函数的单调性与最值(讲义)

合集下载

2022-2023学年人教版高一数学上学期同步知识点讲义3-2-1 函数的单调性与最值 (解析版)

2022-2023学年人教版高一数学上学期同步知识点讲义3-2-1 函数的单调性与最值  (解析版)

函数的单调性与最值1 1函数单调性的概念(1)增函数和减函数一般地,设函数y =f(x)的定义域为I ,区间D ∈I :如果∀x 1 ,x 2∈D ,当x 1<x 2时,都有f(x 1)<f(x 2),那么就说f(x)在区间D 上单调递增(左图).特别地,当函数f(x)在它定义域上单调递增时,我们就称它是增函数.如果∀x 1 ,x 2∈D ,当x 1<x 2时,都有f (x 1)>f(x 2),那么就说f(x)在区间D 上单调递减(右图).特别地,当函数f(x)在它定义域上单调递减时,我们就称它是减函数.注 ① y =1x 在(0,+∞)上单调递减,但它不是减函数.② x 1 ,x 2的三个特征一定要予以重视.函数单调性定义中的x 1 ,x 2有三个特征:一是任意性,即任意取x 1 ,x 2,“任意”二字绝对不能丢掉,证明单调性时更不可随意以两个特殊值替换;二是有大小,通常规定x 1<x 2;三是同属一个单调区间,三者缺一不可.【例】 若函数f(x)的定义域为(0,+∞)且满足f (1)<f (2)<f(3),则函数f(x)在(0,+∞)上为 ( )A .增函数B .减函数C .先增后减D .不能确定解析 由于函数单调性的定义突出了x 1,x 2的任意性,所以仅凭区间内几个有限的函数值的关系,是不能做为判断单调性的依据的,也就是说函数单调性定义的三个特征缺一不可.故选D .1 (2) 单调性如果函数y =f(x)在区间D 上是增函数或减函数,那么就说函数y =f(x)在这一区间具有(严格的)单调性.区间D 叫做函数y =f(x)的单调区间.注 ① 这个区间可以是整个定义域也可以是定义域的一部分.② 有的函数无单调性.如函数y ={1, x 为有理数 0, x 为无理数,它的定义域是(−∞,+∞),但无单调性可言.【例】说下函数y =x 2−2x −3的单调性.解析函数y=x2−2x−3在整个定义域(−∞,+∞)上不具有单调性,但是在(−∞,1]上是减函数,在(1,+∞)上是增函数;【练】函数y=1的单调递减区间是().xA.[0,+∞)B.(−∞,0)C.(−∞,0)和(0,+∞)D.(−∞,0)∪(0,+∞)解析y=1的减区间是(0,+∞),(−∞,0),不是(0,+∞)∪(−∞,0).x在(−∞,0)上是减函数,在(0,+∞)上也是减函数,函数y=1x(−∞,0)∪(0,+∞)上是减函数.但不能说函数y=1x因为当x1=−1,x2=1时有f(x1)=−1<f(x2)=1,不满足减函数的定义.21单调性概念的拓展①若y=f(x)递增,x2>x1,则f(x2)>f(x1).②若y=f(x)递增,f(x2)≥f(x1),则x2≥x1.y=f(x)递减,有类似结论!【例】若y=f(x)递增,比较f(a2)与f(0)大小.答案f(a2)≥f(0).【例】若y=f(x)递增 ,f(1−m)≥f(n) , 比较m+n与1大小.答案m+n≤1.31判断函数单调性的方法①1定义法解题步骤(1) 任取x1 ,x2∈D,且x1<x2;(2) 作差f(x1)−f(x2);(3) 变形(通常是因式分解和配方);(4) 定号(即判断差f(x1)-f(x2)的正负);(5) 下结论(指出函数f(x)在给定的区间D上的单调性).②1数形结合③1性质法增函数+增函数=增函数,减函数+减函数=减函数;但增函数×增函数不一定是增函数,比如y=x,y=x−2均是增函数,而y=x(x−2)不是.④1复合函数的单调性(1)如果y=f(u)(u∈M) ,u=g(x)(x∈A) , 则 y=f[g(x)]=F(x)(x∈A)称为f、g的复合函数;比如:F(x)=1x2+x (f(u)=1u和g(x)=x2+x的复合函数);F(x)=√1−2x (f(u)=√u和g(x)= 1−2x的复合函数);F(x)=21x(f(u)=2u和g(x)=1x的复合函数).(2) 同增异减设函数u=g(x)(x∈A)的值域是M,函数y=f(u)(u∈M) ,若y=f(u),u=g(x)在各自区间单调性相同,则复合函数y=f[g(x)]在区间A上递增;若y=f(u) ,u=g(x)在各自区间单调性不同,则复合函数y=f[g(x)]在区间A上递减.41函数的最值一般地,设函数y=f(x)的定义域为I,如果存在实数M满足:(1) ∀x∈I,都有f(x)≤M;(2) ∃x0∈I,使得f(x0)=M;那么,我们称M是函数y=f(x)的最大值.(最小值类似定义)简单来说,最大值和最小值分别是函数图像中最高点和最低点的函数值.【例1】下图为函数y=f(x),x [−4,7]的图象,指出它的最大值、最小值.解析1观察函数图象可以知道,图象上最高点坐标为(3,3),最低点坐标为(−1.5,−2),所以当x=3时,函数y=f(x)取得最大值y max=3;当x=−1.5时,取得最小值y min=−2.【例2】求函数f(x)=2x+1在区间[3,6]上的最大值和最小值.解析函数f(x)=2x+1在区间[3,6]上递增,则f(3)≤f(x)≤f(6),所以最大值f(x)max=f(6)=13,最小值f(x)min=f(3)=7.【练】求函数f(x)=2x在区间[1,2]上的最大值和最小值.解析函数f(x)=2x在区间[1,2]上递减,则f(2)≤f(x)≤f(1),所以最大值f(x)max=f(1)=2,最小值f(x)min=f(2)=1.【题型1】判断函数单调性的方法方法 1定义法【典题】判断f(x)=x+4x在(0 ,2) ,(2 ,+∞)的单调性.解析1设元1设0<x1<x2,作差则y1−y2=(x1+4x1)−(x2+4x2)=(x1−x2)+(4x1−4x2)变形=(x1−x2)+4(x2−x1)x1x2=(x1−x2)(1−4x1x2)(因式分解判断y1−y2正负)定号(1) 假如0<x1<x2<2 ,则0<x1 x2<4 ⇒4x1x2>1⇒1−4x1x2<0 ,又 x1−x2<0 , 所以y1−y2>0 ⇒y1>y2 , 故函数单调递减;(2) 假如2<x1<x2 , 则x1 x2>4⇒4x1x2<1 ⇒1−4x1x2>0 ,又x1−x2<0 ,所以y1−y2<0⇒y1<y2 , 故函数单调递增;下结论所以函数在(0 ,2)内单调递减,在(2 ,+∞)内单调递增.点拨1利用定义法证明函数的单调性,注意熟练掌握解题的步骤:设元—作差—变式—定号—下结论.方法21数形结合【典题】求下列函数的单调区间.(1) f(x)=|x2+2x−3|;(2)f(x)=−x2+2|x|+3.解析(1)令g(x)=x2+2x−3=(x+1)2−4.先作出函数g(x)的图象,保留其在x轴及x轴上方部分,把它在x轴下方的图象翻到x轴上方就得到函数f(x)= |x2+2x−3|的图象,如图所示.由图象易得:函数f(x)的递增区间是[ −3,−1],[1,+∞);函数f(x)的递减区间是( −∞,−3],[ −1,1].(2)f(x)=−x2+2|x|+3={−x 2+2x+3,x≥0−x2−2x+3,x<0,图象如图所示.由图象可知,函数f(x)的单调区间为( −∞,−1],( −1,0],(0,1],(1,+∞),其中单调减区间为( −1,0]和(1,+∞),单调增区间为( −∞,−1]和(0,1].点拨1.对于含绝对值的函数,画其图象,可以用|x|={x, x≥0−x,x<0把函数化为分段函数,或用函数的翻转或对称变换;2.利用数形结合易得函数的单调性.方法31复合函数的单调性【典题】函数f(x)=√x2+4 x−12 的单调减区间为.【解析】函数f(x)=√x2+4 x−12是由函数f(u)=√u和u(x)=x2+4 x−12组成的复合函数,∵x2+4 x−12≥0 ,∴函数y=f(x)的定义域是x≤−6或x≥2由二次函数图像易得u(x)=x2+4 x−12在(−∞ ,−6]单调递减,在[2 ,+∞)单调递增,而f(u)=√u在u≥0是单调递增,由复合函数单调性的“同增异减”,可得函数f(x)的单调减区间(−∞,−6].【点拨】①研究函数的基本性质,优先考虑定义域;②研究复合函数,要弄清楚它由什么函数复合而成的.【巩固练习】1.在区间(0,+∞)上不是增函数的函数是( )A.y=2x+1B.y=3x2+1C.y=2xD.y=2x2+x+1答案C2.函数f(x)=x|x−2|的递减区间为()A.( −∞,1)B.(0,1)C.(1,2)D.(0,2)答案C解析当x≥2时,f(x)=x(x -2)=x2-2x,对称轴为x= 1,此时f(x)为增函数,当x<2时,f(x)=-x(x -2)=-x2+2x,对称轴为x=1,抛物线开口向下,当1<x<2时,f(x)为减函数,即函数f(x)的单调递减区间为(1,2),故选:C.3.函数f(x)=x1−x的单调增区间是.答案( −∞,1),(1,+∞)解析f(x)=−(1−x)+11−x =−1+11−x;∴f(x)的图象是由y =−1x的图象沿x 轴向右平移1个单位,然后沿y 轴向下平移一个单位得到;而y =−1x 的单调增区间为( −∞,0),(0,+∞); ∴f(x)的单调增区间是( −∞,1),(1,+∞). 4.函数y =√x 2−5x +4的单调递增区间是 . 答案 [4,+∞).解析 令x 2−5x +4≥0,解得x ≥4或x ≤1,而函数y =x 2 -5x +4的对称轴是x =52, 故函数y =√x 2−5x +4的单调递增区间是[4,+∞). 5.试用函数单调性的定义判断函数f(x)=2x x−1在区间(0,1)上的单调性.解析 任取x 1,x 2∈(0,1),且x 1<x 2. 则f (x 1)−f (x 2)=2x 1x 1−1−2x 2x 2−1=2(x 2−x 1)(x 1−1)(x 2−1).由于0<x 1<x 2<1,x 1−1<0,x 2−1<0,x 2−x 1>0, 故f (x 1)−f (x 2)>0,即f (x 1)>f (x 2). 所以,函数f(x)=2xx−1在(0,1)上是减函数. 【题型2】函数的最值【典题 】函数f(x)=2x −√x −1的值域为 .解析1设t =√x −1≥0,则x =t 2+1,∴f (t )=2(t 2+1)−t =2t 2−t +2=2(t −14)2+158(t ≥0)∴值域为[158,∞).点拨 本题采取换元法,注意新变量的取值范围.【典题2】若函数f (x )=x 2−2ax +1−a 在[0,2]上的最小值为−1.则a = . 解析1函数f (x )=x 2−2ax +1−a 图象的对称轴为x =a ,图象开口向上, (1)当a ≤0时,函数f(x)在[0,2]上单调递增.则f (x )min =f(0)=1−a , 由1−a =−1,得a =2,不符合a ≤0;(2)当0<a <2时.则f(x)min =f(a)=a 2−2a 2+1−a =−a 2−a +1, 由−a 2−a +1=−1,得a =−2或a =1,∵0<a <2,∴a =1符合; (3)当a ≥2时,函数f(x)=x 2-2ax +1−a 在[0,2]上单调递减, ∴f(x)min =f(2)=4-4a +1−a =5-5a ,由5−5a =−1,得a =65, ∵a ≥2,∴a =65不符合,综上可得a =1.点拨 本题属于“二次函数动轴定区间最值问题”,对对称轴与区间之间的相对位置进行分类讨论,结合图像求解. 【巩固练习】1.函数f(x)=x 2+3x +2在区间[ −5,5]上的最大值、最小值分别是( ) A .12,−14 B .2,12 C .42,−14 D .最小值是−14,无最大值答案 C解析 y =x 2+3x +2=(x +32)2−14,抛物线的开口向上,对称轴为x =−32,∴在区间[ -5,5]上,当x =−32时,y 有最小值−14;x =5时,y 有最大值42, 函数f(x)=x 2+3x +2在区间[ −5,5]上的最大值、最小值分别是:42,−14.故选:C .2.函数f(x)=xx+2在区间[2,4]上的最小值为 .答案 12解析 ∵f (x )=xx+2=1−2x+2,∴f(x)在[2,4]上为增函数,∴当x =2时,f(x)=x x+2在区间[2,4]上的最小值为f(2)=12.3.已知函数f(x)=x 2+|x −a|+1,x ∈R,a ∈R .(1)当a =1时,求函数f(x)的最小值;(2)求函数f(x)的最小值为g(a). 答案 (1) 74 (2) [1,+∞)解析 (1)f(x)=x 2+|x −1|+1={x 2+x,x ≥1x 2−x +2,x <1,由f(x)=x 2+x ⇒f(x)=(x +12)2−14(x ≥1),可知f(x)≥2; 由f(x)=x 2−x +2⇒f(x)=(x −12)2+74(x <1),可知f(x)≥74.所以f(x)min =f (12)=74. (2) f(x)={x 2+x −a +1,x ≥ax 2−x +a +1,x <a,1)当a ≥12,f (x )min =f (12)=34+a ; 2)当−12<a <12,f (x )min =f(a)=a 2+1;3)当a ≤−12,f (x )min =f (−12)=34−a ; 所以g(a)={ 34+a,a ≥12a 2+1,−12<a <1234−a,a ≤−12.【题型3】参数范围【典题 】若f(x)={a x ,x ≥1−x +3a,x <1是R 上的单调减函数,则实数a 的取值范围为 .解析1若f(x)={ax ,x ≥1−x +3a,x <1是R 上的单调减函数,得则{a >0a 1≤−1+3a ,解得a ≥12,故答案为:[12,+∞).【典题2】已知函数f(x)=4x−6x−1的定义域和值域都是[2,b](b >2),则实数b 的值为 .解析 f(x)=4x−6x−1=4(x−1)−2x−1=−2x−1+4,其图象如图,由图可知,函数f(x)=4x−6x−1在[2,b]上为增函数,又函数f(x)=4x−6x−1的定义域和值域都是[2,b](b >2),∴f(b)=4b−6b−1=b ,解得b =3.【巩固练习】1.已知函数f(x)={x 2+3(x ≥0)ax +b(x <0)是R 上的增函数,则( )A .a <0,b ≥3B .a <0,b ≤3C .a >0,b ≥3D .a >0,b ≤3答案 D解析 ∵函数f(x)={x 2+3(x ≥0)ax +b(x <0)是R 上的增函数,∴a >0,且 0+3≥0+b ,故选:D .2.已知函数f(x)={x 2+4x, x ≥04x −x 2, x <0,若f (2−a 2)>f(a)则实数a 的取值范围是( ) A (−∞,−1)∪(2,+∞) B (−1,2) C (−2,1) D (−∞,−2)∪(1,+∞) 答案 C解析 由题知f(x)在R 上是增函数,由题得2−a 2>a ,解得−2<a <1.3.函数f(x)=ax2−(3a−1)x+a2在[1,+∞)上是增函数,则a的范围为. 答案[0,1]解析根据题意,函数f(x)=ax2−(3a−1)x+a2在[1,+∞)上是增函数,分2种情况讨论:①若a=0,则f(x)=x,在R上为增函数,符合题意;②若a≠0,则有{a>03a−12a≤1,解可得0<a≤1,综合可得:a的取值范围为[0,1].4.若函数y=x2−5x−1的定义域[0,m],值域为[−294,−1],则m的取值范围是.。

