材料力学第2版 课后习题答案 第6章 弯曲应力

合集下载

《材料力学 第2版》_顾晓勤第06章第4节 弯曲时的正应力

《材料力学 第2版》_顾晓勤第06章第4节 弯曲时的正应力
第 4 节 弯曲时的正应力
纯弯曲的概念
剪切弯曲:弯曲内 力既有弯矩、又有 剪力的弯曲变形称 剪切弯曲(或横力 弯曲)。
纯弯曲:剪力值为 零,弯矩值是一常 数,则内力只有弯 矩而无剪力的弯曲 变形称作纯弯曲。
第六章 梁弯曲时内力和应力
第 4 节 弯曲时的正应力
第六章 梁弯曲时内力和应力
一、实验现象及假设
梁表面 mm 、nn 等一组横向直线变形后仍为直 线,并与已变成弧线的 ab 、cd 等一组横向直线 正交,只是相对地转了一个角度。
纵向线变成圆弧线,位于中间位置的纵向线长度 不变,上部的纵向线缩短,下部的纵向线伸长。
变形后横截面的高度不变,而宽度在纵向线伸长 区减小,在纵向线缩短区增大,如图所示 b)。
第 4 节 弯曲时的正应力
第六章 梁弯曲时内力和应力
假设
平面假设:梁变形后横截面依然保持平面,且与梁 变形后的轴线垂直,横截面绕自身某轴作了转动。
纵向纤维单向受力假设:梁内各纵向纤维只产生轴 向拉伸或压缩变形。
中性层:梁在弯曲变形 时,一部分纤维伸长, 一部分纤维缩短,必然 有一部分纤维既不伸长 也不缩短的层。
中性轴:中性层与横截面的交线。
第 4 节 弯曲时的正应力
二、变形几何关系
bb oo
oo
(
y) d d
d
y
三、物理关系
根据纵向纤维假设,各
纵向“纤维”处于单向受 力状态。当应力不超过材 料的比例极限时,应用胡 克定律可得横截面上距中 性轴为 y 处的正应力
第六章 梁弯曲时内力和应力
E
E
第六章 梁弯曲时内力和应力
截面所有微面积上的力对 z 轴的合力矩即为作用在该截 面上的弯矩:

材料力学课后答案

材料力学课后答案

由平衡方程,解得:
FBy 5KN; M B 13KN m
微分法画弯矩图
( M B 13KN m; M C M C 3KN m; M D 0)
2.根据强度要求确定 b
max WZ 2 bh 2 3 WZ b 6 3 M
弯矩图
M
(+)
x
3.绘制挠曲轴略图并计算wmax, A , B 令 dw 0 得 x l (0 x l ) 2 dx 所以 wmax w x l
2
挠曲轴略图
w
5ql 4 384 EI
x0
(-)
B
ql 3 24 EI
x
由式(3)知 A
max
M max ymax 176MPa IZ
max
M WZ
K
M max yK 132MPa IZ
3
5-5.图示简支梁,由 NO18 工字钢制成,在集度为q的均匀载荷作用下测得横截 4 面C底边的纵向正应变 =3.0 10 ,试计算梁内的最大弯曲正应力,已知刚的弹 FAy FBy 性模量E=200GPa,a=1m。
M yA Wy 6 M yA M zA 6M zA Wz 2b b 2 b (2b) 2
由 max 解得 b 35.6mm 故
h 2b 71.2mm
14
2.截面为圆形,确定d 由分析图及叠加原理可知: 在1,3区边缘某点分别有最大拉应力,最大压应力 其值均为:
I Z I Z 1 2 I Z 2 1.02 104 m4
2.画弯矩图 由平衡方程得 微分法画弯矩图
FCy 10KN; M C 10KN m

材料力学第六章 弯曲变形

材料力学第六章 弯曲变形

4
2
C
B
)
=
A
( A)q C
l q
( B )q
(b)
B
( wC )q
l
θ B ( θ B )q ( θ B ) M e
+
Me
(c)
Mel ql 24 EI 6 EI
3
A
B
( B ) M e
( A ) MC ( wC ) M
e
e
l
例题3
AB梁的EI为已知,求梁中间C截面挠度.
F1l 2 F2 la 0.4 400 200 B ( ) 16 EI 3 EI 210 1880 16 3 +0.423 10-4 (rad)
F1l a F2a F2a l wC 5.19 106 m 16 EI 3 EI 3 EI wmax w (3)校核刚度: l l
x A
dx
F
x
C' dω

B
d tg dx
二、挠曲线的微分方程
1.纯弯曲时曲率与弯矩的关系
M EI
1
横力弯曲时, M 和 都是x的函数.略去剪力对梁的位移的影 响, 则
1 M ( x) ( x) EI
2.由数学得到平面曲线的曲率
F
1 | w | 3 2 2 ( x) (1 w )
q
A x B
w w F wq


