酶的化学修饰 前理论后例子
酶

酶活力,规定为:在最适反应条件(25℃)下,每
分钟内催化1微摩尔底物转化为产物所需的酶量定为 一个酶活力单位,即1U=1μmol/min。
酶的催化作用受测定环境的影响,因此测定
酶活力要在最适条件下进行,即最适温度、最适 pH、最适底物浓度和最适缓冲液离子强度等,只
性失活;(3)酶是两性电解质,在不同pH下呈现不
同的离子状态(4)和蛋白质一样具有胶体性质;(5) 具有蛋白质所具有的化学呈色反应。
2. 酶的组成分类
酶作为一种具有催化功能的蛋白质,与其它蛋白质 一样,相对分子质量很大,一般从一万到几十万以至大
到百万以上。
从化学组成来看酶可分为单纯蛋白质和结合(缀合) 蛋白质两类。属于单纯蛋白质的酶类,除了蛋白质外, 不含其它物质,如脲酶、蛋白酶、淀粉酶、脂肪酶和核 糖核酸酶等。属于结合蛋白质的酶类,除了蛋白质外, 还要结合一些对热稳定的非蛋白质(辅助因子)小分子 物质或金属离子,其酶蛋白(脱辅酶)与辅助因子结合
酶反应的速度曲线
反应时间的延长,酶反应速度逐渐下降。因此,研
究酶反应速度应以酶促反应的初速度为准。
2. 酶的活力单位(U, activity unit)
酶活力的大小即酶含量的多少,用酶活力单位 表示,即酶单位(U)。 酶单位的定义是:在一定条件下,一定时间内 将一定量的底物转化为产物所需的酶量。
1961年国际生物化学协会酶学委员会及国际纯
一、习惯命名法
1961年以前使用的酶的名称都是习惯沿用的,称为 习惯名。
1. 根据酶作用的底物命名,如淀粉酶、蛋白酶。 2. 根据酶催化反应的性质及类型命名,如水解酶、氧 化酶等。 3. 结合上述两个原则命名,如琥珀酸脱氢酶。 4. 在这些命名的基础上,加上酶的来源或其它特点, 如胃蛋白酶、胰蛋白酶。
酶分子的化学修饰

酶分子的化学修饰
酶分子化学修饰就是在分子水平上 对酶进行改造,以达到改构和改性的目 的。在体外将酶分子通过人工的方法与 一些化学物质,特别是一些有生物相容 性的物质进行共价连接,从而改变酶的 结构和性质。这些化学物质称为修饰试 剂,酶化学修饰主要用于基础酶学的研 究和疾病治疗。
酶化学修饰的应用领域
例如用聚乙二醇共价修饰超氧化物歧化 酶(SOD),不仅可以降低或消除酶的抗 原性,而且提高了抗蛋白酶的能力,延 长了半衰期,从而提高了药效。
PEG是线性大分子,具有良好的生物相容 性和水溶性,在体内无毒性、无残留、 无免疫原性,并可消除酶分子的抗原性, 被广泛用于酶的修饰。
PEG末端活化后可以与酶产生交联,使酶 分子被覆盖上一层疏松的亲水外壳,导 致动力学发生改变,从而产生许多有用 的性质,如可以在广泛的pH范围内溶解、 不被离子交换剂吸附,电泳迁移率下降 等。
加酶液
E E E
S
P
图:反相胶团的结构和酶的分布
二、酶分子的内部修饰 (一)非催化活性基团的修饰:通过对 非催化残基的修饰可以改变酶的动力学 性质,改变酶对特殊底物的亲和力;
(二)酶蛋白主链的修饰:主要是靠酶 法进行修饰,用蛋白酶对主联进行部分 水解,可以改变酶的催化特性。
(三)催化活性基团的修饰:通过选择 性修饰催化活性氨基酸的侧链来实现氨 基酸残基的取代,使一种氨基酸侧链转 化为另一种氨基酸侧链,这种方法又称 为化学突变法。
46
40 20 50 0
64
90 99 95 80
二、抗原性:修饰酶的抗原性与修饰剂 有关,目前比较公认的是PEP和人血清白 蛋白在消除酶分子抗原性方面效果较好。
修饰酶的抗原性变化
酶
胰蛋白酶 过氧化氢酶 Arg 酶
第三章 酶的化学修饰

