第六章弯曲应力1

合集下载

材料力学06(第六章 弯曲应力)分析

材料力学06(第六章 弯曲应力)分析

F / 4 2 103 mm 134 mm
30 MPa 5493104 mm4
F 24.6 kN
因此梁的强度由截面B上的最大拉应力控制
[F] 19.2 kN
§6-3 梁横截面上的切应力•梁的切应力强度条件
Ⅰ、梁横截面上的切应力
分离体的平衡
横截面上切应力 分布规律的假设
横截面上弯曲切 应力的计算公式
二.工字形截面梁 1、腹板上的切应力
h
d
y
d
O
y b
O
' A*
y dA
FS
S
* z
Izd
S
* z
bd
2
h
d
d 2
h 2
d
2
y2
腹板与翼缘交界处
max
min
FS Izd
bd

h d
max O
中性轴处
max
FS
S
* z,m
ax
Izd
y
min
FS
bd
h
d
d
h
d
2
I z d 2
160 MPa 148 MPa
2
Ⅲ 梁的正应力强度条件
max 材料的许用弯曲正应力
中性轴为横截面对称轴的等直梁
M max
Wz
拉、压强度不相等的铸铁等脆性材料制成的梁
为充分发挥材料的强度,最合理的设计为
t,max
M max yt,max Iz
[
t]
c,max
M max yc,max Iz
Myc,max Iz
典型截面的惯性矩与抗弯截面系数 ( d D)
b

第六章__弯曲应力及剪力流的知识点

第六章__弯曲应力及剪力流的知识点
Page 4
第六章 弯曲应力
上一讲回顾(12)
•梁变形与受力假设:平面假设,单向受力假设。 y My s •正应力公式: s E E Iz M Iz s max •最大正应力: Wz Wz y S z ydA, S y zdA •静矩:
A A
•惯性矩与惯性积 :

50
a
F l
a
a = ? [ F ] 最大.
Page
27
第六章 弯曲应力
配重降低最大弯矩作用分析
M
Pa Pa F P
F a
P
l
a
a
l
a
M
Fl/4 +
M
Fl/4-Pa Pa
+
Pa
Page 28
第六章 弯曲应力
弯拉(压)组合分析
A F
l 2
q
B
C
l 2
F
C
FN M max
sN

sM
y
sN sM

20 kN 20 kN
C
D
解:计算截面形心 与惯性矩
A
B
1m
3m
1m
yC 139mm I z 40.3 106 mm 4
M 图:

10kN m

20kN m
200
为校核梁的强度,需计算 B截面a点的拉应力与b点 压应力,C截面b点拉应力
a
30
y1
z
170
yC
b 30
Page 19
3. 弯矩计算 或
EI z
bd 2s max M s max W 1.14kNM 6

第6章 弯曲应力

第6章  弯曲应力

称为抗弯截面系数
只有一根对称轴的横截面形状: yt,max yc,max O y
O y
z
t,max
My t ,max Iz
c,max
Myc,max Iz
z
简单截面的弯曲截面系数 b h ⑴ 矩形截面
z
bh3 Iz 12 b3h Iy 12
⑵ 圆形截面
y d
Iz bh2 Wz h/2 6 Iy b2h Wy 源自/2 63()
Ⅱ .纯弯曲理论的推广 对于细长梁( l/h > 5 ),纯弯曲时的正应力计算 公式用于横力弯曲情况,其结果仍足够精确。 F
l
M ( x) y Iz
Fl
4
max
M ( x) Wz
解:
由弯曲曲率公式 可得:
M EIz
M EI z
1
代入弯曲正应力公式:
M EIZ Ed 533.3MPa WZ WZ 2
3.正应力的正负号与弯矩 及点的坐标 y的正负号有关。实际计算中,可根 据截面上弯矩的方向,直接判断中性 轴的哪一侧产生拉应力,哪一侧产生 压应力,而不必计及M和y的正负。
三、最大弯曲正应力 有两根对称轴的横截面形状: b h
z
y y
z
max
M M Mymax I z Wz Iz y max

基本假设2:
梁内各纵向纤维无挤压 假设,纵向纤维间无正应 力。

中性层与中性轴
纵向对称面 中性层 Z 中性轴
中性层 根据变形的连续性 可知,梁弯曲时从其凹 入一侧的纵向线缩短区 到其凸出一侧的纵向线 伸长区,中间必有一层 纵向无长度改变的过渡 层,称为中性层 。 中性轴: 中性层与横截面的交 线就是中性轴。