2023届高考数学一轮复习讲义:第7讲 函数的单调性与最值

2023届高考数学一轮复习讲义:第7讲 函数的单调性与最值

第7讲函数的单调性与最值1.函数的单调性(1)单调函数的定义增函数减函数定义一般地,设函数f(x)的定义域为I,区间D⊆I,如果∀x1,x2∈D 当x1<x2时,都有,那么就称函数f(x)在区间D上是增函数当x1<x2时,都有,那么就称函数f(x)在区间D上是减函数图象描述自左向右看图象是上升的自左向右看图象是下降的(2)单调区间的定义如果函数y=f(x)在区间D上是或,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间.2.函数的最值前提 设函数y =f (x )的定义域为I ,如果存在实数M 满足 条件 (1)∀x ∈I ,都有 ; (2)∃x 0∈I ,使得(1)∀x ∈I ,都有 ; (2)∃x 0∈I ,使得结论M 为最大值M 为最小值➢考点1 函数的单调性[名师点睛]确定函数单调性的四种方法 (1)定义法:利用定义判断.(2)导数法:适用于初等函数可以求导的函数.(3)图象法:由图象确定函数的单调区间需注意两点:一是单调区间必须是函数定义域的子集;二是图象不连续的单调区间要分开写,用“和”或“,”连接,不能用“∪”连接. (4)性质法:利用函数单调性的性质,尤其是利用复合函数“同增异减”的原则时,需先确定简单函数的单调性. 1.(2022·全国·高三专题练习)函数2()23f x x x -- ) A .(,1]-∞B .[3,)+∞C .(,1]-∞-D .[1,)+∞2.(2022·全国·高三专题练习)讨论函数()1axf x x =-(0a ≠)在(11)-,上的单调性.[举一反三]1.(2022·全国·高三专题练习)函数222x x y -++=的单调递增区间是( )A .1,2⎛⎫-∞ ⎪⎝⎭B .(,1]-∞-C .112⎡⎤-⎢⎥⎣⎦,D .[]12-, 2.(2022·全国·高三专题练习)函数()213log 412y x x =-++单调递减区间是( )A .(),2-∞B .()2,+∞C .()2,2-D .()2,6-3.(2022·全国·高三专题练习)已知函数()2f x x x x =-+,则下列结论正确的是( ) A .递增区间是(0,)+∞ B .递减区间是(,1)-∞- C .递增区间是(,1)-∞-D .递增区间是(1,1)-4.(2022·全国·高三专题练习)已知函数()f x 的图象如图所示,则函数()()12log g x f x =的单调递增区间为( )A .(],3-∞-,[]0,3B .[]3,0-,[)3,+∞C .(),5-∞-,[)0,1D .(]1,0-,()5,+∞5.(2022·广西柳州·三模)下列函数在(),0∞-上是单调递增函数的是( ) A .tan y x =B .()ln y x =-C .12xy =D .1y x=-6.(2022·全国·高三专题练习)函数y =|-x 2+2x +1|的单调递增区间是_________ ;单调递减区间是_________.7.(2022·全国·高三专题练习)函数216y x x =-+_____. 8.(2022·福建·三模)写出一个同时具有下列性质①②③的函数()f x =________. ①定义域为R ;②值域为(,1)-∞;③对任意12,(0,)x x ∈+∞且12x x ≠,均有()()12120f x f x x x ->-.9.(2022·全国·高三专题练习)已知函数f (x )1x=+lg 4xx -.判断并证明函数f (x )的单调性;10.(2022·全国·高三专题练习)已知定义域为实数集R 的函数()11222xx f x +-=+.判断函数f (x )在R 上的单调性,并用定义证明.➢考点2 函数单调性的应用1.(2022·重庆巴蜀中学高三阶段练习)已知函数()()e e 2x xx f x --=,则21log3a f ⎛⎫= ⎪⎝⎭,342b f -⎛⎫= ⎪⎝⎭,432c f ⎛⎫=- ⎪⎝⎭的大小关系为( )A .b ac << B .a b c << C .c a b << D .a c b <<2.(2022·广东深圳·高三期末)已知函数()1e ,111,1x x f x x x x-⎧≤⎪=⎨-+>⎪⎩,则()f x 的最大值为______.3.(2022·河北唐山·二模)已知函数()f x ()()21f x f x >-,则x 的取值范围是( ) A .1,3⎛⎫-∞ ⎪⎝⎭B .11,3⎛⎫- ⎪⎝⎭C .1,3⎛⎫+∞ ⎪⎝⎭D .()1,1,3⎛⎫-∞-⋃+∞ ⎪⎝⎭4.(2022·全国·高三专题练习)已知函数1()ax f x x a-=-在(2,)+∞上单调递减,则实数a 的取值范围是( ) A .(-∞,1)(1-⋃,)+∞ B .(1,1)-C .(-∞,1)(1-⋃,2]D .(-∞,1)(1-⋃,2)[举一反三]1.(2022·辽宁朝阳·高三开学考试)已知函数()f x 是定义在R 上的偶函数,对任意两个不相等的正数12,x x ,都有()()2112120x f x x f x x x ->-,记(2)(3)(1),,23f f a f b c -===,则( )A .c a b <<B .a b c <<C .c b a <<D .b c a <<2.(2022·重庆·模拟预测)设函数()()()32200x xx f x x x -⎧-+>⎪=⎨-≤⎪⎩,若ln 2a =,0.23b =,0.3log 2c =,则( )A .()()()f a f b f c >>B .()()()f b f a f c >>C .()()()f a f c f b >>D .()()()f c f a f b >>3.(2022·全国·高三专题练习)函数()41f x x x =++在1,22⎡⎤-⎢⎥⎣⎦上的值域为( ) A .153,2⎡⎤-⎢⎥⎣⎦B .[]3,4C .153,2⎡⎤⎢⎥⎣⎦D .154,2⎡⎤⎢⎥⎣⎦4.(2022·重庆八中模拟预测)已知函数()1y f x =-是定义在R 上的偶函数,且()f x 在(),1-∞-单调递减,()00f =,则()()210f x f x +<的解集为( )A .()(),20,-∞-⋃+∞B .()2,0-C .312,,022⎛⎫⎛⎫--⋃- ⎪ ⎪⎝⎭⎝⎭D .31,22⎛⎫-- ⎪⎝⎭5.(2022·河北·模拟预测)设函数()()212,1,2,1,x x f x x x ⎧++<⎪=⎨-≥⎪⎩则不等式()()340f f x +->的解集为( ) A .()1,1- B .()(),11,-∞-⋃+∞ C .()7,7-D .()(),77,-∞-⋃+∞6.(2022·全国·高三专题练习)若函数21,1()2,,1ax x f x x ax x -<⎧=⎨-≥⎩是R 上的单调函数,则a 的取值范围( ) A .20,3⎛⎫⎪⎝⎭B .20,3⎛⎤ ⎥⎝⎦C .(]0,1D .()0,17.(2022·全国·高三专题练习)函数2()2(1)3f x x m x =-+-+在区间(],4-∞上单调递增,则m 的取值范围是( )A .[)3,-+∞B .[)3,+∞C .(],5-∞D .(],3-∞-8.(2022·全国·高三专题练习)已知函数()()2313,11,1a x a x f x x x ⎧-+<=⎨-+≥⎩在R 上单调递减,则实数a 的取值范围是( ) A .11,63⎛⎫ ⎪⎝⎭B .11,63⎡⎫⎪⎢⎣⎭C .1,3⎛⎫-∞ ⎪⎝⎭ D .11,,63⎛⎤⎛⎫-∞+∞ ⎪⎥⎝⎦⎝⎭9.(多选)(2022·全国·高三专题练习)函数()21x af x x -=+在区间()b +∞,上单调递增,则下列说法正确的是( ) A .2a >-B .1b >-C .1b ≥-D .2a <-10.(2022·山东·济南市历城第二中学模拟预测)函数()53x f x x a +=-+在()1,+∞上是减函数,则实数a 的范围是_______.11.(2022·全国·高三专题练习)已知函数f (x )m ≠1)在区间(0,1]上是减函数,则实数m 的取值范围是________.12.(2022·全国·高三专题练习)已知函数()f x 满足:①(0)0f =;②在[13],上是减函数;③(1)(1)f x f x +=-.请写出一个满足以上条件的()f x =___________.13.(2022·全国·高三专题练习)已知y =f (x )是定义在区间(-2,2)上单调递减的函数,若f (m -1)>f (1-2m ),则m 的取值范围是_______.14.(2022·全国·高三专题练习)若函数2()4f x x ax =-+在[]1.3内不单调,则实数a 的取值范围是__________.15.(2022·全国·高三专题练习)已知函数()y f x =是定义在R 的递减函数,若对于任意(0x ∈,1]不等式2(31)(1)(2)f mx f mx x f m ->+->+恒成立,求实数m 的取值范围.16.(2022·全国·高三专题练习)已知函数()f x x .(1)若1a ,求函数的定义域;(2)是否存在实数a,使得函数()f x在定义域内具有单调性?若存在,求出a的取值范围第7讲函数的单调性与最值1.函数的单调性(1)单调函数的定义增函数减函数定义一般地,设函数f(x)的定义域为I,区间D⊆I,如果∀x1,x2∈D 当x1<x2时,都有f(x1)<f(x2),那么就称函数f(x)在区间D上是增函数当x1<x2时,都有f(x1)>f(x2),那么就称函数f(x)在区间D上是减函数图象描述自左向右看图象是上升的自左向右看图象是下降的(2)单调区间的定义如果函数y=f(x)在区间D上是增函数或减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间.2.函数的最值前提 设函数y =f (x )的定义域为I ,如果存在实数M 满足 条件 (1)∀x ∈I ,都有f (x )≤M ; (2)∃x 0∈I ,使得f (x 0)=M(1)∀x ∈I ,都有f (x )≥M ; (2)∃x 0∈I ,使得f (x 0)=M结论M 为最大值M 为最小值➢考点1 函数的单调性[名师点睛]确定函数单调性的四种方法 (1)定义法:利用定义判断.(2)导数法:适用于初等函数可以求导的函数.(3)图象法:由图象确定函数的单调区间需注意两点:一是单调区间必须是函数定义域的子集;二是图象不连续的单调区间要分开写,用“和”或“,”连接,不能用“∪”连接. (4)性质法:利用函数单调性的性质,尤其是利用复合函数“同增异减”的原则时,需先确定简单函数的单调性. 1.(2022·全国·高三专题练习)函数2()23f x x x -- ) A .(,1]-∞ B .[3,)+∞ C .(,1]-∞-D .[1,)+∞【答案】B 【解析】由题意,可得2230x x --≥,解得1x ≤-或3x ≥, 所以函数2()23f x x x =--(][),13,-∞-⋃+∞,二次函数223y x x =--的对称轴为1x =,且在(][),13,-∞-⋃+∞上的单调递增区间为[3,)+∞,根据复合函数的单调性,可知函数2()23f x x x =--[3,)+∞.故选:B.2.(2022·全国·高三专题练习)讨论函数()1axf x x =-(0a ≠)在(11)-,上的单调性. 【解】任取1x 、2(11)x ∈-,,且12x x <,(11)1()(1)11a x f x a x x -+==+--,则:21121212()11()()(1)(1)11(1)(1)a x x f x f x a a x x x x --=+-+=----,当0a >时,12())0(f x f x ->,即12()()f x f x >,函数()f x 在(11)-,上单调递减; 当0a <时,12())0(f x f x -<,即12()()f x f x <,函数()f x 在(11)-,上单调递增. [举一反三]1.(2022·全国·高三专题练习)函数y = )A .1,2⎛⎫-∞ ⎪⎝⎭B .(,1]-∞-C .112⎡⎤-⎢⎥⎣⎦,D .[]12-, 【答案】C 【解析】令220x x -++≥,解得12x -≤≤, 令22t x x =-++,则y =∵函数22t x x =-++在区间112⎡⎤-⎢⎥⎣⎦,上单调递增,在区间122⎡⎤⎢⎥⎣⎦,上单调递减,y =内递增,∴根据复合函数的单调性可知,函数y =112⎡⎤-⎢⎥⎣⎦,.故选:C2.(2022·全国·高三专题练习)函数()213log 412y x x =-++单调递减区间是( ) A .(),2-∞ B .()2,+∞ C .()2,2- D .()2,6-【答案】C 【解析】 令13log y u=,2412u x x =-++.由24120u x x =-++>,得26x -<<.因为函数13log y u=是关于u 的递减函数,且()2,2x ∈-时,2412u x x =-++为增函数,所以()213log 412y x x =-++为减函数,所以函数()213log 412y x x =-++的单调减区间是()2,2-.故选:C.3.(2022·全国·高三专题练习)已知函数()2f x x x x =-+,则下列结论正确的是( ) A .递增区间是(0,)+∞ B .递减区间是(,1)-∞- C .递增区间是(,1)-∞- D .递增区间是(1,1)-【答案】D 【解析】因为函数222,0()22,0x x x f x x x x x x x ⎧-+≥=-+=⎨+<⎩,作出函数()f x 的图象,如图所示:由图可知,递增区间是(1,1)-,递减区间是(,1)-∞-和()1,+∞. 故选:D .4.(2022·全国·高三专题练习)已知函数()f x 的图象如图所示,则函数()()12log g x f x =的单调递增区间为( )A .(],3-∞-,[]0,3B .[]3,0-,[)3,+∞C .(),5-∞-,[)0,1D .(]1,0-,()5,+∞【答案】C 【解析】因为12log y x=在()0,∞+上为减函数,所以只要求()y f x =的单调递减区间,且()0f x >.由图可知,使得函数()y f x =单调递减且满足()0f x >的x 的取值范围是()[),50,1-∞-.因此,函数()()12log g x f x =的单调递增区间为(),5-∞-、[)0,1.故选:C.5.(2022·广西柳州·三模)下列函数在(),0∞-上是单调递增函数的是( ) A .tan y x = B .()ln y x =-C .12xy =D .1y x=-【答案】D 【解析】选项A. 函数tan y x =在(),0∞-上只有单调增区间,但不是一直单调递增,故不满足; 选项B. 由复合函数的单调性可知函数()ln y x =-在(),0∞-上单调递减,故不满足;选项C. 函数1122xx y ⎛⎫== ⎪⎝⎭在(),0∞-上单调递减,故不满足;选项D. 函数1y x=-在(),0∞-上单调递增,故满足,故选:D6.(2022·全国·高三专题练习)函数y =|-x 2+2x +1|的单调递增区间是_________ ;单调递减区间是_________.【答案】 (12,1)-,(12,)++∞ (,12)-∞-,(1,12)【解析】作出函数y =|-x 2+2x +1|的图像,如图所示,观察图像得,函数y =|-x 2+2x +1|在(12,1)-和(12,)++∞上单调递增,在(,12)-∞和(1,12)上单调递减,所以原函数的单调增区间是(1,(1)+∞,单调递减区间是(,1-∞,(1,12).故答案为:(1-,(1)++∞;(,1-∞,(1,12)7.(2022·全国·高三专题练习)函数1y =_____. 【答案】[3,6] 【解析】226060x x x x -+≥⇒-≤,解得06x ≤≤,令()()22639x x x x μ=-+=--+,对称轴为3x =,所以函数()x μ在(),3-∞为单调递增;在[)3,+∞上单调递减.所以函数1y =[3,6]. 故答案为:[3,6]8.(2022·福建·三模)写出一个同时具有下列性质①②③的函数()f x =________. ①定义域为R ;②值域为(,1)-∞;③对任意12,(0,)x x ∈+∞且12x x ≠,均有()()12120f x f x x x ->-.【答案】1()12xf x =-(答案不唯一) 【解析】 1()12x f x =-,定义域为R ;102x>,1()112x f x =-<,值域为(,1)-∞; 是增函数,满足对任意12,(0,)x x ∈+∞且12x x ≠,均有()()12120f x f x x x ->-.故答案为:1()12xf x =-(答案不唯一). 9.(2022·全国·高三专题练习)已知函数f (x )1x=+lg 4xx -.