新人教版八年级下册第16章 二次根式 单元测试试卷(B卷)
人教版数学八年级下册《第十六章二次根式》单元测试题(含答案)
【人教版八年级数学(下)单元测试】第十六章二次根式单元测试(题数:20道测试时间:45分钟 总分:100分)、单选题(每小题 3分,共24 分)5x要使式子有意义,则X 的取值范围是()J x +2F 列各式计算正确的是( )把上45化成最简二次根式的结果是2.20计算(.3+2) 2018 ( .3⑵2019的结果是6 .若a • ■ b 与'、a 八b 互为倒数,则A. a=b-1B. a=b+1C. a+b=1D. a+ b=-17•若3, m , 5为三角形三边,化简: \ (2-m)2-m-82 得(A. -10B. — 2m+6C. -2 m-6D. 2m-108.若 x 2 —X -2 =0,贝U 2 - (X 2 _x )十虫 的值等于( ) 2、3 A. 3 • 3 B. 3 C. .3 二、填空题(每小题 4分,共28 分) 9 .当x 时,式子 1x -3有意义 班级:姓名:得分:A.B. X-2A.F 列二次根式: D. X = -24 .27.能与.3合并的是()B. 2 和 3C. 1 和 2D.A.一3 B .G=6C.3、5 = 3.5D.A.3 B.-4C.D. 2、. 5A. 2+ \3B. —C. 2 — 3D.1 12 ; 2、22 ;10. _____________________________________ 若y= •. x - 3 + .3 -x + 2,则x y= •11 •若最简二次根式S3a +b与丁二b是同类根式,则2a-b=_________________________ .12 .当x=2+ , 3 时,式子x2- 4x+2017= _________ .13. 已知三角形三边的长分别为__________________________ J27cm, JT2 cm, J48 cm,则它的周长为cm.14. 如果一个直角三角形的面积为 _____________________________ 8,其中一条直角边为J10,求它的另一条直角边 __________________________________________________ .15. 如图,将1,,Q, d3,寸6按下列方式排列.若规定(m, n)表示第m排从左向右第n个数,则(5 , 4)与(15 , 2)表示的两数之积是 _________ .第I対第2排第I HI-三、解答题(共48 分)(2)18. (8分)先化简,再求值:已知a = 8, b = 2,试求a I兀」:E 的值.17. (8 分)计算:、5、5-、,15 2、3 .15-2.319. (10分)已知长方形的长a= 1 .32,宽b= 1、、花.2 3(1)求长方形的周长;(2)求与长方形等面积的正方形的周长,并比较其与长方形周长的大小关系.5 ~1 , y= 5 1,求- -的值;20. ( 12分)⑴已知x=2 2 x y⑵已知x, y 是实数,且满足y< x - 2 + •、. 2 - X + 1 ,化简:、..y2-4y 4 —(x—2+ 2 )2.参考答案【解析】依题意得:x+2 > 0,解得x> -2.故选B.2. A【解析】(1) 12=2 -. 3 ; (2) ZF =2;(3):弓;(4),27 = 3. 3 .•••( 1) (4)能与,3合并,故选A.3. B【解析】A选项中,••• 、、6、3不是同类二次根式,不能合并,•本选项错误;B选项中,T 12 ::』3= .36=6,•本选项正确;C选项中,••• 3.5=3,而不是等于3+-、5,•本选项错误;D选项中,•••、、祜“2=二°「5,•本选项错误;2故选B.故选B.5. B【解析】(.3+2)2018( -、3 T2)2018(、、3 T2)=[(,3 +2) r- 3 -2)]2018(-3 -2)=(-1)2018(.3 -2)=3 2故选B.6. B【解析】根据倒数的定义得:i\ b a 7b 二a -b =1.即a =b 1.故选B.【解析】根据题意,得:2<m<8,/• 2- m<0, m- 8<0 ,•••原式=m- 2+m- 8=2m- 10.故选D.8. A【解析】••• X2 -x -2 = 0 ,•x2_x =2 ,2 2、3 _2+2、3_ 2+2 3 3 - 3 4.3 2、3••原式= _ = _ = ------------------------- = ------- =--------22-1+巧3+73 (3+73)(3-73) 6 3 '故选A.9. x>0且x^9【解析】由题意得,x _ 0且、,x -3 = 0,解得X _ 0且x = 9.10. 9「X—3K0【解析】根据题意得:解得:x=3.3-^0,当x=3时,y=2,.x y=32=9.故答案为:9.11. 9【解析】••• 2a f 3a b是最简二次根式,•2a —4 二2 ,•a = 3a -b =3a b2b = -2ab - -a - -3,•2a -b =2 3 - -31=6 3 = 9.故答案为:9.12. 2016【解析】把所求的式子化成(X-2) 2+2013然后代入式子计算,即可得到:x2-4x+2017= (x -2) 2+2013 = ( 3 ) 2+2013=3+2013=2016 .故答案是:2016.【解析】三角形的周长为:,2^ ,4^ = 2、、3 4.3 =9、_3.故本题应填9... 3 .14. 1.6 10【解析】根据三角形的面积公式可直角求出另一条直角边解:设直角三角形的另一直角边为x ,•••一个直角三角形的面积为8,其中一条直角边为,10 ,_ x .10 =8,216 16/10■ X = -= -----------------即它的另一条直角边是8 - 10515. 6【解析】根据数的排列方法可知,第一排:1个数,第二排2个数•第三排3个数,第四排4个数,…第m-1排有(m-1)个数,从第一排到(m-1 )排共有:1+2+3+4+••+ (m-1)个数((m -1)m),根据数的排列方法,每四个数一个轮回,根据题目意思找出第2m排第n个数到底是哪个数后再计算•因此可由(5,4)可知是第5排第4个数,是2,然后由(15,2)可知是第15排第2个数,因此可知2(m」)m-14严。
八年级数学下册《第16章二次根式》单元测试卷含答案解析
2021-2022学年八年级数学下册第16章《二次根式》单元测试卷一、选择题(每题3分,共30分)1.(3分)若√x+2在实数范围内有意义,则x的取值范围在数轴上表示正确的是()A.B.C.D.解:由题意得x+2≥0,解得x≥﹣2.故选:D.2.(3分)下列等式成立的是()A.(√3)2=3B.√(−3)2=−3C.√33=3D.(−√3)2=﹣3解:(√3)2=3,A正确;√(−3)2=3,B错误;√33=√27=3√3,C错误;(−√3)2=3,D错误;故选:A.3.(3分)下列二次根式中的最简二次根式是()A.√30B.√12C.√8D.√1 2解:A、符合最简二次根式的定义,故本选项正确;B、原式=2√3,被开方数含能开得尽方的因数,不是最简二次根式,故本选项错误;C、原式=2√2,被开方数含能开得尽方的因数,不是最简二次根式,故本选项错误;D、被开方数含分母,不是最简二次根式,故本选项错误;故选:A.4.(3分)下列运算中,错误的是()A.√2+√3=√5B.√2×√3=√6C.√8÷√2=2D.|1−√2|=√2−1解:A、√2与√3不能合并,所以A选项的计算错误;B、原式=√2×3=√6,所以B选项的计算正确;C、原式=√8÷2=2,所以C选项的计算正确;D、原式=√2−1,所以D选项的计算正确.故选:A .5.(3分)∵2√3=√22×3=√12① ﹣2√3=√(−2)2×3=√12② ∴2√3=−2√3③ ∴2=﹣2 ④以上推导中的错误在第几步( ) A .①B .②C .③D .④解:根据二次根式的性质得﹣2√3=−√22×3,错误的是第二步.故选B . 6.(3分)下列计算正确的是( ) A .√a +√b =√ab B .(﹣a 2)2=﹣a 4C .√a=√aD .√a ÷√b =√ab(a ≥0,b >0)解:A 、√a 与√b 不能合并,所以A 选项错误; B 、原式=a 4,所以B 选项错误; C 、原式=√aa ,所以C 选项错误; D 、原式=√a √b =√ab(a ≥0,b >0),所以D 选项正确.故选:D .7.(3分)估计(2√30−√24)•√16的值应在( )A .1和2之间B .2和3之间C .3和4之间D .4和5之间解:(2√30−√24)•√16 =2√5−2 =√20−2, ∵4<√20<5, ∴2<√20−2<3, 故选:B . 8.(3分)若x <0,则x−√x 2x的结果是( )A .0B .﹣2C .0或﹣2D .2解:若x <0,则√x 2=−x ,∴x−√x 2x=x−(−x)x=2x x=2,故选:D .9.(3分)已知a ,b ,c 为△ABC 的三边,且√a 2−2ab +b 2=0,|b ﹣c |=0,则△ABC 的形状是( ) A .等腰三角形 B .等边三角形 C .直角三角形D .等腰直角三角形解:根据题意得,a 2﹣2ab +b 2=0,b ﹣c =0, ∴a =b ,b =c , ∴a =b =c ,∴△ABC 的形状是等边三角形. 故选:B .10.(3分)已知m =1+√2,n =1−√2,则代数式√m 2+n 2−3mn 的值为( ) A .9B .±3C .3D .5解:m +n =2,mn =(1+√2)(1−√2)=﹣1, 原式=√(m +n)2−5mn =√22−5×(−1)=√9=3. 故选:C .二、填空题(每题3分,共24分) 11.(3分)计算:√12×√3= 6 . 解:原式=2√3×√3=6. 故答案为:6.12.(3分)如果两个最简二次根式√3a −1与√2a +3能合并,那么a = 4 . 解:∵两个最简二次根式√3a −1与√2a +3能合并, ∴两个最简二次根式√3a −1与√2a +3是同类二次根式, ∴3a ﹣1=2a +3, 解得:a =4. 故答案为:4. 13.(3分)比较大小:√5−12 > 12(填“>”“<”“=”). 解:∵√5−1>1,∴√5−12>12. 故填空结果为:>.14.(3分)实数a 在数轴上的位置如图所示,则√(a −4)2+√(a −11)2化简后为 7 .解:根据数轴得:5<a <10, ∴a ﹣4>0,a ﹣11<0, ∴原式=a ﹣4+11﹣a =7. 故答案是:7.15.(3分)实数a ,b 满足√a +1+4a 2+4ab +b 2=0,则b a 的值为12.解:∵实数a ,b 满足√a +1+4a 2+4ab +b 2=0,即√a +1+(2a +b)2=0, ∴{a +1=02a +b =0, 解得{a =−1b =2,∴b a =2−1=12. 故答案为:12.16.(3分)△ABC 的面积S =12cm 2,底边a =2√3cm ,则底边上的高为 4√3cm . 