练习题

人教版六年级数学上册第四单元第1课比的意义同步练习题

人教版数学分数学六年级(上)体型新颖丰富 体型新颖丰富 掌握考试动态 直接重点难点提高考试成绩周考/月考/单元考/期中考/期末考第四单元比第一课时比的意义开心回顾1.小军家有72只鸡,是鸭的只数的89,小军家有多少只鸭?【答案】135 【解析】试题分析:先找单位“1”,单位“1”是鸭的只数,用算术法解单位“1”未知用除法,89的对应量是72只,对应量÷对应分数=单位“1”,即7289÷。

用算术法解:87281()9÷=只答:小军家有81只鸭。

2.一座房子实际造价15万元,比原计划少用了14,原计划造价多少万元?【答案】20 【解析】试题分析:单位“1”是房子原计划的造价,用算术法解单位“1”未知用除法,11-4()的对应量15万元,对应量÷对应分数=单位“1”,即1511-4÷()。

解:1151-43=154=20÷÷()(万元)答:原计划造价1800万元。

3.一台空调,现价4500元,比原价降低了110,这台空调原价多少元? 【答案】5000 【解析】试题分析:单位“1”是原价,用算术法解单位“1”未知用除法,11-10()的对应量4500元,对应量÷对应分数=单位“1”,即4500÷11-10()。

这样就求出原价。

解:1 45001-109=450010=5000÷÷()(元)答:这台空调的原价是5000元。

4.一套衣服210元,其中裤子的价格是上衣12,上衣和裤子各是多少元?【答案】140;70 【解析】试题分析:单位“1”是上衣的价格,用算术法解单位“1”未知用除法,1 1+2()的对应量210元,对应量÷对应分数=单位“1”,即210÷1 1+2()。

这样就求出上衣的价格,上衣的价格乘以12就能求出裤子的价格。

解:1210+21=21012=1401=702÷÷⨯(1)(元)140(元)答:上衣是140元,裤子是70元。

六年级数学下册试题 -《第4章 比例 第1课时 比例的意义和基本性质》同步测试题 人教版

六年级数学下册试题 -《第4章 比例 第1课时 比例的意义和基本性质》同步测试题   人教版

人教版六年级数学下册《第4章比例第1课时比例的意义和基本性质》同步测试题一.选择题(共6小题)1.下列()组中的两个比不可以组成比例。

A.6:18和3:9B.3:和5:6C.:和2:0.52.在=中,a的值是()A.2B.4C.6D.83.解比例:=2:1,x=()A.6B.1.5C.0.7D.94.在一个比例中,已知两个外项互为倒数,其中一个内项是最小的质数,另一个内项是()A.4B.C.2D.5.根据ab=cd,下面不能组成比例的是()A.a:c和d:b B.b:d和a:c C.d:a和b:c6.下列能与:组成比例的是()A.3:4B.4:3C.1:4D.:3二.填空题(共6小题)7.解比例=,则x=8.解比例:3.5:x=0.5:20%则x=9.在一个比例里,两个内项互为倒数,其中一个外项是3,另一个外项是.10.在横线里填上适当的数.24:9=8:;:6=3:.11.如果4x=5y,那么x:y=:,x:5=:.12.下面哪组中的两个比可以组成比例?把能组成比例的在横线里打“√”.(1)2:6和3:1.(2)1:2和0.5:1.(3)0.8:0.2和16:4.(4)7:3和3:7.三.判断题(共5小题)13.交换比例的两个内项或两个外项,比例仍然成立..(判断对错)14.表示两个比相等的式子叫比例.(判断对错)15.比例的两个内项互为倒数,那么它的两个外项也互为倒数..(判断对错)16.若2:a=4:8那么a=1.(判断对错)17.解比例的依据是比的基本性质..(判断对错)四.计算题(共1小题)18.解比例。