刘鸿文版材料力学第六章

刘鸿文版材料力学第六章

F6bl
(l2
b2 ) x1
CB 段: a x2 l
y
F
A A
DC
FAy x1
x2
a
ym ax b
B B x
FBy
EI
Fb 2 2l
2
x2
F 2
(
x2
a)2
Fb (l2 6l
b2 )
EIy2
Fb 6l
x32
F 6
(
x2
a)3
F6lb (l2 b2 ) x2
目录
§6-3 用积分法求弯曲变形
目录
§6-5 简单超静定梁
例7 梁AB 和BC 在B 处铰接,A、C 两端固定,梁的抗弯刚度均为EI,F = 40kN, q = 20kN/m。画梁的剪力图和弯矩图。
解 从B 处拆开,使超静定结构变成两个悬臂 梁。
MA
FA FB
FB FB
yB2
yB1
FB
变形协调方程为: 物理关系
yB1 yB 2
4
EI
ql 4 48EI
ql 4 16 EI
11ql 4 ( ) 384 EI
3
ql 3
B i 1 Bi 24EI
ql 3 16EI
ql 3 3EI
11ql 3 ( ) 48EI
目录
§6-4 用叠加法求弯曲变形
例4 已知:悬臂梁受力如图示,q、l、
yC
EI均为已知。求C截面的挠度yC和转角C
§6-4 用叠加法求弯曲变形
讨论 叠加法求变形有什么优缺点?
目录
§6-5 简单超静定梁
1.基本概念: 超静定梁:支反力数目大于有效平衡方程数目的梁 多余约束:从维持平衡角度而言,多余的约束 超静定次数:多余约束或多余支反力的数目。 相当系统:用多余约束力代替多余约束的静定系统

材料力学第6章弯曲应力

材料力学第6章弯曲应力

图6.5
页 退出
材料力学
出版社 理工分社
例6.1如图6.6所示,矩形截面悬臂梁受集中力和集中力偶作用。试求Ⅰ—Ⅰ 截面和固定端Ⅱ—Ⅱ截面上A,B,C,D 4点处的正应力。
图6.6
页 退出
材料力学
出版社 理工分社
解矩形截面对中性轴的惯性矩为 对于Ⅰ—Ⅰ截面,弯矩MⅠ=20 kN·m,根据式(6.2),各点正应力分别为
页 退出
材料力学
出版社 理工分社
(1)变形几何关系 弯曲变形前和变形后的梁段分别表示于图6.4(a)和(b)。以梁横截面的对称 轴为y轴且向下为正(见图6.4(c))。以中性轴为z轴,但中性轴的位置尚待确 定。在中性轴尚未确定之前,x轴只能暂时认为是通过原点的横截面的法 线。根据弯曲平面假设,变形前相距为dx的两个横截面,变形后各自绕中性 轴相对旋转了一个角度dθ ,且仍然保持为平面。这就使得距中性层为y的纵 向纤维bb的长度变为
式中积分
是横截面对y轴和z轴的惯性积。由于y轴是横截面的对
称轴,必然有Iyz=0(见附录)。所以式(g)是自然满足的。 将式(b)代入式(e),得
式中积分∫Ay2dA=Iz是横截面对z轴(中性轴)的惯性矩。于是式(h)改写为 式中 ——梁轴线变形后的曲率。
页 退出
材料力学
出版社 理工分社
式(6.1)表明,EIz越大,则曲率 越小,故EIz称为梁的抗弯刚度。从式 (6.1)和式(b)中消去 ,得
而对于变截面梁,虽然是等截面梁但中性轴不是横截面对称轴的梁,在计算 最大弯曲正应力时不能只注意弯矩数值最大的截面,应综合考虑My/Iz的值 (参看例6.5和例6.8)。
页 退出
材料力学
出版社 理工分社
引用记号

材料力学第六章弯曲应力

材料力学第六章弯曲应力

但相应的最大弯矩值变为
Fl ql2
M max
4
8
375 kN m 13 kN m 388 kN m
而危险截面上的最大正应力变为
max
388103 N m 2342106 m3
165.7106
Pa
165.7
MPa
显然,梁的自重引起的最大正应力仅为
165.7 160 MPa 5.7 MPa
<2>. 相邻横向线mm和nn,在梁弯曲后仍为直线,只是
相对旋转了一个角度,且与弧线aa和bb保持正交。
根据表面变形情况,并设想梁的侧面上的横向线mm和 nn是梁的横截面与侧表面的交线,可作出如下推论(假设):
平面假设 梁在纯弯曲时,其原来的横截面仍保持为平面, 只是绕垂直于弯曲平面(纵向平面)的某一轴转动,转动后 的横截面与梁弯曲后的轴线保持正交。
力的值max为
max
M ym a x Iz
M
Iz ymax
M Wz
式中,Wz为截面的几何性质,称为弯曲截面系数(对Z轴)
(section modulus in bending),其单位为m3。
b
h d
o
z
o
z
y
y
中性轴 z 不是横截面的对称轴时(参见图c),其横截面 上最大拉应力值和最大压应力值为
A
r
(b)
M z
y d A E
A
r
y2 d A EI z M
A
r
(c)
由于式(a),(b)中的
E
r
不可能等于零,因而该两式要求:
1. 横截面对于中性轴 z 的静矩等于零,A y d A 0 ;显