+
w wF wq
例1 已知:EI, F,q .求C点挠度 F q
A
C a a
B
Fa 3 ( wC )F 6 EI

《材料力学》第6章 简单超静定问题 习题解

《材料力学》第6章 简单超静定问题 习题解

第六章 简单超静定问题 习题解[习题6-1] 试作图示等直杆的轴力图解:把B 支座去掉,代之以约束反力B R (↓)。

设2F 作用点为C , F 作用点为D ,则:B BD R N = F R N B CD += F R N B AC 3+=变形谐调条件为:0=∆l02=⋅+⋅+⋅EA aN EA a N EA a N BD CD AC 02=++BD CD AC N N N03)(2=++++F R F R R B B B45FR B -=(实际方向与假设方向相反,即:↑) 故:45FN BD-= 445F F F N CD -=+-=47345FF F N AC=+-= 轴力图如图所示。

[习题6-2] 图示支架承受荷载kN F 10=,1,2,3各杆由同一种材料制成,其横截面面积分别为21100mm A =,22150mm A =,23200mm A =。

试求各杆的轴力。

解:以节点A 为研究对象,其受力图如图所示。

∑=0X030cos 30cos 01032=-+-N N N0332132=-+-N N N 0332132=+-N N N (1)∑=0Y030sin 30sin 0103=-+F N N2013=+N N (2)变形谐调条件:设A 节点的水平位移为x δ,竖向位移为y δ,则由变形协调图(b )可知:00130cos 30sin x y l δδ+=∆x l δ=∆200330cos 30sin x y l δδ-=∆03130cos 2x l l δ=∆-∆2313l l l ∆=∆-∆设l l l ==31,则l l 232=223311233EA l N EA lN EA l N ⋅⋅=- 22331123A N A N A N =- 15023200100231⨯=-N N N23122N N N =-21322N N N -= (3)(1)、(2)、(3)联立解得:kN N 45.81=;kN N 68.22=;kN N 54.111=(方向如图所示,为压力,故应写作:kN N 54.111-=)。

材料力学第6章弯曲应力

材料力学第6章弯曲应力

图6.5
页 退出
材料力学
出版社 理工分社
例6.1如图6.6所示,矩形截面悬臂梁受集中力和集中力偶作用。试求Ⅰ—Ⅰ 截面和固定端Ⅱ—Ⅱ截面上A,B,C,D 4点处的正应力。
图6.6
页 退出
材料力学
出版社 理工分社
解矩形截面对中性轴的惯性矩为 对于Ⅰ—Ⅰ截面,弯矩MⅠ=20 kN·m,根据式(6.2),各点正应力分别为
页 退出
材料力学
出版社 理工分社
(1)变形几何关系 弯曲变形前和变形后的梁段分别表示于图6.4(a)和(b)。以梁横截面的对称 轴为y轴且向下为正(见图6.4(c))。以中性轴为z轴,但中性轴的位置尚待确 定。在中性轴尚未确定之前,x轴只能暂时认为是通过原点的横截面的法 线。根据弯曲平面假设,变形前相距为dx的两个横截面,变形后各自绕中性 轴相对旋转了一个角度dθ ,且仍然保持为平面。这就使得距中性层为y的纵 向纤维bb的长度变为
式中积分
是横截面对y轴和z轴的惯性积。由于y轴是横截面的对
称轴,必然有Iyz=0(见附录)。所以式(g)是自然满足的。 将式(b)代入式(e),得
式中积分∫Ay2dA=Iz是横截面对z轴(中性轴)的惯性矩。于是式(h)改写为 式中 ——梁轴线变形后的曲率。
页 退出
材料力学
出版社 理工分社
式(6.1)表明,EIz越大,则曲率 越小,故EIz称为梁的抗弯刚度。从式 (6.1)和式(b)中消去 ,得
而对于变截面梁,虽然是等截面梁但中性轴不是横截面对称轴的梁,在计算 最大弯曲正应力时不能只注意弯矩数值最大的截面,应综合考虑My/Iz的值 (参看例6.5和例6.8)。
页 退出
材料力学
出版社 理工分社
引用记号

材料力学习题及答案

材料力学习题及答案

材料力学-学习指导及习题答案第一章绪论1-1 图示圆截面杆,两端承受一对方向相反、力偶矩矢量沿轴线且大小均为M的力偶作用。

试问在杆件的任一横截面m-m上存在何种内力分量,并确定其大小。

解:从横截面m-m将杆切开,横截面上存在沿轴线的内力偶矩分量M x,即扭矩,其大小等于M。

1-2 如图所示,在杆件的斜截面m-m上,任一点A处的应力p=120 MPa,其方位角θ=20°,试求该点处的正应力σ与切应力τ。

解:应力p与斜截面m-m的法线的夹角α=10°,故σ=p cosα=120×cos10°=118.2MPaτ=p sinα=120×sin10°=20.8MPa1-3 图示矩形截面杆,横截面上的正应力沿截面高度线性分布,截面顶边各点处的正应力均为σmax=100 MPa,底边各点处的正应力均为零。