第三章酶的化学修饰第一节酶的分子修饰一、酶的化学修饰原因1、稳定性2、酶反应的最适条件3、酶的专一性4、米式常数过大5、临床应用的特殊要求6、酶种类的限制改变酶特性有两种主要的方法:1)通过分子修饰的方法来改变已分离出来的天然酶的活性。
2)通过基因工程方法改变编码酶分子的基因而达到改造酶的目的。
二、酶分子修饰通过各种方法使酶分子的结构发生某些改变,从而改变酶的某些特性和功能的技术过程称为酶分子修饰。
即在体外将酶分子通过人工的方法与一些化学基团(物质),特别是具有生物相容性的物质,进行共价连接,从而改变酶的结构和性质。
三、酶分子修饰的意义⏹提高酶的活力⏹增强酶的稳定性⏹降低或消除酶的抗原性⏹研究和了解酶分子中主链、侧链、组成单位、金属离子和各种物理因素对酶分子空间构象的影响化学修饰效果举例用纤维蛋白的专一性单克隆抗体修饰尿激酶,使其溶血栓性提高了100倍。
用乙醛酸修饰胰凝乳蛋白酶的表面氨基,形成亲水性的α-NHCH2COOH后,该酶对60℃热处理的稳定性增高了1000倍。
超氧化物歧化酶(SOD)、L-谷氨酰胺酶、L-天门冬酰胺酶、尿酸酶等用PEG(聚乙二醇)修饰后,完全消除了酶的抗原性和免疫原性,减慢了它们在动物血液循环中被清除的速度,酶的活力可以保存15%-45%。
四、酶化学修饰的基本原理1、如何增强酶天然构象的稳定性与耐热性修饰剂分子存在多个反应基团,可与酶形成多点交联。
使酶的天然构象产生“刚性”结构。
2、如何保护酶活性部位与抗抑制剂大分子修饰剂与酶结合后,产生的空间障碍或静电斥力阻挡抑制剂,“遮盖”了酶的活性部位。
3、如何维持酶功能结构的完整性与抗蛋白水解酶酶化学修饰后通过两种途径抗蛋白水解酶:A 大分子修饰剂产生空间障碍阻挡蛋白水解酶接近酶分子。
“遮盖”酶分子上敏感键免遭破坏。
B 酶分子上许多敏感基团交联上修饰剂后,减少了受蛋白水解酶破坏的可能性。
4、如何消除酶的抗原性酶蛋白氨基酸组成的抗原决定簇,与修饰剂形成了共价键。
生物化学 第三章 酶(共65张PPT)

含多条肽链则为寡聚酶,如RNA聚合酶,由4种亚基构成五聚体。
(cofactor)
别构酶(allosteric enzyme):能发生别构效应的酶
9 D-葡萄糖6-磷酸酮醇异构酶 磷酸葡萄糖异构酶
esterase)活性中心丝氨酸残基上的羟基结合,使酶失活。
酶蛋白
酶的磷酸化与脱磷酸化
五、酶原激活
概念
酶原(zymogen):细胞合成酶蛋白时或者初分 泌时,不具有酶活性的形式
酶原 切除片段 酶
(–)
(+)
酶原激活
本质:一级结构的改变导致构象改变,激活。
胰蛋白酶原的激活过程
六、同工酶
同工酶(isoenzyme)是指催化相同的化学反应, 而酶蛋白的分子结构、理化性质乃至免疫学性质 不同的一组酶。
正协同效应(positive cooperativity) 后续亚基的构象改变增加其对别构效应剂
的亲和力,使效应剂与酶的结合越来越容易。
负协同效应(negative cooperativity) 后续亚基的构象改变降低酶对别构效应剂
的亲和力,使效应剂与酶的结合越来越难。
协同效应
正协同效应的底物浓度-反应速率曲线为S形曲线
/ 即: Vmax = k3 [Et]
Km 和 Vmax 的测定
双倒数作图法 Lineweaver-Burk作图
将米氏方程式两侧取倒数
1/v = Km/Vmax[S] + 1/Vmax = Km/Vmax •1/ [S] + 1/Vmax 以 1/v 对 1/[S] 作图, 得直线图
斜率为 Km/Vmax
酶分子的化学修饰

作用: (1)提高酶活力 (2)增加酶的稳定性 (3)降低抗原抗体反应
资料仅供参考,不当之处,请联系改正。
根据修饰分子的大小和对酶分子的作用方式,可分为 大分子的非共价修饰和大分子的共价修饰两类。
(1)大分子的非共价修饰 使用一些能与酶非共价地相互作用而又能有效地保护
资料仅供参考,不当之处,请联系改正。
二、酶化学修饰的基本要求:
决定化学修饰成败的关键是修饰的专一性, 尽量少破坏必需基团,得到高的酶活力回 收。为此,有时需要通过反复试验来确定。
选择修饰剂 选择酶反应条件 反应的专一性
资料仅供参考,不当之处,请联系改正。
三、酶分子化学修饰的主要方法
(一)酶分子的主链修饰 (二)酶分子的侧链基团修饰 (三)酶分子的化学交联修饰 (四)酶分子的大分子结合修饰 (五)酶分子的亲和标记修饰 (六)酶分子的基因修饰 (七)与辅助因子相关的修饰
资料仅供参考,不当之处,请联系改正。
侧链基团修饰的主要作用
1.探测酶和蛋白质的必须氨基酸残基的性 质和数目。
2.用于酶蛋白的纯度的分析与鉴定
3.探索酶蛋白作用的化学机理
4.用于酶蛋白分子的固定化
(三)酶分子的化学交联修饰 资料仅供参考,不当之处,请联系改正。
概念:既可以酶分子内部亚基之间,也可 以在分子与分子之间。
资料仅供参考,不当之处,请联系改正。
(二)酶分子的侧链基团修饰
概念:采用人工方法使酶蛋白的氨基酸残基的侧 链基团与修饰剂发生化学反应,从而改变酶分子 的性质和功能的修饰方法称为侧链修饰基团。
选择性修饰试剂必须要与多肽链中某—种特定的 氨基酸残基侧链基团发生化学反应,并形成紧密 共价结合。酶分子中经常被修饰的氨基酸残基侧 链基团有:巯基、氨基、羧基、咪唑基、羟基、 酚基、胍基、吲哚基、硫醚基及二硫键等。
酶的化学修饰