第六章 弯曲剪应力

第六章  弯曲剪应力

所 以 d m in 1 3 7m m
[例6-7]两个尺寸完全相同的矩形截面梁叠在一起承受荷载如图 所示。若材料许用应力为[],其许可载荷[P]为多少?如将两 个梁用一根螺栓联成一体,则其许可荷载为多少?若螺栓许 用剪应力为[τ],求螺栓的最小直径?
L
FQ
P
-PL
M
P
解:叠梁承载时,每
梁都有自己的中性层
§6-3 弯曲剪应力和强度校核
一.具有纵对称轴截面梁的剪应力
对于薄壁、高截面的梁须计算弯曲剪应力
My
Iz
q(x) x dx
P
bh
z
q(x)
M(x)
M (x)dM (x)
y
FQ
FQ dFQ
在hb的情况下
假设 1)的 :方向F都 Q平与 行
2)沿宽度均布。
y
NI
N II
NI A*ⅠdA
M ydA M
(1)当外力偶作用在平行于形心主惯性平面的任一平 面内时,梁产生平面弯曲。
(2)当横向外力作用在平行于形心主惯性平面的平面 内,并且通过特定点时,梁发生平面弯曲。否则将 会伴随着扭转变形。但由于实体构件抗扭刚度很大
,扭转变形很小,其带来的影响可以忽略不计。
二. 开口薄壁截面的弯曲中心
对于开口薄壁截面梁,即使横向力作用于形心主惯性 平面内(非对称平面),则梁除发生弯曲变形外,还将 发生扭转变形。
b(x)
3P
4[]h
即: b(x)min4[3P]h
P/2
P
A
C
xL
P/2 同理:若b为常量,高度h=h(x)
B W(x)1bh2(x) Px
6
2[]
h(x) 3Px 半抛物线

第六章弯曲应力

第六章弯曲应力

? 中性轴的位置
中性层的曲率半径r
3. 静力学关系
statics relation
M
z
FN
A dFN
σdA
A
O
x
M y
A dM y
zσdA
A
y
M z
A dM z
yσdA
A
凹入一侧的受压应力,凸出的一侧受拉应力
应用公式时,一般将 My 以绝对值代入. 根据梁变形的情况直接
按强度要求设计梁时,主要是依据梁的正应力强度条件
σmax M max [σ] Wz
一、降低梁的最大弯矩值
1.合理地布置梁的荷载
F
F
l
Fl/4
l/4
l/2 l/4
Fl/8
2.合理地设置支座位置
q
q
l
ql2/2
a
a
l
0.0214ql2
当两端支座分别向跨中移动a=0.207l 时,最大弯矩减小.
二、增大Wz
deformation geometric relationship
physical relationship
static relationship
Examine the deformation, 变
then propose the hypothesis 形



Distribution regularity
z
0.8a2 a2
π D12 4
2a22
0.8 1.6a22 ,a2
1.05D1
Wz4 4.57Wz1
工字形截面与框形截面类似.
2.合理的放置
W1 h W2 b

材料力学知识点

材料力学知识点

第六章弯曲变形知识要点1、弯曲变形的概念1)、挠曲线弯曲变形后梁的轴线变为挠曲线。

平面弯曲时,挠曲线为外力作用平面内的平面曲线。

2)、平面弯曲时的变形在小变形情况下,梁的任意二横截面绕各自的中性轴作相对转动,杆件的轴线变为平面曲线,其变形程度以挠曲线的曲率来度量。

1》纯弯曲时,弯矩—曲率的关系(由上式看出,若弯曲刚度EI为常数则曲率为常数,即挠曲线为圆弧线)2》横力弯曲时,弯矩—曲率的关系3)、平面弯曲时的位移1》挠度——横截面形心在垂直于梁轴线方向上的线位移,以表示。

2》转角——横截面绕其中性轴旋转的角位移,以表示。

挠度和转角的正负号由所选坐标系的正方向来确定。

沿y轴正方向的挠度为正。

转角的正负号判定规则为,将x轴绕原点旋转90°而与y轴重合,若转角与它的转向相同,则为正,反之为负。

4)、挠曲线近似微分方程5)、受弯曲构件的刚度条件,2、积分法求梁的挠度和转角由积分常数C、D由边界条件和连续性条件确定。

对于梁上有突变载荷(集中力、集中力偶、间断性分布力)的情况,梁的弯矩M(x)不是光滑连续函数,应用上式时,应分段积分,每分一段就多出现两个积分常数。

因此除了用边界条件外,还要用连续性条件确定所有的积分常数。

边界条件:支座对梁的位移(挠度和转角)的约束条件。

连续条件:挠曲线的光滑连续条件。

悬臂梁边界条件:固定端挠度为0,转角为0连续条件:在载荷分界处(控制截面处)左右两边挠度相等,转角相等简支梁边界条件:固定绞支座或滑动绞支座处挠度为0连续条件:在载荷分界处(控制截面处)左右两边挠度相等,转角相等连接铰链处,左右两端挠度相等,转角不等3、叠加原理求梁的挠度和转角1)、叠加原理各载荷同时作用下梁任一截面的挠度和转角等于各个载荷单独作用时同一截面挠度和转角的代数和。

2)、叠加原理的限制叠加原理要求梁某个截面的挠度和转角与该截面的弯矩成线性关系,因此要求:1》弯矩M和曲率成线性关系,这就要求材料是线弹性材料2》曲率与挠度成线性关系,这就要求梁变形为小变形4、弯曲时的超静定问题——超静定梁1)、超静定梁约束反力数目多于可应用的独立的静力平衡方程数的梁称为超静定梁,它的未知力不能用静力平衡方程完全确定,必须由变形相容条件和力与变形间的物理关系建立补充方程,然后联立静力平衡方程与补充方程,求解所有的未知数。