(1)96:24=x:36(2):x=五.应用题(共2小题)19.如图,在左边刻度5的地方放3个棋子,那么在右边刻度3的地方应放多少个棋子才能保持平衡?20.如图所示,一个长方形,它的长是4cm,宽是2cm.这个长方形的宽和长之比是,长和周长之比是,这两个比能组成比例吗?六.解答题(共6小题)21.按照下面的条件列出比例,并且解比例.比例的两个外项分别是和,两个内项分别是x和.22.把15×6=30×3改写成四个不同的比例.23.两个外项是X和5,两个内项是25和4.24.一个比例的两个内项分别是最小的质数和合数,两个外项分别是1和x.25.一个比例中,两个内项都是6,而且两个比的比值都是5,x是一个外项,列出这个比例并解答.26.把、、0.4和四个数组成一个比例.参考答案与试题解析一.选择题(共6小题)1.【分析】要想判断两个比能不能组成比例,可以根据比例的基本性质:两个外项的积等于两个内项的积,计算出两个外项的积、两个内项的积,然后判断即可。

六年级数学上册比的意义和基本性质提高练习题

六年级数学上册比的意义和基本性质提高练习题

百分数应用题姓名:1.六(1)班有男生25人,女生比男生少5名。

A.女生人数是男生人数的百分之几?B.女生人数比男生人数少百分之几?C.男生人数比女生人数多百分之几?2.六年级一班有男同学20人,比女同学人数多百分之25,男同学比女同学多多少人?3.某校三年级有240人,比二年级少百分之20,三年级比二年级少多少人?24.一桶油用去寺,剩下的比用去的多百分之几?5.某车间计划生产零件8000个,实际超产1000个,实际完成计划的百分之几?6.某车间计划生产一批零件,实际生产9000个,比计划超产1000个,实际比计划超产百分之几?7.一捆铁丝,第一次减去40%,第二次减去第一次的25% ,,第三次比第二次多剪15米,这时还剩25米,这困铁丝长多少米?& 一捆铁丝,第一次减去40%,第二次减去第一次的25%,还剩56米,这捆铁丝长多少米?9.一捆铁丝,第一次减去20%,第二次减去第一次的50%,还多8米,正好剪了全长的一半。

这捆铁丝长多少米?一一 1 ______________________________________ 一9.水果店有苹果1200千克,卖出-后,剩下的苹果重量是梨的60%,水果店5有梨多少千克?一一 1 ____________________________________ 一10.水果店有苹果1200千克,卖出-后,剩下的苹果重量比梨少60%,水果店5有梨多少千克?11.有一批粮食,第一次取出25吨,第二次取出余下的40%,还剩一半。

这批粮食共有多少吨?12.学校有一年级学生100人,二年级比一年级多10%,一、二年级学生人数占全校人数的20%,全校有学生多少人?13.某商店同时卖出两件商品,每件各得240元,但其中的一件赚20%,另一件亏20%,这个商店卖出这两件商品亏损多少元?14.六年级(1)班有40人,其中23人为灾区捐了款,25人为灾区小朋友捐赠了学习用品,既捐款又捐学习用品的同学占全班人数的百分之几?15.六(1)班期中测试,数学不及格人数是及格人数的丄,六一班期中测试数学及格率是多少?1915.肿瘤医院有医务人员85 人,其中男医务人员占40% ,今年又分配了一些男医生,这时男医务人员占医务人员总数的49% ,新来了多少名男医生?16.一件商品按30%的利润定价,然后又打九折出售,结果每件商品获利34元。

第四讲 比(人教版六年级数学上册讲义练习题预习题 )

第四讲 比(人教版六年级数学上册讲义练习题预习题 )

第四讲、比一、比的意义比:两个数相除,又叫做这两个数的比,“:”是比号,比号前面的数叫做比的前项, 比号后面的数叫做比的后项,前项除以后项所得的商叫做比值。

比的后项不能为0。

【例1】两个数( ) ,又叫做( ) 。

例如: 写作:6:4,读作:( )。

6是这个比的( ),4是这个比的( ),6:4=6÷4=1.5比值是( ) 。

比的后项不能为( )【例2】长方形的长为16厘米,宽为12厘米,(1)这个长方形的长与宽的比为______ , 比值为_____. (2)这个长方形的宽与长的比为______ ,比值为_____. (3)这个长方形的长与周长的比为______ , 比值为_____.【例3】小敏和小亮在文具店买同样的练习本。

小敏买了6本,共花了1.8元。

小亮买了8本,共花了2.4元。

小敏和小亮买的练习本数之比为( ):( ),比值是( );花的钱数之比为( ):( ),比值是( )。

【例4】从A 地到B 地共180千米,客车要行2小时,货车要行3小时。

①客车所行的路程与所用的时间的比是______,比值是_____.这个比值表示的是________。

②客车与货车的路程比是______ ,比值是_____. ③客车与货车的时间比是______ ,比值是_____. ④客车与货车的速度比是______ ,比值是_____。