解:设此三角形底边上的高为h , 则S =12aℎ.即12=12×2√3h =√3ℎ, h =12√3=12√33=4√3(cm ). 故答案为:4√3cm .17.(3分)已知a ≠0,b ≠0且a <b ,化简√−a 3b 的结果是 ﹣a √−ab . 解:由题意:﹣a 3b ≥0,即ab ≤0, ∵a <b , ∴a <0<b ,所以原式=|a |√−ab =−a √−ab , 故答案为:﹣a √−ab .18.(3分)已知三角形的三边长分别为a ,b ,c ,求其面积问题,中外数学家曾经进行过深入研究,古希腊的几何学家海伦给出求其面积的海伦公式S =√p(p −a)(p −b)(p −c),其中p =a+b+c2;我国南宋时期数学家秦九韶曾提出利用三角形的三边求其面积的秦九韶公式S =12√a 2b 2−(a 2+b 2−c 22)2,若一个三角形的三边长分别为2,3,4,则其面积是 3√154. 解:∵一个三角形的三边长分别为2,3,4, ∴p =2+3+42=92, ∴S =√92(92−2)(92−3)(92−4)=3√154. 故答案为:3√154. 三、解答题(19题16分,20题8分,24题12分,其余每题10分,共66分) 19.(16分)计算下列各式: (1)√20+√5(2+√5); (2)(4√6−3√2)÷2√2; (3)2√18−4√18+3√32;(4)(√a 3b −√a b +2√b a +√ab)÷√ba (a >0,b >0). 解:(1)原式=2√5+2√5+(√5)2 =4√5+5;(2)原式=4√6÷2√2−3√2÷2√2 =2√3−32;(3)原式=6√2−√2+12√2 =17√2;(4)原式=√a 3b ×a b −√a b ⋅a b +2√b a ⋅a b +√ab ⋅ab =a 2−ab +2+a .20.(8分)比较√5+√2与√3+2的大小关系.解:∵(√5+√2)2=7+2√10=7+√40,(√3+2)2=7+4√3=7+√48, ∴(√5+√2)2<(√3+2)2, ∴√5+√2<√3+2. 21.(10分)已知2√|a|−5√a+5=0,求:(√a +2√b )(√a −2√b )的值.解:原式=a ﹣4b . ∵2√|a|−5√a+5=0,又∵(2a ﹣b )2≥0,√|a|−5≥0, ∴a =5,b =10∴当a =5,b =10时,原式=5﹣40=﹣35.22.(10分)据报道2016年9月12日有一个熊孩子把34楼的啤酒瓶搬到28楼然后扔下去,所幸并没有人员伤亡,熊孩子也被家长打的屁股开花;据研究从高空抛物时间t 和高度h 近似的满足公式t =√ℎ5(不考虑风速的影响). (1)从50米高空抛物到落地所需时间t 1的值是多少?(2)从100米高空抛物到落地所需时间t 2的值是多少?(求t 的值) (3)t 2是t 1的多少倍?解:(1)当h =50时,t 1=√ℎ5=√505=√10(秒); (2)当h =100时,t 2=√ℎ5=√1005=√20=2√5(秒); (3)∵t 2t 1=√5√10=√2,∴t 2是t 1的√2倍.23.(10分)对于题目“化简并求值:1a +√1a 2+a 2−2,其中a =15”,甲、乙两人的解答不同.甲的解答:1a +√1a 2+a 2−2=1a +√(1a−a)2=1a +1a−a =2a −a =495; 乙的解答:1a+√1a 2+a 2−2=1a+√(a −1a)2=1a+a −1a =a =15.请你判断谁的答案是错误的,为什么?解:甲的解答:a =15时,1a−a =5−15=445>0,所以√(1a −a)2=1a−a ,正确; 乙的解答:因为a =15时,a −1a =15−5=﹣445<0,所以√(a −1a )2≠a −1a ,错误; 因此,我们可以判断乙的解答是错误的.24.(12分)我们学习了二次根式,那么所有的非负数都可以看成是一个数的平方,如3=(√3)2,5=(√5)2,下面我们观察:(√2−1)2=(√2)2﹣2×1×√2+12=2﹣2√2+1=3﹣2√2;反之,3﹣2√2=2﹣2√2+1=(√2−1)2,∴3﹣2√2=(√2−1)2,∴√3−2√2=√2−1.(1)化简√3+2√2. (2)化简√4+2√3. (3)化简√4−√12.(4)若√a ±2√b =√m ±√n ,则m ,n 与a ,b 的关系是什么?并说明理由. 解:(1)√3+2√2=√(√2+1)2=√2+1. (2)√4+2√3=√(√3+1)2=√3+1.(3)√4−√12=√4−2√3=√(√3−1)2=√3−1. (4){m +n =a ,mn =b.理由:把√a ±2√b =√m ±√n 两边平方,得a ±2√b =m +n ±2√mn , ∴{a =m +n ,b =mn.。
2022-2023学年人教新版八年级下册数学《第16章 二次根式》单元测试卷(有答案)
2022-2023学年人教新版八年级下册数学《第16章二次根式》单元测试卷一.选择题(共12小题,满分36分)1.化简(﹣)2的结果是()A.﹣5B.5C.±5D.252.下列各式中,一定是二次根式的是()A.B.C.D.3.若二次根式有意义,则x的取值范围是()A.x≥0B.x≥5C.x≥﹣5D.x≤54.二次根式的值等于()A.﹣2B.±2C.2D.45.下列计算正确的是()A.=±3B.C.D.6.若是最简二次根式,则a的值可能是()A.﹣2B.2C.D.87.的有理化因式是()A.B.C.D.8.下列二次根式中能与合并的是()A.B.C.D.9.若是整数,则正整数n的最小值是()A.4B.5C.6D.710.如图,在数轴上所表示的x的取值范围中,有意义的二次根式是()A.B.C.D.11.已知二次根式,则下列各数中能满足条件的a的值是()A.4B.3C.2D.112.如果+有意义,那么代数式|x﹣1|+的值为()A.±8B.8C.与x的值无关D.无法确定二.填空题(共10小题,满分30分)13.化简的值是,把4化成最简二次根式是.14.计算:÷=.15.若是整数,则最小正整数n的值为.16.使得二次根式在实数范围内有意义的x的取值范围是.17.化简=.18.如果最简二次根式与是同类二次根式,那么x的值为.19.若是整数,则正整数n的最小值是.20.已知n是正整数,是整数,则n的最小值是.21.已知+=0,则+=.22.小明做数学题时,发现=;=;=;=;…;按此规律,若=(a,b为正整数),则a+b=.三.解答题(共5小题,满分54分)23.已知二次根式.(1)求x的取值范围;(2)求当x=﹣2时,二次根式的值;(3)若二次根式的值为零,求x的值.24.(1)通过计算下列各式的值探究问题:①=;=;=;=.探究:对于任意非负有理数a,=.②=;=;=;=.探究:对于任意负有理数a,=.综上,对于任意有理数a,=.(2)应用(1)所得的结论解决问题:有理数a,b在数轴上对应的点的位置如图所示,化简:﹣﹣+|a+b|.25.当a取什么值时,代数式取值最小?并求出这个最小值.26.阅读下面解题过程,并回答问题.化简:解:由隐含条件1﹣3x≥0,得x∴1﹣x>0∴原式=(1﹣3x)﹣(1﹣x)=1﹣3x﹣1+x=﹣2x按照上面的解法,试化简:.27.已知+2=b+8.(1)求a的值;(2)求a2﹣b2的平方根.参考答案与试题解析一.选择题(共12小题,满分36分)1.解:(﹣)2=5.故选:B.2.解:A、x<0时,不是二次根式,故此选项错误;B、x<﹣2时,不是二次根式,故此选项错误;C、是二次根式,故此选项正确;D、当x>0时,不是二次根式,故此选项错误;故选:C.3.解:∵x﹣5≥0,∴x≥5.故选:B.4.解:原式=|﹣2|=2.故选:C.5.解:A、=3,故本选项错误;B、=,故本选项错误;C、=5,故本选项错误;D、==,故本选项正确.故选:D.6.解:∵是最简二次根式,∴a≥0,且a为整数,中不含开的尽方的因数因式,故选项中﹣2,,8都不合题意,∴a的值可能是2.故选:B.7.解:的有理数因式是,故选:A.8.解:A、,不能与合并,错误;B、,能与合并,正确;C、,不能与合并,错误;D、,不能与合并,错误;故选:B.9.解:∵=3,∴正整数n的最小值是5;故选:B.10.解:从数轴可知:x≥﹣3,A.当﹣3≤x<3时,无意义,故本选项不符合题意;B.当x≥﹣3时,有意义,故本选项符合题意;C.当﹣3≤x≤3时,无意义,故本选项不符合题意;D.当x=﹣3时,无意义,故本选项不符合题意;故选:B.11.解:由题意可知:1﹣a≥0,解得:a≤1.故选:D.12.解:∵+有意义,∴x﹣1≥0,9﹣x≥0,解得:1≤x≤9,∴|x﹣1|+=x﹣1+9﹣x=8,故选:B.二.填空题(共10小题,满分30分)13.解:=;4=4×=.故答案是;.14.解:原式===4.故答案为:4.15.解:∵是整数,∴最小正整数n的值是:5.故答案为:5.16.解:∵二次根式在实数范围内有意义,∴x﹣2≥0,解得x≥2.故答案为:x≥2.17.解:原式===2,故答案为:2.18.解:∵最简二次根式与是同类二次根式,∴2x﹣1=5,∴x=3.故答案为:3.19.解:原式=5,则正整数n的最小值是3时,原式是整数.故答案为:3.20.解:==3,∵是整数,∴n的最小值是3,故答案为:3.21.解:由题意得,a﹣3=0,2﹣b=0,解得a=3,b=2,所以,+=+=+=.故答案为:.22.解:根据题中的规律得:a=8,b=82+1=65,则a+b=8+65=73.故答案为:73.三.解答题(共5小题,满分54分)23.解:(1)根据题意,得:3﹣x≥0,解得x≤6;(2)当x=﹣2时,===2;(3)∵二次根式的值为零,∴3﹣x=0,解得x=6.24.解:(1)①=4;=16;=0;=.探究:对于任意非负有理数a,=a.故答案为:4,16,0,,a;②=3;=5;=1;=2.探究:对于任意负有理数a,=﹣a.综上,对于任意有理数a,=|a|.故答案为:3,5,1,2,﹣a,|a|;(2)观察数轴可知:﹣2<a<﹣1,0<b<1,a﹣b<0,a+b<0.原式=|a|﹣|b|﹣|a﹣b|+|a+b|=﹣a﹣b+a﹣b﹣a﹣b=﹣a﹣3b.25.解:∵≥0,∴当a=﹣时,有最小值,是0.则+1的最小值是1.26.解:由隐含条件2﹣x≥0,得x≤2,则x﹣3<0,所以原式=|x﹣3|﹣(2﹣x)=﹣(x﹣3)﹣2+x=﹣x+3﹣2+x=1.27.解:(1)由题意知a﹣17≥0,17﹣a≥0,则a﹣17=0,解得:a=17;(2)由(1)可知a=17,则b+8=0,解得:b=﹣8,故a2﹣b2=172﹣(﹣8)2=225,则a2﹣b2的平方根为:±=±15.。
人教版数学八年级下册第十六章二次根式 单元测试卷(含答案解析)