第六章弯曲变形分析

第六章弯曲变形分析

第六章 弯曲变形分析梁是机械与工程结构中最常见的构件。

本章内容包括梁的内力、平面弯曲中横截面上的正应力和切应力分布规律,以及梁的变形计算。

6.1 梁的内力● 梁的概念当杆件受到矢量方向垂直于轴线的外力或外力偶作用时,其轴线将由直线变为曲线,如图6–1(a)。

以轴线变弯为主要特征的变形形式称为弯曲,凡是以弯曲变形为主的杆件,工程上称为梁,如车辆的轮轴、房屋的梁及桥梁等。

在分析计算中,通常用梁的轴线代表梁,如图6–1(b)。

在工程实际中,大多数梁都具有一个纵向对称面;而外力也作用在该对称面内。

在这种情况下,梁的变形对称于纵向对称面,且变形后的轴线也在对称图6–1 梁 图6–2 对称弯曲图6–3 梁的约束 图6–4 三类静定梁面内,即所谓的对称弯曲,如图6–2。

它是弯曲问题中最基本、最常见的情况。

本章只讨论梁的对称弯曲。

图6–3表示了梁的三种常见约束形式及相应的约束力:可动铰支座(图6–3(a)),固定铰支座(图6–3(b))和(平面)固定端约束(图6–3(c))。

在以上三种约束方式下,有三种常见的梁形式,如图6–4所示。

图6–4(a)为简支梁,两端分别为固定铰支座和活动铰支座;图6–4(b)为悬臂梁,一端固定端约束,一端自由;图6–4(b)为外伸梁,它是具有一个或两个外伸部分的简支梁。

这三种梁都是静定梁。

作用在梁上的外载荷,常见的有集中力偶M (图6–5(a))、分布载荷q (图6–5(b))和集中力F (图6–5(c))。

在实际问题中,q 为常数的均布载荷较为常见。

● 梁的剪力与弯矩在4.2中已经介绍了求杆件内力的通用方法,即截面法。

具体到梁,其内力分量为剪力和弯矩,规定当剪力相对于横截面的转向为顺时针为正,使杆件发生上凹下凸的弯矩为正,如图4–5(b)和(c)。

例6–1:如图6–6所示悬臂梁,受均布载荷q ,在B 点处受矩为2qa M =的力偶作用,试绘梁的剪力图与弯矩图。

解:设固定端的约束力和约束力偶为C R 和C M ,则由平衡方程00=-=∑qa R F C y ,qa R C =05.102=--⋅=∑C C M qa qa a m ,221qa M C = 以杆件左端为坐标原点,以B 为分界面,将梁分为AB 和BC 两段。

《材料力学 第2版》_顾晓勤第06章第1节 梁的计算简图

《材料力学 第2版》_顾晓勤第06章第1节 梁的计算简图
第 1 节 梁的计第算六简章图梁弯曲时内第力六和章 应梁力弯曲时内力和应力
第 1 节 梁的计第算六简章图梁弯曲时内第力六和章 应梁力弯曲时内力和应力
第 1 节 梁的计第算六简章图梁弯曲时内第力六和章 应梁力弯曲时内力和应力
第 1 节 梁的计第算六简章图梁弯曲时内第力六和章 应梁力弯曲时内力和应力
弯曲变形:当杆件受到垂直于轴线的外力作用或受 到作用面平行于轴线的外力偶作用时,杆件的轴线 会由直线变为曲线,这种变形称弯曲变形。
梁:以弯曲变形为主的杆件称作梁。
直梁:工程中常见的轴线是直线的梁。
平面弯曲:若梁的外 力及支座反力都作用 在纵向对称面内,则 梁弯曲时轴线将变成 此平面内的一条平面 曲线,该弯曲变形称 为平面弯曲。
第 1 节 梁的计算简图
第六章 梁弯曲时内力和应力
二、梁上载荷的简化
1)集中力:集中力作用在梁上的很小一段范围内, 可近似简化为作用于一点,如图所示的力 F。单位 为牛顿(N)或千牛顿(kN)。
2)分布载荷:沿梁轴线方 向、在一定长度上连续分布 的力系,如图所示的均布载
荷 q。其大小用载荷集度表
示,单位为牛顿/米(N/m) 或千牛/米(kN/m)。
3)集中力偶:作用在微小梁段上的力偶,可近似 简化为作用于一点,如图所示的力偶 M。单位为牛 顿·米(N·m)或千牛顿·米(kN·m)。
第 1 节 梁的计算简图 三、静定梁的基本形式
第六章 梁弯曲时内力和应力
静定梁:在平面弯曲情况下,作用在梁上的外力 (包括载荷和支反力)是一个平面力系。当梁上 只有三个支反力时,可由平面力系的三个静力平 衡方程将它们求出,这种梁称为静定梁。
1、悬臂梁:梁的一端自由, 另一端是固定支座。
第 1 节 梁的计算简图