【例5】 3:( )=24 ( ):8=0.5【例6】 求比值 17:34 = 87:32 = 0.32 : 9.6 = 72:0.6 =65:43= 0.8:97= 1 :94= 87 :87=小 测 验1、两个数________又叫做两个数的比。

如14÷21=____:____ ,在这个比中,比的前项是_____,比的后项是____,比值是_____.2、18:64 = ____÷64 =)(183、填空错误!未找到引用源。

()()()()()()()()()()00001015 :4 1.25 36: 45 5÷=====÷====成4、六年级二班有男生24人,女生28人。

人教版册数学比的意义和基本性质》练习题

人教版册数学比的意义和基本性质》练习题

人教版册数学《比的意义和基本性质》练习题 The document was prepared on January 2, 202139、比的意义和基本性质(一)一、细心填写:1、鸡有80只,鸭有100只,鸡和鸭只数的比是( ),比值是( )。

2、长方形长3分米,宽12厘米,长与宽的比是( ),比值是( )。

3、小李5小时加工60个零件,加工个数与时间的比是( ),比值是( )。

4、一本书读了55页,45页没有读,已读与总数的比是( ),比值是( )。

5、甲数相当于乙数的92,甲数与乙数的比是( ),乙数与甲数的比是( )。

6、三好学生占全班人数的81,三好学生与全班人数的比是( )。

7、白兔只数的31与黑兔相等。

白兔与黑兔的比是( ),白兔与黑兔的比是( )8、若A ÷B =5(A 、B 都不等于0)则A :B =( ):( )若A =B (A 、B 都不等于0) 则A :B =( ):( )二、求比值:32:94 : 3321:113 : 48:36 : 52 7: 3: 116 1: 9072 三、解决问题:1、一辆汽车从甲地到乙地,每小时行80千米,用了43小时,返回时只用了85小时。

返回时每小时行多少千米2、商店售出2筐橙子,每筐24千克。

售出的橙子占水果总数的116,售出的香蕉占水果总数的41。

售出香蕉多少千克40、比的意义和基本性质(二)一、细心填写:12)叫做比值。

3、43=( ):( ) =( )÷( ) 4、在100克水中加入10克盐,盐和盐水的比是( )。

5、男工人数是女工人数的52,男、女工人数的比是( )。

6、甲数是乙数的4倍,甲、乙两数的比是( ),乙数与两数和的比是( )。

7、甲数比乙数多41,甲数与乙数的比是( ),比值是( )。

二、求比值:12:8 :5: 41 : 31:65 32:910 :41 4: 41 三、解决问题:1、小明体重40千克,相当于小军的910,小华的体重是小军的65。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

比的意义和基本性质(一)
一、细心填写:
1、鸡有80只,鸭有100只,鸡和鸭只数的比是( ),比值是( )。

2、长方形长3分米,宽12厘米,长与宽的比是( ),比值是( )。

3、小李5小时加工60个零件,加工个数与时间的比是( ),比值是( )。

4、一本书读了55页,45页没有读,已读与总数的比是( ),比值是( )。

5、甲数相当于乙数的9
2
,甲数与乙数的比是( ),乙数与甲数的比
是( )。

6、三好学生占全班人数的8
1
,三好学生与全班人数的比是( )。

7、白兔只数的3
1
与黑兔相等。

白兔与黑兔的比是( ),白兔与黑兔的
比是( )
8、若A ÷B =5(A 、B 都不等于0)则A :B =( ):( ) 若A =B (A 、B 都不等于0) 则A :B =( ):( ) 二、求比值: 3
2:94
0.3:0.02 3321:11
3
0.21:6.3 48:36 0.5: 52
7:3.5 3: 116
1:0.125 90
72
三、解决问题:
1、一辆汽车从甲地到乙地,每小时行80千米,用了
4
3
小时,返回时只用了85
小时。