第五章酶分子的化学修饰主要内容:●酶的活性中心●酶化学修饰的目的●酶化学修饰的原理●酶化学修饰的设计●酶化学修饰的应用第一节酶的活性中心(active site)一、活性中心的概念P12酶的必需基团(essential group): 与酶活性有关的基团酶的活性中心(active center): 由必需基团构成的与酶催化活性有关的特定区域.酶的必需集团在一级结构上并不互相毗邻,往往分散在氨基酸系列中,甚至分布在不同肽链上。
当肽链盘曲、折叠形成空间结构时,互相隔离的必需基团彼此靠近,集中在酶分子表面而形成具有三维结构的特定区域。
该区域能与底物结合并发挥催化作用,故称酶的活性中心(active center)活性部位(active site)。
对于结合酶来说,辅酶或辅基参与酶活性中心的组成。
活性中心的重要化学基团——7种氨基酸出现的频率最高:Lys、Asp、Glu、Cys、His、Tyr和Ser(兰天果拌猪肉丝)。
某些功能基团(氨基、羧基、巯基、羟基和咪唑基)是酶的必需基团。
图释左图:丝氨酸的羟基、半胱氨酸的巯基、组氨酸的咪唑基右图:天冬氨酸和谷氨酸的羧基、赖氨酸的氨基、酪氨酸和丝氨酸的羟基。
二、活性中心的共性P12(1)活性部位只占酶分子很小的一部分(1-2%)。
(2)活性部位是一个三维实体(entity)(3)活性中心位于酶分子表面的疏水性裂缝中。
(4)活性中心构象不是固定不变的(诱导契合)(5)酶与底物通过盐键、氢键、范德华力和疏水作用等次级键结合。
1.The active site takes up a relatively small part of the total volume of an enzyme.左图:肌球蛋白模型。
只显示出α-碳原子,红的为血红素,绿的是两种关键的组氨酸残基。
右图:来自胞质热激蛋白的ATP酶片段的结构图。
ADP(红的)位于两个结构域(黄和蓝的)之间的裂缝中。
酶的化学修饰名词解释是什么

酶的化学修饰名词解释是什么酶是生物体内一类催化剂。
它们是由蛋白质组成的,能够加速生物化学反应的速度,但反应本身不会被改变。
酶的活性与其分子结构密切相关,而化学修饰则是指通过改变酶的分子结构来调节其活性或功能的方法。
在这篇文章中,我们将探讨酶的化学修饰的概念、方法和应用。
一、酶的化学修饰是什么?酶的化学修饰是指通过引入化学基团或小分子到酶的分子结构上,从而改变酶的活性、稳定性或选择性的过程。
化学修饰可以发生在酶的氨基酸残基上,如蛋白质N-或C-端基团,也可以直接作用于酶的辅助因子上。
这些修饰可以是酶天然产生的,也可以是人工合成的,用于改善特定酶的性质或开发新的催化功能。
二、常见的化学修饰方法1. 脱氨基修饰:通过酶的氨基酸残基上的脱氨酶催化作用,去除酶中的氨基基团(如酰胺基、酮基等),从而改变酶的电荷分布和立体结构,进而调节酶的催化活性。
例如,氨基酸的去乙酰化可以通过脱乙酰化酶来实现。
2. 硫醇修饰:利用巯基(-SH)在酶分子中的反应活性,可通过脱氧剂(如巯基还原酶)的作用,降低或增加酶中硫醇含量,从而改变酶的三维结构和活性。
硫醇修饰还可以通过反应性硫醇试剂与酶中的巯基反应,如巯基化合物或含硫醇的小分子,来调节酶的性质。
3. 糖基化修饰:通过酶的氨基酸残基与糖分子发生酯键或糖苷键的形成,将糖基连接到酶分子上,从而改变酶的电荷分布和溶解度,以及与其他分子的相互作用。
糖基化修饰常见于糖基转移酶催化的反应过程中,如糖基转移酶可将糖基转移至酶分子的特定氨基酸残基上。
4. 磷酸化修饰:磷酸添加到酶的氨基酸残基上,通过调节酶的电荷分布和构象来改变酶的活性和功能。
磷酸化修饰对于调控细胞信号传导和调控酶的催化活性具有重要作用。
它可以通过激酶催化磷酸化反应,或者通过磷酸酯酶催化去磷酸化反应,来实现。
三、酶的化学修饰的应用1. 工业应用:通过化学修饰可以改善酶的催化效率、稳定性和选择性,从而提高酶在工业上的应用价值。
4酶分子化学修饰2

