多区间概念格的动态横向合并算法_刘保相

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第 35 卷第 11 期 No.11 Vol.35
辽宁工程技术大学学报(自然科学版) Journal of Liaoning Technical University(Natural Science)
2016 年 11 月 Nov. 2016
刘保相 , 张茹 , 张春英 . 多区间概念格的动态横向合并算法 [J]. 辽宁工程技术大学学报 ( 自然科学版 ),2016,35(11):1363-1369. doi:10.11956/j.issn.1008-0562.2016.11.031 Liu Baoxiang, Zhang Chunying, Zhang Ru Dynamic Horizontal Merger Algorithm for Multiple Interval Concept Lattice [J].Journal of Liaoning Technical University(Natural Science),2016,35(11):1363-1369. doi:10.11956/j.issn.1008-0562.2016.11.031
Dynamic horizontal merger algorithm for multiple interval concept lattice
LIU Baoxiang, ZHANG Chunying, ZHANG Ru (College of Sciences, North China University of Science and Technology, Tangshan 063000, China) Abstract: In the era of big data, the data updating is real-time. How to prepare the data accurately and efficiently is the key to mining association rules. In view of the above questions, this paper proposed a dynamic horizontal union algorithm of multi interval concept lattice under the same background of the different attribute set and object set. First, in order to ensure the integrity of the lattice structure, the interval concept lattice incremental generation algorithm was improved, and then interval concept was divided into existing concept, redundancy concept and the empty concept. Secondly, combining the characteristics of interval concept lattice, the concept of consistency of interval concept lattice was defined and it is the necessary and sufficient conditions for the horizontal union of lattice structure. Further, the interval concepts merged were discussed, and the principle of horizontal mergers was given. Finally, the sequence was scanned by the traversal method. This method increased the efficiency of horizontal merger. A case study shows the feasibility and efficiency of the proposed algorithm. Key words: big data; interval concept lattice; horizontal merger; sequence traversal
0 引言
区间概念格[1]是对象具备一定数量或者比例的 内涵属性的区间概念结构,概念表示形式为
( M α , M β , Y ) .相比, 经典概念格[2]是由外延完全具备
退化为经典概念格,当 α = 1/ | Y |, β = 1 时,区间 概念格就退化为粗糙概念格.不难看出, 区间概念格 是经典概念格和粗糙概念格的一般形式,而经典概 念格和粗糙概念格则是区间概念格的特殊形式. 随着大数据[4]时代的到来,快速增长的海量数 据需要借助强有力的工具挖掘蕴含其中的信息 . 如 何实现数据快速高效汇总是数据准备工作的重要 组成部分,是进一步挖掘关联规则[5-6]的关键.例如: 在超市购物系统中, 每天都会产生海量的购物信息.
多区间概念格Hale Waihona Puke Baidu动态横向合并算法
刘保相,张 茹,张春英
(华北理工大学 理学院,河北 唐山 063000) 摘 要:为准确高效的完成数据的准备工作,提出在属性集不同、对象集相同形式背景下多区间概念格的动态横 向合并算法.首先,为保证格结构的完整性,对区间概念格的渐进式生成算法进行改进,将区间概念分为存在概 念、冗余概念和空概念;其次,结合区间概念格自身特点,给出区间概念格一致性的概念以及格结构横向合并的 充要条件;再次,将合并后的区间概念分情况进行讨论,并给出相应的横向合并原理;最后应用层序遍历的方法 扫描格结构,提出横向合并效率.实例表明,该算法的可行性和高效性. 关键词:大数据;区间概念格;动态性;横向合并;层序遍历 中图分类号:TP18 文献标志码:A 文章编号:1008-0562(2016)11-1363-06
相关文档
最新文档