福建省厦门市中考数学压轴题总复习含答案解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021年福建省厦门市中考数学压轴题总复习中考数学压轴题是想获得高分甚至满分必须攻破的考题,得分率低,需要引起重视。从近10年中考压轴题分析可得中考压轴题主要考查知识点为二次函数,圆,多边形,相似,锐角三角形等。预计2021年中考数学压轴题依然主要考查这些知识点。
1.如图,在平面直角坐标系中,抛物线y=ax2+bx+c与x轴交于点A(﹣2,0),点B(4,0),与y轴交于点C(0,2√3),连接BC,位于y轴右侧且垂直于x轴的动直线l,沿x 轴正方向从O运动到B(不含O点和B点),且分别交抛物线、线段BC以及x轴于点P,D,E,连接AC,BC,P A,PB,PC.
(1)求抛物线的表达式;
(2)如图1,当直线l运动时,求使得△PEA和△AOC相似的点P点的横坐标;
(3)如图1,当直线1运动时,求△PCB面积的最大值;
(4)如图2,抛物线的对称轴交x轴于点Q,过点B作BG∥AC交y轴于点G.点H、K分别在对称轴和y轴上运动,连接PH、HK,当△PCB的面积最大时,请直接写出
PH+HK+√3
2KG的最小值.
2.在平面直角坐标系中,抛物线y =ax 2+bx +2(a ≠0)经过点A (﹣2,﹣4)和点C (2,0),与y 轴交于点D ,与x 轴的另一交点为点B .
(1)求抛物线的解析式;
(2)如图1,连接BD ,在抛物线上是否存在点P ,使得∠PBC =2∠BDO ?若存在,请求出点P 的坐标;若不存在,请说明理由;
(3)如图2,连接AC ,交y 轴于点E ,点M 是线段AD 上的动点(不与点A ,点D 重合),将△CME 沿ME 所在直线翻折,得到△FME ,当△FME 与△AME 重叠部分的面积是△AMC 面积的14时,请直接写出线段AM 的长.
3.在平面直角坐标系xOy中,过点N(6,﹣1)的两条直线l1,l2,与x轴正半轴分别交于M、B两点,与y轴分别交于点D、A两点,已知D点坐标为(0,1),A在y轴负半轴,以AN为直径画⊙P,与y轴的另一个交点为F.
(1)求M点坐标;
(2)如图1,若⊙P经过点M.
①判断⊙P与x轴的位置关系,并说明理由;②求弦AF的长;
(3)如图2,若⊙P与直线l1的另一个交点E在线段DM上,求√10NE+AF的值.
4.如图①,在△ABC中,∠ABC=90°,AB=4,BC=3.点P从点A出发,沿折线AB ﹣BC以每秒5个单位长度的速度向点C运动,同时点D从点C出发,沿CA以每秒2个单位长度的速度向点A运动,点P到达点C时,点P、D同时停止运动.当点P不与点A、C重合时,作点P关于直线AC的对称点Q,连结PQ交AC于点E,连结DP、DQ.设点P的运动时间为t秒.
(1)当点P与点B重合时,求t的值.
(2)用含t的代数式表示线段CE的长.
(3)当△PDQ为锐角三角形时,求t的取值范围.
(4)如图②,取PD的中点M,连结QM.当直线QM与△ABC的一条直角边平行时,直接写出t的值.