8)吲哚基的化学修饰 来源:Trp色 修饰反应:氧化反应 修饰剂: N-溴代琥珀酰亚胺
各种氨基酸侧链的修饰剂
氨基酸 侧链基团
修饰剂
Lys
Asp、Glu Arg Cys
His Tyr Trp
氨基
羧基 胍基 巯基 二硫键 咪唑基 酚羟基 吲哚基
三硝基苯磺酸,2,4-二硝基氟苯、碘 乙酸、碘乙酰胺、丹磺酰氯、亚硝酸 水溶性碳化二亚胺 苯乙二醛,1,2-环己二酮、丁二酮 碘乙酸、碘乙酰胺、N-乙基马来酰亚胺 巯基乙醇、DTT 焦碳酸二乙酯、碘乙酸 碘、四硝基甲烷 N-溴代琥珀酰亚胺
素(heparin)、蔗糖聚合物(Ficoll)等。 修饰方法:修饰前活化,然后在一定条件下与
酶分子共价结合。
Hale Waihona Puke 3. 应用: 如:PEG-超氧化物歧化酶(SOD)
PEG-溶血类蛋白质(链激酶、尿激酶等) PEG-天门冬酰胺酶(ASNase) • 消除了抗原性 • 延长了酶在体内的半衰期 又如:用Dextran 右旋糖酐 修饰-淀粉酶,-淀粉酶,胰 蛋白酶、过氧化氢酶,提高了酶的热稳定性。
但解释修饰效果须十分小心,因为: ①任何一种修饰剂不是绝对专一的。 ②有些修饰剂引起蛋白质构象变化——失活, 不一定是活性中心基团被共价修饰。 ③不同部分的相同基团,修饰效果不同,分子 内部的必需基团,不易被修饰。
(三)交联修饰(交联法) 用双功能基团试剂(如戊二醛),与酶分子内不同
肽链部分共价交联,使酶分子空间构象更加稳定。 (四)固定化修饰(共价偶联法)
E-SH +
5) 二硫键的化学修饰 还原:巯基乙醇、二硫苏糖醇(DTT)
氧化:过甲酸:
6)咪唑基的化学修饰 来源:His组 修饰反应:酰基化与烷基化
酶的化学修饰

第四节 酶的亲和修饰
• 亲和标记:
• 又称专一性的不可逆抑制主要指的是修饰 剂具有与底物相类似的结构,对酶活性部 位具有高度的亲和性,能对活性部位的氨 基酸残基进行共价标记。
• 亲和试剂作为底物类似物应具有的条件: 1)在酶不可逆失活以前,亲和试剂要与酶形 成可逆的复合物 2)没有反应性的竞争性的配体存在 3)试剂的体积不能过大,防止空间障碍的产 生 4)修饰产物稳定,有利于分析
• 酶的化学修饰(chemical modification): 酶的化学修饰(chemical modification): • 通过化学基团的引入或除去,使蛋白质共价
结构发生改变。
• 酶选择性化学修饰: • 描述肽链侧链基团被化学试剂专一性地修饰。 描述肽链侧链基团被化学试剂专一性地修饰。
二、酶化学修饰的目的
第三章 酶的化学修饰
酶作为生物催化剂,其高效性和专 一性是其他催化剂无法比拟的,但是天 然酶的半衰期短,不稳定性等问题限制 了它的应用,如何延长半衰期,提高酶 的稳定性,降低抗原性等越来越引起人 们的关注了。酶的化学修饰是可以从分 子的水平上来改造酶,弥补天然酶缺陷 的一种重要的手段。
一、酶化学修饰的概念
1. 研究酶的结构与功能的关系。(50年代末) 研究酶的结构与功能的关系。(50年代末) 2. 人为改变天然酶的某些性质,扩大酶的应用范 围。(70年代末之后) 围。(70年代末之后) 1)提高酶的生物活性(酶活力)。 2)增强酶的稳定性(热稳定性、体内半衰期)。 3)消除抗原性(针对特异性反应降低生物识别能 力)。 4)产生新的催化能力。
②化学修饰数据的分析
•
化学修饰的时间进程分析 根据获得的 时间进程曲线,可以了解修饰残基的性质 和数目、修饰残基与蛋白质生物活性之间 的关系等,实际是通过测定蛋白质的失活 速度常数的测定。大多实验中,修饰剂远 远多于被修饰的残基,可认为是假一级反 应,然后用残余活力的对数对时间作图, 得出失活常数。
酶的化学修饰特点及名词解释

酶的化学修饰特点及名词解释酶的化学修饰特点及名词解释酶化学修饰的目的在于人为地改变天然酶的一些性质,创造天然酶所不具备的某些优良特性甚至创造出新的活性,来扩大酶的应用领域,促进生物技术的发展。
下面是店铺给大家整理的酶的化学修饰特点,希望能帮到大家!酶的化学修饰特点(1)绝大多数酶化学修饰的酶都具有无活性(或低活性)与有活性(或高活性)两种形式。
它们之间的互变反应,正逆两向都有共价变化,由不同的酶进行催化,而催化这互变反应的酶又受机体调节物质(如激素)的控制。
(2)存在瀑布式效应。
由于酶化学修饰是酶所催化的反应,故有瀑布式(逐级放大)效应。
少量的调节因素就可通过加速这种酶促反应,使大量的另一种酶发生化学修饰星恒教育搜集整理。
因此,这类反应的催化效率常较变构调节为高。
(3)磷酸化与脱磷酸是常见的酶化学修饰反应。
一分子亚基发生磷酸化常需消耗一分子ATP,这与合成酶蛋白所消耗的ATP相比,显然是少得多;同时酶化学修饰又有放大效应,因此,这种调节方式更为经济有效。
(4)此种调节同变构调节一样,可以按着生理的需要来进行。
在前述的肌肉糖元磷酸化酶的`化学修饰过程中,若细胞要减弱或停止糖元分解,则磷酸化酶a在磷酸化酶a磷酸酶的催化下即水解脱去磷酸基而转变成无活性的磷酸化酶b,从而减弱或停止了糖元的分解。
酶的化学修饰名词解释简介酶化学修饰是应用化学方法对酶分子施行种种“手术”,通过主链的“切割”、“剪接”和侧链基团的“化学修饰”对酶蛋白进行分子改造,以改变其理化性质及生物活性的技术。
目的在于人为地改变天然酶的一些性质,创造天然酶所不具备的某些优良特性甚至创造出新的活性,来扩大酶的应用领域,促进生物技术的发展。
通过主链的“切割”、“剪接”和侧链基团的“化学修饰”对酶蛋白进行分子改造,以改变其理化性质及生物活性,这种应用化学方法对酶分子施行种种“手术”的技术,称为酶分子的化学修饰。
自然界本身就存在着酶分子改造修饰过程,如酶源激活、可逆共价调节等,这是自然界赋予酶分子的特异功能,提高酶活力的措施。
酶的化学修饰