判断并证明函数f (x )的单调性;【解】由题意,040x x x ≠⎧⎪-⎨>⎪⎩,解得04x <<故f (x )的定义域为(0,4) 令441x u x x -==-,lg y u =,由于41u x=-在(0,4)单调递减,lg y u =在(0,)+∞单调递增,因此4lgxy x-=在(0,4)单调递减,又1y x =在(0,4)单调递减,故f (x )1x =+4lgx x -在(0,4)上单调递减,证明如下: 设0<x 1<x 2<4,则: ()()()()121221121122122144411lg lg lg 4x x x x x x f x f x x x x x x x x x -----=+--=+-, ∵0<x 1<x 2<4,∴x 2﹣x 1>0,x 1x 2>0,4﹣x 1>4﹣x 2>0,12214114x xx x -->,>, ∴()()()()1212211221214401lg 044x x x x x x x x x x x x ----->,>,>, ∴f (x 1)>f (x 2),∴f (x )在(0,4)上单调递减11.(2022·全国·高三专题练习)已知定义域为实数集R 的函数()11222xx f x +-=+.判断函数f (x )在R 上的单调性,并用定义证明.【解】由题意11211()22212x x x f x +-==-+++, 令1112,2xu y u =+=-+,由于12x u =+在R 上单调递增,112y u=-+在(0,)+∞单调递减,由复合函数单调性可知f (x )在R 上为减函数. 证明:设∀x 1,x 2∈R ,且x 1<x 2,所以f (x 1)﹣f (x 2)()()211212112212121212x x x x x x -=-=++++,由于x 1<x 2,y =2x 在R 上单增 所以21220x x ->,且2x >0 所以f (x 1)>f (x 2), 所以f (x )在R 上单调递减.➢考点2 函数单调性的应用1.(2022·重庆巴蜀中学高三阶段练习)已知函数()()e e 2x xx f x --=,则21log3a f ⎛⎫= ⎪⎝⎭,342b f -⎛⎫= ⎪⎝⎭,432c f ⎛⎫=- ⎪⎝⎭的大小关系为( )A .b a c <<B .a b c <<C .c a b <<D .a c b <<【答案】A【解析】()f x 的定义域为R , 因为()()()e e ee ()22x xxx x x f x f x ------===,所以()f x 为偶函数,所以()()2221log log 3log 33a f f f ⎛⎫==-= ⎪⎝⎭,443322c f f ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭,当0x >时,()()()ee e e 2xx x xx f x ---++'=,因为0x >,所以e1,0e 1xx -><<,所以e e 0x x -->,(e e )0x x x -+>,所以()0f x '>,所以()f x 在(0,)+∞上单调递增,因为2x y =在R 上单调递增,且340143-<<<,所以43013402222-<<<<,即433402122-<<<<,因为2log y x =在(0,)+∞上为增函数,且234<<,所以222log 2log 3log 4<<,即21log 32<<,所以4334202log 32-<<<,所以()433422log 32f f f -⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭,即b a c <<,故选:A2.(2022·广东深圳·高三期末)已知函数()1e ,111,1x x f x x x x-⎧≤⎪=⎨-+>⎪⎩,则()f x 的最大值为______.【答案】1 【解析】解:(],1x ∈-∞时,()1x f x e -=单调递增,()()1111f x f e -==≤;()1,x ∈+∞时,()1+1f x x x=-单调递减,()11+111f x <-=.所以()f x 的最大值为1. 故答案为:1.3.(2022·河北唐山·二模)已知函数()f x ()()21f x f x >-,则x 的取值范围是( ) A .1,3⎛⎫-∞ ⎪⎝⎭B .11,3⎛⎫- ⎪⎝⎭C .1,3⎛⎫+∞ ⎪⎝⎭D .()1,1,3⎛⎫-∞-⋃+∞ ⎪⎝⎭【答案】C 【解析】解:()f x 定义域为R , 又()()-=-f x f x ,所以()f x 是奇函数,当0x =时,()00f =,当0x >时,()=f x ()f x 在()0,∞+上递增, 所以()f x 在定义域R 上递增,又()()21f x f x >-,所以21x x >-,解得13x >,故选:C4.(2022·全国·高三专题练习)已知函数1()ax f x x a-=-在(2,)+∞上单调递减,则实数a 的取值范围是( ) A .(-∞,1)(1-⋃,)+∞ B .(1,1)-C .(-∞,1)(1-⋃,2]D .(-∞,1)(1-⋃,2)【答案】C 【解析】解:根据题意,函数221()11()ax a x a a a f x a x a x a x a--+--===+---, 若()f x 在区间(2,)+∞上单调递减,必有2102a a ⎧->⎨⎩,解可得:1a <-或12a <,即a 的取值范围为(-∞,1)(1-⋃,2], 故选:C . [举一反三]1.(2022·辽宁朝阳·高三开学考试)已知函数()f x 是定义在R 上的偶函数,对任意两个不相等的正数12,x x ,都有()()2112120x f x x f x x x ->-,记(2)(3)(1),,23f f a f b c -===,则( )A .c a b <<B .a b c <<C .c b a <<D .b c a <<【答案】B 【解析】依题意,12,(0,)x x ∀∈+∞,12x x ≠,122112121212()()()()00f x f x x f x x f x x x x x x x -->⇔>--, 于是得函数()f x x 在(0,)+∞上单调递增,而函数()f x 是R 上的偶函数,即(2)(2)22f f b -==,显然有(1)(2)(3)123f f f <<,因此得:a b c <<, 所以a b c <<. 故选:B2.(2022·重庆·模拟预测)设函数()()()32200x xx f x x x -⎧-+>⎪=⎨-≤⎪⎩,若ln 2a =,0.23b =,0.3log 2c =,则( )A .()()()f a f b f c >>B .()()()f b f a f c >>C .()()()f a f c f b >>D .()()()f c f a f b >>【答案】D 【解析】解:因为()()()32200x x x f x x x -⎧-+>⎪=⎨-≤⎪⎩,又2x y =在()0,∞+上单调递增,2x y -=在()0,∞+上单调递减,则()22xx g x -=-+在()0,∞+上单调递减且()002002g -+==,又()3h x x =-在(),0∞-上单调递减且()3000h =-=,所以()f x 在R 上单调递减,又因为0.20331>=,即1b >,0ln1ln 2lne 1=<<=,即01a <<,0.30.3log 2log 10<=,即0c <,所以b a c >>,所以()()()f b f a f c <<; 故选:D3.(2022·全国·高三专题练习)函数()41f x x x =++在1,22⎡⎤-⎢⎥⎣⎦上的值域为( ) A .153,2⎡⎤-⎢⎥⎣⎦B .[]3,4C .153,2⎡⎤⎢⎥⎣⎦D .154,2⎡⎤⎢⎥⎣⎦【答案】C 【解析】设1x t ,1x t =-,1,22x ⎡⎤∈-⎢⎥⎣⎦,则1,32t ⎡⎤∈⎢⎥⎣⎦,则()41g t t t =+-,根据双勾函数性质:函数在1,22⎡⎤⎢⎥⎣⎦上单调递减,在(]2,3上单调递增,()()max 1151015max ,3max ,2232g t g g ⎧⎫⎛⎫⎧⎫===⎨⎬⎨⎬ ⎪⎝⎭⎩⎭⎩⎭,()()min 23g t g ==,故函数值域为153,2⎡⎤⎢⎥⎣⎦.故选:C.4.(2022·重庆八中模拟预测)已知函数()1y f x =-是定义在R 上的偶函数,且()f x 在(),1-∞-单调递减,()00f =,则()()210f x f x +<的解集为( )A .()(),20,-∞-⋃+∞B .()2,0-C .312,,022⎛⎫⎛⎫--⋃- ⎪ ⎪⎝⎭⎝⎭D .31,22⎛⎫-- ⎪⎝⎭【答案】C【解析】因为函数()1y f x =-是定义在R 上的偶函数,所以()y f x =的图象关于直线1x =-对称.因为()f x 在(),1-∞-上单调递减,所以在()1,-+∞上单调递增. 因为()00f =,所以()()200f f -==.所以当()(),20,x ∈-∞-⋃+∞时,()0f x >;当()2,0x ∈-时,()0f x <.由()()210f x f x +<,得20,2210.x x x ⎧-⎨-<+<⎩或或20,212210.x x x -<<⎧⎨+-+⎩或解得312,,022x ⎛⎫⎛⎫∈--⋃- ⎪ ⎪⎝⎭⎝⎭.故选:C5.(2022·河北·模拟预测)设函数()()212,1,2,1,x x f x x x ⎧++<⎪=⎨-≥⎪⎩则不等式()()340f f x +->的解集为( ) A .()1,1- B .()(),11,-∞-⋃+∞ C .()7,7- D .()(),77,-∞-⋃+∞【答案】A 【解析】解:因为()()212,12,1x x f x x x ⎧++<⎪=⎨-≥⎪⎩,所以()36f =-,()()233126f -=-++=,则()()340f f x +->,即()()()4363f x f f ->-==-,()f x 的函数图象如下所示:由函数图象可知当3x >-时()6f x <且()f x 在(),3∞--上单调递减,所以()()43f x f ->-等价于43x -<-,即1x <,解得11x -<<,即()1,1x ∈-; 故选:A6.(2022·全国·高三专题练习)若函数21,1()2,,1ax x f x x ax x -<⎧=⎨-≥⎩是R 上的单调函数,则a 的取值范围( ) A .20,3⎛⎫⎪⎝⎭B .20,3⎛⎤ ⎥⎝⎦C .(]0,1D .()0,1【答案】B 【解析】因为分段函数()f x 在R 上的单调函数,由于22y x ax =-开口向上,故在1≥x 上单调递增,故分段函数()f x 在在R 上的单调递增,所以要满足:0212112a aa a>⎧⎪-⎪-≤⎨⎪-≤-⎪⎩,解得:203a <≤ 故选:B7.(2022·全国·高三专题练习)函数2()2(1)3f x x m x =-+-+在区间(],4-∞上单调递增,则m 的取值范围是( )A .[)3,-+∞B .[)3,+∞C .(],5-∞D .(],3-∞-【答案】D 【解析】解:函数2()2(1)3f x x m x =-+-+的图像的对称轴为2(1)12m x m -=-=--, 因为函数2()2(1)3f x x m x =-+-+在区间(],4-∞上单调递增,所以14m -≥,解得3m ≤-, 所以m 的取值范围为(],3-∞-, 故选:D8.(2022·全国·高三专题练习)已知函数()()2313,11,1a x a x f x x x ⎧-+<=⎨-+≥⎩在R 上单调递减,则实数a 的取值范围是( ) A .11,63⎛⎫⎪⎝⎭B .11,63⎡⎫⎪⎢⎣⎭C .1,3⎛⎫-∞ ⎪⎝⎭D .11,,63⎛⎤⎛⎫-∞+∞ ⎪⎥⎝⎦⎝⎭【答案】B 【解析】由题意可知,()313y a x a =-+在(),1-∞上为减函数,则310a -<, 函数21y x =-+在[)1,+∞上为减函数,且有()3130a a -+≥,所以,310610a a -<⎧⎨-≥⎩,解得1163a ≤<.综上所述,实数a 的取值范围是11,63⎡⎫⎪⎢⎣⎭.故选:B.9.(多选)(2022·全国·高三专题练习)函数()21x af x x -=+在区间()b +∞,上单调递增,则下列说法正确的是( ) A .2a >- B .1b >- C .1b ≥- D .2a <-【答案】AC 【解析】 ()22211x a a f x x x -+==-++, ()f x 在区间()b +∞,上单调递增,20a ∴+>,2a >-∴,由()f x 在区间()1+∞-,上单调递增, 1b.故选:AC10.(2022·山东·济南市历城第二中学模拟预测)函数()53x f x x a +=-+在()1,+∞上是减函数,则实数a 的范围是_______. 【答案】(2,4]- 【解析】 函数5()3x f x x a +=-+,定义域为(,3)(3,)x a a ∈-∞-⋃-+∞,又322()133x a a a f x x a x a -++++==+-+-+,因为函数5()3x f x x a +=-+在(1,)+∞上是减函数,所以只需23a y x a +=-+在(1,)+∞上是减函数,因此2031a a +>⎧⎨-≤⎩,解得24a -<≤.故答案为:24a -<≤11.(2022·全国·高三专题练习)已知函数f (x )m ≠1)在区间(0,1]上是减函数,则实数m 的取值范围是________. 【答案】(-∞,0)∪(1,4] 【解析】由题意可得4-mx ≥0,x ∈(0,1]恒成立,所以m ≤4()xmin =4.当0<m ≤4时,4-mx 单调递减,所以m -1>0,解得1<m ≤4; 当m <0时,4-mx 单调递增,所以m -1<0,解得m <1,所以m <0. 故实数m 的取值范围是(-∞,0)∪(1,4]. 故答案为: (-∞,0)∪(1,4].12.(2022·全国·高三专题练习)已知函数()f x 满足:①(0)0f =;②在[13],上是减函数;③(1)(1)f x f x +=-.请写出一个满足以上条件的()f x =___________. 【答案】22x x -+ 【解析】由(1)(1)f x f x +=-可得()f x 关于1x =对称,所以开口向下,对称轴为1x =,且过原点的二次函数满足题目中的三个条件, 故答案为:22x x -+13.(2022·全国·高三专题练习)已知y =f (x )是定义在区间(-2,2)上单调递减的函数,若f (m -1)>f (1-2m ),则m 的取值范围是_______.【答案】1223⎛⎫- ⎪⎝⎭,【解析】由题意得:-2-12-21-22-11-2m m m m <<⎧⎪<<⎨⎪<⎩,,,解得12-<m <23.故答案为:1223⎛⎫- ⎪⎝⎭,14.(2022·全国·高三专题练习)若函数2()4f x x ax =-+在[]1.3内不单调,则实数a 的取值范围是__________. 【答案】13(,)22【解析】解:由题意得2()4f x x ax =-+的对称轴为2x a =,因为函数()f x 在[]1.3内不单调,所以123a <<,得1322a <<.故答案为:13(,)22.15.(2022·全国·高三专题练习)已知函数()y f x =是定义在R 的递减函数,若对于任意(0x ∈,1]不等式2(31)(1)(2)f mx f mx x f m ->+->+恒成立,求实数m 的取值范围.【解】因为函数()y f x =是定义在R 的递减函数,所以2(31)(1)(2)f mx f mx x f m ->+->+对(0x ∈,1]恒成立2231112mx mx x mx x m ⎧-<+-⇔⎨+-<+⎩在(0x ∈,1]恒成立.整理,当(0x ∈,1]时,2222(1)1mx x m x x ⎧<-⎨-<+⎩恒成立, (1)当1x =,2102m <⎧⎨<⎩,所以12m <;(2)当(0,1)x ∈时,222211x m xx m x ⎧-<⎪⎪⎨+⎪>⎪-⎩恒成立,1,2xy y x ==-都在(0,1)x ∈上为减函数22122x x y x x -∴==-在(0,1)x ∈上为减函数, ∴22122x x ->,222x m x-∴<恒成立⇔12m ≤. 结合当1x =时,12m <①又2222212(1)(1)21,01(1)(1)x x x x x x y y x x x +--+--'===<-++,当(0,1)x ∈ 故211x y x +=-在(0,1)x ∈上是减函数,∴2111x x +<--.211x m x +∴>-恒成立1m ⇔≥-② ∴①、②两式求交集1[1,)2m ∈-由(1)(2)可知当[1m ∈-,1)2时,对任意(0x ∈,1]时,2(31)(1)(2)f mx f mx x f m ->+->+恒成立.16.(2022·全国·高三专题练习)已知函数()f x x . (1)若1a =,求函数的定义域;(2)是否存在实数a ,使得函数()f x 在定义域内具有单调性?若存在,求出a 的取值范围. 【解】(1)()f x x ,∴|1|10x +-≥,解得(,2][0,)x ∈-∞-+∞; 所以函数的定义域为(,2][0,)x ∈-∞-+∞.(2)当x a ≥-,211()24f x x x ⎫===-+⎪⎭,在1[,)4+∞递减,此时需满足14a -≥,即14a -≤时,函数()f x 在[,)a -+∞上递减;当x a <-,()f x x x ,在(,2]a -∞-上递减, ∵104a ≤-<,∴20a a ->->,即当14a -≤时,函数()f x 在(,)a -∞-上递减;综上,当14a -≤时,函数()f x 在定义域R 上连续,且单调递减.所以a 的取值范围是1,4⎛⎤-∞- ⎥⎝⎦。