人教版数学八年级下册第十六章二次根式单元测试卷(含答案解析)一、单选题(共12小题,每小题4分,共计48分)1A.4b B.CD2.下列各数中,与的积不含二次根式的是A.B.CD3m为()A.-10B.-40C.-90D.-1604.若a,b-5,则a,b的关系为A.互为相反数B.互为倒数C.积为-1D.绝对值相等5.下列计算正确的是3==6=3=;a b=-.A.1个B.2个C.3个D.4个6合并的是()A B C D7.若6的整数部分为x,小数部分为y,则(2x)y的值是() A.5-B.3C.-5D.-38.如图,a,b,c的结果是()a c+A .2c ﹣bB .﹣bC .bD .﹣2a ﹣b9.估计的值应在( )A .5和6之间B .6和7之间C .7和8之间 D.8和9之间10有意义,那么直角坐标系中点A(a,b)在() A .第一象限 B .第二象限 C .第三象限D .第四象限11.下列计算正确的是AB . CD12.如果,,那么各式:,,,其中正确的是()A .①②③B .①③C .②③D .①②二、填空题(共5小题,每小题4分,共计20分)13.如果表示a 、b 的实数的点在数轴上的位置如图所示,那么化简|a﹣的结果是_____.14.已知a 、b满足(a ﹣1)2=0,则a+b=_____.15有意义,则实数x 的取值范围是_____.16.若a ,b 都是实数,b﹣2,则a b 的值为_____. 17.已知实数,互为倒数,其中__________. ()=3=2==0ab > 0a b +<=1=b =-a b a 2=+三、解答题(共4小题,每小题8分,共计32分)18=b+8.(1)求a 的值;(2)求a 2-b 2的平方根.19.已知实数a 满足|300﹣a =a ,求a ﹣3002的值.20.已知点A(5,a)与点B(5,-3)关于x 轴对称,b 为求(1)的值。
人教版八年级数学下册第16章_二次根式单元测试卷+答案
第1页,总12页第16章 二次根式单元测试卷班级:__________ 姓名:__________ 分数:__________一、 选择题 (本题共计 10 小题 ,每题 3 分 ,共计30分 ) 1. 下列各式不是最简二次根式的是( ) A.√0.5B.√10C.√a 2+b 2D.√222. 已知函数y =√x +3+1x−2,自变量x 的取值范围是( ) A.x ≠2 B.x ≥−3 C.x >−3且x ≠2 D.x ≥−3且x ≠23. 若√4−x x−2=√4−x√x−2,则x 的值可以是( ) A.2B.−2C.3D.−34. 已知√(2a −1)2=1−2a ,那么a 的取值范围是( ) A.a <12B.a >12C.a ≤12D.a ≥125. 已知√a −3+√2−b =0,则√a+√6√b的值为( ) A.1B.√2C.√3D.4√336. 对于任意的正数m ,n ,定义运算※为:m ※n ={√m −√n(m ≥n),√m +√n(m <n),则计算(3※2)×(8※12)的结果为( ) A.2−4√6B.2C.2√D.207. 二次根式√5x 5,√√x2,2√11a ,√12a ,√a 4(x ≥0, a ≥0)中,最简二次根式的个数是( ) A.5B.4C.3D.28. 已知a>b>0,a+b=6√ab,则√a−√b√a+√b的值为()A.√22B.2 C.√2 D.129. 下列运算中,正确的是()A.√3(√3+√13)=3 B.(√12−√27)÷√3=−1C.√32÷12√2=2 D.(√2+√3)×√3=√6+2√310. 设S1=1,S2=1+112+122,S3=1+122+132,S4=1+132+142,…,按照此规律,则√n n≥2,n为正整数)的值等于()A.nn−1 B.n+1nC.(n−1)n+1(n−1)n D.n(n+1)+1n(n+1)二、填空题(本题共计 6 小题,每题 3 分,共计18分)11. 已知y=√x−2+√2−x+34,则xy=_______.12. 式子√x+3有意义时x的取值范围为________.13. 若最简二次根式√4a2+1与√6a2−1是同类二次根式,则a的值为________.14. 计算|√2−√3|+2√2的结果是________.15. 下列运算中错误的有________.(只写序号即可)①√3+√2=√5;②√27=±3√3;③√3−√12=−√3;④√52−32=√52−√32=5−3=2.16. 把(a−1)√−1a−1中根号外的(a−1)移入根号内得________.三、解答题(本题共计 6 小题,共计52分)试卷第2页,总12页17.(6分)计算:√48−√27+√13.18. (8分)(1)计算:√3−√3116+√(−18)23;(2)先化简,再求值:x2(3−x)+x(x2−2x)+1,其中x=√3.第3页,总12页19. 阅读例题:计算:√2+1=√2−1)(√2+1)(√2−1)=√2−12−1=√2−11√3+√2=1×(√3−√2)(√3+√2)(√3−√2)=√3−√23−2=√3−√2同理可得:2+√3=________.√11−√7=________.4−√11=________.从计算结果中找出规律,并利用这一规律计算:(√2+1+√3+√2+√4+√3√2020+√2019)×(√2020+1)试卷第4页,总12页20. 观察下列等式,解答后面的问题:①√1+13=√3+13=√4×13=2√13,②√2+14=3√14,③√3+15=4√15,…(1)请直接写出第④个等式是________(不用化简);(2)根据上述规律猜想:若n为正整数,请用含n的式子表示第n个等式,并给予证明;(3)利用(2)的结论化简:√2019+12021×√2021 .第5页,总12页试卷第6页,总12页21. 小明在解方程√24−x −√8−x =2时采用了下面的方法:由 (√24−x −√8−x)(√24−x +√8−x)=(√24−x)2−(√8−x)2=(24−x)−(8−x)=16,又有√24−x −√8−x =2,可得√24−x +√8−x =8,将这两式相加可得{√24−x =5,√8−x =3,将√24−x =5两边平方可解得x =−1,经检验x =−1是原方程的解.请你学习小明的方法,解下面的方程: 解方程:√x 2+42+√x 2+10=16.22. 阅读下面的文字,解答问题:大家知道√2是无理数,而无理数是无限不循环小数,因此√2的小数部分我们不可能全部地写出来,于是小明用√−1来表示√同意小明的表示方法吗?事实上,小明的表示方法是有道理,因为√2的整数部分是1,将这个数减去其整数部分,差就是小数部分.又例如:∵√4<√7<√9,即2<√7<3,∴√7的整数部分为2,小数部分为(√7−2).请解答:(1)√17的整数部分是________,小数部分是________;(2)如果√5的小数部分为a,√13的整数部分为b,求a+b−√5的值;(3)已知:10+√3=x+y,其中x是整数,且0<y<1,求x−y的相反数.第7页,总12页参考答案与试题解析第16章二次根式单元测试卷一、选择题(本题共计 10 小题,每题 3 分,共计30分)1.【答案】A2.【答案】D3.【答案】C4.【答案】C5.【答案】D6.【答案】B7.【答案】D8.【答案】A9.【答案】B10.试卷第8页,总12页【答案】C二、填空题(本题共计 6 小题,每题 3 分,共计18分)11.【答案】3212.【答案】x>−313.【答案】±114.【答案】√3+√215.【答案】①②④16.【答案】−√1−a三、解答题(本题共计 6 小题,共计52分)17.【答案】解:√48−√27+√13=4√3−3√3+√3 3=4√33. 18.【答案】解:(1)原式=0.5−74+14=−1.第9页,总12页(2)=x2(3−x)+x(x2−2x)+1,=3x2−x3+x3−2x2+1,=x2+1,当x=√3时,原式=(√3)2+1=3+1=4.19.【答案】解:依题意,得2+√3=√3(2+√3)(2−√3)=2−√3,√11−√7=√11+√7)(√11−√7)(√11+√7)=√11+√7,4−√11=√11)(4−√11)(4+√11)=4+√11,(1√2+1+1√3+√2+1√4+√3+...+1√2020+√2019)(√2020+1)=(√2−1+√3−√2+√4−√3+...+√2020−√2019)(√2020+1) =(√2020−1)(√2020+1)=2020−1,=2019.20.【答案】√4+16=5√16试卷第10页,总12页第11页,总12页(2)根据题意得:√n +1n+2=(n +1)√1n+2. 证明:√n +1n+2=√n (n+2)+1n+2=√(n+1)2n+2=(n +1)√1n+2.(3)√2019+12021×√2021 =2020√12021×√2021=2020.21.【答案】 解:(√x 2+42+√x 2+10)(√x 2+42−√x 2+10) =(√x 2+42)2−(√x 2+10)2=(x 2+42)−(x 2+10) =32,∵ √x 2+42+√x 2+10=16, ∴ √x 2+42−√x 2+10=32÷16=2,∴ {√x 2+42=9,√x 2+10=7,∵ (√x 2+42)2=x 2+42=92=81, ∴ x =±√39,经检验x =±√39都是原方程的解, ∴ 方程√x 2+42+√x 2+10=16的解是:x =±√39. 22.【答案】4,√17−4(2)∵ 2<√5<3,∴ a =√5−2.∵ 3<√13<4,∴b=3,∴a+b−√5=√5−2+3−√5=1.(3)∵1<3<4,∴1<√3<2,∴11<10+√3<12.∵10+√3=x+y,其中x是整数,且0<y<1,∴x=11,y=10+√3−11=√3−1,∴x−y=11−(√3−1)=12−√3,∴x−y的相反数是−12+√3.试卷第12页,总12页。
人教版八年级数学下册第十六章二次根式单元测试卷(含答案)
⼈教版⼋年级数学下册第⼗六章⼆次根式单元测试卷(含答案)第⼗六章⼆次根式单元测试卷题号⼀⼆三总分得分⼀、选择题(每题3分,共30分)1.要使⼆次根式错误!未找到引⽤源。
有意义,x必须满⾜()A.x≤2B.x≥2C.x>2D.x<22.下列⼆次根式中,不能与错误!未找到引⽤源。
合并的是()A.错误!未找到引⽤源。
B.错误!未找到引⽤源。
C.错误!未找到引⽤源。
D.错误!未找到引⽤源。
3.下列⼆次根式中,最简⼆次根式是()A.错误!未找到引⽤源。
B.错误!未找到引⽤源。
C.错误!未找到引⽤源。
D.错误!未找到引⽤源。
4.下列各式计算正确的是()A.错误!未找到引⽤源。
+错误!未找到引⽤源。
=错误!未找到引⽤源。
B.4错误!未找到引⽤源。
-3错误!未找到引⽤源。
=1C.2错误!未找到引⽤源。
×3错误!未找到引⽤源。
=6错误!未找到引⽤源。
D.错误!未找到引⽤源。
÷错误!未找到引⽤源。
=35.下列各式中,⼀定成⽴的是()A.错误!未找到引⽤源。
=(错误!未找到引⽤源。
)2B.错误!未找到引⽤源。
=(错误!未找到引⽤源。
)2C.错误!未找到引⽤源。
=x-1D.错误!未找到引⽤源。
=错误!未找到引⽤源。
·错误!未找到引⽤源。
6.已知a=错误!未找到引⽤源。
+1,b=错误!未找到引⽤源。
,则a与b的关系为()A.a=bB.ab=1C.a=-bD.ab=-17.计算错误!未找到引⽤源。
÷错误!未找到引⽤源。
×错误!未找到引⽤源。