的保持时间。
+ HCl
• 焦碳酸二乙酯(DPC)和碘代乙酸, DPC对 抗凝血、抗血栓、降血脂活性,修饰溶栓酶类增加疗效。
+ HI
+
2-羟基-5-硝基苄溴(HNBB)和4-硝基
组氨酸残基有较好的专一性,240nm。 交联剂是具有两个反应活性部位的双功能基团在相隔较近的两个氨基酸残基之间,或酶与其它分子之间发生交联反应。
修饰试剂应具备以下特征:
①选择性地与一个氨基酸残基反应; ②酶蛋白不变性; ③标记的残基在肽中稳定 ④反应的程度能用简单的技术测定。
2、反应条件的选择
①不造成蛋白质的不可逆变性。 ②有利于专一性修饰蛋白质。
3. 反应的专一性
①利用蛋白质分子中某些基团的特殊性。 例:二异丙基氟磷酸酯(DFP)能与胰凝乳蛋白
E-SH + R-S-S-R
E-S-S-R
+ R-SH
E-SH + E-S-S-R
E-S-S-E
+ R-SH
与—SH进行二硫键交换后,—SH被修饰,试剂 的另一半以单体放出。
常用的二硫键交换试剂: DTNB, 5, 5’-dithio-bis-(2-Nitrobenzoate)
二硫二吡啶,4, 4’-dithiodipyridine (或2, 2’-dithiodipyridine)
酶的化学修饰
概念
酶的化学修饰(Chemical modification) 化学手段将某些原子或化学基团结合到酶 分子上,或将酶分子中某基团改变,改变 酶的催化性质及一些生理生化性质。
易实现,作用快,成本
例如:
1、用乙醛酸修饰胰凝乳蛋白酶的表面氨基, 对60°C热处理的稳定性增高了1000倍。
酶

酶对于其所催化的反应类型和底物种类具有高度的 专一性。酶的活性位点和底物,它们的形状、表面 电荷、亲疏水性都会影响专一性。酶的催化可以具 有很高的立体专一性、区域选择性和化学选择性。 具体来说,酶只对具有特定空间结构的某种或某类 底物起作用。例如,麦芽糖酶只能使α-葡萄糖苷键 断裂而对β-葡萄糖苷键无影响。此外,酶具有对底 物对映异构体的识别能力,只能于一种对映体作用, 而对另一对映体不起作用。例如,胰蛋白酶只能水 解由L-氨基酸形成的肽键,而不能作用于D-氨基酸 形成的肽键;酵母中的酶只能对D-构型糖(如D-葡萄 糖)发酵,而对L-构型无效。
1897年,德国科学家爱德华· 比希纳 开始对不含细胞的酵母提取液进行 发酵研究,通过在柏林洪堡大学所 做的一系列实验最终证明发酵过程 并不需要完整的活细胞存在。他将 其中能够发挥发酵作用的酶命名为 发酵酶(zymase)。这一贡献打开 了通向现代酶学与现代生物化学的 大门,其本人也因“发现无细胞发 酵及相应的生化研究”而获得了 1907年的诺贝尔化学奖
酶催化机理多种多样,殊途同归的是最终都能够降低 反应的ΔG:创造稳定过渡态的微环境。例如,通过与 反应的过渡态分子产生更高的亲和力(与底物分子相 比),提高其稳定性;或扭曲底物分子,以使得底物 更趋向于转化为过渡态;或提供不同的反应途径,例 如,暂时性地激活底物,形成酶-底物复合物的中间态。 将反应中不同底物分子结合到一起,并固定其方位至 反应能够正确发生的位臵,从而降低反应的“门槛”。
酶催化专一性的机理
三种酶催化机制模式图:A. “锁-钥匙”模式;B. 诱导契 合模式; C. 群体移动模式。
Hale Waihona Puke “锁-钥匙”模式(“Lock and key”)
该模式由赫尔曼· 埃米尔· 费歇尔于1894年提 出,基于的理论是酶和底物都有一定的外 形,当且仅当两者之间的外形能够精确互 补时,催化反应才可以发生。这一模式通 常被形象地称为“锁-钥匙”模式。虽然这 一模式能够解释酶的专一性,但却无法说 明为什么酶能够稳定反应的过渡态
酶分子修饰PPT课件