2021年新高考数学一轮专题复习第05讲-函数的单调性与最值(讲义版)

2021年新高考数学一轮专题复习第05讲-函数的单调性与最值(讲义版)

【例
2-1】(2020·安徽省六安一中高一月考)若函数
f
x
2x2 1
3 x2
,则
f
x
的值域为(

A. ,3
B. 2,3
C. 2,3
D.3,
【答案】C 【分析】
利用分子分离法化简 f x ,再根据不等式的性质求函数的值域.
【详解】
f
x
2x2 3 1 x2
2(x2 1) 1 1 x2
2
1
1 x
考点一 确定函数的单调性(区间)
【例 1-1】(2019·安徽省泗县第一中学高二开学考试(理))如果函数 f(x)在[a,b]上是增函数,
对于任意的 x1,x2∈[a,b](x1≠x2),下列结论不正确的是( )
A.
f
x1
x1
f x2
x2
>0
B.f(a)<f(x1)<f(x2)<f(b)
C.(x1-x2) [f(x1)-f(x2)]>0
取到.
(2)开区间上的“单峰”函数一定存在最大值(或最小值). 2.函数 y=f(x)(f(x)>0)在公共定义域内与 y=-f(x),y= 1 的单调性相反.
f(x) 3.“对勾函数”y=x+a(a>0)的增区间为(-∞,- a),( a,+∞);单调减区间是[- a,0),
x (0, a].
三、 经典例题
的最大值为( )
A.-2
B.-3
C.-4
D.-6
10.(2020·安徽省六安一中高一月考)已知函数 f (x) log 1 (3x2 ax 5) 在 (1, ) 上是减函数,则实数 a
2

函数的单调性与最值讲义

函数的单调性与最值讲义

函数的单调性讲义知识点一:函数单调性(1)相关概念增函数:一般地,设函数)(x f 的定义域为I ,如果对于属于定义域I 某个区间上任意两个自变量的值21,x x ,当21x x <,都有)()(21x f x f <,那么就说)(x f 在这个区间上是增函数,如下图(1);用数学符号表示:()()()()()[]()x f x f x f x x x x x f x f ⇔>--⇔>--0021212121是增函数.减函数:一般地,设函数)(x f 的定义域为I ,如果对于属于定义域I 某个区间上任意两个自变量的值21,x x ,当21x x <,都有)()(21x f x f >,那么就说)(x f 在这个区间上是减函数,如下图(2).用数学符号表示:()()()()()[]()x f x f x f x x x x x f x f ⇔<--⇔<--0021212121是减函数.单调性:如果函数)(x f 在某个区间是增函数或减函数,那么就说函数)(x f y =在这一区间具有(严格的)单调性.单调区间:函数)(x f 在某个区间上具有单调性,则这一区间就叫做函数)(x f y =的单调区间.(2)对于函数单调性的定义的理解,要注意以下三点:①单调性是与“区间”紧密相关的概念,一个函数在不同的区间上可以有不同的单调性;②单调性是函数在某一区间上的“整体”性质,因此定义中的21,x x 具有任意性,不能用特殊值代替.③由于定义都是充要性命题,因此由)(x f 是增(减)函数,且)()()(212121x x x x x f x f ><⇔<,这说明单调性使得自变量间的不等关系和函数值之间的不等关系可以“正逆互推”.知识点二:函数单调性的判定方法(常用的)(1) 定义法(基本法);①取值:任取D x x ∈21,,且21x x <; ②作差:()()21x f x f -; ③变形:通常是因式分解或配方; ④定号:即判断差()()21x f x f -的正负;⑤下结论:即指出函数()x f 在给定区间D 上的单调性.例:判断函数xx y 1+=在(1,+∞)上的单调性. 变式训练:证明函数()xx f 1=在()+∞,0上是减函数.(2) 利用已知函数的单调性;在研究函数的单调性时,常需要先将函数化简,转化为讨论一些熟知的单调性,因此掌握并熟记一次函数、二次函数、幂函数、指数函数、对数函数的单调性,将大大缩短我们的判断过程.如果函数()x f y =在某个区间上是增函数或是减函数,那么就说函数()x f y =在这一区间具有(严格的)单调性,区间D 叫做()x f y =的单调区间.①()0≠+=a b ax y 的单调性:0>a 增函数,0<a 减函数; ②()0≠=k xky 的单调性:0>k 减区间()()+∞∞-,0,0,;0<k 增区间()()+∞∞-,0,0,;③()02≠++=a c bx ax y 的单调性:0>a ,减区间⎥⎦⎤ ⎝⎛-∞-a b 2,,增区间⎪⎭⎫⎢⎣⎡+∞-,2a b ; 0<a ,增区间⎥⎦⎤ ⎝⎛-∞-a b 2,,减区间⎪⎭⎫⎢⎣⎡+∞-,2a b ;④()x f 在区间A 上是增(减)函数,则0>k 时,()x kf 在A 上是增(减)函数;0<k 时则相反;⑤若()x f 、()x g 是区间A 上的增(减)函数,则()()x g x f +在区间A 上是增(减)函数;⑥若()0>x f 且在区间A 上是增(减)函数,则()x f 1在A 上是减(增)函数,()x f 在A 上是增(减)函数;⑦轴(与x 轴垂直)对称图形的函数在它们的对称区间上的单调性相反,中心对称图形的函数在它们的对称区间上单调性相同,例如求下列函数的单调区间:x y =,2-=x y ,212-+=x y .(3) 利用函数的图像;函数y =|x 2-2x -3|的单调增区间是________. 【解析】 y =|x 2-2x -3|=|(x -1)2-4|, 作出该函数的图像(如图).由图像可知,其增区间为[-1,1]和[3,+∞).(4) 依据一些常用结论及复合函数单调性的判定方法; ①两个增(减)函数的和仍为增(减)函数;②一个增(减)函数与一个减(增)函数的差是增(减)函数; ③奇函数在对称的两个区间上有相同的单调性; ④偶函数在对称的两个区间上有相反的单调性; ⑤互为反函数的两个函数有相同的单调性;⑥如果)(x f 在区间D 上是增(减)函数,那么)(x f 在区间D 的任一子区间上也是增(减)函数;⑦如果)()(x g u u f y ==和单调性相同,那么)]([x g f y =是增函数;如果)()(x g u u f y ==和单调性相反,那么)]([x g f y =是减函数.上述规律可概括为“同性则增,异性则减” 例:函数322-+=x x y 的单调减区间是 ( )A.]3,(--∞B.),1[+∞-C.]1,(--∞D.),1[+∞(5) 求导(以后会学到).知识点三:函数单调性的应用(1) 利用函数的单调性可以比较函数值的大小;例:已知2()f x x bx c =++对称轴为2x = ,比较(1)f 、(2)f 、(4)f 的大小。