的结果为()A.错误!未找到引⽤源。
B.错误!未找到引⽤源。
C.错误!未找到引⽤源。
D.错误!未找到引⽤源。
8.已知a,b,c为△ABC的三边长,且错误!未找到引⽤源。
+|b-c|=0,则△ABC的形状是()A.等腰三⾓形B.等边三⾓形C.直⾓三⾓形D.等腰直⾓三⾓形9.已知a-b=2错误!未找到引⽤源。
-1,ab=错误!未找到引⽤源。
人教版八年级下册数学第十六章《二次根式》单元测试题(含答案)
人教版八年级下册数学第十六章《二次根式》单元测试题(含答案)一、 选择题(本大题共10小题,每小题2分,共20分)1. 下列式子一定是二次根式的是( ) A. 2--x B. x C. 22+x D. 22-x2. 二次根式13)3(2++m m 的值是( ) A. 23 B. 32 C.22 D. 0 3. 若13-m 有意义,则m 能取的最小整数值是( )A. m =0B. m =1C. m =2D. m =34. 若x < 0,则xx x 2-的结果是( ) A. 0 B. -2 C. 0或-2 D. 25. 下列二次根式中属于最简二次根式的是( ) A. 14 B. 48 C. b a D. 44+a6. 如果)6(6-=-•x x x x ,那么( )A. 0≥xB. 6≥xC. 60≤≤xD. x 为一切实数 7. 小明的作业本上有以下四题: ①24416a a =;②a a a 25105=⨯;③a a a a a=•=112;④a a a =-23。
做错的题是( )A. ①B. ②C. ③D. ④ 8. 化简6151+的结果是( ) A. 3011 B. 33030 C. 30330 D. 11309. 若最简二次根式a +1与a 24-的被开方数相同,则a 的值为( ) A. 43-=a B. 34=a C. 1=a D. 1-=a10. 若n 75是整数,则正整数n 的最小值是( )A. 2B. 3C. 4D. 5二、 填空题(本大题共10小题,每小题3分,共30分)11. 若b b -=-332)(,则b 的取值范围是___________。
12. 2)52(-=__________。
13. 若m < 0,则332m m m ++=_______________。
14. 231-与23+的关系是____________。
15. 若35-=x ,则562++x x 的值为___________________。
人教版八年级下册第16章《二次根式》单元检测卷 附答案
解得 h=11.25, ∴下落的高度是 11.25 米.
21.解:原式=
=
=﹣
10 / 10
=2 × × =243;
= ﹣1+3
= +2;
(4)
= ﹣ + ﹣ ﹣(8﹣4 +1) = ﹣3 ﹣9+4 =2 ﹣9. 18.解:(1)当 a= +1,b= ﹣1 时, 原式=2(a+b) =2×( +1+ ﹣1) =2×2 =4 ; (2)当 a= +1,b= ﹣1 时, 原式=( +1)2+( ﹣1)2 =3+2 +3﹣2
=
,
第 3 个等式:a3=
=2﹣ ,
第 4 个等式:a4=
= ﹣2,
… 按上述规律,计算 a1+a2+a3+…+an= 三.解答题(共 5 小题,满分 45 分) 17.(12 分)计算: (1)
. (2)
(3)
(4) 2 / 10
不要因为长期埋头科学,而失去对生活、对美、对待诗意的感受能力。——达尔 文
=64﹣60
=4
∵ ﹣ = ﹣ >0
∴a>b
6 / 10
不要因为长期埋头科学,而失去对生活、对美、对待诗意的感受能力。——达尔 文
∴a﹣b>0
∴a﹣b=2
故答案为:2.
13.解: =( )2﹣22
=3﹣4
=﹣1.
故答案为:﹣1.
14.解:∵|a﹣2007|+
=a,∴a≥2008.
∴a﹣2007+
=a,
=,
而 中被开方数不含能开得尽方的因数,
∴属于最简二次根式的是 ,
人教版八年级数学下册第十六章《二次根式》单元测试卷附答案
第十六章《二次根式》单元测试卷(共23题,满分120分,考试用时90分钟)一、选择题(共10小题,每小题3分,共30分)1.下列式子是二次根式的是()A.2B.√2C.√23D.√−22.二次根式√x−2有意义的条件是()A.x>2B.x<2C.x≥2D.x≤23.下列式子中,属于最简二次根式的是()A.√12B.√23C.√0.3D.√74.化简√(−2)2得()A.2B.-2C.±2D.45.下列二次根式中,不能与√2合并的是()A.√12B.√8C.√12D.√186.下列计算正确的是()A.√2+√3=√5B.2+√2=2√2C.3√2−√2=3D.3√2−√2=2√27.下列计算错误的是()A.√5×√6=√30B.√18÷√2=9C.3√3÷3√3=1D.3√2×2=6√28.计算(2+√5)(2-√5)的结果是()A.-1B.-3C.9-4 √5D.9+4 √59.若二次根式√1+a与√4−a的被开方数相同,则a的值为()A.1B.2C.23D.3210.(创新题)如图,数轴上表示1,√2的对应点分别为A,B,则以点A为圆心,以AB为半径的圆交数轴于点C,则点C表示的数是()A.√2-1B.1-√2C.2-√2D.√2-2二、填空题(共5小题,每小题3分,共15分)11.计算√8−√2的结果等于.12.计算:3√5×2√5=.13.若√12n是正整数,则最小的整数n是.14.已知实数x,y满足|x-4|+√y−8=0,则分别以x,y的值为两边长的等腰三角形的周长是.15.(跨学科融合)某小区要在面积为128平方米的正方形空地上建造一个休闲园地,并进行规划(如图1),在休闲园地内建一个面积为72平方米的正方形儿童游乐场,游乐场两边铺设健身道,剩下的区域作为休息区.现计划在休息区摆放占地面积为3×1.5平方米的“背靠背”休闲椅(如图2),并要求休闲椅摆放在东西方向或南北方向上,请通过计算说明休息区内最多能摆放张这样的休闲椅.三、解答题(一)(共3小题,每小题8分,共24分)16.计算:3√5+2√12−√20.17.计算:√24÷√3−√6×2√3.18.求代数式2xx2−2x+1÷(1+1x−1)的值,其中x=√2+1.四、解答题(二)(共3小题,每小题9分,共27分)19.已知x=2+√3,求代数式x2-2√3x+3的值.20.若x,y都是实数,且y=√x−3+√3−x+8,求x+y的值.21.如图,已知实数a,b,c在数轴上的位置,化简:√a2-|a-b|+√(b+c)2.五、解答题(三)(共2小题,每小题12分,共24分)22.(跨学科融合)高空抛物严重威胁着人们的“头顶安全”,即便是常见小物件,一旦高空落下,也威力惊人,而且用时很短,常常避让不及.据研究,高空抛物下落的时间t(单位:s)和高度h(单位:m)近似满足公式t=√2ℎg(不考虑风速的影响,g≈10 m/s2).(1)求从40 m高空抛物到落地的时间(结果保留根号);(2)小明说从80 m高空抛物到落地的时间是(1)中所求时间的2倍,他的说法正确吗?请说明理由;(3)已知高空坠物动能(单位:J)=10×物体质量(单位:kg)×高度(单位:m).某质量为0.05 kg的鸡蛋经过6 s后落在地上,这个鸡蛋产生的动能是多少(单位:J)?这个鸡蛋会伤害到楼下的行人吗?(注:杀伤无防护的人体只需要65 J的动能)23.阅读下列材料,然后解答问题:√5=√5√5×√5=3√55.(一)√2 3=√2×3√3×3=√63.(二)√3+1=√3−1)(√3+1)(√3−1)=√3−1)(√3)2−1=√3-1.(三)以上这种化简的步骤叫做分母有理化.。
【3套试卷】人教版数学八年级下第16章二次根式单元考试题(有答案)
人教版数学八年级下第16章二次根式单元考试题(有答案)人教版八年级数学下册第十六章二次根式单元检测卷总分:150分,时间:120分钟;姓名:;成绩:;一、选择题(4分×12=48分)1、下列二次根式是最简二次根式的是()C.B.2)A. B.C.3a能够取的值是()A. 0B. 1C. 2D.34有意义的条件是()A.x≥1B.x≤1C.x≠1D.x<15、若135a是整数,则a的最小正整数值是( )A.15 B.45 C.60 D.1356、则实数x的取值范围在数轴上的表示正确的是( )=-)7aA. -B.C. -D.8、已知(5m=n,如果n是整数,则m可能是()A. 5 C.9、下列计算正确的是( )A. 4B. 1C. 3 210、若a 、b 、c )A. 2a -2cB. -2cC. 2bD.2a11、已知a ,b a 、b ,则下列表示正确的是( )A. 0.3abB. 3abC. 0.1abD.0.9ab12、定义:m Δn =(m+n )2,m ※n =mn -2,则[(]Δ)的值是()C. 5二、填空题(4分×6=24分)13= ;14、已知矩形的长为cm cm ,则矩形的面积为 ;15、当a = 时,16、已知a =,b =,则a 2b+ab 2= ;171x =成立的条件是 ;1822510b b +=,则a+b 的平方根是 ;三、22a 10分×2=20分)19、计算(1)21+( (2)2019+(-1)20、计算:(1)220,0)a a b >>(2)2(0,0)aa b m n ÷>>四、解答题(9分×4=36分)21、用四张一样大小的长方形纸片拼成一个正方形ABCD ,如图所示,它的面积是75,AE=22、化简求值:2(2)(2)(2)(43)a b a b a b b a b +-+--+,其中a 1,b ;23、观察下列各式,通过分母有理化,把不是最简二次根式的化成最简二次根式: 121212)12)(12()12(1121-=--=-+-⨯=+ 232323)23)(23()23(1231-=--=-+-⨯=+ 同理可得:32321-=+ 从计算结果中找出规律,并利用这一规律计算.......1)的值24、已知a,b,c在数轴上如图所示,化简:+b c五、解答题(10分+12分=22分)25、现有一组有规律的数:1,-1,2,-2,3,-3,1,-1,2,-2,3,-3,…,其中1,-1,2,-2,3,-3这6个数按此规律重复出现.(1)第50个数是什么数?(2)把从第1个数开始的前2018个数相加,结果是多少?(3)从第1个数起,把连续若干个数的平方相加,如果和为520,那么一共是多少个数的平方相加?26、小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+()2.善于思考的小明进行了以下探索:设=()2(其中a、b、m、n均为整数),则有=m2+2n2∴a=m2+2n2,b=2mn.这样小明就找到了一种把类似a+b的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若=()2,用含m、n的式子分别表示a、b,得:a= ,b= ;(2)利用所探索的结论,找一组正整数a、b、m、n填空:+ =(+ )2;(3)若)2,且a 、m 、n 均为正整数,求a 的值?2019年春人教版数学八年级下第16章二次根式单元考试题答案一、选择题CDBDA CABDA AB二、填空题13、1; 14、2; 15、6; 16、6; 17、x ≥-1;18、±3三、解答题19、计算:(1)5; (2)0;20、(1)12a 3b 2;(2)2221a ab a b -+; 四、解答题21、22、;23、2017;24、-a五、解答题25、(1)第50个数是-1.(2)从第1个数开始的前2018个数的和是0.(3)一共是261个数的平方相加.26、26、(1)223,2m n mn + (2)16,8,2,2(答案不唯一)(3)7或13.人教版初中数学八年级下册第十六章《二次根式》单元基础卷一、选择题(每小题3分,共30分)1x 的取值范围是( ).A. 1x >B. 1x ≥C. 1x <D. 1x ≤ 2.若a -1+b 2-4b +4=0,则ab 的值等于( )A .-2B .0C .1D .23.=x 的取值范围是( ) A. 2x ≠B. 0x ≥C. 2x >D. 2x ≥4.是同类二次根式的是( )。