第六章 - 弯曲应力

第六章 - 弯曲应力

查表 N0 12.6工字钢
WZ=77.5cm3
kN
15
28.1
13.16
kNm
3.75
例题
F 25kN
铸铁梁受荷载情况如图示。已知截面对形心轴
的惯性矩Iz=403×10-7m4,铸铁抗拉强度[σ +] =50MPa,抗压强度[σ -]=125MPa。试按正应力强
度条件校核梁的强度。
200
q 12kN m
最大截面上的最大拉应力和最大压应力。
y
F
150
A
L 2
B
L 2
M max

FL 4
16kNm
y max

200 50 96.4 153.6mm
y max
96.4mm
50
96.4
z
200
C
50
max

My
max
IZ
24.09MPa
max

My max IZ
对梁的某一截面: 对全梁(等截面):
max
Mymax Iz
M
WZ
max
M max ymax Iz
M max Wz
max

M max Wz


例题
长为L的矩形截面悬臂梁,在自由端作用一集中力
F,已知b=120mm,h=180mm、L=2m,F=1.6kN, 试求B截面上a、b、c各点的正应力。

1 M Z (b)

EIZ
由(a)(b)式得
Mzy
Iz
y
M
m
Mz
n
中性轴

材料力学第六章复习题

材料力学第六章复习题

第六章 弯曲应力1.图示梁的材料为铸铁,截面形式有四种如图:最佳形式为 。

2.为了提高梁的承载能力,对同一梁、相同的均布载荷q ,下列哪一种支承条件下,梁的强度最好: 正确答案是 。

3.设计钢梁时,宜采用中性轴为( )的截面;设计铸铁梁时,宜采用中性轴为( )的截面。

正确答案是 。

(A) 对称轴 (B) 偏于受拉边的非对称轴 (C) 偏于受压边的非对称轴 (D) 对称或非对称轴4.梁在弯曲时,横截面上正应力沿高度是按 分布的;中性轴上的正应力为 ;矩形截面梁横截面上剪应力沿高度是按 分布的,中性轴上的剪应力为 。

5.矩形截面梁若max Q 、m ax M 和截面宽度b 不变, 而将高度增加一倍,则最大弯曲正应力为原来的倍,最大弯曲剪应力为原来的 倍。

6.图示正方形截面简支梁,若载荷不变, 而将边长增加一倍,其则最大弯曲正应力为原来的 倍,最大弯曲剪应力为原来的 倍。

(A) (B) (C) (D)(C)(B)(D)7.下图所示的梁跨中截面上A 、B 两点的应力A σ= ;A τ= ;B τ= 。

8.图示T 字形截面梁。

若已知A —A 截面上、下表面处沿x 方向的线应变分别是0004.0-='ε,0002.0=''ε,则此截面中性轴位置=c y h (C 为形心)9.铸铁丁字形截面梁的许用应力分别为:许用拉应力 [t σ] = 50MPa ,许用压应力[c σ] = 200 MPa 。

则上下边缘距中性轴的合理比值为 21/y y 为多少?(C 为形心)10.⊥形截面铸铁悬臂梁,尺寸及载荷如图所示。

若材料的拉伸许用应力[]MPa l 40=σ,压缩许用应力[]MPa c 160=σ,截面对形心轴z c的惯性矩410180cm zc=I ,cm h 64.91=,试计算该梁的许可载荷P 。

11.正方形截面简支梁,受有均布载荷作用如图,若[σ] = 6 [τ] ,证明当梁内最大正应力和最大剪应力同时达到许用应力时,l / a = 6xA-ABc12.铸铁制梁的尺寸及所受载荷如图所示。

第六章 弯曲应力(习题解答)

第六章   弯曲应力(习题解答)

6-3、图示矩形截面梁受集中力作用,试计算1-1横截面上a 、b 、c 、d 四点的正应力。

解:(1)外力分析,判变形。

荷载在纵向对称面内,与轴线垂直,梁发生平面弯曲。

中性轴z 轴过形心C 与载荷垂直,沿水平方向。

(2)内力分析,弯矩图如图(b )所示,1-1横截面的弯矩为:1115230(M -=-⨯=-⋅kN m)(3)应力分析,梁上边有弯矩图,上侧纤维受拉。

1-1横截面上的a 点处于拉伸区,正应力为正;c 点处于中性层上,正应力为零;b 、d 两点处于压缩区,正应力为负。

3111111max2301011.1110.1800.36a a zzzM M M y y I I W σ---⨯=⋅=⋅===⨯⨯Pa MPa 。

11.11b a σσ=-=-MPa0c σ= 31133010(0.1500.050)7.4110.1800.312d d zM y I σ-⨯=-⋅=-⨯-=-⨯⨯Pa MPa37M kN V 图(kN)(a)(c)(b)(c)(e)(d)2+q l /8MkN ·m)(f)(b)180q题6-3图 题6-5图6-5、两根矩形截面简支木梁受均布荷载q 作用,如图所示。