函数的单调性与最值讲义

函数的单调性与最值讲义

函数的单调性与最值课前双击巩固1.单调函数的定义增函数减函数定义一般地,设函数f (x )的定义域为I ,如果对于定义域I 内某个区间D 上的任意两个自变量的值x 1,x 2当x 1<x 2时,都有 ,那么就说函数f (x )在区间D 上是增函数当x 1<x 2时,都有 ,那么就说函数f (x )在区间D 上是减函数图像 描述自左向右看图像是自左向右看图像是2.单调区间的定义如果函数y=f (x )在区间D 上是 ,那么就说函数y=f (x )在这一区间具有(严格的)单调性, 叫作函数y=f (x )的单调区间. 3.函数的最值 前提设函数y=f (x )的定义域为I ,如果存在实数M 满足条件 (1)对于任意x ∈I ,都有f (x )≤M ; (2)存在x 0∈I ,使得f (x 0)=M(1)对于任意x ∈I ,都有 ; (2)存在x 0∈I ,使得结论 M 为最大值 M 为最小值常用结论1.复合函数的单调性函数y=f(u),u=φ(x),在函数y=f[φ(x)]的定义域上,如果y=f(u),u=φ(x)的单调性相同,则y=f[φ(x)]单调递增;如果y=f(u),u=φ(x)的单调性相反,则y=f[φ(x)]单调递减.2.单调性定义的等价形式设任意x1,x2∈[a,b],x1≠x2.(1)若有(x1-x2)[f(x1)-f(x2)]>0或f(x1)-f(x2)x1-x2>0,则f(x)在闭区间[a,b]上是增函数.(2)若有(x1-x2)[f(x1)-f(x2)]<0或f(x1)-f(x2)x1-x2<0,则f(x)在闭区间[a,b]上是减函数.3.函数单调性的常用结论(1)若f(x),g(x)均为区间A上的增(减)函数,则f(x)+g(x)也是区间A上的增(减)函数.(2)若k>0,则kf(x)与f(x)单调性相同,若k<0,则kf(x)与f(x)单调性相反.(3)函数y=f(x)(f(x)>0)在公共定义域内与y=-f(x),y=1f(x)的单调性相反.(4)函数y=f(x)(f(x)≥0)在公共定义域内与y=√f(x)的单调性相同.题组一常识题1.函数f(x)=(2a-1)x-3是R上的减函数,则a的取值范围是.2.函数f(x)=(x-2)2+5(x∈[-3,3])的单调递增区间是;单调递减区间是.3.函数f(x)=3x+1(x∈[2,5])的最大值与最小值之和等于.4.函数f(x)=|x-a|+1在[2,+∞)上是增函数,则实数a的取值范围是.题组二常错题◆索引:求单调区间忘记定义域导致出错;对于分段函数,一般不能整体单调,只能分段单调;利用单调性解不等式忘记在单调区间内求解;混淆“单调区间”与“在区间上单调”两个概念.5.函数f(x)=ln(4+3x-x2)的单调递减区间是.6.已知函数f(x)={(a-2)x,x≥2,(12)x-1,x<2满足对任意的实数x1≠x2,都有f(x1)-f(x2)x1-x2<0成立,则实数a的取值范围为.7.函数y=f(x)是定义在[-2,2]上的减函数,且f(a+1)<f(2a),则实数a的取值范围是.8.(1)若函数f (x )=x 2+2(a-1)x+2在区间(-∞,4]上是减函数,则实数a 的取值范围是 . (2)若函数f (x )=x 2+2(a-1)x+2的单调递减区间为(-∞,4],则a 的值为 .课堂考点探究探究点一 函数单调性的判断与证明 1 判断函数f (x )=ax x 2-1(a>0),x ∈(-1,1)的单调性,并加以证明.[总结反思] (1)定义法证明函数单调性的一般步骤:①任取x 1,x 2∈D ,且x 1<x 2;②作差f (x 1)-f (x 2);③变形(通常是因式分解和配方);④定号(即判断f (x 1)-f (x 2)的正负);⑤下结论(即指出函数f (x )在给定的区间D 上的单调性).(2)复合函数单调性的确定方法:若两个简单函数的单调性相同,则这两个函数的复合函数为增函数;若两个简单函数的单调性相反,则这两个函数的复合函数为减函数.简称“同增异减”. 式题 下列函数中,在(0,+∞)上单调递增的函数是 ( )A .y=-x 2+1 B .y=|x-1| C .y=x 3 D .y=2-x探究点二 求函数的单调区间2 (1)函数f (x )=ln (x 2-2x-8)的单调递增区间是 ( ) A .(-∞,-2)B .(-∞,1)C .(1,+∞)D .(4,+∞)(2)设函数f (x )={1,x >0,0,x =0,-1,x <0,g (x )=x 2f (x-1),则函数g (x )的单调递减区间是 .[总结反思] 求函数单调区间的常见方法:(1)定义法;(2)图像法;(3)导数法.求复合函数单调区间的一般解题步骤为:①确定函数的定义域;②求简单函数的单调区间;③求复合函数的单调区间,其依据是“同增异减”. 式题 (1) 函数y=(14)2x 2-3x+2的单调递增区间为 ( )A .(1,+∞)B .(-∞,34]C .(12,+∞) D .[34,+∞)(2)函数f (x )=(a-1)x+2在R 上单调递增,则函数g (x )=a |x-2|的单调递减区间是 .探究点三 函数单调性的应用考向1 利用函数的单调性比较大小3 (1)设a=log 52,b=(32)57,c=log 73,则a ,b ,c 的大小关系是 ( )A .b>a>cB .a>c>bC .b>c>aD .a>b>c(2)已知f (x )是定义在(0,+∞)上的单调函数,且对任意x ∈(0,+∞),f [f (x )-ln x ]=e +1,设a=f [(12)13],b=f [(13)12],c=f (log 2π),则a ,b ,c 的大小关系是 .(用“>”号连接表示)[总结反思] 比较函数值的大小,应将自变量转化到同一个单调区间内,然后利用函数的单调性解决.考向2 利用函数的单调性解决不等式问题4 (1)已知函数f (x )的定义域为R ,对任意x 1<x 2,都有f (x 1)-f (x 2)<x 1-x 2,且f (-3)=-4,则不等式f (log 12|3x -1|)>lo g 12|3x-1|-1的解集为 ( )A .(2,+∞)B .(-∞,2)C .(0,1)∪(1,2)D .(-∞,0)∪(0,2)(2)已知函数f (x )=e x+x 3,若f (x 2)<f (3x-2),则实数x 的取值范围是 .[总结反思] 解函数不等式的理论依据是函数单调性的定义,具体步骤是:(1)将函数不等式转化成f (x 1)>f (x 2)的形式;(2)考查函数f (x )f (x )的单调性去掉法则“f ”,转化为形如“x 1>x 2”或“x 1<x 2”的常规不等式,从而得解. 考向3 利用函数的单调性求最值问题 5 设函数f (x )=2017x+1+20162017x +1+2016sin x ,x ∈-π2,π2的最大值为M ,最小值为N ,那么M+N= .[总结反思] 若函数在区间[a ,b ]上单调,则必在区间的端点处取得最值;若函数在区间[a ,b ]上不单调,则最小值为函数在该区间内的极小值和区间端点值中最小的值,最大值为函数在该区间内的极大值和区间端点值中最大的值. 考向4 利用函数的单调性求参数6 已知f (x )={(3-a)x,x ∈(-∞,1],a x ,x ∈(1,+∞)是(-∞,+∞)上的增函数,那么实数a 的取值范围是 ( )A .(0,3)B .(1,3)C .(1,+∞)D .[32,3)[总结反思] (1)根据函数的单调性,将题设条件转化为含参数的不等式(组),即可求出参数的值或范围;(2)若分段函数是单调函数,则不仅要保证在各区间上单调性一致,还要确保在整个定义域内是单调的. 强化演练1.【考向1】已知函数f (x )满足对任意的x 1,x 2∈(0,+∞),恒有(x 1-x 2)·[f (x 1)-f (x 2)]<0成立.若a=f (log 47),b=f (log 23),c=f (0.20.6),则a ,b ,c 的大小关系是 ( ) A .c<b<a B .b<a<c C .b<c<a D .a<b<c2.【考向2】已知函数f (x )=ln x+2x,若f (x 2-4)<2,则实数x 的取值范围是 .3.【考向3】 已知函数f (x )={log 13x,x >1,-x 2+2x,x ≤1,则函数f (x )的最大值是 .4.【考向4】若函数f (x )=2|x-a|(a ∈R )满足f (1+x )=f (1-x ),且f (x )在[m ,+∞)上单调递增,则实数m 的最小值等于 .5.【考向4】 若函数f (x )=ln (ax 2+x )在区间(0,1)上单调递增,则实数a 的取值范围为 .参考答案【课前双基巩固】 知识聚焦1.f (x 1)<f (x 2) f (x 1)>f (x 2) 上升的 下降的2.增函数或减函数 区间D3.f (x )≥M f (x 0)=M 对点演练1.a<12 [解析] 当2a-1<0,即a<12时,f (x )是R 上的减函数.2.(2,3] [-3,2] [解析] 由函数f (x )=(x-2)2+5(x ∈[-3,3])的图像即可得到单调区间. 3.32 [解析] 函数f (x )=3x+1在[2,5]上是减函数,所以最大值为f (2)=1,最小值为f (5)=12.所以最大值与最小值之和为1+12=32.4.a ≤2 [解析] 因为函数f (x )=|x-a|+1的单调递增区间是[a ,+∞),当f (x )在[2,+∞)上单调递增时,满足[2,+∞)⊆[a ,+∞),所以a ≤2.5.[32,4) [解析] 函数f (x )的定义域是(-1,4),u (x )=-x 2+3x+4=-(x -32)2+254,x ∈(-1,4)的单调递减区间为[32,4),∴函数f (x )的单调递减区间为[32,4).6.(-∞,138] [解析] 由题知函数f (x )是R 上的减函数,于是有{a -2<0,(a -2)×2≤(12)2-1,由此解得a ≤138,即实数a 的取值范围是(-∞,138] .7.[-1,1) [解析] 由条件知{-2≤a +1≤2,-2≤2a ≤2,a +1>2a,解得-1≤a<1.8.(1)a ≤-3 (2) -3 [解析] (1)函数图像的对称轴为直线x=1-a ,由1-a ≥4,得a ≤-3. (2)函数图像的对称轴为直线x=1-a ,由1-a=4,得a=-3. 【课堂考点探究】例1 [思路点拨] 直接判断单调性即可,按照单调性的定义证明单调性. 解:该函数在(-1,1)上单调递减.证明如下: 设-1<x 1<x 2<1,则f (x 1)-f (x 2)=ax 1x 12-1-ax2x 22-1=ax 1x 22-ax 1-ax 2x 12+ax 2(x 12-1)(x 22-1)=a(x 2-x 1)(x 1x 2+1)(x 12-1)(x 22-1).∵-1<x 1<x 2<1,∴x 2-x 1>0,x 1x 2+1>0,(x 12-1)(x 22-1)>0.又a>0,∴f (x 1)-f (x 2)>0,函数f (x )在(-1,1)上单调递减.变式题 C [解析] 对于A ,在(0,+∞)上单调递减,故A 错;对于B ,在(0,+∞)上先减后增,故B 错;对于C ,在(0,+∞)上单调递增,故C 对;对于D ,在(0,+∞)上单调递减,故D 错.选C .例2 [思路点拨] (1)先求出函数y=x 2-2x-8在y>0时的单调递增区间,再根据复合函数的单调性的性质判断f (x )的单调性;(2)作出函数g (x )的图像,由图像可得单调区间.(1)D (2)[0,1) [解析] (1)函数y=x 2-2x-8=(x-1)2-9图像的对称轴为直线x=1,由x 2-2x-8>0解得x>4或x<-2,所以(4,+∞)为函数y=x 2-2x-8的一个单调递增区间.根据复合函数的单调性可知,函数f (x )=ln (x 2-2x-8)的单调递增区间为(4,+∞).(2)由题意知g (x )={x 2,x >1,0,x =1,-x 2,x <1,该函数图像如图所示,其单调递减区间是[0,1).变式题 (1)B (2)(-∞,2] [解析] (1)令t=2x 2-3x+2,则y=(14)t,由复合函数的单调性易知在(-∞,34]上单调递增,故选B .(2)因为f (x )在R 上单调递增,所以a-1>0,即a>1,因此g (x )的单调递减区间就是y=|x-2|的单调递减区间(-∞,2].例3 [思路点拨] (1)转化为同底的指数函数、对数函数,依据它们的单调性比较大小;(2)由已知可知f (x )-ln x 为定值,设为t ,则f (x )=ln x+t ,求出t ,再结合函数的单调性分析可得答案. (1)C (2)c>a>b [解析] (1)因为a=log 52<log 5√5=12,b=(32)57>(32)0=1,c=log 73∈(log 7√7,log 77)即c ∈12,1,故b>c>a.故选C .(2)根据题意,对任意的x ∈(0,+∞),都有f [f (x )-ln x ]=e +1,又由f (x )是定义在(0,+∞)上的单调函数,则f (x )-ln x 为定值,设t=f (x )-ln x ,则f (x )=ln x+t.又由f (t )=e +1,即ln t+t=e +1,解得t=e ,则f (x )=ln x+e (x>0),则f (x )为增函数.又由(12)13=√123=√146,(13)12=√13=√1276,log 2π>1,则有(13)12<(12)13<log 2π,则有c>a>b.例4 [思路点拨] (1)构造函数,利用单调性把求解的不等式中的函数符号去掉,得出一般的不等式,解该不等式;(2)可判断出f (x )为增函数,于是可将函数不等式转化为常规不等式. (1)D (2)(1,2) [解析] (1)由已知条件知,f (x 1)-x 1<f (x 2)-x 2对任意x 1<x 2恒成立,故函数g (x )=f (x )-x 为R 上的增函数,且g (-3)=f (-3)-(-3)=-1.不等式f (log 12|3x -1|)>lo g 12|3x -1|-1,即f (log 12|3x -1|)-lo g 12|3x -1|>-1,即g (lo g 12|3x -1|)>g (-3),所以lo g 12|3x -1|>-3,得0<|3x -1|<8,解得x<2且x ≠0,故所求不等式的解集为(-∞,0)∪(0,2).(2)因为y=e x,y=x 3在R 上均为增函数,所以函数f (x )为增函数,所以不等式f (x 2)<f (3x-2)等价于x 2<3x-2,即x 2-3x+2<0⇔1<x<2,故x ∈(1,2).例5 [思路点拨] 变换函数解析式,利用常见函数的单调性确定f (x )的单调性,从而得到函数的最大值和最小值. 4033 [解析] f (x )=2017x+1+20162017x +1+2016sin x=2017x+1+2017−12017x +1+2016sin x=2017-12017x +1+2016sin x.显然该函数在区间-π2,π2上单调递增,故最大值为f π2,最小值为f -π2,所以M+N=fπ2+f -π2=2017-12017π2+1+2016+2017-12017-π2+1-2016=4034-12017π2+1-2017π21+2017π2=4034-1=4033.例6 [思路点拨] 根据一次函数以及指数函数的单调性得到不等式组,解出即可. D [解析] 由题意得{3−a >0,a >1,3−a ≤a,解得32≤a<3,故选D .强化演练1.B [解析] 根据题意可知,函数f (x )在(0,+∞)上单调递减.而1<log 47<log 49=log 23,0<0.20.6<0.20=1,所以log 23>log 47>0.20.6,所以b<a<c.2.(-√5,-2)∪(2,√5) [解析] 因为函数f (x )=ln x+2x在定义域上单调递增,且f (1)=ln 1+2=2,所以由f (x 2-4)<2得f (x 2-4)<f (1),所以0<x 2-4<1,解得-√5<x<-2或2<x<√5.3.1 [解析] 当x>1时,y=lo g 13x 是减函数,得y<0;当x ≤1时,y=-x 2+2x=-(x-1)2+1在(-∞,1]上单调递增,得y ≤1.综上得f (x )的最大值是1.4.1 [解析] ∵f (1+x )=f (1-x ),∴f (x )的图像关于直线x=1对称,∵函数f (x )=2|x-a|(a ∈R )的图像以直线x=a 为对称轴,∴a=1,∴f (x )在[1,+∞)上单调递增.∵f (x )在[m ,+∞)上单调递增,∴m ≥1,则m 的最小值为1.5.a ≥-12 [解析] 若函数f (x )=ln (ax 2+x )在区间(0,1)上单调递增,则函数g (x )=ax 2+x 在(0,1)上单调递增且g (x )>0恒成立.当a=0时,g (x )=x 在(0,1)上单调递增且g (x )>0,符合题意;当a>0时,g (x )图像的对称轴为x=-12a<0,且有g(x)>0,所以g(x)在(0,1)上单调递增,符合题意;当a<0时,需满足g(x)图像的对称轴x=-12a ≥1,且有g(x)>0,解得a≥-12,则-12≤a<0.综上,a≥-12.。

函数的性质专题讲义

函数的性质专题讲义

函数四大性质综合讲义1.函数的单调性(1)单调函数的定义自左向右看图象是上升的自左向右看图象是下降的单调区间的定义如果函数y=f(x)在区间D上是增函数或减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间.2.函数的最值3.(一)对称轴1.概念:如果一个函数的图像沿着一条直线对折,直线两侧的图像能够完全重合,则称函数具备对称性中的轴对称,该直线称为函数的对称轴。

2.常见函数的对称轴①常数函数:既是轴对称又是中心对称,其中直线上的所有点均为它的对称中心,与该直线相垂直的直线均为它的对称轴②一次函数:既是轴对称又是中心对称,其中直线上的所有点均为它的对称中心,与该直线相垂直的直线均为它的对称轴③二次函数:是轴对称,不是中心对称,其对称轴方程为x=-b/(2a)④反比例函数:既是轴对称又是中心对称,其中原点为它的对称中心,y=x与y=-x均为它的对称轴⑤指数函数:既不是轴对称,也不是中心对称⑥对数函数:既不是轴对称,也不是中心对称⑦幂函数:显然幂函数中的奇函数是中心对称,对称中心是原点;幂函数中的偶函数是轴对称,对称轴是y轴;而其他的幂函数不具备对称性⑧正弦函数:既是轴对称又是中心对称,其中(kπ,0)是它的对称中心,x=kπ+π/2是它的对称轴⑨正弦型函数:正弦型函数y=Asin(ωx+φ)既是轴对称又是中心对称,只需从ωx+φ=kπ中解出x,就是它的对称中心的横坐标,纵坐标当然为零;只需从ωx+φ=kπ+π/2中解出x,就是它的对称轴;需要注意的是如果图像向上向下平移,对称轴不会改变,但对称中心的纵坐标会跟着变化⑩余弦函数:既是轴对称又是中心对称,其中x=kπ是它的对称轴,(kπ+π/2,0)是它的对称中心⑾正切函数:不是轴对称,但是是中心对称,其中(kπ/2,0)是它的对称中心,容易犯错误的是可能有的同学会误以为对称中心只是(kπ,0)⑿对号函数:对号函数y=x+a/x(其中a>0)因为是奇函数所以是中心对称,原点是它的对称中心。