试问杆件横截面上存在何种内力分量,并确定其大小。

图中之C点为截面形心。

解:将横截面上的正应力向截面形心C简化,得一合力和一合力偶,其力即为轴力F N=100×106×0.04×0.1/2=200×103 N =200 kN其力偶即为弯矩M z=200×(50-33.33)×10-3 =3.33 kN·m1-4 板件的变形如图中虚线所示。

试求棱边AB与AD的平均正应变及A点处直角BAD的切应变。

解:第二章轴向拉压应力2-1试计算图示各杆的轴力,并指出其最大值。

解:(a) F N AB=F, F N BC=0, F N,max=F(b) F N AB=F, F N BC=-F, F N,max=F(c) F N AB=-2 kN, F N2BC=1 kN, F N CD=3 kN, F N,max=3 kN(d) F N AB=1 kN, F N BC=-1 kN, F N,max=1 kN2-2 图示阶梯形截面杆AC,承受轴向载荷F1=200 kN与F2=100 kN,AB段的直径d1=40 mm。

材料力学习题及答案

材料力学习题及答案

材料力学-学习指导及习题答案第一章绪论1-1 图示圆截面杆,两端承受一对方向相反、力偶矩矢量沿轴线且大小均为M的力偶作用。

试问在杆件的任一横截面m-m上存在何种内力分量,并确定其大小。

解:从横截面m-m将杆切开,横截面上存在沿轴线的内力偶矩分量M x,即扭矩,其大小等于M。

1-2 如图所示,在杆件的斜截面m-m上,任一点A处的应力p=120 MPa,其方位角θ=20°,试求该点处的正应力σ与切应力τ。

解:应力p与斜截面m-m的法线的夹角α=10°,故σ=p cosα=120×cos10°=118.2MPaτ=p sinα=120×sin10°=20.8MPa1-3 图示矩形截面杆,横截面上的正应力沿截面高度线性分布,截面顶边各点处的正应力均为σmax=100 MPa,底边各点处的正应力均为零。

试问杆件横截面上存在何种内力分量,并确定其大小。

图中之C点为截面形心。

解:将横截面上的正应力向截面形心C简化,得一合力和一合力偶,其力即为轴力F N=100×106×0.04×0.1/2=200×103 N =200 kN其力偶即为弯矩M z=200×(50-33.33)×10-3 =3.33 kN·m1-4 板件的变形如图中虚线所示。

试求棱边AB与AD的平均正应变及A点处直角BAD的切应变。

解:第二章轴向拉压应力2-1试计算图示各杆的轴力,并指出其最大值。

解:(a) F N AB=F, F N BC=0, F N,max=F(b) F N AB=F, F N BC=-F, F N,max=F(c) F N AB=-2 kN, F N2BC=1 kN, F N CD=3 kN, F N,max=3 kN(d) F N AB=1 kN, F N BC=-1 kN, F N,max=1 kN2-2 图示阶梯形截面杆AC,承受轴向载荷F1=200 kN与F2=100 kN,AB段的直径d1=40 mm。

材料力学第6章弯曲应力习题答案

材料力学第6章弯曲应力习题答案
本章节主要讨论了弯曲应力的相关概念和计算方法,通过一系列习题和答案展示了如何在实际问题中应用这些原理。然而,关于只受弯矩的转动心轴外径处的弯曲应力,文档没有直接给出详细的解析或公式。这类问题通常涉及到材料力学的基本原理,需要考虑轴的几何尺寸、材料属性以及所受的弯矩大小。在实际应用中,可以通过相关的弯曲应力公式,结合具体的边界条件和载荷情况,来分析和计算转动心轴外径处的弯曲应力。这需要一定的材料力学知识和数学分析能力。虽然文档没有直接提供这一Байду номын сангаас定问题的答案,但它为理解和解决这类问题提供了必要的理论基础和计算方法。