进行修饰实验
根据修饰方案进行实验 操作,实现酶分子的修
饰。
性能评估
对修饰后的酶进行性能 评估,包括稳定性、选 择性、催化效率等方面
的评估。
03
酶分子修饰的应用
酶分子修饰在医药领域的应用
药物设计和改造
疾病诊断和治疗
通过酶分子修饰技术,对药物分子进 行化学结构的改造和优化,提高药物 的疗效、稳定性和选择性。
为了克服现有酶分子修饰技术的局限性,需要不断探索新的修饰方法和策略,提高修饰效 果和特异性。
深入研究酶分子结构和功能关系
深入了解酶分子结构和功能关系,有助于更好地选择修饰位点和设计修饰方案,以实现酶 性能的优化。
开发酶分子修饰的应用实例
加强酶分子修饰在解决实际问题中的应用研究,例如在生物医药、环保、能源等领域的应 用实例开发。
分子,用于解决一些重要的生物学和工业问题。
提高酶的稳定性和催化效率
02
通过酶分子修饰,可以改善酶的稳定性和催化效率,使其在极
端条件下的应用更加广泛。
扩展酶的应用领域
03
随着酶分子修饰技术的发展,酶的应用领域也在不断扩展,例
如在生物医药、环保、能源等领域的应用。
酶分子修饰的未来研究方向
探索新的修饰方法和策略
酶分子修饰的类型
化学修饰
利用化学试剂对酶分子进行修饰 ,改变酶的活性、稳定性等性质 。常见的化学修饰方法包括磷酸 化、糖基化、甲基化等。
生物修饰
利用生物酶对酶分子进行修饰, 改变酶的性质。常见的生物修饰 方法包括蛋白质工程、基因敲除 和突变等。
酶分子修饰的重要性
提高酶的稳定性
通过酶分子修饰可以增加酶的稳 定性,使其在极端环境条件下仍 能保持活性,拓宽了酶的应用范
第三章第三节酶化学修饰

B. 酶分子上许多敏感基团交联上修饰剂后, 减少了受蛋白水解酶破坏的可能性。
第三章第三节酶化学修饰
4)、如何消除酶的抗原性及稳定酶的微环境 A. 酶蛋白氨基酸组成的抗原决定簇,与修饰剂形成 了共价键。
破坏了抗原决定簇——抗原性降低乃至消除 “遮盖”了抗原决定簇——阻碍抗原、抗体结合 B. 大分子修饰剂本身是多聚电荷体,能在酶分子表 面形成“缓冲外壳”,抵御外界环境的极性变化,维 持酶活性部位微环境相对稳定。
第三章第三节酶化学修饰
三、原理
利用化学修饰剂所具有的各种基团的特性, 直接或间接地经过一定的活化过程与酶分子的 某种氨基酸残基发生化学反应,从而对酶分子 的结构进行改造。
第三章第三节酶化学修饰
四、修饰的一般程序
修饰反应 酸化 稀释
洗涤
过滤 干燥
阳离子交换
第三章第三节酶化学修饰
Байду номын сангаас、化学修饰方法
第三章第三节酶化学修饰
4、肽链的有限水解
酶原的激活,就是一种肽链的有限水解, 即肽链的水解在限定的肽键上进行,酶分子的 活性中心没有受到损伤,只是激活了酶的活性 或降低了酶分子的抗原性。
第三章第三节酶化学修饰
5、氨基酸置换修饰
氨基酸置换修饰
将肽链上的某一个氨基酸换成另一个氨基酸,引起
酶蛋白空间构象的改变,从而改变酶的某些特性和功能的
第三章第三节酶化学修饰
1)PEG的修饰(常采用单甲氧基MPEG的 衍生物)
第三章第三节酶化学修饰
第三章第三节酶化学修饰
2)、右旋糖酐(可作代血浆用)及右旋糖酐 硫酸酯的修饰
生物化学简明教程第4版课后习题答案——第6章—酶