人教版数学八年级下册:第16章《二次根式》单元测试(附答案)
第十六章 二次根式16.1 二次根式第1课时 二次根式的概念01 基础题知识点1 二次根式的定义1.下列式子不是二次根式的是( B )A . 5B .3-π C.0.5 D.132.下列各式中,一定是二次根式的是( C ) A .-7 B .3m C .1+x 2 D .2x3.已知a 是二次根式,则a 的值可以是( C )A .-2B .-1C .2D .-54.若-3x 是二次根式,则x 的值可以为答案不唯一,如:-1(写出一个即可).知识点2 二次根式有意义的条件5.x 取下列各数中的哪个数时,二次根式x -3有意义(D )A .-2B .0C .2D .46.(2017·广安)要使二次根式2x -4在实数范围内有意义,则x 的取值范围是(B)A .x >2B .x ≥2C .x <2D .x =27.当x 是怎样的实数时,下列各式在实数范围内有意义? (1)-x ;解:由-x ≥0,得x ≤0.(2)2x +6;解:由2x +6≥0,得x ≥-3.(3)x 2;解:由x 2≥0,得x 为全体实数.(4)14-3x; 解:由4-3x>0,得x<43.(5) x -4x -3. 解:由⎩⎪⎨⎪⎧x -4≥0,x -3≠0 得x ≥4.知识点3 二次根式的实际应用8.已知一个表面积为12 dm 2的正方体,则这个正方体的棱长为(B)A .1 dm B. 2 dmC. 6 dm D .3 dm9.若一个长方形的面积为10 cm 2,它的长与宽的比为5∶1,则它的长为,02 中档题10.下列各式中:①12;②2x ;③x 3;④-5.其中,二次根式的个数有(A ) A .1个B .2个C .3个D .4个11.(2017·济宁)若2x -1+1-2x +1在实数范围内有意义,则x 满足的条件是(C)A .x ≥12B .x ≤12C .x =12D .x ≠12 12.使式子1x +3+4-3x 在实数范围内有意义的整数x 有(C ) A .5个B .3个C .4个D .2个13.如果式子a +1ab有意义,那么在平面直角坐标系中点A(a ,b)的位置在(A) A .第一象限B .第二象限C .第三象限D .第四象限 14.使式子-(x -5)2有意义的未知数x 的值有1个.15.若整数x 满足|x|≤3,则使7-x 为整数的x 的值是3或-2.16.要使二次根式2-3x 有意义,则x 的最大值是23. 17.当x 是怎样的实数时,下列各式在实数范围内有意义?(1)32x -1; 解:x>12.(2)21-x;解:x≥0且x≠1.(3)1-|x|;解:-1≤x≤1.(4)x-3+4-x.解:3≤x≤4.03综合题18.已知a,b分别为等腰三角形的两条边长,且a,b满足b=4+3a-6+32-a,求此三角形的周长.解:∵3a-6≥0,2-a≥0,∴a=2,b=4.当边长为4,2,2时,不符合实际情况,舍去;当边长为4,4,2时,符合实际情况,4×2+2=10.∴此三角形的周长为10.第2课时 二次根式的性质01 基础题知识点1 a ≥0(a ≥0)1.(2017·荆门)已知实数m ,n 满足|n -2|+m +1=0,则m +2n 的值为3.2.当x =2__017时,式子2 018-x -2 017有最大值,且最大值为2__018.知识点2 (a )2=a (a ≥0)3.把下列非负数写成一个非负数的平方的形式:(1)5 (2)3.4(3)16= (4)x ≥0). 4.计算:( 2 018)2=2__018.5.计算: (1)(0.8)2;解:原式=0.8.(2)(-34)2; 解:原式=34.(3)(52)2;解:原式=25×2=50.(4)(-26)2.解:原式=4×6=24.知识点3 a 2=a (a ≥0)6.计算(-5)2的结果是(B )A .-5B .5C .-25D .257.已知二次根式x 2的值为3,那么x 的值是(D)A .3B .9C .-3D .3或-38.当a ≥0时,化简:9a 2=3a .9.计算:(1)49;解:原式=7.(2)(-5)2;解:原式=5.(3)(-13)2; 解:原式=13.(4)6-2.解:原式=16.知识点4 代数式10.下列式子不是代数式的是(C )A .3xB .3xC .x>3D .x -311.下列式子中属于代数式的有(A )①0;②x ;③x +2;④2x ;⑤x =2;⑥x>2;⑦x 2+1;⑧x ≠2.A .5个B .6个C .7个D .8个02 中档题12.下列运算正确的是(A ) A .-(-6)2=-6B .(-3)2=9C .(-16)2=±16D .-(-5)2=-2513.若a <1,化简(a -1)2-1的结果是(D )A .a -2B .2-aC .aD .-a14.(2017·枣庄)实数a ,b 在数轴上对应点的位置如图所示,化简|a|+(a -b )2的结果是(A )A .-2a +bB .2a -bC .-bD .b15.已知实数x ,y ,m 满足x +2+|3x +y +m|=0,且y 为负数,则m 的取值范围是(A)A .m >6B .m <6C .m >-6D .m <-616.化简:(2-5)217.在实数范围内分解因式:x 2-518.若等式(x -2)2=(x -2)2成立,则x 的取值范围是x ≥2.19.若a 2=3,b =2,且ab <0,则a -b =-7.20.计算:(1)-2(-18)2; 解:原式=-2×18=-14.(2)4×10-4;解:原式=2×10-2.(3)(23)2-(42)2; 解:原式=12-32=-20.(4)(213)2+(-213)2.解:原式=213+213=423.21.比较211与35的大小.解:∵(211)2=22×(11)2=44, (35)2=32×(5)2=45,又∵44<45,且211>0,35>0,∴211<3 5.22.先化简a +1+2a +a 2,然后分别求出当a =-2和a =3时,原代数式的值.解:a +1+2a +a 2=a +(a +1)2=a +|a +1|,当a =-2时,原式=-2+|-2+1|=-2+1=-1;当a =3时,原式=3+|3+1|=3+4=7.03 综合题23.有如下一串二次根式: ①52-42;②172-82;③372-122;④652-162…(1)求①,②,③,④的值;(2)仿照①,②,③,④,写出第⑤个二次根式; (3)仿照①,②,③,④,⑤,写出第个二次根式,并化简.解:(1)①原式=9=3.②原式=225=15.③原式= 1 225=35.(3)第个二次根式为(4n2+1)2-(4n)2.化简:(4n2+1)2-(4n)2=(4n2-4n+1)(4n2+4n+1)=(2n-1)2(2n+1)2=(2n-1)(2n+1).16.2 二次根式的乘除第1课时 二次根式的乘法01 基础题知识点1 a·b =ab (a ≥0,b ≥0)1.计算2×3的结果是(B )A . 5B . 6C .2 3D .3 22.下列各等式成立的是(D ) A .45×25=8 5 B .53×42=20 5C .43×32=7 5D .53×42=20 63.下列二次根式中,与2的积为无理数的是(B )A .12B .12C .18D .32 4.计算:8×12=2. 5.计算:26×(-36)=-36.6.一个直角三角形的两条直角边分别为a =2 3 cm ,b =3 6 cm ,那么这个直角三角形的面积为2.7.计算下列各题:(1)3×5; (2)125×15; 解:原式=15. 解:原式=25=5.(3)(-32)×27; (4)3xy·1y. 解:原式=-62×7 解:原式=3x. =-614.知识点2 ab =a·b (a ≥0,b ≥0)8.下列各式正确的是( D )A .(-4)×(-9)=-4×-9B .16+94=16×94C .449=4×49D .4×9=4×9 9.(2017·益阳)下列各式化简后的结果是32的结果是( C ) A . 6 B .12 C .18 D .3610.化简(-2)2×8×3的结果是(D )A .224B .-224C .-4 6D .4 611.化简:(1)100×36=60;(2)2y312.化简:(1)4×225;解:原式=4×225=2×15=30.(2)300;解:原式=10 3.(3)16y;解:原式=4y.(4)9x2y5z.解:原式=3xy2yz.13.计算:(1)36×212;解:原式=662×2=36 2.(2)15ab2·10ab.解:原式=2a2b=a2b.02中档题14.50·a的值是一个整数,则正整数a的最小值是(B)A.1 B.2 C.3 D.515.已知m=(-33)×(-221),则有(A)A.5<m<6 B.4<m<5C.-5<m<-4 D.-6<m<-5 16.若点P(a,b)在第三象限内,化简a2b2的结果是ab.17.计算:(1) 75×20×12;解:原式=25×3×4×5×3×4=60 5.(2)(-14)×(-112);=2×72×42=28 2.(3) -32×45×2;解:原式=-3×16×2 2=-96 2.(4)200a 5b 4c 3(a >0,c >0). 解:原式=2×102·(a 2)2·a ·(b 2)2·c 2·c=10a 2b 2c 2ac.18.交通警察通常根据刹车后车轮滑过的距离估计车辆行驶的速度,所用的经验公式是v =16df ,其中v 表示车速(单位:km /h ),d 表示刹车后车轮滑过的距离(单位:m ),f 表示摩擦因数,在某次交通事故调查中,测得d =20 m ,f =1.2,肇事汽车的车速大约是多少?(结果精确到0.01 km /h ) 解:当d =20 m ,f =1.2时,v =16df =16×20×1.2=1624=326≈78.38.答:肇事汽车的车速大约是78.38 km /h .19.一个底面为30 cm ×30 cm 的长方体玻璃容器中装满水,现将一部分水倒入一个底面为正方形、高为10 cm 的长方体铁桶中,当铁桶装满水时,容器中的水面下降了20 cm ,铁桶的底面边长是多少厘米?解:设铁桶的底面边长为x cm ,则x 2×10=30×30×20,x 2=30×30×2,x =30×30×2=30 2.