工程材料力学性能 第二版 课后习题答案

工程材料力学性能 第二版 课后习题答案

《工程材料力学性能》(第二版)课后答案第一章材料单向静拉伸载荷下的力学性能一、解释下列名词滞弹性:在外加载荷作用下,应变落后于应力现象。

静力韧度:材料在静拉伸时单位体积材科从变形到断裂所消耗的功。

弹性极限:试样加载后再卸裁,以不出现残留的永久变形为标准,材料能够完全弹性恢复的最高应力。

比例极限:应力—应变曲线上符合线性关系的最高应力。

包申格效应:指原先经过少量塑性变形,卸载后同向加载,弹性极限(ζP)或屈服强度(ζS)增加;反向加载时弹性极限(ζP)或屈服强度(ζS)降低的现象。

解理断裂:沿一定的晶体学平面产生的快速穿晶断裂。

晶体学平面--解理面,一般是低指数,表面能低的晶面。

解理面:在解理断裂中具有低指数,表面能低的晶体学平面。

韧脆转变:材料力学性能从韧性状态转变到脆性状态的现象(冲击吸收功明显下降,断裂机理由微孔聚集型转变微穿晶断裂,断口特征由纤维状转变为结晶状)。

静力韧度:材料在静拉伸时单位体积材料从变形到断裂所消耗的功叫做静力韧度。

是一个强度与塑性的综合指标,是表示静载下材料强度与塑性的最佳配合。

二、金属的弹性模量主要取决于什么?为什么说它是一个对结构不敏感的力学姓能?答案:金属的弹性模量主要取决于金属键的本性和原子间的结合力,而材料的成分和组织对它的影响不大,所以说它是一个对组织不敏感的性能指标,这是弹性模量在性能上的主要特点。

改变材料的成分和组织会对材料的强度(如屈服强度、抗拉强度)有显著影响,但对材料的刚度影响不大。

三、什么是包辛格效应,如何解释,它有什么实际意义?答案:包辛格效应就是指原先经过变形,然后在反向加载时弹性极限或屈服强度降低的现象。

特别是弹性极限在反向加载时几乎下降到零,这说明在反向加载时塑性变形立即开始了。

包辛格效应可以用位错理论解释。

第一,在原先加载变形时,位错源在滑移面上产生的位错遇到障碍,塞积后便产生了背应力,这背应力反作用于位错源,当背应力(取决于塞积时产生的应力集中)足够大时,可使位错源停止开动。

材料力学II习题解答 最终版

材料力学II习题解答 最终版

显然,B’C’段内的切应力分布和BC段的切应力分布相对于z 轴对称,方向相同,因此切应力的合力必大小相等,方向 相同,(题12.8图(c))
材料力学(II )Mechanics of Materials 上海电力学院
材料力学(II )Mechanics of Materials 上海电力学院
cc截面与B截面之间的面积(题12.8图(b))对z轴 的面矩为
b1 0
τ1δ1dξ
=
ξ F b1 Sy b1 −ξ
0
2Iz
δ1dξ
= FSyb13δ1
12Iz
根据合力矩定理,合力对一点之矩,等于其分力对同一点之
矩的代数和,可以证明
为 和 F S y
F S1
F S2
的合力。如
对B点取矩,水平方向剪应力的合力和剪力对B点之矩为零,
故有
FS y e = FS1 h
从上上式求得弯曲中心位置
⎤ ⎥ ⎦
=
24 bh2
Fl
=
24 × 6 × 103 × 1.25 75 × 10 −3 × 150 2 × 10 −6
Pa
= 107 M P a (拉 )
材料力学(II )Mechanics of Materials 上海电力学院
B点的坐标为
yOB
=
h 3
zOB
=

b 3
带入广义弯曲应力公式,得
的壁厚 δ为常量,且壁厚及开口切缝都很小。
解: 如图(b)所示。开口处B面与bb截面间的面积 对在z轴的面距为
S
* z
=
(ξ δ

2
=
δξ 2
2
⎛ ⎜⎝
0

材料力学习题第六章应力状态分析答案详解

材料力学习题第六章应力状态分析答案详解

第6章 应力状态分析一、选择题1、对于图示各点应力状态,属于单向应力状态的是(A )。

20(MPa )20d20(A )a 点;(B )b 点;(C )c 点;(D )d 点 。

2、在平面应力状态下,对于任意两斜截面上的正应力αβσσ=成立的充分必要条件,有下列四种答案,正确答案是( B )。

(A ),0x y xy σστ=≠;(B ),0x y xy σστ==;(C ),0x y xy σστ≠=;(D )x y xy σστ==。

3、已知单元体AB 、BC 面上只作用有切应力τ,现关于AC 面上应力有下列四种答案,正确答案是( C )。

(A )AC AC /2,0ττσ==; (B )AC AC /2,/2ττσ==; (C )AC AC /2,/2ττσ==;(D )AC AC /2,/2ττσ=-=。

4、矩形截面简支梁受力如图(a )所示,横截面上各点的应力状态如图(b )所示。

关于它们的正确性,现有四种答案,正确答案是( D )。

(b)(a)(A)点1、2的应力状态是正确的;(B)点2、3的应力状态是正确的;(C)点3、4的应力状态是正确的;(D)点1、5的应力状态是正确的。

5、对于图示三种应力状态(a)、(b)、(c)之间的关系,有下列四种答案,正确答案是( D )。

τ(a)(b) (c)(A)三种应力状态均相同;(B)三种应力状态均不同;(C)(b)和(c)相同;(D)(a)和(c)相同;6、关于图示主应力单元体的最大切应力作用面有下列四种答案,正确答案是( B )。