生物化学简明教程第4版课后习题答案6酶1.作为生物催化剂,酶最重要的特点是什么?解答:作为生物催化剂,酶最重要的特点是具有很高的催化效率以及高度专一性。
2.酶分为哪几大类?每一大类酶催化的化学反应的特点是什么?请指出以下几种酶分别属于哪一大类酶:磷酸葡糖异构酶(phosphoglucose isomerase)碱性磷酸酶(alkaline phosphatase)●肌酸激酶(creatine kinase)❍甘油醛―3―磷酸脱氢酶(glyceraldehyde-3-phosphate dehydrogenase)⏹琥珀酰―CoA合成酶(succinyl-CoA synthetase)☐柠檬酸合酶(citrate synthase)☐葡萄糖氧化酶(glucose oxidase)❑谷丙转氨酶(glutamic-pyruvic transaminase)❒蔗糖酶(invertase)♦ T4 RNA连接酶(T4 RNA ligase)解答:前两个问题参考本章第3节内容。
异构酶类;水解酶类;●转移酶类;❍氧化还原酶类中的脱氢酶;⏹合成酶类;☐裂合酶类;☐氧化还原酶类中的氧化酶;❑转移酶类;❒水解酶类;♦合成酶类(又称连接酶类)。
3.什么是诱导契合学说,该学说如何解释酶的专一性?解答:“诱导契合”学说认为酶分子的结构并非与底物分子正好互补,而是具有一定的柔性,当酶分子与底物分子靠近时,酶受底物分子诱导,其构象发生有利于与底物结合的变化,酶与底物在此基础上互补契合进行反应。
根据诱导契合学说,经过诱导之后,酶与底物在结构上的互补性是酶催化底物反应的前提条件,酶只能与对应的化合物契合,从而排斥了那些形状、大小等不适合的化合物,因此酶对底物具有严格的选择性,即酶具有高度专一性。
4.阐述酶活性部位的概念、组成与特点。
解答:参考本章第5节内容。
5.经过多年的探索,你终于从一噬热菌中纯化得到一种蛋白水解酶,可用作洗衣粉的添加剂。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
酶分子中的可解离基团如氨基、羧基、羟基、 巯基、咪唑基等,都是可以被修饰的基团。
修饰:如碘乙酸、碘乙酰胺、巯基乙醇、谷胱甘肽 等。
E-SH+ICH2COOH(或ICH2CONH2)→ E-SCH2COOH(或E-S-CH2CONH2)+HI
(2)对氨基的修饰 乙酸酐修饰:
2、蛋白质局部微区性质的影响
功能基的反应性是通过它的亲核性来显示的, 而亲核性又常常与它的酸碱性有关,即与基团 的pK有影响。
(1)微区的极性
微区的极性是决定基团解离状态的关键因 素之一。
如:乙酸在水中的pK为4.76,在80%乙醇中增至6.87, 在100%乙醇中增至10.32。乙酸羧基所处微区的极性直 接与介质的介电常数有关。随介质极性降低,羧基的pK 升高。
E-NH2+CH3COOCOCH3 →E-NHCOCH3 + CH3COOH
(3)羧基的化学修饰 O NR 羰二亚胺反应: ∥ ∥ E-COO-+R-N=C=NHR` →E-C –O-C-NR` (4)咪唑基的修饰反应 碘代反应: E-咪唑基+ICH2COO- → E-咪唑基CH2COO-+ HI
(2)酶分子内部修饰
1)非催化活性基团的修饰:如金属离子臵换修饰,可改变 酶动力学性质和酶亲和能力; 2)酶蛋白主链修饰:有限水解修饰; 3)催化活性基团修饰:选择性修饰侧链成分来实现氨基酸 的取代,即化学突变法;
4)肽链伸展后的修饰:为了有效处理酶分子内部区域,先
用脲、盐酸胍处理酶,使酶链充分伸展,修饰后再折叠成具 有某种活性的构象;
4. 如何消除酶的抗原性及稳定酶的微环境
四、酶蛋白修饰的方法
(1)酶分子的表面修饰: 1 )化学固定:酶与惰性载体共价固定 (即共价固定化酶);
2)小分子修饰:用化学小分子修饰酶的 表面基团;(如:对酶分子的侧链基团, 尤其酶活性中心的必需基团进行化学修 饰)
3)大分子修饰
非共价修饰:与大分子物质非共价结合,增加酶的稳定性; 共价修饰:用可溶性大分子共价连接于酶分子表面,形成覆盖 层.
4)分子内交联:增加酶分子表面基团相 互交联,稳定酶分子;
5)分子间交联:用双功能或多功能试剂 使不同的酶交联起来产生杂化酶
6)脂质体包埋:固定化修饰之一,可改 善稳定性和免疫性;
7)反相胶团微囊化:在非极性有机溶剂 中加表面活性剂与酶形成含水分子的反 相胶团,酶分配在团内的水性环境中, 使酶与有机相分开,避免酶变性。
(4)位阻效应
处于蛋白质表面的功能基比较容易与修饰剂 反应。如果烷基在空间上紧靠功能基,会使 修饰剂不能与功能基接触,这时就要出现位 阻效应。
如:对枯草杆菌蛋白酶BKN的所有的10个酪氨酸残基 均在蛋白质分子表面,而且其结构上的苯酚的羟基 几乎在所有情况下都没有形成氢键。但是,如果对 它进行彻底硝化和碘化后,10个酪氨酸中只有8个被 修饰。
②意义: A.天然酶的活性维持存在缺陷;(如:异体蛋白 的抗原性、易受蛋白酶水解、抑制剂抑制、活性 半衰期短)
B.天然酶的使用性能存在缺陷;(如: 酶蛋白抗酸、碱、有机溶剂变性及抗热 失活能力差,容易受产物抑制) C.天然酶的应用存在潜力。(如:通过 酶的分子改造可提高酶的稳定性、解除 酶的抗原性、改变酶学性质(最适pH、最 适温度、Km值、催化活性和专一性等)、 扩大酶的应用范围)
(2)氢键效应
天然蛋白质通过氢键来维持其稳定性,也是 使pK发生改变的一个因素。