答:铁桶的底面边长是30 2 cm.03 综合题 20. (教材P 16“阅读与思考”变式)阅读:古希腊的几何家海伦,在数学史上以解决几何测量问题而闻名,在他的著作《度量》一书中,给出了一个公式:如果一个三角形的三边长分别为a 、b 、c.记:p =a +b +c 2,则三角形的面积S =p (p -a )(p -b )(p -c ),此公式称为“海伦公式”.思考运用:已知李大爷有一块三角形的菜地,如图,测得AB =7 m ,AC =5 m ,BC =8 m ,你能求出李大爷这块菜地的面积吗?试试看.解:∵AB =7 m ,AC =5 m ,BC =8 m ,∴p =a +b +c 2=7+5+82=10. ∴S =p (p -a )(p -b )(p -c )=10×(10-7)×(10-5)×(10-8)=10×3×5×2=10 3.∴李大爷这块菜地的面积为10 3 m 2.第2课时 二次根式的除法01 基础题知识点1 a b =a b (a ≥0,b >0)1.计算:10÷2=(A ) A . 5B .5C .52D .102 2.计算23÷32的结果是(B ) A .1B .23C .32D .以上答案都不对 3.下列运算正确的是(D )A .50÷5=10B .10÷25=2 2C .32+42=3+4=7D .27÷3=3 4.计算:123=2. 5.计算:(1)40÷5; (2)322; 解:原式=8=2 2. 解:原式=4.(3)45÷215; (4)2a 3b ab(a>0). 解:原式= 6. 解:原式=2a.知识点2a b =a b(a ≥0,b >0) 6.下列各式成立的是(A ) A .-3-5=35=35 B .-7-6=-7-6C .2-9=2-9D .9+14=9+14=3127.实数0.5的算术平方根等于(C ) A .2B . 2C .22D .12 8.如果(x -1x -2)2=x -1x -2,那么x 的取值范围是(D )A .1≤x ≤2B .1<x ≤2C .x ≥2D .x >2或x ≤19.化简: (1)7100; 解:原式=7100=710.(2)11549; 解:原式=6449=6449=87.(3)25a 49b 2(b>0). 解:原式=25a 49b 2=5a 23b.知识点3 最简二次根式10.(2017·荆州)下列根式是最简二次根式的是(C )A .13B .0.3C . 3D .2011.把下列二次根式化为最简二次根式:(1) 2.5;解:原式=52=102.(2)85; 解:原式=2510.(3)122; 解:原式=232= 3.(4)2340. 解:原式=232×20=13×20=13×25 =530.02 中档题12.下列各式计算正确的是(C ) A .483=16B .311÷323=1C .3663=22D .54a 2b 6a =9ab 13.计算113÷213÷125的结果是(A ) A .27 5B .27C . 2D .27 14.在①14;②a 2+b 2;③27;④m 2+1中,最简二次根式有3个.15.如果一个三角形的面积为15,一边长为3,那么这边上的高为16.不等式22x -6>0的解集是x >2 17.化简或计算:(1)0.9×121100×0.36; 解:原式=9×12136×10=32×11262×10=336110 =336×1010=111020.(2) 12÷27×(-18);解:原式=-12×1827 =-4×3×2×93×9=-2 2.(3)27×123; 解:原式=3×9×123 =3×2 3=6 3.(4)12x÷25y. 解:原式=(1÷25)12x÷y =5212xy y 2 =53xy y.18.如图,在Rt △ABC 中,∠C =90°,S △ABC =18 cm 2,BC = 3 cm ,AB =3 3 cm ,CD ⊥AB 于点D.求AC ,CD 的长.解:∵S △ABC =12AC·BC =12AB·CD ,∴AC =2S △ABC BC =2183=26(cm ),CD =2S △ABCAB =21833=236(cm ).03 综合题19.阅读下面的解题过程,根据要求回答下列问题. 化简:a b -a b 3-2ab 2+a 2ba (b<a<0).解:原式=ab -a b (b -a )2a ①=a (b -a )b -a ba ②=a·1a ab ③=ab.④(1)上述解答过程从哪一步开始出现错误?请写出代号②;(2)错误的原因是什么?(3)请你写出正确的解法.解:(2)∵b<a ,∴b -a<0.∴(b -a)2的算术平方根为a -b.(3)原式=a b -ab (b -a )2a =a b -a ·(a -b)b a=-a·(-1aab) =ab.16.3 二次根式的加减第1课时 二次根式的加减01 基础题知识点1 可以合并的二次根式1.(2016·巴中)下列二次根式中,与3可以合并的是(B )A .18B .13C .24D .0.32.下列各个运算中,能合并成一个根式的是(B ) A .12- 2B .18-8C .8a 2+2aD .x 2y +xy 23.若最简二次根式2x +1和4x -3能合并,则x 的值为(C )A .-12B .34C .2D .54.若m 与18可以合并,则m 的最小正整数值是(D )A .18B .8C .4D .2知识点2 二次根式的加减5.(2016·桂林)计算35-25的结果是(A )A . 5B .2 5C .3 5D .6 6.下列计算正确的是(A )A .12-3= 3B .2+3= 5C .43-33=1D .3+22=5 27.计算27-1318-48的结果是(C ) A .1 B .-1 C .-3- 2 D .2- 38.计算2+(2-1)的结果是(A)A .22-1B .2- 2C .1- 2D .2+ 29.长方形的一边长为8,另一边长为50,则长方形的周长为10.三角形的三边长分别为20 cm ,40 cm ,45 cm ,. 11.计算:(1)23-32; 解:原式=(2-12) 3 =332.(2)16x +64x ;=(4+8)x=12x.(3) 125-25+45;解:原式=55-25+3 5 =6 5.(4)(2017·黄冈)27-6-1 3.解:原式=33-6-3 3=833- 6.02中档题12.若x与2可以合并,则x可以是(A) A.0.5 B.0.4C.0.2 D.0.1 13.计算|2-5|+|4-5|的值是(B) A.-2 B.2C.25-6 D.6-2 514.计算412+313-8的结果是(B)A.3+ 2B. 3C.33 D.3- 2习题解析15.若a ,b 均为有理数,且8+18+18=a +b 2,则a =0,b =214.16.已知等腰三角形的两边长分别为27和55,则此等腰三角形的周长为 17.在如图所示的方格中,横向、纵向及对角线方向上的实数相乘都得出同样的结果,则两个空格中的实数之和为18.计算: (1)18+12-8-27;解:原式=32+23-22-3 3=(32-22)+(23-33) =2- 3.(2) b 12b 3+b 248b ;解:原式=2b 23b +4b 23b=6b 23b.(3)(45+27)-(43+125); 解:原式=35+33-233-5 5 =733-2 5.(4) 34(2-27)-12(3-2). 解:原式=342-943-123+122 =(34+12)2-(94+12) 3 =542-114 3.19.已知3≈1.732,求(1327-413)-2(34-12)的近似值(结果保留小数点后两位). 解:原式=3-433-3+4 3 =833≈83×1.732≈4.62.03综合题20.若a,b都是正整数,且a<b,a与b是可以合并的二次根式,是否存在a,b,使a+b=75?若存在,请求出a,b的值;若不存在,请说明理由.解:∵a与b是可以合并的二次根式,a+b=75,∴a+b=75=5 3.∵a<b,∴当a=3,则b=48;当a=12,则b=27.第2课时 二次根式的混合运算01 基础题知识点1 二次根式的混合运算1.化简2(2+2)的结果是(A )A .2+2 2B .2+ 2C .4D .3 22.计算(12-3)÷3的结果是(D )A .-1B .- 3C . 3D .13.(2017·南京)计算:12+8×6 4.(2017·青岛)计算:(24+16)×6=13.5.计算:40+55 6.计算:(1)3(5-2);解:原式=15- 6.(2)(24+18)÷2;解:原式=23+3.(3)(2+3)(2+2);解:原式=8+5 2.(4)(m +2n)(m -3n).解:原式=m -mn -6n.知识点2 二次根式与乘法公式7.(2017·天津)计算:(4+7)(4-7)的结果等于9. 8.(2016·包头)计算:613-(3+1)2=-4. 9.计算:解:原式=12.(2)(2+3)(2-3);解:原式=-1.(3)(5+32)2.解:原式=23+610.10.(2016·盐城)计算:(3-7)(3+7)+2(2-2).解:原式=9-7+22-2=2 2.02 中档题11.已知a =5+2,b =2-5,则a 2 018b 2 017的值为(B )A .5+2B .-5-2C .1D .-112.按如图所示的程序计算,若开始输入的n 值为2,则最后输出的结果是(C )A .14B .16C .8+5 2D .14+ 2 13.计算:(1)(1-22)(22+1);(2)12÷(34+233); 解:原式=12÷(3312+8312) =12÷11312=23×12113 =2411. (3)(46-412+38)÷22; 解:原式=(46-22+62)÷2 2=(46+42)÷2 2=23+2.(4)24×13-4×18×(1-2)0. 解:原式=26×33-4×24×1 =22- 2= 2.14.计算: (1)(1-5)(5+1)+(5-1)2;解:原式=1-5+5+1-2 5=2-2 5.(2)(3+2-1)(3-2+1).解:原式=(3)2-(2-1)2=3-(2+1-22)=3-2-1+2 2=2 2.15. 已知a =7+2,b =7-2,求下列代数式的值:(1)ab 2+ba 2;(2)a 2-2ab +b 2;(3)a 2-b 2. 解:由题意得a +b =(7+2)+(7-2)=27,a -b =(7+2)-(7-2)=4,ab =(7+2)(7-2)=(7)2-22=7-4=3.(1)原式=ab(b +a)=3×27=67.(2)原式=(a —b)2=42=16.(3)原式=(a +b)(a —b)=27×4=87.03综合题16.观察下列运算:①由(2+1)(2-1)=1,得12+1=2-1;②由(3+2)(3-2)=1,得13+2=3-2;③由(4+3)(4-3)=1,得14+3=4-3;…(1)通过观察你得出什么规律?用含n的式子表示出来;(2)利用(1)中你发现的规律计算:(12+1+13+2+14+3+…+12 017+ 2 016+12 018+ 2 017)×( 2 018+1).