(A) (B) (D)(C)解答:maxτ发生在1σ成45的斜截面上7、广义胡克定律适用范围,有下列四种答案,正确答案是( C )。

(A)脆性材料;(B)塑性材料;(C)材料为各向同性,且处于线弹性范围内;(D)任何材料;8、三个弹性常数之间的关系:/[2(1)]G E v =+ 适用于( C )。

(A )任何材料在任何变形阶级; (B )各向同性材料在任何变形阶级; (C )各向同性材料应力在比例极限范围内;(D )任何材料在弹性变形范围内。

材料力学练习册5-6详细答案

材料力学练习册5-6详细答案

第五章弯曲应力5-1 直径为d的金属丝,环绕在直径为D的轮缘上。

试求金属丝内的最大正应变与最大正应力。

已知材料的弹性模量为E。

解:5-2 图示直径为d的圆木,现需从中切取一矩形截面梁。

试问:(1) 如欲使所切矩形梁的弯曲强度最高,h和b应分别为何值;(2) 如欲使所切矩形梁的弯曲刚度最高,h和b应分别为何值;解:(1) 欲使梁的弯曲强度最高,只要抗弯截面系数取极大值,为此令(2) 欲使梁的弯曲刚度最高,只要惯性矩取极大值,为此令5-3 图示简支梁,由№18工字钢制成,在外载荷作用下,测得横截面A 底边的纵向正应变ε=3.0×10-4,试计算梁内的最大弯曲正应力。

已知钢的弹性模量E =200GPa ,a =1m 。

解:梁的剪力图及弯矩图如图所示,从弯矩图可见:5-4 No.20a 工字钢梁的支承和受力情况如图所示。

若[]MPa 160=σ,试求许可载荷F 。

5-5 图示结构中,AB 梁和CD 梁的矩形截面宽度均为b 。

如已知AB 梁高为1h ,CD 梁高为2h 。

欲使AB 梁CD 梁的最大弯曲正应力相等,则二梁的跨度1l 和2l 之间应满足什么样的关系?若材料的许用应力为[σ],此时许用载荷F 为多大?5-6 某吊钩横轴,受到载荷kN 130F =作用,尺寸如图所示。

已知mm 300=l ,mm 110h =,mm 160b =,mm 75d 0=,材料的[]MPa 100=σ,试校核该轴的强度。

5-7 矩形截面梁AB,以固定铰支座A及拉杆CD支承,C点可视为铰支,有关尺寸如图所示。

设拉杆及横梁的[]MPaσ,试求作用于梁B端的许可载荷F。

=1605-8 图示槽形截面铸铁梁,F=10kN,M e=70kN·m,许用拉应力[σt]=35MPa,许用压应力[σc]=120MPa。

试校核梁的强度。

解:先求形心坐标,将图示截面看成一大矩形减去一小矩形惯性矩弯矩图如图所示,C截面的左、右截面为危险截面。

(整理)材料力学试题库题解题6_弯曲应力

(整理)材料力学试题库题解题6_弯曲应力

弯曲应力1.圆形截面简支梁A,B套成,A,B层间不计摩擦,材料的弹性模量E B=2E A求在外力偶矩M e作用下,A,B中最大正应力的比值^max有4个答案:Bmin1(A)-;61 (C)1;81(D)丄10答: B2.矩形截面纯弯梁,材料的抗拉弹性模量E t大于材料的抗压弹性模量E c,则正应力在截面上的分布图有以下4种答案:(A) (B) (C) (D) 答: C3.将厚度为2 mm的钢板尺与一曲面密实接触,已知测得钢尺点A处的应变为—,则该曲面在点A1000处的曲率半径为_________ m m。

答:999 mmP4.边长为a的正方形截面梁,按图示两种不同形式放置,在相同弯矩作用下,两者最大正应力之比匕丛= ___________(%x)bO(b)答:1/ , 25. 一工字截面梁,截面尺寸如图,h二b, b =10t。

试证明,此梁上,下翼缘承担的弯矩约为截面上总弯矩的88%证: — My M12MA y(ybdy) =1 820 罟3Iz4 l z=690tM1 Mt4 1勺8207 6904”88%I yh/2—- 丄h/2zt其中:积分限Bt? , A弓为翼缘弯矩6. 直径d =20 mm 的圆截面钢梁受力如图,已知弹性模量E = 200 GPa , a =200 mm ,欲将其中段AB 弯成 f m 的圆弧,试求所需载荷,并计算最大7. 钢筋横截面积为A ,密度为「,放在刚性平面上,一端加力F ,提起钢筋离 开地面长度-。