例如,2-氟酚的pK比2-溴酚的pK高0.7。这是由于氟与酚基 形成氢键的能力比溴强。 水杨酸的羧基可与其酚基形成 O--H…O氢键,结果使其羧基 的pK比正常值小1,同时使酚基的正常pKl0改变到pKl3。
(3)静电效应
六、修饰酶的特性
酶分子经过化学修饰后,其特性在一定程度上发 生改变,天然酶的一些不足之处可以得到改善。
1、热稳定性提高
原因1 :修饰剂共价连接于酶分子后,使酶的天然构 象产生一定的“刚性”,不易伸展失活,并减少了 酶分子内部基团的热振动,从而增加了热稳定性。 这种热稳定性效果和修饰剂与酶之间的交联点的数
第六章 酶蛋白的化学修饰
一、酶的化学修饰
1、概念 凡通过化学基团的引入或除去而使蛋白 质(酶)共价结构发生改变,从而改变 蛋白质(酶)的某些特性和功能的过程 都可称蛋白质(酶)的化学修饰。
2、酶的化学修饰的目的和意义 ①目的: 构象优化、结构稳固
1. 2. 3. 4.
稳定性不够,不能适应大量生产的需要。 作用的最适条件不符。 酶的主要动力学性质的不适应。 临床应用的特殊要求。
2、静电相互作用: 带电的修饰剂能被选择性地吸引到蛋白 质表面带相反电荷的部位。
静电相互作用可使修饰剂向多功能部位中的一 个残基定位,或向双功能基的一侧定位。
3、位阻因素;
蛋白质表面的位阻因素或者底物、辅因子、抑 制剂所产生的位阻因素都可能阻止修饰剂与功 能基的正常反应。
4、催化因素;
不同蛋白质中的组氨酸残基的pK是不同的。
碳酸酐酶和葡萄球菌核酸酶各有 4 个组氨酸残基。 碳酸酐酶的pK是:5.91;6.04;7.00;7.23;葡萄 球菌核酸酶的 pK 是: 5.37 ; 5.71 ; 5.74 ; 6 . 50 。 组氨酸残基在这两个蛋白质中的 pK 范围是 5 . 37 ~ 7.23,pH几乎相差2。这些变化可能是由于带电基 团相互影响所致。
1、选择吸附性;
化学修饰前,修饰剂是根据各自的特点,选 择性地吸附在蛋白质低或高极性区的。
因为巯基的辛基化速度比乙基化速度高15倍。说明巯基处 在非极性环境中。修饰剂先与蛋白质的巯基疏水键合,然 后烷基化。
如:D-氨基酸氧化酶的巯基宜与N-烷基马来酰亚胺的反应,
二硝基氟苯修饰牛血清白蛋白时,二硝基氟苯先与其疏水 键合。
目有关。(PEG和酶以单点交联时热稳定性提高并不
卵 清 溶 菌 酶 中 第 35 号 谷 氨酸的 -C00H 在 25℃时的 pK 为 5.9 ,而当溶菌酶与 其抑制剂三 -N- 乙酰氨基 葡 萄 糖 结 合 后 , 此 pK 则 升至6.4。 pK 的 提 高 可 能 是 由 于 这 个残基的微区极性降低 之故。
● 5 3
提示:局部极性的改变对色氨酸、甲 硫氨酸和胱氨酸反应性的影响最小; 对氨基和组氨酸反应性的影响较大; 对酪氨酸、半胱氨酸和羧基的反应性 影响最大。
聚乙烯(polyvinyl alcohol,PVA)
聚N-乙烯吡咯烷酮(poly(N-vinylpyrrolidone,PVP) 聚顺丁烯二酸酐、聚丙烯酸(polyacrylicacid,PAA) 。
③生物大分子: 常用的有肝素、血浆蛋白质、聚氨基 酸类等。
④双功能试剂: 主要有戊二醛、二异硫氰酸、二胺类
等。 ⑤其他 : 常用的修饰剂还有某些固定化酶载体、糖基 化试剂、甲基化试剂、乙基化试剂及某些小分子有机物 等。
五、化学修饰的措施
酶的化学修饰基本原则: 充分利用修饰剂所具有的各类化学基团的特性,直接或 经过一定的活化过程与酶分子中的某些基团或辅因子产 生化学反应,对酶分子结构进行改造。
1、修饰酶蛋白侧链基团
E
(5)吲哚基的化学修饰 4-硝基苯硫氯反应: E E-吲哚基+CIS-苯环-NO 2→ E-吲哚基-S-苯环 -NO2+HCL (6)二硫键的化学修饰 2-巯基乙醇修饰:
S S
S
E
S
+ SH-CH2-CH2OH→SH-E-S-S- CH2-CH2OH
酶蛋白侧链经修饰后,可以稳定酶分子的催 化活性,提高抗变性的能力。
三、设计酶化学修饰的要点
1、了解酶的性质
对 酶 的活 性 部 位 、 酶
的稳定条件、酶反应最 适条件及酶的侧链基团 等到的了解。
2、选择修饰剂的类型
修饰剂的分子量、链的长度、对蛋白质的吸附性;修饰 剂上反应基团的数量和位置;修饰剂上反应基团的活化 方法与条件。
一般要求修饰剂具有较大分子量、良好的生物相容性和水溶性、修 饰剂分子表面有较多的反应活性基团及修饰后酶活的半衰期较长。
3、酶修饰途径
(1)分子生物学水平,即用基因工程方法对DNA 或RNA进行分子改造,以获得化学结构更为合理的 酶蛋白(蛋白质工程)。
(2)对天然酶分子进行改造,这包括一级结构中 氨基酸置换、肽链切割、氨基酸侧链修饰等(选择 性化学修饰)。
三. 酶化学修饰的基本原理
1. 如何增强酶天然构象的稳定性与耐热性 2. 如何保护酶活性部位与抗抑制剂 3. 如何维持酶功能结构的完整性与抗蛋白水解酶
3、选择修饰反应的条件
尽量少破坏酶活性功能的必需基团。反应体系中酶与
修饰剂的分子比例;反应体系的溶剂性质、盐浓度和
pH条件;反应温度及时间。
四、常用的化学修饰剂
①糖及糖的衍生物:
主要有右旋糖酐、右旋糖酐硫酸酯、糖肽、葡聚糖凝胶、聚乳 糖等。 ②高分子多聚物:
聚乙二醇(polyethylene glycol,PEG)
如:用聚乙二醇修饰后的过氧化氢酶,抗蛋白水
解酶的能力有明显增加而且抗原性消失。
3、修饰酶的辅因子