解:(1)1n+1+n=n+1-n(n≥0).(2)原式=(2-1+3-2+4-3+…+ 2 017- 2 016+ 2 018- 2 017)×( 2 018+1) =(-1+ 2 018)( 2 018+1)=2 017.小专题(一) 二次根式的运算类型1 与二次根式有关的计算1.计算: (1)62×136; 解:原式=(6×13)2×6 =212=4 3.(2)(-45)÷5145; 解:原式=-45÷(5×355) =-45÷3 5=-43.(3)72-322+218; 解:原式=62-322+6 2 =122-32 2 =212 2. (4)(25+3)×(25-3).解:原式=(25)2-(3)2=20-3=17.2.计算:(1)334÷(-12123); 解:原式=[3÷(-12)]34÷53 =-6920 =-69×520×5=-95 5.=32+15 2=18 2.(3)354×(-89)÷7115; 解:原式=3×(-1)×54×89÷7115 =-348÷765=-3748×56 =-6710.(4)(12-418)-(313-40.5); 解:原式=23-2-3+2 2 =3+ 2.(5)(32-6)2-(-32-6)2.解:原式=(32-6)2-(32+6)2=18+6-123-(18+6+123)=-24 3.3.计算:(1)(2 018-3)0+|3-12|-63; 解:原式=1+23-3-2 3=-2.(2)(2017·呼和浩特)|2-5|-2×(18-102)+32. 解:原式=5-2-12+5+32 =25-1.类型2 与二次根式有关的化简求值4.已知a =3+22,b =3-22,求a 2b -ab 2的值.解:原式=a 2b -ab 2=ab(a -b).当a =3+22,b =3-22时,原式=(3+22)(3-22)(3+22-3+22) =4 2.5.已知实数a ,b ,定义“★”运算规则如下:a ★b =⎩⎨⎧b (a ≤b ),a 2-b 2(a>b ),求7★(2★3)的值. 解:由题意,得2★3= 3. ∴7★(2★3)=7★3=7-3=2.6.已知x =2+3,求代数式(7-43)x 2+(2-3)x +3的值.解:当x =2+3时, 原式=(7-43)×(2+3)2+(2-3)×(2+3)+ 3=(7-43)×(7+43)+4-3+ 3=49-48+1+ 3=2+ 3.7.(2017·襄阳)先化简,再求值:(1x +y +1x -y )÷1xy +y 2,其中x =5+2,y =5-2. 解:原式=2x (x +y )(x -y )·y(x +y) =2xy x -y . 当x =5+2,y =5-2时, 原式=2(5+2)(5-2)5+2-5+2=12.8.小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+22=(1+2)2,善于思考(1)当a ,b ,m ,n 均为正整数时,若a +b 3=(m +n 3)2,用含m ,n 的式子分别表示a ,b ,得a =m 2+3n 2,b =2mn ;(2)利用所探索的结论,找一组正整数a ,b ,m ,n 填空:4+(1+2;(答案不唯一)(3)若a +43=(m +n 3)2,且a ,m ,n 均为正整数,求a 的值.解:根据题意,得⎩⎪⎨⎪⎧a =m 2+3n 2,4=2mn. ∵2mn =4,且m ,n 为正整数,∴m =2,n =1或m =1,n =2.∴a =7或13.章末复习(一) 二次根式01 基础题知识点1 二次根式的概念及性质1.(2016·黄冈)在函数y =x +4x中,自变量x 的取值范围是(C) A .x >0 B .x ≥-4C .x ≥-4且x ≠0D .x >0且x ≠-42.(2016·自贡)下列根式中,不是最简二次根式的是(B) A.10 B.8C. 6D. 23.若xy <0,则x 2y 化简后的结果是(D )A .x yB .x -yC .-x -yD .-x y知识点2 二次根式的运算4.与-5可以合并的二次根式的是(C )A .10B .15C .20D .255.(2017·十堰)下列运算正确的是(C )A .2+3= 5B .22×32=6 2C .8÷2=2D .32-2=3 6.计算5÷5×15所得的结果是1. 7.计算:(1)(2017·湖州)2×(1-2)+8; 解:原式=2-22+2 2=2.(2)(43+36)÷23;解:原式=43÷23+36÷2 3=2+322.(3)1232-275+0.5-3127; 解:原式=22-103+22-33=(2+12)×2+(-10-13)× 3 =52-31 3.=9×2-4×3=6.知识点3 二次根式的实际应用8.两个圆的圆心相同,它们的面积分别是25.12和50.24.求圆环的宽度d.(π取3.14,结果保留小数点后两位)解:d =50.243.14-25.123.14=16-8=4-2 2≈1.17.答:圆环的宽度d 约为1.17.02 中档题9.把-a -1a中根号外面的因式移到根号内的结果是(A ) A .-a B .- a C .--aD . a 10.已知x +1x =7,则x -1x的值为(C) A. 3B .±2C .± 3 D.711.在数轴上表示实数a 的点如图所示,化简(a -5)2+|a -2|的结果为3.12.(2016·青岛)计算:32-82=2. 13.计算:(3+2)3×(3-2)3=-1. 14.已知x =5-12,则x 2+x +1=2. 15.已知16-n 是整数,则自然数n 所有可能的值为0,7,12,15,16.16.计算:(1)(3+1)(3-1)-16+(12)-1; 解:原式=3-1-4+2=0.(2)(3+2-6)2-(2-3+6)2.解:原式=(3+2-6+2-3+6)×(3+2-6-2+3-6)=22×(23-26)=46-8 3.17.已知x =3+7,y =3-7,试求代数式3x 2-5xy +3y 2的值.解:当x =3+7,y =3-7时,3x 2-5xy +3y 2=3(x 2-2xy +y 2)+xy=3(x -y)2+xy=3(3+7-3+7)2+(3+7)×(3-7)=3×28-4=80.18.教师节要到了,为了表示对老师的敬意,小明做了两张大小不同的正方形壁画准备送给老师,其中一张面积为800 cm 2,另一张面积为450 cm 2,他想如果再用金彩带把壁画的边镶上会更漂亮,他现在有1.2 m 长的金彩带,请你帮助算一算,他的金彩带够用吗?如果不够,还需买多长的金彩带?(2≈1.414,结果保留整数)解:正方形壁画的边长分别为800 cm ,450 cm . 镶壁画所用的金彩带长为4×(800+450)=4×(202+152)=1402≈197.96(cm).因为1.2 m=120 cm<197.96 cm,所以小明的金彩带不够用,197.96-120=77.96≈78(cm).故还需买约78 cm长的金彩带.03综合题19.已知a,b,c满足|a-8|+b-5+(c-18)2=0.(1)求a,b,c的值;(2)试问以a,b,c为边能否构成三角形?若能构成三角形,请求出三角形的周长;若不能,请说明理由.解:(1)由题意,得a-8=0,b-5=0,c-18=0,即a=22,b=5,c=3 2.(2)∵22+32=52>5,∴以a,b,c为边能构成三角形.三角形的周长为22+32+5=52+5.。
人教版八年级数学第十六章二次根式测试题(含答案)
人教版八年级数学第十六章二次根式测试题(含答案)人教版八年级数学第十六章二次根式测试题(含答案)一、单选题(共20题;共40分)1.下列二次根式中,最简二次根式是()XXX.下列根式中,属于最简二次根式的是()A.﹣XXX下列根式中,不是最简二次根式的是()XXX.下列计算正确的是()XXX.函数中自变量的取值范围是()A.≥-2B.≥-2且≠1C.≠1D.≥-2或≠16.下列各式一定是二次根式的是()XXX.(2015•黄冈)下列结论正确的是()A.C.使式子B.单项式的系数是﹣1的值等于,则a=±1有意义的x的取值范围是x>﹣1 D.若分式8.以下式子没成心义的是()A.9.式子B.C.D.有意义的条件是()A.x≥3B. x>3C.x≥﹣3D. x>﹣310.的值是()A. 3B.﹣3C. ±3D. 611.要使式子在实数规模内成心义,字母a的取值必需满意A.a≥2B.a≤2C.a≠2D.a≠012.二次根式成心义的前提是()A. x>3B. x>﹣3C.x≥﹣3D.x≥3第1页13.如果最简根式与是同类二次根式,那么使有意义的x的取值范围是()A.x≤10B.x≥10C. x<10D. x>1014.以下运算精确的选项是()A.﹣=B.=2C.﹣=D.=2﹣15.计算A. 6B. 4的成效是()C. 2;(2)+6 D. 12;(3);(4);(5).16.下列各式是二次根式的有1)()A. 4个B. 3个C. 2个D. 1个17.二次根式中,x的取值范围是()A.x≤3B. x=3C.x≠3D. x<318.下列二次根式中,是最简二次根式的是()XXX.以下式子中,属于最简二次根式的是()XXX.已知a为实数,下列各式是二次根式的是()XXX、填空题(共9题;共10分)21.当________时,22.计算23.将24.函数25.若代数式26.计算XXX。
的结果是________.化成最简二次根式的成效为________.中,自变量x的取值范围是________.成心义,则x的取值规模为________.+()2=________.,则其面积为________.的平行四边形的周长是________.27.一个等边三角形的边长为28.相邻两边长分别是2+29.当x取________时,2﹣与2﹣的值最大,最大值是________.第2页3、计较题(共4题;共25分)30.若a,b为有理数,且31.计较:32.化简:×(+=).,求的值.33.计较:(1)(2)×+-;4、解答题(共2题;共15分)34.计较题(1)(2)35.如图,在四边形ABCD中,∠A=∠BCD=90°,∠B=45°,,.求四边形ABCD的面积.五、综合题(共1题;共10分)36.一个三角形的三边长划分为、、.(1)求它的周长(请求成效化简);(2)请你给一个适当的x值,使它的周长为整数,并求出此时三角形周长的值第3页谜底剖析局部一、单选题1.C2.B3.B4.D5.B6.C7.B8.B9.C10.A11.A12.C13.A14.A15.D16.C17.A18.D19.B20.B二、填空题21.-2≤x≤22.223.324.25.x≥2且x≠326.627.28.829.5;2三、计算题30.解:b=131.解:原式=32.解:原式==2﹣=4.33.(1)解:(2)解:四、解答题+2+﹣=6﹣2=4.+=|2﹣|+|2+|++=2+3+=,因为a、b都为有理数,所以a=0,b=,所以第4页34.(1)解:原式=(2)解:原式=。
人教版 八年级下册第十六章《二次根式》测试题(含答案)