试问F 应多大?3解:截面C 曲率为零2Fl gA(l /3) 3 28. 矩形截面钢条长l ,总重为F ,放在刚性水平面上,在钢条A 端作用|向上的拉力时,试求钢条内最大正应力。

解:在截面C 处,有―罟丸弯曲正应力。

解:1 = M 而 M 二 Fa P EI Fmax64 =0.785 10 岀 m 4, 「旦 Pa = 0.654 kN21 Fad 21 3 3 0.654 1 03 0.2 20 10 2 0.785 10 出 = 167 MPa即M C =F Is3 l AC F (I AC )2 l 2 2l AC AC 段可视为受均布载荷q 作用的简支梁 max max 2q(U c ) /8 _ Fl bt 2/6 3bt 2iF/3 C9.图示组合梁由正方形的铝管和正方形钢杆套成,在两端用刚性平板牢固联接。

材料力学第六章弯曲应力1

材料力学第六章弯曲应力1

d c
M
b
d
(1)弯曲平面假设:梁变形前原为平面的横截面变形后仍为平 面,且仍垂直于变形后的轴线,只是各横截面绕其上的某轴转 动了一个角度。
(2)纵向纤维假设:梁是由许多纵向纤维组成的,且各纵向纤维 之间无挤压。
凹入一侧纤维缩短 突出一侧纤维伸长
根据变形的连续性可知, 梁弯曲时从其凹入一侧的 纵向线缩短区到其凸出一 侧的纵向线伸长区,中间 必有一层纵向无长度改变 的过渡层--------称为中
q
y1 y2
y
z
b
解:1)画弯矩图
| M |max 0.5ql2 3 kNm
№10槽钢
2)查型钢表:
M
y1
y2
y
b 4.8cm, I z 25.6cm4 , y1 1.52cm y2 4.8 1.52 3.28cm
3)求应力:
M 3000 1.52 178 MPa t max y1 6 25 .6 10 Iz
中间层与横截面的交线 --中性轴
性层 。 梁的弯曲变形实际上是各截面绕各自的中性轴转 动了一个角度,等高度的一层纤维的变形完全相同。
4、线应变的变化规律:
A1 B1 AB AB
a
c

( y )d d d
A1 B1 OO1 OO1

y


y

...... (1)
Mycmax cmax Iz
几种简单截面的抗弯截面系数 b ⑴ 矩形截面
h
z
bh3 Iz 12 b3h Iy 12
⑵ 圆形截面
y d
Iz bh2 Wz h/2 6 Iy b2h Wy b/2 6

材料力学答案第六章

材料力学答案第六章

第六弯曲应力第六章答案6.1钢丝直径d=0.4mm, 弹性模量E=200GPa, 若将钢丝弯成直径D=400mm 的圆弧时,试求钢丝横截面上的最大弯曲正应力。

(200MPa ) 解:钢丝的弯矩和中性层曲率半径之间的关系为:EIM =ρ1则: ρEIM =,由弯曲正应力公式得ρσmaxmax My ==ρmaxEy ,钢丝弯成圆弧后,产生的弯曲变形,其中性层的曲率半径22Dd D ≈+=ρ 2)2(maxD dE =σ==D Ed MPa 2004004.0102003=⨯⨯6.2 矩形截面梁如图所示。

b = 8cm, h =12cm, 试求危险截面上a 、c 、d 三点的弯曲正应力。

(20.8MPa, 10.4MPa, 0) 解:由平衡方程0)(=∑F M A得到: KN F F B A 44221=⨯⨯== 危险截面在梁的中点处:KNm ql M 442818122max =⨯⨯==I z =1212h b ⨯⨯=44310115212080121mm ⨯=⨯⨯MP a I My MPa I MyI My z d d z c c za a 83.201011526010442.101011523010404646=⨯⨯⨯===⨯⨯⨯====σσσA F BF s F MM机械土木6.3 从直径为d 的圆木中截取一矩形截面梁,试根据强度观点求出所截取的矩形截面的最合理的高h 和宽b 。

(h=d 36, b=d 33) 解:最大弯曲正应力:zz W My I M m a x m a x m a x m a x ==σ h/b 的最佳值应应使梁的抗弯截面系数为最大。