梁的横截面有两种情况,一是如图(b)所示是整体,另一种情况如图(c)所示是由两根方木叠合而成(二方木间不加任何联系且不考虑摩擦)。

若已知第一种情况整体时梁的最大正应力为10MPa ,试计算第二种情况时梁中的最大正应力,并分别画出危险截面上正应力沿高度的分布规律图示。

解:(1)外力分析,判变形。

荷载在纵向对称面内,与轴线垂直,梁发生平面弯曲。

第一种情况中性层为过轴线的水平纵向面,中性轴z 轴过整体形心C 与载荷垂直,沿水平方向。

而第二种情况,两根木梁以各自的水平纵向面为中性层发生弯曲,两根中性轴为与荷载垂直的水平形心主轴。

如图所示。

(2)内力分析,判危险面:弯矩图如图(b )所示,跨中截面为危险面。

一次弯曲应力

一次弯曲应力

一次弯曲应力
弯曲应力是指当物体受到外力作用而发生弯曲变形时,在其内部产生的应力。

一次弯曲应力通常是指物体在一次性的外力作用下发生的弯曲变形所产生的应力。

弯曲应力的大小与物体的几何形状、材料的弹性模量以及外力的大小和作用方式有关。

在工程应用中,弯曲应力的计算是一个重要的问题,因为它直接关系到结构的强度和稳定性。

弯曲应力的计算公式为:σ= My / I,其中σ表示弯曲应力,M表示弯矩,y表示距离中性轴的距离,I表示截面惯性矩。

通过这个公式,可以计算出在给定的外力作用下,物体内部的弯曲应力分布情况,从而评估其结构的安全性和可靠性。

弯曲应力和强度.

弯曲应力和强度.

第六章 弯曲应力和强度1、 纯弯曲时的正应力 横力弯曲时,0≠=Q dxdM。

,纯弯曲时,梁的横截面上只有弯曲正应力,没有弯曲剪应力。

根据上述实验观察到的纯弯曲的变形现象,经过判断、综合和推理,可作出如下假设: (1)梁的横截面在纯弯曲变形后仍保持为平面,并垂直于梁弯曲后的轴线。

横截面只是绕其面内的某一轴线刚性地转了一个角度。

这就是弯曲变形的平面假设。

(2)梁的纵向纤维间无挤压,只是发生了简单的轴向拉伸或压缩。

(2)物理关系根据梁的纵向纤维间无挤压,而只是发生简单拉伸或压缩的假设。

当横截面上的正应力不超过材料的比例极限P ρ时,可由虎克定律得到横截面上坐标为y 处各点的正应力为y EE ρεσ==该式表明,横截面上各点的正应力σ与点的坐标y 成正比,由于截面上ρE为常数,说明弯曲正应力沿截面高度按线性规律分布,如图所示。

中性轴z 上各点的正应力均为零,中 性轴上部横截面的各点均为压应力,而下部各点则均为拉应力。

(3)静力关系截面上的最大正应力为zI My maxmax =σ 如引入符号m axy I W zz =则截面上最大弯曲正应力可以表达为zW M=max σ 式中,z W 称为截面图形的抗截面模量。

它只与截面图形的几何性质有关,其量纲为[]3长度。

矩形截面和圆截面的抗弯截面模量分别为: 高为h ,宽为b 的矩形截面:621223maxbh h bh y I W zz ===直径为d 的圆截面:3226433maxd d d y I W z z ∏=∏==至于各种型钢的抗弯截面模量,可从附录Ⅱ的型钢表中查找。

若梁的横截面对中性轴不对称,则其截面上的最大拉应力和最大压应力并不相等,例如T 形截面。

这时,应把1y 和2y 分别代入正应力公式,计算截面上的最大正应力。

最大拉应力为:zt I My 1)(=σ 最大压应力为:ze I My 2)(=σ 2、横力弯曲时的正应力zI My=σ 对横力弯曲时的细长梁,可以用纯弯曲时梁横截面上的正应力计算公式计算梁的横截面上的弯曲正应力。

第六章:梁弯曲时的内力和应力

第六章:梁弯曲时的内力和应力
FS FS (x) M M (x)
剪力图和弯矩图:以梁轴线为横坐标,分别以剪力值和弯矩值为纵坐标, 按适当比例作出剪力和弯矩沿轴线的变化曲线,称作剪力图和弯矩图。
剪力、弯矩方程便于分析和计算,剪力、弯矩图形象直观,两者对于解 决梁的弯曲强度和刚度问题都非常重要,四者均是分析弯曲问题的基础。
第三节:剪力图和弯矩图
5-5 截面
FS5 q 2 FB 5.5 kN
1 23 4
5
1 23 4
5
M5 (q 2)1 8 kN m
第三节:剪力图和弯矩图
第三节:剪力图和弯矩图
一、剪力、弯矩方程与剪力、弯矩图
剪力方程和弯矩方程:为了描述剪力与弯矩沿梁轴线变化的情况,沿梁 轴线选取坐标 x 表示梁截面位置,则剪力和弯矩是 x 的函数,函数的解 析表达式分别称为剪力方程和弯矩方程。
M 为常数,即对应弯矩图应为水平直线; 其他两段的弯矩图则均为斜直线。
第三节:剪力图和弯矩图
3)判断剪力图和弯矩图形状 AC、CD、DB 各段梁的剪力图均为水 平直线。在 CD 段,弯矩 M 为常数,对 应弯矩图应为水平直线;其他两段的弯 矩图则均为斜直线。
4)作剪力图和弯矩图
剪力图 弯矩图
第四节:弯曲时的正应力
第一节:梁的计算简图 第二节:弯曲时的内力计算 第三节:剪力图和弯矩图 第四节:弯曲时的正应力 第五节:正应力强度计算 第六节:弯曲切应力 第七节:提高梁弯曲强度的一些措施
第一节:梁的计算简图
第一节:梁的计算简图
一、梁的支座 梁的支座形式:工程中常见的梁的支座有以下三种形式。 1、固定铰支座:如图 a)所示,固定铰支座限制梁在支承处任何方向的 线位移,其支座反力可用两个正交分量表示,即沿梁轴线方向的 FAx 和 垂直于梁轴线方向的 FAy 。