导数与函数的单调性、极值与最值-讲义(学生版)

导数与函数的单调性、极值与最值-讲义(学生版)

导数与函数的单调性、极值与最值一、课堂目标1.掌握利用导数求解函数单调区间的方法步骤 .2.掌握极值与极值点的概念,能够结合函数与导数图象找出极值点与极值 .3.掌握利用导数求解函数极值的方法步骤.4.掌握利用导数求解给定区间上可导函数最值的方法步骤.二、知识讲解1. 导数与函数单调性知识精讲(1)导数与函数单调性①如果在区间内,,则曲线在区间对应的那一段上每一点处切线的斜率都大于,曲线呈上升状态,因此在上是增函数,如下图所示;,()(),(),②如果在区间内,,则曲线在区间对应的那一段上每一点处切线的斜率都小于,曲线呈下降状态,因此在上是减函数,如下图所示.,()(),(),(2)导数绝对值的大小与函数图象的关系一般地,如果一个函数在某一范围内导数的绝对值较大,那么函数在这个范围内变化得较快,这时函数的图象就比较“陡峭”(向上或向下);反之,函数在这个范围内变化得较慢,函数的图象就比较“平缓.知识点睛函数在区间可导.(1)若,则函数在此区间内单调递增;(2)若,则函数在此区间内单调递减;(3)若,则函数在此区间内为常数函数.经典例题A.① B.② C.③ D.④1.已知函数的导函数的图象如图所示,那么函数的图象最有可能的是().巩固练习2.是函数的导函数,的图像如图所示,则的图像最有可能是下列选项中的( ).A.B.C. D.经典例题A. B.C.D.3.函数的图象如图所示,则的图像可能是( ).A.4.已知函数的图像如图所示,则等式的解集为( ).B.C.D.巩固练习A.B.C.D.5.如果函数的图像如右图,那么导函数的图像可能是().2. 利用导数求函数的单调区间的步骤知识精讲(1)确定的定义域;(2)求导数;(3)由(或)解出相应的的取值范围.当时,在相应区间上是增函数;当时,在相应区间上是减函数.知识点睛需要注意的是:1.在利用导数求函数的单调区间时,首先要确定函数的定义域,解决问题是必须在定义域内进行;2.在对函数划分单调区间时,除了必须确定使导数等于零的点(即导函数的零点)外,还要注意定义域内的不连续点和不可导点.经典例题A. B.C.D.6.函数的单调递增区间是().巩固练习A. B.C. D.7.函数的单调递增区间为().A.B.C.D.8.函数,的单调递减区间是( ).和和和和经典例题A. B.C.D.9.函数在上是减函数,则的取值范围是().巩固练习A. B.C. D.10.若为函数的递增区间,则的取值范围为().A. B.C.D.11.若函数为增函数,则实数的取值范围为( ).经典例题12.已知在区间上不单调,实数的取值范围是( ).A. B.C.D.巩固练习A. B.C. D.13.已知函数在上不单调,则的取值范围是().经典例题14.函数在上存在单调增区间,则实数的范围是.巩固练习A. B.C.D.15.若函数存在单调递增区间,则的取值范围是().3. 导数与函数的极值知识精讲函数极值与极值点的定义一般地,设函数的定义域为,设,如果对于附近的任意不同于的,都有:①,则称为函数的一个极大值点,且在处取极大值;②,则称为函数的一个极小值点,且在处取极小值.极大值点与极小值点都称为极值点,极大值与极小值都称为极值.显然,极大值点在其附近函数值最大,极小值点在其附近函数值最小.()()()()()()()()()知识点睛极值点的判断一般地,设函数在处可导,且.①如果对于左侧附近的任意,都有,对于右侧附近的任意,都有,那么此时是的极大值点;②如果对于左侧附近的任意,都有,对于右侧附近的任意,都有,那么此时是的极小值点;()()()()()()()()③如果在的左侧附近与右侧附近均为正号(或均为负号),则一定不是的极值点.()()经典例题A.B.C. D.16.函数在上的极小值点为().A.B.C.D.17.已知,在处有极值,则,的值为( ).,或,,或,,以上都不正确巩固练习A.B.C.D.18.函数的极大值为,那么等于().4. 求函数的极值的方法知识精讲求极值的步骤:(1)求导数;(2)求方程的所有实数根;(3)检验在方程的根的左右两侧的值的符号:①如果是左正右负,则在这个根处去的极大值;②如果是左负右正,则在这个根处去的极小值;③如果是左右同号,则在这个根处无极值.知识点睛导数与极值的关系:如果函数在区间上是单调递增的,在区间上是单调递减的,则是极大值点,是极大值.如果函数在区间上是单调递减的,在区间上是单调递增的,则是极小值点,是极小值.经典例题(1)(2)19.求下列函数的极值...巩固练习(1)(2)20.求下列函数的极值...A. B. C.D.21.设函数,则函数的极小值为().经典例题22.判断下列函数是否有极值,如果有极值,请求出其极值;若无极值,请说明理由..巩固练习23.判断下列函数是否有极值,如果有极值,请求出其极值;若无极值,请说明理由..经典例题24.设函数在和处有极值,且,求,,的值及函数的极值.25.若有极大值和极小值,则的取值范围是 .巩固练习26.已知函数在处取得极值,求的值.5. 求函数在上的最值的步骤知识精讲(1)函数的最大(小)值一般地,如果在上函数的图象是一条连续不断的曲线,那么它必有最大值和最小值,且函数的最值必在极值点或区间端点处取得.(2)求函数在上的最值的步骤①求函数在区间上的极值;②将函数的各极值点与端点处的函数值比较,其中最大的一个是最大值,最小的一个是最小值.知识点睛最值与极值的区别与联系(1)函数的最值是一个整体性的概念,反映的是函数在整个定义域上的情况,是对整个区间上的函数值的比较;函数的极值是在局部上对函数值的比较,具有相对性;(2)函数在一个闭区间上若存在最大值或最小值,则最大值或最小值只能各有一个,具有唯一性;而极大值和极小值可能多于一个,也可能没有;(3)极值只能在区间内取得,最值则可以在区间端点处取得;函数有极值时不一定有最值,有最值时也未必有极值;极值有可能成为最值,最值只要不在区间端点处取得必定是极值.经典例题27.已知函数,求函数在上的最大值和最小值.巩固练习28.函数的最大值为.A., B.,C.,D.,29.函数在区间上的最大值,最小值分别为().30.函数,的最小值等于.经典例题A. B.C.D.31.函数在上最大值为,最小值为,则实数取值范围为().巩固练习A. B.C. D.32.若函数在内有最小值,则的取值范围是().经典例题(1)(2)33.已知函数.求曲线在点处的切线方程.求函数在区间上的最大值和最小值.巩固练习(1)(2)34.已知函数,曲线在处的切线经过点.求实数的值.设,求在区间上的最大值和最小值.三、思维导图你学会了吗?画出思维导图总结本节课所学吧!四、出门测(1)(2)35.已知函数.写出函数的单调递减区间.求函数的极值.11(1)(2)36.已知函数.求曲线在点处的切线方程;求在区间上的最小值和最大值.。

函数单调性讲义

函数单调性讲义

学子教育学科教学案课 题函数的单调性及最值问题教学目标1. 通过已学过的函数特别是二次函数,理解函数的单调性及其几何意义;2. 能够熟练应用定义判断数在某区间上的单调性;3. 理解函数的最大(小)值及其几何意义;4. 学会运用函数图象理解和研究函数的性质.重点、难点重点:函数的单调性及其几何意义;函数的最大(小)值及其几何意义; 难点:用定义判断函数在某区间上的单调性;运用函数图象理解和研究函数的性质.考点及考试要求考点一: 函数的单调性及最大(小)值(选择、填空、解答)教学内容 知识框架一、函数的单调性的定义1.增减函数的定义:对于给定区间上的函数()f x ;① 如果对于属于这个区间的任意两个自变量的值x x 12,,当x x <12时,都有()()f x f x <12,那么就说()f x 在这个区间上是增函数; ② 如果对于属于这个区间的任意两个自变量的值x x 12,,当x x <12时,都有()()f x f x >12,那么就说()f x 在这个区间上是减函数。

2.用定义证明函数的单调性的步骤是:① 在相应区间内任取自变量x x <12;② 比较()f x 1及2()f x 的大小:作差(作商)——变形——判断符号(及1的大小); ③ 根据定义下结论,注明区间。

二、求函数的单调区间1.函数的单调区间:如果函数()y f x =在某个区间上是增函数(或减函数),就说()f x 在这一区间上具有(严格的)单调性,这一区间叫做()f x 的单调区间。

2.复合函数单调性:复合函数[()]f g x 的单调性及构成它的函数()u g x =,()y f u =的单调性密切相关,其规律如下表:说明:(1)① 函数的单调性是函数的局部性质,是相对于区间而言的。

② 函数的定义域不一定是函数的单调区间,但函数的单调区间必是定义域的子区间。

(2)复合函数[()]y f g x =的单调规律是“同则增,异则减”,即.()f u 及.()g x 若具有相同的单调性.........则.)]([x g f 必为增函数;若具有不同的单调性则................[()]f g x 必为减函数.....。

函数的单调性与最值(含例题详细讲解)

函数的单调性与最值(含例题详细讲解)