抗弯截面系数: )(61)(616132222b b d b d b bh W -=-==为b 为自变量的函数。

由 06322=-=b d dt dW 36 333222db d h d d b =-===6.4 图示两根简支梁,其跨度、荷载及截面面积都相同。

材料力学教案 第6章 弯曲应力

材料力学教案 第6章 弯曲应力

第6章弯曲应力教学目的:在本章的学习中要求熟练掌握梁纯弯曲时横截面上正应力计算公式的推导过程,理解推导过程中所作的假设。

掌握中性层、中性轴等基本概念和含义。

弯曲正应力和剪应力强度条件的建立和相应的计算。

理解横力弯曲正应力计算仍用纯弯曲公式的条件和近似程度。

从弯曲强度条件出发,掌握提高弯曲强度的若干措施。

教学重点:纯弯曲梁横截面上正应力公式的分析推导;横力弯曲横截面上正应力的计算,最大拉应力和最大压应力的计算;弯曲的强度计算;弯曲横截面上的剪应力。

教学难点:弯曲正应力、剪应力推导过程和结果以及弯曲中心的概念。

教具:多媒体。

教学方法:采用启发式教学,通过提问,引导学生思考,让学生回答问题。

教学内容:梁纯弯曲和横力弯曲时横截面上的正应力;梁横力弯曲时横截面上的切应力;提高弯曲强度的若干措施。

教学学时:6学时。

教学提纲:6.1 梁的纯弯曲1、几个基本概念(1)平面弯曲和弯曲中心变形后梁轴线的位移方向沿着加载方向的弯曲情况,称为平面弯曲。

怎样加载才能产生平面弯曲?若梁的横截面有对称平面时,载荷必须作用在对称平面内,才能发生平面弯曲。

若梁的横截面没有对称平面时,载荷的作用线必须通过截面的弯曲中心。

什么叫弯曲中心?当载荷的作用线通过横截面上某一点特定点时,杆件只产生弯曲而无扭转。

这样的特定点称为弯曲中心。

关于弯曲中心位置的确定及工程上常见图形的弯曲中心位置。

①具有两个对称轴或反对称的截面,如工字形、圆形、圆环形、空心矩形截面等,弯曲中心与形心(两对称轴的交点)重合,如图(a),(b),(c)所示。

②具有一个对称轴的截面,如槽形和T形截面,弯曲中心必在对称轴上,如图(d)、(e)所示。

③如果截面是由中线相交于一点的几个狭长矩形所组成,如L形或T形截面,则此交点就是弯曲中心,如图(e)、(f)所示。

④不对称实心截面的弯曲中心靠近形心。

这种截面在荷载作用线通过形心时也将引起扭转,但由于这种截面的抗扭刚度很大,弯曲中心与形心又非常靠近,故通常不考虑它的扭转影响。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

弯曲应力6-1求图示各梁在m -m 截面上A 点的正应力和危险截面上最大正应力。

题6-1图解:(a )m KN M m m ⋅=−5.2mKN M ⋅=75.3max 48844108.49064101064m d J x −−×=××==ππ(压)MPa A 37.20108.490104105.2823=××××=−−σMPa 2.38108.4901051075.3823max=××××=−−σ(b )m KN M m m ⋅=−60mKN M ⋅=5.67max 488331058321210181212m bh J x −−×=××==(压)MPa A 73.611058321061060823=××××=−−σMPa 2.104105832109105.67823max=××××=−−σ(c )m KN M m m ⋅=−1mKN M ⋅=1max 48106.25m J x −×=36108.7m W x −×=cmy A 99.053.052.1=−=(压)MPa A 67.38106.251099.0101823=××××=−−σMPa 2.128106.2510183max=××=−σ6-2图示为直径D =6cm 的圆轴,其外伸段为空心,内径d =4cm ,求轴内最大正应力。

解:)1(32431απ−=D W x⎟⎠⎞⎜⎝⎛−×××=−463)64(110326π361002.17m −×=3463321021.213210632m D W x −−×=××==ππMPa 88.521002.17109.0631=××=−σMPa 26.551021.2110172.1631=××=−σMPa26.55max =σ6-3T 字形截面铸铁梁的尺寸与所受载荷如图示。

试求梁内最大拉应力与最大压应力。

已知I z =10170cm 4,h 1=9.65cm ,h 2=15.35cm 。

解:A 截面:(拉)Mpa 95.371065.9101017010402831max =××××=−−σ(压)Mpa 37.501035.15101017010402831min −=××××−=−−σE 截面(拉)Mpa 19.301035.15101017010202832max =××××=−−σ(压)Mpa 98.181065.9101017010202832min −=××××−=−−σ6-4一根直径为d 的钢丝绕于直径为D 的圆轴上。

(1)求钢丝由于弯曲而产生的最大弯曲正应力(设钢丝处于弹性状态)(2)若d =lmm ,材料的屈服极限=700MPa ,弹性模量E =210GPa ,求不使钢丝产生s σ残余变形的轴径D 。

解:EJM =ρ1Dd E EJ M 324πρ==D d E d M W M ⋅===3max 32πσcm m d E D s 303.01070010110210639==××××=⋅≥−σ6-5矩形悬臂梁如图示.已知l =4m ,,q =10kN/m ,许用应力[σ]=10Mpa 。