材料力学教案 第6章 弯曲应力

材料力学教案 第6章 弯曲应力

第6章弯曲应力教学目的:在本章的学习中要求熟练掌握梁纯弯曲时横截面上正应力计算公式的推导过程,理解推导过程中所作的假设。

掌握中性层、中性轴等基本概念和含义。

弯曲正应力和剪应力强度条件的建立和相应的计算。

理解横力弯曲正应力计算仍用纯弯曲公式的条件和近似程度。

从弯曲强度条件出发,掌握提高弯曲强度的若干措施。

教学重点:纯弯曲梁横截面上正应力公式的分析推导;横力弯曲横截面上正应力的计算,最大拉应力和最大压应力的计算;弯曲的强度计算;弯曲横截面上的剪应力。

教学难点:弯曲正应力、剪应力推导过程和结果以及弯曲中心的概念。

教具:多媒体。

教学方法:采用启发式教学,通过提问,引导学生思考,让学生回答问题。

教学内容:梁纯弯曲和横力弯曲时横截面上的正应力;梁横力弯曲时横截面上的切应力;提高弯曲强度的若干措施。

教学学时:6学时。

教学提纲:6.1 梁的纯弯曲1、几个基本概念(1)平面弯曲和弯曲中心变形后梁轴线的位移方向沿着加载方向的弯曲情况,称为平面弯曲。

怎样加载才能产生平面弯曲?若梁的横截面有对称平面时,载荷必须作用在对称平面内,才能发生平面弯曲。

若梁的横截面没有对称平面时,载荷的作用线必须通过截面的弯曲中心。

什么叫弯曲中心?当载荷的作用线通过横截面上某一点特定点时,杆件只产生弯曲而无扭转。

这样的特定点称为弯曲中心。

关于弯曲中心位置的确定及工程上常见图形的弯曲中心位置。

①具有两个对称轴或反对称的截面,如工字形、圆形、圆环形、空心矩形截面等,弯曲中心与形心(两对称轴的交点)重合,如图(a),(b),(c)所示。

②具有一个对称轴的截面,如槽形和T形截面,弯曲中心必在对称轴上,如图(d)、(e)所示。

③如果截面是由中线相交于一点的几个狭长矩形所组成,如L形或T形截面,则此交点就是弯曲中心,如图(e)、(f)所示。

④不对称实心截面的弯曲中心靠近形心。

这种截面在荷载作用线通过形心时也将引起扭转,但由于这种截面的抗扭刚度很大,弯曲中心与形心又非常靠近,故通常不考虑它的扭转影响。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

=
y

= y (1)

o
——横截面上各点的纵向线应变
与各点到中性轴的距离成正比
A
b a o
A
b dx
中性轴
d c
o1

d
中 性 层 曲 率 半 径
中性层
y
d
o1 y
B
y
y
A1
B1
4、纵向线应变的变化规律
(纵向线段的变化规律)

=
y

...... (1)
(二)物理关系:
由纵向线应变的变化规律 正应力的分布规律。
πd 4 64
z
Wz
= Wy
=
Iz d /2
=
Iy d/2
=
πd 3 32
y
几种简单截面的抗弯截面系数
Wz
=
Iz ymax
⑶ 空心圆截面
( ) I z
= Iy
=
π 64
D4
−d4
( ) = πD4 1− 4 64
O
z
式中 = d / D
( ) Wz
=
Iz D/2
=
πD3 32
1− 4
= Wy
A

y 2 dA
A
=
E

Iz
=
M
1= M
EIZ
——弯曲变形计算的基本公式
M Z
M
s
=
E
=
Ey

y
(三)、静力学条件
z
dA
sdA
x
由横截面上的弯矩和正应力的关系
→ 正应力的计算公式。
y
中性轴 z 轴为形心主惯性轴
1= M
EIZ
——弯曲变形计算的基本公式 EI z 梁的抗弯刚度。
s = My
第六章 梁的应力
§6-1 梁横截面的正应力和正应力强度条件 §6-2 梁横截面的切应力和切应力强度条件 §6-3 薄壁截面梁弯曲切应力的进一步分析 §6-4 提高梁承载能力的措施
§6-1 梁横截面的正应力和正应力强度条件
一、 纯弯曲和横力弯曲的概念
剪力“Fs”——切应力“t ”;
C
弯矩“M”——正应力“s ”
90kN
(+)
M ql2 / 8 = 67.5kN m b
x
s max
=
M max WZ
67.5 103 = 6.4810−4
h
z
= 104.17MPa
y
q=60kN/m
A
FAY 1m FS 90kN
(+)
C
l = 3m
B
x
FBY
(−) x
90kN
x
(+)
M ql2 / 8 = 67.5kN m b
1.纯弯曲
梁的横截面上只有弯矩而无 Fs
剪力的弯曲(横截面上只有正应
力而无切应力的弯曲)。
F a
A
F
2.横力弯曲(剪切弯曲)
梁的横截面上既有弯矩又有 剪力的弯曲(横截面上既有正应 M
Fa
力又有切应力的弯曲)。
F a D
B
F
x
x
二 、纯弯曲梁横截面上的正应力公式
(一)变形几何关系: 由纯弯曲的变形规律→纵向线应变的变化规律。
sdA =
A
E y dA = E
A