函数的单调性与最值一、知识梳理1.增函数、减函数一般地.设函数f (x )的定义域为I .区间D ⊆I .如果对于任意x 1.x 2∈D .且x 1<x 2.则 有:(1)f (x )在区间D 上是增函数⇔f (x 1)<f (x 2); (2)f (x )在区间D 上是减函数⇔f (x 1)>f (x 2). 2.单调区间的定义若函数y =f (x )在区间D 上是增函数或减函数.则称函数y =f (x )在这一区间上具有(严格的)单调性.区间D 叫做y =f (x )的单调区间. 3.函数的最值 前提设函数y =f (x )的定义域为I .如果存在实数M 满足条件 ①对于任意x ∈I .都有f (x )≤M ;②存在x 0∈I .使得f (x 0)=M①对于任意x ∈I .都有f (x )≥M ;②存在x 0∈I .使得f (x 0)=M结论 M 为最大值 M 为最小值注意:1.函数的单调区间是指函数在定义域内的某个区间上单调递增或单调递减.单调区间 只能用区间表示.不能用集合或不等式表示;如有多个单调区间应分别写.不能用并集 符号“∪”联结.也不能用“或”联结.2.两函数f (x ).g (x )在x ∈(a .b )上都是增(减)函数.则f (x )+g (x )也为增(减)函数.但f (x )·g (x ).()1f x 等的单调性与其正负有关.切不可盲目类比. [试一试]1.下列函数中.在区间(0.+∞)上为增函数的是( ) A .y =ln(x +2)B .y =-x +1C .12xy ⎛⎫= ⎪⎝⎭D .y =x +1x解析:选A 选项A 的函数y =ln(x +2)的增区间为(-2.+∞).所以在(0.+∞)上一定是增函数.2.函数f (x )=x 2-2x (x ∈[-2,4])的单调增区间为______;f (x )max =________. 解析:函数f (x )的对称轴x =1.单调增区间为[1,4].f (x )max =f (-2)=f (4)=8.答案:[1,4] 8二、方法归纳1.判断函数单调性的四种方法(1)定义法:取值、作差、变形、定号、下结论;(2)复合法:同增异减.即内外函数的单调性相同时.为增函数.不同时为减函数; (3)图像法:如果f (x )是以图像形式给出的.或者f (x )的图像易作出.可由图像的直观性 判断函数单调性.(4)导数法:利用导函数的正负判断函数单调性. 2.求函数最值的五个常用方法(1)单调性法:先确定函数的单调性.再由单调性求最值.(2)图像法:先作出函数的图像.再观察其最高点、最低点.求出最值.(3)换元法:对比较复杂的函数可通过换元转化为熟悉的函数.再用相应的方法求最值. (4)基本不等式法:先对解析式变形.使之具备“一正二定三相等”的条件后用基本不 等式求出最值.(5)导数法:先求导.然后求出在给定区间上的极值.最后结合端点值.求出最值. 提醒:在求函数的值域或最值时.应先确定函数的定义域. [练一练]1.下列函数中.既是偶函数又在区间(0.+∞)上单调递减的是( ) A .y =1xB .y =e -xC .y =-x 2+1 D. y =lg|x |答案:C 2.函数f (x )=1x 2+1在区间[2,3]上的最大值是________.最小值是________. 答案:15 110三、考点精练考点一 求函数的单调区间1、函数()()5log 21f x x =+的单调增区间是________. 解析:要使()5log 21y x =+有意义.则210x +>.即12x >-.而5log y u =为()0,+∞ 上的增函数.当12x >-时.u =2x +1也为R 上的增函数.故原函数的单调增区间是1,2⎛⎫-+∞ ⎪⎝⎭. 答案:1,2⎛⎫-+∞ ⎪⎝⎭2.函数y =x -|1-x |的单调增区间为________. 解析:y =x -|1-x |=1,121,1x x x ≥⎧⎨-<⎩作出该函数的图像如图所示.由图像可知.该函数的单调增区间是(-∞.1]. 答案:(-∞.1]3.设函数y =f (x )在(),-∞+∞内有定义.对于给定的正数k .定义函数()()()(),,k f x f x k f x k f x k⎧≤⎪=⎨>⎪⎩取函数()2xf x -=.当k =12时.函数()k f x 的单调递增区间为( )A .(-∞.0)B .(0.+∞)C .(-∞.-1)D .(1.+∞)解析:选C 由f (x )>12.得-1<x <1.由f (x )≤12.得x ≤-1或x ≥1.所以()122,11,1122,1x x x f x x x -⎧≥⎪⎪=-<<⎨⎪⎪≤-⎩.故()12f x 的单调递增区间为(-∞.-1).[解题通法]求函数单调区间的方法与判断函数单调性的方法相同即: (1)定义法;(2)复合法;(3)图像法;(4)导数法.考点二 函数单调性的判断[典例] 试讨论函数()()0kf x x k x=+>的单调性. [解] 法一:由解析式可知.函数的定义域是()(),00,-∞⋃+∞.在(0.+∞)内任取1x .2x .令12x x <.那么()()()()122121212121211211x x k k k f x f x x x x x k x x x x x x x x ⎛⎫⎛⎫⎛⎫--=+-+=-+-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭因为120x x <<.所以210x x ->.120x x >. 故当()12,,x x k ∈+∞时.()()12f x f x <.即函数在(),k +∞上单调递增.当()12,0,x x k ∈时.()()12f x f x >.即函数在()0,k 上单调递减. 考虑到函数()()0kf x x k x=+>是奇函数.在关于原点对称的区间上具有相同的单调 性.故在(),k -∞-单调递增.在(),0k -上单调递减. 综上.函数f (x )在(),k -∞-和(),k +∞上单调递增.在(),0k -和()0,k 上单调递减. [解题通法]1.利用定义判断或证明函数的单调性时.作差后要注意差式的分解变形彻底. 2.利用导数法证明函数的单调性时.求导运算及导函数符号判断要准确. [针对训练]判断函数g (x )=-2xx -1在 (1.+∞)上的单调性.解:任取x 1.x 2∈(1.+∞).且x 1<x 2.则()()()()()12121212122221111x x x x g x g x x x x x ----=-=----. 由于1<x 1<x 2.所以x 1-x 2<0.(x 1-1)(x 2-1)>0. 因此g (x 1)-g (x 2)<0.即g (x 1)<g (x 2). 故g (x )在(1.+∞)上是增函数. 考点三 函数单调性的应用 角度一 求函数的值域或最值1.已知函数f (x )对于任意x .y ∈R .总有f (x )+f (y )=f (x +y ).且当x >0时.f (x )<0.f (1)=-23.(1)求证:f (x )在R 上是减函数;(2)求f (x )在[-3,3]上的最大值和最小值. 解:(1)证明:∵函数f (x )对于任意x .y ∈R .总有f (x )+f (y )=f (x +y ).∴令x =y =0.得f (0)=0. 再令y =-x .得f (-x )=-f (x ). 在R 上任取x 1>x 2.则x 1-x 2>0.f (x 1)-f (x 2)=f (x 1)+f (-x 2)=f (x 1-x 2).又∵当x >0时.f (x )<0.而x 1-x 2>0.∴f (x 1-x 2)<0.即f (x 1)<f (x 2). 因此f (x )在R 上是减函数.(2)∵f (x )在R 上是减函数.∴f (x )在[-3,3]上也是减函数. ∴f (x )在[-3,3]上的最大值和最小值分别为f (-3)与f (3). 而f (3)=3f (1)=-2.f (-3)=-f (3)=2. ∴f (x )在[-3,3]上的最大值为2.最小值为-2. 角度二 比较两个函数值或两个自变量的大小 2.已知函数f (x )=log 2x +11-x.若x 1∈(1,2).x 2∈(2.+∞).则( ) A .f (x 1)<0.f (x 2)<0 B .f (x 1)<0.f (x 2)>0 C .f (x 1)>0.f (x 2)<0D .f (x 1)>0.f (x 2)>0解析:选 B ∵函数f (x )=log 2x +11-x在(1.+∞)上为增函数.且f (2)=0.∴当x 1∈(1,2)时.f (x 1)<f (2)=0.当x 2∈(2.+∞) 时.f (x 2)>f (2)=0.即f (x 1)<0.f (x 2)>0. 角度三 解函数不等式3.已知函数()2243,023,0x x x f x x x x ⎧-+≤⎪=⎨--+>⎪⎩则不等式f (a 2-4)>f (3a )的解集为( )A .(2,6)B .(-1,4)C .(1,4)D .(-3,5)解析:选B 作出函数f (x )的图像.如图所示.则函数f (x )在R 上是单调递减的.由f (a2-4)>f (3a ).可得a 2-4<3a .整理得a 2-3a -4<0.即(a +1)(a -4)<0.解得-1<a <4.所以不等式的解集为(-1,4).角度四 求参数的取值范围或值4.已知函数()()2,211,22x a x x f x x ⎧-≥⎪=⎨⎛⎫-<⎪ ⎪⎝⎭⎩满足对任意的实数12x x ≠.都有()()12120f x f x x x -<-成立.则实数a 的取值范围为( )A .(-∞.2)B.13,8⎛⎤-∞ ⎥⎝⎦C .(-∞.2]D.13,28⎡⎫⎪⎢⎣⎭解析:选B 函数f (x )是R 上的减函数.于是有()22012212a a -<⎧⎪⎨⎛⎫-⨯≤- ⎪⎪⎝⎭⎩.由此解得a ≤138. 即实数a 的取值范围是13,8⎛⎤-∞ ⎥⎝⎦. [解题通法]1.含“f ”不等式的解法首先根据函数的性质把不等式转化为f (g (x ))>f (h (x ))的形式.然后根据函数的单调性去掉“f ”.转化为具体的不等式(组).此时要注意g (x )与h (x )的取值应在外层函数的定义域内.2.比较函数值大小的思路比较函数值的大小时.若自变量的值不在同一个单调区间内.要利用其函数性质.转化到同一个单调区间上进行比较.对于选择题、填空题能数形结合的尽量用图像法求解.巩固练习一、选择题1.“a =1”是“函数f (x )=x 2-2ax +3在区间[1.+∞)上为增函数”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件答案:A 解析:f (x )对称轴x =a .当a ≤1时f (x )在[1.+∞)上单调递增.∴“a =1”为f (x )在[1.+∞)上递增的充分不必要条件.2.已知函数()224,04,0x x x f x x x x ⎧+≥⎪=⎨-<⎪⎩.若f (2-a 2)>f (a ).则实数a 的取值范围是( )A .(-∞.-1)∪(2.+∞)B .(-1,2)C .(-2,1)D .(-∞.-2)∪(1.+∞)答案:C 解析:由题知f (x )在R 上是增函数.由题得2-a 2>a .解得-2<a <1. 3.用min{a .b .c }表示a .b .c 三个数中的最小值.设f (x )=min{2x.x +2,10-x }(x ≥0).则f (x )的最大值为 ( ) A .4B .5C .6D .7答案:C解析:由题意知函数f (x )是三个函数y 1=2x.y 2=x +2.y 3=10-x 中的较小者.作出三个函数在同一坐标系之下的图象(如图中实线部分为f (x )的图象)可知A (4,6)为函数f (x )图象的最高点.4.若f (x )=-x 2+2ax 与g (x )=ax +1在区间[1,2]上都是减函数.则a 的取值范围是( )A .(-1,0)∪(0,1)B .(-1,0)∪(0,1]C .(0,1)D .(0,1]答案:D 解析:f (x )在[a .+∞)上是减函数.对于g (x ).只有当a >0时.它有两个减区 间为(-∞.-1)和(-1.+∞).故只需区间[1,2]是f (x )和g (x )的减区间的子集即可.则a的取值范围是0<a ≤1.5.已知定义在R 上的增函数f (x ).满足f (-x )+f (x )=0.x 1.x 2.x 3∈R .且x 1+x 2>0.x 2+x 3>0.x 3+x 1>0.则f (x 1)+f (x 2)+f (x 3)的值 ( ) A .一定大于0 B .一定小于0 C .等于0D .正负都有可能答案:A 解析:∵f (-x )+f (x )=0.∴f (-x )=-f (x ). 又∵x 1+x 2>0.x 2+x 3>0.x 3+x 1>0.∴x 1>-x 2.x 2>-x 3.x 3>-x 1.又∵f (x 1)>f (-x 2)=-f (x 2).f (x 2)>f (-x 3)=-f (x 3).f (x 3)>f (-x 1)=-f (x 1). ∴f (x 1)+f (x 2)+f (x 3)>-f (x 2)-f (x 3)-f (x 1).∴f (x 1)+f (x 2)+f (x 3)>0.] 二、填空题6.函数y =-(x -3)|x |的递增区间是________.7.设f (x )是增函数.则下列结论一定正确的是________(填序号). ①y =[f (x )]2是增函数;②y =1f x是减函数;③y =-f (x )是减函数;④y =|f (x )|是增函数.答案:[0.32]解析:()()()()3030x x x y x x x ⎧--≥⎪=⎨-<⎪⎩画图象如图所示:可知递增区间为[0.32].8.设0<x <1.则函数y =1x +11-x 的最小值是________.答案:4解析 y =1x +11-x =1x 1-x .当0<x <1时.x (1-x )=-(x -12)2+14≤14.∴y ≥4. 三、解答题9.已知函数f (x )=a -1|x |.(1)求证:函数y =f (x )在(0.+∞)上是增函数;(2)若f (x )<2x 在(1.+∞)上恒成立.求实数a 的取值范围. (1)证明:当x ∈(0.+∞)时.f (x )=a -1x.设0<x 1<x 2.则x 1x 2>0.x 2-x 1>0.f (x 1)-f (x 2)=(a -1x 1)-(a -1x 2)=1x 2-1x 1=x 1-x 2x 1x 2<0.∴f (x 1)<f (x 2).即f (x )在(0.+∞)上是增函数. (2)解:由题意a -1x<2x 在(1.+∞)上恒成立.设h (x )=2x +1x.则a <h (x )在(1.+∞)上恒成立.∵h ′(x )=2-1x 2.x ∈(1.+∞).∴2-1x2>0.∴h (x )在(1.+∞)上单调递增.故a ≤h (1).即a ≤3. ∴a 的取值范围为(-∞.3].10.已知f (x )=x 2+ax +3-a .若x ∈[-2,2]时.f (x )≥0恒成立.求a 的取值范围. 解:设f (x )的最小值为g (a ).则只需g (a )≥0. 由题意知.f (x )的对称轴为-a2.(1)当-a 2<-2.即a >4时.g (a )=f (-2)=7-3a ≥0.得a ≤73.又a >4.故此时的a 不存在.(2)当-a 2∈[-2,2].即-4≤a ≤4时.g (a )=f (-a 2)=3-a -a 24≥0得-6≤a ≤2. 又-4≤a ≤4.故-4≤a ≤2.(3)当-a2>2.即a <-4时.g (a )=f (2)=7+a ≥0得a ≥-7. 又a <-4.故-7≤a <-4.综上得所求a 的取值范围是-7≤a ≤2.11.已知f (x )是定义在[-1,1]上的奇函数.且f (1)=1.若a .b ∈[-1,1].a +b ≠0时. 有()()0f a f b a b+>+成立.(1)判断f (x )在[-1,1]上的单调性.并证明它; (2)解不等式:f (x +12)<f (1x -1);(3)若f (x )≤m 2-2am +1对所有的a ∈[-1,1]恒成立.求实数m 的取值范围. 解:(1)任取x 1.x 2∈[-1,1].且x 1<x 2. 则-x 2∈[-1,1].∵f (x )为奇函数. ∴()()()()()()()()1212121212f x f x f x f x f x f x x x x x +--=+-=-+-由已知得()()()12120f x f x x x +->+-.x 1-x 2<0.∴f (x 1)-f (x 2)<0.即f (x 1)<f (x 2). ∴f (x )在[-1,1]上单调递增. (2)∵f (x )在[-1,1]上单调递增.∴112111121111xxxx⎧+<⎪-⎪⎪-≤+≤⎨⎪⎪-≤<⎪-⎩∴-32≤x<-1.(3)∵f(1)=1.f(x)在[-1,1]上单调递增.∴在[-1,1]上.f(x)≤1.问题转化为m2-2am+1≥1.即m2-2am≥0.对a∈[-1,1]成立.下面来求m的取值范围.设g(a)=-2m·a+m2≥0.①若m=0.则g(a)=0≥0.自然对a∈[-1,1]恒成立.②若m≠0.则g(a)为a的一次函数.若g(a)≥0.对a∈[-1,1]恒成立.必须g(-1)≥0. 且g(1)≥0.∴m≤-2.或m≥2.∴m的取值范围是m=0或|m|≥2.。

3.2.1函数的单调性与最值 (教学课件)————高一上学期数学湘教版(2019)必修第一册

3.2.1函数的单调性与最值 (教学课件)————高一上学期数学湘教版(2019)必修第一册
多来的走势曲线图 。
只靠眼睛观察得到的认识是不是准确呢?例如:从有界限的图怎能看
出函数值是无界限的呢?描点连线画图的可靠性如何保证呢?
新课导入
可见,光靠描点作图看图来研究函数的性质还不够。从解析式出发研
究函数性质,在数学推理的指导下画图,对函数的性质会了解得更全
面、更准确,为此要用更严密的数学语言来描述函数的性质 。
湘教版高中必修第一册
函数的单调性与最值
教学课件
1
新 课 导 入
新课导入
给定一个函数的解析式或图象,你能不能从中看出这个函数的性质呢?
对函数性质的研究,我们首先关心的是
函数值的变化范围(封顶和保底)和变化趋势 (走高和下滑)
新课导入
下图是某报2016年11月刊登的上海证券交易所综合股价指数(简称上证指数)一年
f ( x) min f (1) 2a 3 4 , a
7
.
2
③当 1 a 3 ,即 3 a 1 时,
f ( x) 在 1, a 上单调递减, f ( x) 在 a,3 上单调递增,
f ( x) min f ( a ) a 2 2 4 , a 6 (舍正).
解:
(1)
①当 a 3f ,即
时,,fa
在 1,3 上单调递减,f ( x) 在 a, 上单调递增.
( x)上单调递减,
a在
3
5
a 的取值范围为_________;
(2)若

上单调递减,则
f (xf)(3)
(a
, 2)
f
(
x
)

6

11

函数的单调性与最值(含解析)

函数的单调性与最值(含解析)