32=h b 试确定此梁横截面尺寸。

解:m KN ql M ⋅=××==80410212122max963266322h h h h W =×==910101080263h M W W M =××==⇒=σσcmm h 6.41416.0==cmb 7.27=6-620a 工字钢梁的支承和受力情况如图所示。

若[σ]=160MPa ,试求许用载荷P 。

解:3237cm W =32m KN P M ⋅=32max (M 图)[][]P WM 32102371016066=×××=⋅=−σP 32[]KN P 880.5623716023=××=6-7压板的尺寸和载荷情况如图所示。

材料为45钢,=380MPa ,取安全系数s σ。

试校核压板强度。

5.1=n解:2331568)121230122030(101mmW =×−××=mN M ⋅=×××=−3601020101833[]σσ<=×==−MPa W M6.22910156836096-8由两个槽钢组成的梁受力如图示。

已知材料的许用应力[σ]=150MPa ,试选择槽钢号码。

解:mKN M ⋅=60max []33363max400104.010*******cm m MW x =×=××==−σ查表:(22a ,)332006.217cm cm W x >=(M 图)6-9割刀在切割工件时,受到P =1kN 的切销力的作用。

割刀尺寸如图所示。

试求割刀内最大弯曲应力。

解:mN p M ⋅=××=−Ι81083mN p M ⋅=××=−∏30103033242.706135.2mm W =×=Ι321506154mm W =×=∏()MPa W M 114104.7089max =×==−ΙΙΙσ()MPa W M 20010150309max =×==−∏∏∏σ6-10图示圆木,直径为D ,需要从中切取一矩形截面梁。

试问(1)如要使所切矩形截面的抗弯强度最高,h 、b 分别为何值?(2)如要使所切矩形截面的抗弯刚度最高,h 、b 又分别为何值?解:6)(6222b D b bh W −==0=dbdW ∴06322=−b D ∴322D b =2222323D D D h =−=从强度讲:∴Db 57735.0=∴Dh 8165.0=12)(123222b D b bh J −==0=dbdJ 0)2()(23)(21222322=−×−××+−b b D b b D从刚度讲∴Db 50.0=Dh 866.0=6-11T 字形截面的铸铁梁受纯弯曲如图示,欲使其最大压应力为最大拉应力的3倍,巳知h =12cm ,t =3cm ,试确定其翼板宽度b 之值。

解:3max max =下上拉压y y =σσ下上=y y 312=h y y =+下上cm y 3412==下05.4)39()233)(3(=××−−×=b S cm b 275.135.439=×××=6-12图示简支梁,由No.18工字钢制成,在外载荷作用下,测得横截面A 处梁底面的纵向正应变,试计算梁的最大弯曲正应力σmax 。

已知钢的弹性模量E =200GPa,4100.3−×=εa =1m。

解:MPaE A 60100.31020049=×××==−εσ28/34/3max max ===A A M M σσMPaA 1206022max =×==σσ243qa 283qa 241qa (M 图)6-13试计算图示矩形截面简支梁的1-1面上a 点和b 点的正应力和剪应力。

解:1-1截面KNQ 6364.3=mKN M ⋅=6364.3433375.210912155.712cm bh J =×==283105.310375.2109106364.3−−××××==y J M a σMPa03.6=82310375.2109105.7106364.3−−××××=b σMPa93.12=2863105.710375.2109105.5)5.74(106364.3−−−××××××××==Jb QS a τMPa379.0=6-14计算在均布载荷q =10kN /m 作用下,圆截面简支梁的最大正应力和最大剪应力,并指出它们发生在何处。

解:232max 110108181×××==ql M mN ⋅×=31025.11101021213max ×××==ql Q N3105×=633max 105321025.1−×××==πσWM 在跨中点上、下边缘MPa86.101=34105410534423max××××=×=−πτA Q 在梁端,中性轴上MPa46.25=6-15试计算6-12题工字钢简支梁在图示载荷下梁内的最大剪应力。

解:MPaWqa 60832=qa 413185cmW =KN q 6.29123810185106066=×××××=−43(Q图)KN qa Q2.2216.294343max=××==MPa Jt QS 12.22105.6104.15102.22323max=××××==−−τ6-16矩形截面木梁所受载荷如图示,材料的许用应力[σ]=10Mpa 。

试选择该梁的截面尺寸,设1:2:=b h KN19(Q 图)(M 图)解:KN R A 19=KN R B 29=126132h bhW ==[]σσ≤×==12101433maxhW M cmm h 6.25256.01010121014363==×××=cm b 8.12=[]ττ<=××××==−MPa A Q 961.0106.258.1210215.15.143max6-17试为图示外伸梁选择一工字形截面,材料的许用应力[σ]=160MPa ,[τ]=80Mpa 。

相关文档
最新文档