A
ydA
=
E

Sz = 0 Sz = 0
(中性轴 z 轴为形心轴)
(2)
My =
sdAz =
A
E y zdA = E
A

A
yzdA
=
E

I yz
=
0
I yz
=
0
(y 、z 轴为形心主轴)
(3)
Mz =
ysdA =
A
E y ydA = E
M max ycmax Iz
[s c]
为充分发挥材料的强度,最合理的设计为
ytmax = [s t] ycmax [s c]
弯曲正应力强度条件
s max s
s max
= M max Wz

s
s t max
M =(
yt max Iz
) max

st
s cmax
M =(
1、观察实验:
2、变形规律: (1)、纵向线:由直线变为曲线,
ac
仍保持平行;上部的纵向线缩
短,下部的纵向线伸长。
bd
(2)、横向线:仍为直线并
M
与纵向线保持垂直,只是转
ac
M
动了一个角度,且梁横截面
四边的四条横向线变形后仍 是一个平面内的直线。
b
d
3、假设:
(1)弯曲平面假设:梁的横截面变形后仍为平面,仍垂直于变 形后的轴线,各横截面绕其上的某轴转动了一个角度。
z
a
166
s max = 160 MPa
560 − 21
sa
=
ya y max
s max
=
2 560
160 MPa = 148 MPa
2
例:求图示悬臂梁的最大拉、压应力。已知:l = 1 m, q = 6kN/m
q
0.5ql 2
解:1)画弯矩图
y1 y2
z
b
| M |max = 0.5ql2 = 3 kNm
y
对比一下,扭转圆轴的抗扭截面系数是?
D d
(4) 型钢截面:参见型钢表
三、纯弯曲理论的推广
纯弯曲时梁横截面上正应力的计算公式 s = My
Iz
横力弯曲时
1、由于切应力的存在,梁的 横截面发生翘曲;
2、横向力还使各纵向线之间 发生挤压。
平面假设和纵向线之间 无挤压的假设都不再成立。
A
B
还能用吗?
1m
FAy = 90kN
x
90kN
FBy = 90kN
2. C 截面上的内力
(+)
MC = 901− 6010.5 = 60kN m
M
ql2 / 8 = 67.5kN m
3. C 截面上K点的正应力
b
hK
z
sK
=
MC yK IZ
=
60 103 (180 − 30) 10−3 2
FBY
y
C 截面弯矩
FS 90kN
MC = 60kN m
(+)
(−) x
90kN
IZ = 5.83210−5 m4
sC max
=
M C ymax
(+)
M ql2 / 8 = 67.5kN m
x
IZ
60 103 180 10−3
=
2 5.832 10−5
b
= 92.55MPa
hK
置,合理吗?
y
z
s c max
=
=
M max Iz
y2
25.6 10−8
=
3000 25.6
3.28 10 −6
= 178 MPa = 384 MPa
stmax = 178 MPa, scmax = 384 MPa
四、梁的弯曲正应力强度条件
s max s
s
中性轴为横截面对称轴的等直梁
中性层
sc max
z
y
中性轴的位置? 梁变形后中性层的曲率 1 = ?

st max
M Z
y zdAsdA x
M
s = E = Ey
(三)、静力学关系
由横截面上的弯矩和正应力的关系
→ 正应力的计算公式。
y 梁横截面上内力已知:FN = 0, M y = 0, M z = M
(1)
FN =
y №10槽钢 2)查型钢表:
b = 4.8cm, Iz = 25.6cm4, y1 = 1.52 cm
y2 = 4.8 −1.52 = 3.28cm
M
stmax
3)求最大拉、压应力:
y1 y2
z b
s t max
=
M max Iz
y1
3000 1.52 10−2
y
scmax
思考一下:若将槽形截面梁倒
yc max Iz
) max

sc
1、强度校核—— smax s ;
2、设计截面尺寸——Wz

Mmax
s
3、确定外载荷—— Mmax Wz s ;
例:矩形截面梁 b= 60 mm、h=120mm,[s ]=160MPa, 求:Fmax
h
z
材料的许用弯曲正应力
M max s
Wz
拉、压强度不相等的铸铁等脆性材料制成的梁
M s t max
=
M max Iz
yt max
[s t ]
ycmax
O
z
s c max
=
M max Iz
yc max
[sc ]
ytmax
y
s t max=
M max ytmax Iz
[s t]
s = cmax
险截面上的最大正应力smax 和同一横截面上翼缘与腹板交界 处a点处的正应力sa 。
F A
5m
C
FA
10 m
12.5
B
z
FB
a
166
相关文档
最新文档