返回时每小时行多少千米?
2、商店售出2筐橙子,每筐24千克。

售出的橙子占水果总数的11
6
,售出的香蕉占水果总数的4
1。

售出香蕉多少千克?
40、比的意义和基本性质(二)
一、细心填写:
1
2叫做比值。

3、4
3
=( ):( ) =( )÷( )
4、在100克水中加入10克盐,盐和盐水的比是( )。

5、男工人数是女工人数的5
2
,男、女工人数的比是( )。

6、甲数是乙数的4倍,甲、乙两数的比是( ),乙数与两数和的比是( )。

7、甲数比乙数多4
1
,甲数与乙数的比是( ),比值是( )。

二、求比值:
12:8 0.4:0.12
5:
41
4.5:0.9 31:65 32:9
10 0.75:41 4: 41
三、解决问题:
1、小明体重40千克,相当于小军的910,小华的体重是小军的6
5。

小华
体重多少千克?
2、计划生产1800个零件,第一天生产了计划的4
1
,第二天生产了计划的
61。

还剩下计划的几分之几没生产?还剩下多少个没生产?
41、比的意义和基本性质(三)
一、细心填写 1、( ),叫做比的基本性质。

2、16:20=32:( ) =( )÷10 =
()
4

()80
=1.6( ) =
( ):0.2
3、火车4小时行驶了600千米,路程和时间的最简整数比是( ),比值是( )。

4、甲数是乙数的3倍乙数与甲数的比是( ),比值是( )。

5、601班男生与女生人数的比是2:3,女生占全班的( ),男生占全班的( )。

6、甲数是乙数的
3
2
,乙数与甲数的比是( ),甲数与乙数的比是( )。

二、化简比:
35:45 360:450
0.3:0.15 18: 32
6:0.36 203:5
4
0.6:52 32:6
三、求比值:
35:45 360:450
0.3:0.15 18: 32
6:0.36 203:5
4
0.6:52 32:6
四、解决问题:
1、一项工程,甲独做10天完成,乙独做15天完成。

写出甲、乙工作效率的比,并化简。

2、六年级男生人数是女生人数的1.2倍,写出男生与女生人数的比,并化简。

3、小明身高1.5米,小红身高1米25厘米。

写出小红与小明身高的比,并化简。

42、比的意义和基本性质(四)
一、判断是否:
1、5
4
可以读作“6比7”。

……………………………………………………
( )
2、比的前项和后项同时乘一个相同的数,比值不变。

……………………( )
3、比的基本性质与商不变的性质是一致的。

………………………………( )
4、10克盐溶解在100克水中,这时盐和盐水的比是1:10。

……………( )
5、比的前项乘5,后项除以5
1。

比值不变。

………………………………
( )
6、男生比女生多5
2
,男生与女生人数的比是7:5. ………………………
( )
7、5
9
既可以看作分数,也可以看成一个比。

………………………………
( ) 8、“宽是长的几分之几”与“宽与长的比”,意义相同,结果表达形不同。

( )
二、化简比: 83:21 0.75: 4
3 24: 3
1
6.4:0.16
2.25:9 815:3
2
三、求比值:
83:21 0.75: 4
3 24: 3
1
6.4:0.16
2.25:9 815:3
2
四、解决问题:
1、学校航模队有男生20人,女生15人。

男生是女生的几倍?女生人数是男生的几分之几?写出男生与女生人数的最简单的整数比,再求比值。

2、图书角中文艺书与故事书本数比是3:5,文艺书本数是故事书的几分之几?如果故事书有60本,文艺书有多少本?
43、比的意义和基本性质(五)
一、谨慎选择:
1、比的( )不能为零。

A 前项
B 后项
C 比值
D 无法确定
2、比的前项和后项都乘3
2
,比值( )。

A 变大
B 变小
C 不变
D 无法确定
3、32:910
的比值是( ),最简整数比是( )。

A 2720
B 35
C 5
3
D 3:5
4、在8:9中,如果前项增加16,要使比值不变,后项应( )。

A 增加16 B 乘2 C 不变 D 无法确定
5、糖占糖水的5
1
,糖与水的比是( )
A 1:5
B 1:4
C 1:6
D 无法确定
二、化简下列各比,并求出比值。

1、商店六月份与七月份销售额的比是5:6,七月份销售3000万元。

六月份销售多少万元?
2、甲工程队有150名工人,甲乙两个工程队人数比是3:2。

乙工程队有多少工人?
3、两个正方形边长的比是5:3,周长的比是(),面积的比是()。

相关文档
最新文档