第十六章《二次根式》测试题一、单选题(每小题只有一个正确答案)1有意义,则x 的取值范围是( ).A .3x ≥B .3x >C .3x ≤-D .3x <2.下列式子正确的是A B C 7± D 7-3=( ) A .x ≥1B .x ≥﹣1C .﹣1≤x ≤1D .x ≥1或x ≤﹣14.3ab 最简二次根式有( ) A .1个B .2个C .3个D .4个5( ) A .4至5之间 B .5至6之间 C .6至7之间 D .7至8之间6.若a b > )A .-B .-C .D .7.已知a ,b ,c ,则下列大小关系正确的是( ) A .a >b >c B .c >b >a C .b >a >c D .a >c >b8.已知实数a 在数轴上的位置如图,则化简|1-a |( )A .1B .﹣1C .1﹣2aD .2a ﹣19的结果是( )A .1B -1C .1)±D .(1±10.已知x ,y 1,则x 2+xy+y 2的值为( )A .4B .6C .8D .1011)2019﹣1)2018的结果是( )A+1 B﹣1 CD.112.下列计算正确的是( )A.B6 ==C.-==D5 ==二、填空题13=_____________.14.把代数式(a-1中的a-1移到根号内,那么这个代数式等于______.15n=________.16.如图,从一个大正方形裁去面积为15cm²和24cm²的两个小正方形,则留下的部分的面积为____________cm².17===,……请你将发现的规律用含自然数n(n≥1)的等式表示出来__________________.三、解答题18.计算:(1(2;(3)-);(4)(().19.已知a,b,ca b b c +++.20.先简化,再求值:x 25x 32x 6x 3--⎛⎫÷-- ⎪--⎝⎭,其中x 2=.21.一个三角形的三边长分别为54(1)求它的周长(要求结果化简);(2)请你给出一个适当的x 值,使它的周长为整数,并求出此时三角形周长的值.22m ,n ,使m 2+n 2=a ,且,则,变成m 2+n 2+2mn=(m±n)2因为=12+)2=()2,2±1.仿照上例化简下列各式:(1(2.参考答案1.A 2.A 3.A 4.C 5.B 6.D 7.A 8.C 9.B 10.D 11.A 12.D13.0 14..3 16.(1)n n=+≥18.解:(1-;(2.(3)-).(4)()(=()2-(2=18-12=6.19.解:如图所示:∴a<0,a+b<0,c-a>0,b+c<0,a b b c+++=-+++---a abc a b c=a-;20.解:原式=()()()()()()()x2x2x2x2x312x3x32x3x2x22x2-+----÷=⋅=-----+-+. 当x2=时,原式===.21.解:(1)周长54===;(2)当x=20时,周长25=(或当x=45时,周长5=等).(答案不唯一,符合题意即可)22.解:(1)原式=1,(2)原式=。
八年级数学下册《第十六章 二次根式》单元测试卷含答案(人教版)
八年级数学下册《第十六章 二次根式》单元测试卷含答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、选择题1.(−√5)2的值为( )A .5B .−5C .√5D .−√52.已知√18n 是整数,正整数n 的最小值为( )A .2B .0C .3D .43.下列式子中,属于最简二次根式的是( )A .√4B .√5C .√12D .√13 4.下列运算正确的是( )A .(13)−2=−19B .2√2×√2=3√2C .(−2x)3=−8x 3D .a 9÷a 3=a 3(a ≠0)5.代数式√x+1有意义时,x 应满足的条件为( )A .x ≠−1B .x >−1C .x <−1D .x ≤−1 6.下列计算正确的是( )A .√6+√2=√8B .√6−√2=2C .√6×√2=3√2D .√6÷√2=√37.已知x +y =√6+√10,xy =√15则x −y 的值为( )A .−4B .4C .±4D .±28.如图,在长方形ABCD 中无重叠放人面积分别为 16cm 2 和 12cm 2 的两张正方形纸片,则图中空白部分的面积为( )A .(−12+8√3)cm 2B .(16−8√3)cm 2C .(8−4√3)cm 2D .(4−2√3)cm 2二、填空题9.式子√x +3有意义,则x 的取值范围是 .10.计算:2√3×(−√6)= .11.把(a −1)√−1a−1中根号外的(a −1)移入根号内得 .12.已知√7.84=2.8,若√m =280,则m = .13.若√x −2023+√y +2023=2,其中x ,y 均为整数,则x +y = .三、解答题14.计算:(1)√−13+√(−2)2−|2−√3|(1)√(−3)33+√3(√3√3)15.已知:a +b =−2,ab =1求:b√b a +a √a b的值. 16.已知:a= √3+√2,b= √3−√2求a 2-ab+b 2的值.17.已知长方形的长是 3√5+2√3 宽是 3√5−2√3 ,求长方形的周长.18.如图,用两个边长为√18cm 的小方形纸片拼成一个大的正方形纸片,沿着大正方形纸片的边的方向截出一个长方形纸片,能否使截得的长方形纸片的长是宽的2倍,且面积为30cm 2?请说明理由.19.在解决数学问题时,我们一般先仔细阅读题干,找出有用信息作为已知条件,然后利用这些信息解决问题,但是有的题目信息比较明显,我们把这样的信息称为显性条件;而有的信息不太明显,需要结合图形、特殊式子成立的条件、实际问题等发现隐含信息作为条件,我们把这样的条件称为隐含条件;所以我们在做题时,要注意发现题目中的隐含条件.阅读下面的解题过程,体会如何发现隐含条件并回答下面的问题.化简:(√1−3x)2−|1−x|.解:隐含条件1−3x ≥0,解得x ≤13∴1−x >0∴原式=1−3x −(1−x)=1−3x −1+x =−2x .(1)试化简:√(x −3)2−(√2−x)2;(2)已知a 、b 满足√(2−a)2=a +3,√a −b +1=a −b +1,求ab 的值.参考答案1.A2.A3.B4.C5.B6.D7.C8.A9.x≥−310.−6√211.−√1−a12.7840013.2或414.(1)解:(1)原式=−1+2−(2−√3)=−1+2−2+√3=√3−1(2)原式=−3+3+1=1 15.解:∵a+b=−2∴a<0,b<0∴b√ba +a√ab=−ba√ab−ab√ab=(−ba−ab)√ab=−(a2+b2ab)√ab=−(a+b)2+2abab⋅√ab当a+b=−2,ab=1时,原式=−(−2)2+2×11×√1=−2.16.解:a2-ab+b2=(a+b)2-3ab∵a+b=2√3,ab=1∴原式=(a+b)2-3ab=(2√3)2-3×1=917.解: 2×[(3√5+2√3)+(3√5−2√3)]=2×(3√5+2√3+3√5−2√3)=2×6√5=12√5 .即长方形的周长是 12√5 .18.解:不能∵大正方形纸片的面积为(√18)2+(√18)2=36(cm 2) ∴大正方形的边长为6cm设截出的长方形的长为2bcm ,宽为bcm∴2b 2=30∴b=√15(取正值)∵2b=2√15=√60>√36=6∴不能截得长宽之比为2:1,且面积为30cm 2的长方形纸片.19.(1)解:∵2−x ≥0,则x ≤2∴x −3<0∴√(x −3)2−(√2−x)2=|x −3|−(2−x)=3−x −2+x=1(2)解:∵√(2−a)2=a +3,√a −b +1=a −b +1 ∴|2−a|=a +3≥0∴a ≥−3,a −b +1≥0∴当−3≤a ≤2时则2−a =a +3,解得:a =−12∵√a −b +1=a −b +1∴a −b +1=0或a −b +1=1解得:b =12或b =−12∴ab =−14或ab =14当a>2时,则a−2=a+3无解,舍去综上:ab=−14或ab=14。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新人教版八年级下册第16章 二次根式
单元测试试卷(B 卷)
一、认真填一填:(每小题4分,共40分)
1、要使代数式3有意义,则 x 的取值范围是
2、当x>2时,化简=
3是同类二次根式,
则a=
4、已知2440a a -+=的值
5、(071
= .
6、若3x =的值为
7n 的最小值为
8、已知5y = , 则y
x =
9、已知33a b =+=-22a b ab -=
10、把式子中a 移入根号内,结果为
二、精心选一选:(每小题4分,共40分)
113a =-,则a 与3的大小关系是( )
A 、 3a <
B 、3a ≤
C 、3a >
D 、3a ≥
12、(09′淄博) ( )
A 、 B
C D 、
13是同类二次根式的是( )
A B C D
14、下列计算正确的是( )
A 、
632=⨯ B 、532=+
C 、248=
D 、224=- 15、一块边长为 a 的正方形桌布,平铺在直径为 b 的圆桌上,若桌布四角下垂的最大长度相等,则该最大长度为( )
A b -
B 2
b -
C 、22b
a - D 、2a
b -
16、若 ab ≠0 ,则等式ab b b a -=--351
成立的条件是(
) A 、a > 0 , b > 0 B 、a > 0 , b < 0
C 、a < 0 , b > 0
D 、a <0 , b < 0
三、细心算一算:(共56分)
17、(80
1
2⎛⎫
⎪⎝⎭
18、(8分)计算:)681
()21
24(+--
19、(10分)计算:)483
1375(12-+
20、(10分)王师傅有一根长45米的钢材,他想将它锯断后焊成三个面积分别为2米2,18米2,32米2的正方形
铁框,问王师傅的钢材够用吗?请通过计算说明理由.
21、(10分)计算:2(5⨯+
21、(10分)已知223,223+=-=y x ,求y x 1
1-的值.
22、(10分)如图,在平面直角坐标系中,△ABC 的三个顶点的坐标分别为
A( 0 , -1, 0 )、C (1 , 0 ).
(1)试判断△ABC 的形状。
(2)如果将△ABC 沿着边BC 旋转,求所得旋转体的体积。
四、用心想一想:(共30分)
23、若x, y 为实数,21
4422++-+-=x x x y , 求y x +的值.
24、已知5,3x y xy +==, 的值.
25、观察下列各式及验证过程:
=
验证:====
=
验证:====(1)通过对上述两个等式及其验证过程的分析研究,你发现了什么规律?并证明你的发现.
(2)自己想一个数,验证你的发现.
参考答案:
【单元B 】1、x ≥2 2、x -2 3、5 4、 5、1 6、1 7、5 8、5
2 9、 10、、B 12、D
13、C 14、A 15、C 16、B 171 18 19、12 20、不够用 21、1 22、
23、(1)等腰三角形 (2)2π 24、32 25、3 26、(1) 2)n =≥
证明:
===略雨滴穿石,不是靠蛮力,而是靠持之以恒。
——拉蒂默。