函数单调性与最值一、知识要点1.函数的单调性(1)增函数与减函数一般地,设函数f(x)的定义域为I:①如果对于定义域I内某个区间D上的自变量的值x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间D上是.②如果对于定义域I内某个区间D上的自变量的值x1,x2,当x1<x2时,都有f(x1)>f(x2),那么就说函数f(x)在区间D上是.(2)单调性与单调区间如果函数y=f(x)在区间D上是增函数或减函数,那么就说函数y=f(x)在这一区间具有(严格的) ,区间D叫做y=f(x)的.2.函数的最值(1)最大值一般地,设函数y=f(x)的定义域为I,如果存在实数M满足:①对于任意的x∈I,都有;②存在x0∈I,使得.那么,我们称M是函数y=f(x)的最大值.(2)最小值一般地,设函数y=f(x)的定义域为I,如果存在实数N满足:①对于任意的x∈I,都有;②存在x0∈I,使得.那么我们称N是函数y=f(x)的最小值.自查自纠:1.(1)①任意两个增函数②任意两个减函数(2)单调性单调区间2.(1)①f(x)≤M②f(x0)=M (2)①f(x)≥N②f(x0)=N二、题型训练题组一1.定义在R 上的偶函数在[)0+∞,上是减函数则 ( ) . A . B . C . D .2.如果偶函数)(x f 在上]3,7[--是增函数且最小值是2,那么)(x f 在]7,3[上是( ) A .减函数且最小值是2 B .减函数且最大值是2 C .增函数且最小值是2 D .增函数且最大值是2.3.已知)(x f 是偶函数,它在[)+∞,0上是减函数,若)1()(lg f x f >,则x 的取值范围是( )A .⎪⎭⎫⎝⎛1,101 B .()+∞⋃⎪⎭⎫ ⎝⎛,1101,0 C .⎪⎭⎫ ⎝⎛10,101 D .()()+∞⋃,101,0 4.函数的图像关于直线对称,且在单调递减,(0)0f =,则的解集为( )A .(1,)+∞B .C .D .5.设奇函数()f x 在 (0,+∞)上是增函数,且(1)0f =,则不等式[()()]0x f x f x --<的解集为( ) A .{|10x x -<<或}1x > B .{|1x x <-或}01x << C .{|1x x <-或}1x > D .{|10x x -<<或}01x <<6.已知偶函数f (x )在区间(0,+∞)单调增加,则满足f (x -1)<f ⎪⎭⎫⎝⎛31的x 取值范围是( )A .B .C .24(,)33D .7.已知定义在R 上的偶函数,在时,,若,则a 的取值范围是( )A .B .C .D .8.若函数)(x f 为奇函数,且在),0(+∞上是增函数,又0)2(=f ,则0)()(<--xx f x f 的解集为( )A .)2,0()0,2(⋃-B .)2,0()2,(⋃--∞C .),2()2,(+∞⋃--∞D .),2()0,2(+∞⋃-9.若函数)x (f y =是定义在R 上的增函数,且满足1)b a (f )b (f )a (f ,0)1(f -+=+=,那么=)2(f ,关()f x (3)(2)(1)f f f <-<(1)(2)(3)f f f <-<(2)(1)(3)f f f -<<(3)(1)(2)f f f <<-()y f x =1x =[)1,+∞(1)0f x +>(1,1)-(,1)-∞-(,1)(1,)-∞-⋃+∞11(,)33-11,33⎡⎤-⎢⎥⎣⎦24,33⎢⎥⎢⎥⎣⎦()f x 0x >()ln xf x e x =+()()1f a f a <-(),1-∞1(,)2-∞1(,1)2()1,+∞于x 的不等式0)x 1(f )1x (f 2>-+-的解集是。

函数的单调性值讲义

函数的单调性值讲义

龙文教育学科教师辅导讲义课题函数的单调性和最大小值1教学目标1. 理解增函数、减函数的概念;2. 掌握判断某些函数增减性的方法;重点、难点教学重点:函数单调性的概念教学难点:函数单调性的判断和证明考点及考试要求教学内容引例:观察y=x2的图象,回答下列问题问题1:函数y=x2的图象在y轴右侧的部分是上升的,说明什么⇒随着x的增加,y值在增加;问题2:怎样用数学语言表示呢⇒设x1、x2∈0,+∞,得y1=fx1, y2=fx2.当x1<x2时,fx1< fx2.结论:这时,说y1= x2在0,+∞上是增函数;同理分析y轴左侧部分由此可有:知识点一函数的单调性概念一般地,设函数fx的定义域为I:如果对于属于I内某个区间上的任意两个自变量的值x1、x2,当x1<x2时都有fx1< fx2.那么就说fx在这个区间上是增函数increasing function;如果对于属于I内某个区间上的任意两个自变量的值x1、x2,当x1<x2时都有fx1>fx2.那么就是fx在这个区间上是减函数decreasing function;如果函数y=fx在某个区间是增函数或减函数,那么就说函说y=fx在这一区间具有严格的单调性,这一区间叫做y=fx的单调区间,在单调区间上增函数的图象是上升的,减函数的图象是下降的;注意1证明函数的单调性,必须严格按照单调性的定义进行;x 1、x2三个特征一定要予以重视;函数的单调性定义中的x1、x2有三个特征:一是任意性,即“任意取x1、x2”,“任意”二字决不能丢掉,证明单调性时更不可随意以两个特征值替换;二是有大小,通常规定x1<x2;三是同属于一个单调区间;三者缺一不可;2函数单调性是函数在某个区间上的性质;①这个区间可以是整个定义域;如y=x在整个定义域-∞,﹢∞上是增函数,y=-x在整个定义域-∞,﹢∞上是减函数;②这个区间也可以是定义域的真子集如2xy=在定义域-∞,﹢∞不具备单调性,但在-∞,0上是减函数,在0,+∞上是增函数;③有的函数不具备单调性。

2.2函数的单调性与最值教案(带详解)绝对经典

2.2函数的单调性与最值教案(带详解)绝对经典

§2.2 函数的单调性与最值要点梳理1. 函数的单调性(1)单调函数的定义定义当x 1<x 2时,都有f (x 1)<f (x 2),那么就说函数f (x )在区间D 上是增函数当x 1<x 2时,都有f (x 1)>f (x 2),那么就说函数f (x )在区间D 上是减函数 图像(2)若函数y =f (x )在区间D 上是增函数或减函数,则称函数y =f (x )在这一区间具有(严格的)单调性,区间D 叫作函数y =f (x )的单调区间.(3)判断函数单调性的方法步骤利用定义证明函数f (x )在给定的区间D 上的单调性的一般步骤:○1 任取x 1,x 2∈D ,且x 1<x 2; ○2 作差f (x 1)-f (x 2); ○3 变形(通常是因式分解和配方); ○4 定号(即判断差f (x 1)-f (x 2)的正负);○5 下结论(即指出函数f (x )在给定的区间D 上的单调性)。

2、单调性语言另类表示:或或时,则在定义域上是增函数;或时,则在定义域上是减函数;3.基本初等函数的单调性:4.复合函数单调性:同增异减5.多个函数的和的增减性:①增增增,②增减增,③减减减函数,④减增减;()()12120f x f x x x ->-()()()12120x x f x f x -⋅->⎡⎤⎣⎦()f x ()()12120f x f x x x -<-()()()12120x x f x f x -⋅-<⎡⎤⎣⎦()f x +=-=+=-=6.分段函数在定义域上的若具有一种单调性,则要求分段函数在每段定义域上的单调性保持一致,还对断点处的函数值的大小有要求;7.绝对值函数的单调性8.利用单调性解不等式9.值域的求法【注】函数的多个递增区间或递减区间不能合并,在表示的时候一般将各区间用逗号或“和”字进行连接. 函数f (x )、g (x )在x ∈(a ,b )上都是增(减)函数,则f (x )+g (x )也为增(减)函数,但f (x )·g (x ),1f (x )等的单调性与其正负有关,切不可盲目类比. 10.函数的最值基础自测1.若函数f (x )=|2x +a |的单调递增区间是[3,+∞),则a =________. 2. 函数f (x )=log 5(2x +1)的单调增区间是______________. 3. 函数f (x )=2xx +1在[1,2]的最大值和最小值分别是__________. 4. 已知函数y =f (x )在R 上是减函数,A (0,-2)、B (-3,2)在其图像上,则不等式-2<f (x )<2的解集为________. 5. 如果函数f (x )=ax 2+2x -3在区间(-∞,4)上是单调递增的,则实数a 的取值范围是( )A .a >-14B .a ≥-14C .-14≤a <0D .-14≤a ≤0题型分类 深度解析题型一 函数单调性的判断例1 试讨论函数f (x )=axx -1 (a ≠0)在(-1,1)上的单调性.(1)已知a >0,函数f (x )=x +ax(x >0),证明函数f (x )在(0,a ]上是减函数,在[a ,+∞)上是增函数;(2)求函数y =x 2+x -6的单调区间.题型二 利用函数单调性求参数例2 1、已知函数f (x )=ax 2-2x -3在区间(-∞,4)上是单调递减的,则实数a 的取值范围是2、若函数f (x )=ax -1x +1在(-∞,-1)上是减函数,求实数a 的取值范围.3、若函数f (x )=|3x -a |在区间[3,+∞)上单调递增,则a 的取值范围是 .4、已知函数是上的增函数,则的取值范围是( )A. B. C. D.(1)若函数f (x )=(2a -1)x +b 是R 上的减函数,则a 的取值范围为____________. (2)函数y =x -5x -a -2在(-1,+∞)上单调递增,则a 的取值范围是( )A .a =-3B .a <3C .a ≤-3D .a ≥-3题型三 利用函数单调性解函数不等式例3 函数f (x )对任意的m 、n ∈R ,都有f (m +n )=f (m )+f (n )-1,并且x >0时,恒有f (x )>1.(1)求证:f (x )在R 上是增函数; (2)若f (3)=4,解不等式f (a 2+a -5)<2.已知函数f (x )是定义在[0,+∞)上的递增函数,且f (1)=2,则满足f (2x-1)<2的解集是题型四 复合函数单调性()()()2511x ax x f x a x x⎧---≤⎪=⎨>⎪⎩R a 30a -≤<32a -≤≤-2a ≤-0a <例4 求函数y =log 13(x 2-3x )的单调区间.题型五 求函数最值(值域) 例5求下列函数值域: 1、直接观察法:①xy 1=, ②x y -=32、配方法: ①]4,1(32-2-∈-=x x x y , ② 322+--=x x y3、单调性法:①x x y 11--=②),1(,4+∞∈+=x xx y③]5,3[,112∈+-=x x x y ④]3,1[,1132∈+++=x x x x y 4、换元法:23--=x x y变式训练5 求下列函数值域:1、y =; 2、),2(322+∞-∈-+=x x x y ,3、①),1(1+∞∈+-=x x x y , ②1x y x =+4、2y x =题型六 抽象函数单调性问题例6 已知函数f (x )对于任意x ,y ∈R ,总有f (x )+f (y )=f (x +y ),且当x >0时,f (x )<0,f (1)=-23.(1)求证:f (x )在R 上是减函数; (2)求f (x )在[-3,3]上的最大值和最小值.变式训练6 已知定义在区间(0,+∞)上的函数f (x )满足f ⎝⎛⎭⎫x 1x 2=f (x 1)-f (x 2),且当x >1时,f (x )<0.(1)求f (1)的值; (2)判断f (x )的单调性;(3)若f (3)=-1,求f (x )在[2,9]上的最小值.课后练习一、选择题1. 下列函数中,在(-∞,0)上为增函数的是( )A .y =1-x 2B .y =x 2+2xC .y =11+xD .y =xx -12. 已知函数f (x )=2ax 2+4(a -3)x +5在区间(-∞,3)上是减函数,则a 的取值范围是( )A.⎝⎛⎭⎫0,34B.⎝⎛⎦⎤0,34C.⎣⎡⎭⎫0,34 D.⎣⎡⎦⎤0,34 3. 已知f (x )=⎩⎪⎨⎪⎧a x(x >1),⎝⎛⎭⎫4-a 2x +2 (x ≤1)是R 上的增函数,则实数a 的取值范围为( )A .(1,+∞)B .[4,8)C .(4,8)D .(1,8)4. 给定函数①y =21x ,②y =)1(log 21+x ,③y =|x -1|,④y =2x +1,其中在区间(0,1)上单调递减的函数的序号是( )A .①②B .②③C .③④D .①④5、已知函数 若,则实数的取值范围是( ) A. B. C. D.6、函数y=322-+x x 的单调递减区间是( )A .(-∞,-3)B .(-1,+∞)C .(-∞,-1)D .[-1,+∞)3,0,()ln(1),>0.x x f x x x ⎧≤=⎨+⎩2(2)()f x f x ->x (,1)(2,)-∞-⋃+∞(,2)(1,)-∞-⋃+∞(1,2)-(2,1)-7、若函数y=ax bx --在区间(-∞,4) 上是增函数,则有( ) A .a>b ≥4 B .a ≥4>b C .4≤a<b D .a ≤4<b 8、函数f (x )=⎩⎨⎧≥-<+-)1()1()1(3)21(2x x x a x a 的值域为 ,则实数 的范围( )A .B .C .D .二、填空题1. f (x )=x 2-2x ,x ∈[-2,4])的单调增区间为__________;f (x )max =________. 2. 函数f (x )=ln(4+3x -x 2)的单调递减区间是__________.3. 若函数f (x )=2|x -b |+2在[0,+∞)上为增函数,则实数b 的取值范围是____________. 4、函数y=11+-x x ,当时,函数的值域为__________________.5、6、7、已知函数()ln1x af x x -=+在区间()0,1单调增加,则a 的取值范围是 . 8、若函数f (x )=⎩⎨⎧≥<+-)1(2)1(x x a x x ,,的最小值为2,则a 的取值范围是 .三、解答题1.已知函数f (x )=1a -1x(a >0,x >0),(1)求证:f (x )在(0,+∞)上是单调递增函数; (2)若f (x )在⎣⎡⎦⎤12,2上的值域是⎣⎡⎦⎤12,2,求a 的值.2.已知函数f (x )=x 2+ax(x ≠0,a ∈R ).(1)判断函数f (x )的奇偶性;(2)若f (x )在区间[2,+∞)上是增函数,求实数a 的取值范围.§2.2 函数的单调性与最值要点梳理1. 函数的单调性(1)单调函数的定义定义当x 1<x 2时,都有f (x 1)<f (x 2),那么就说函数f (x )在区间D 上是增函数当x 1<x 2时,都有f (x 1)>f (x 2),那么就说函数f (x )在区间D 上是减函数 图像(2)若函数y =f (x )在区间D 上是增函数或减函数,则称函数y =f (x )在这一区间具有(严格的)单调性,区间D 叫作函数y =f (x )的单调区间.(3)判断函数单调性的方法步骤利用定义证明函数f (x )在给定的区间D 上的单调性的一般步骤:○1 任取x 1,x 2∈D ,且x 1<x 2; ○2 作差f (x 1)-f (x 2); ○3 变形(通常是因式分解和配方); ○4 定号(即判断差f (x 1)-f (x 2)的正负);○5 下结论(即指出函数f (x )在给定的区间D 上的单调性)。

高一数学 函数单调性与最值(含解析)

高一数学  函数单调性与最值(含解析)

函数单调性引入对于二次函数 ,我们可以这样描述“在区间(0, )上,随着 的增大,相应的 也随着增大”;在区间(0, )上,任取两个 , ,得到 ,,当 时,有 .这时,我们就说函数 在区间(0, )上是增函数.一、 函数单调性的判断与证明 1、函数增减性的定义一般地,设函数 的定义域为 : 如果对于定义域 内某个区间D 上的任意两个自变量的值 , ,当 时,都有 ,那么就说函数在区间D 上是增函数(increasing function )如果对于定义域 内某个区间D 上的任意两个自变量的值 , ,当 时,都有 ,那么就说函数在区间D 上是减函数(decreasing function ).【例1】下列四个函数中,在(0,+∞)上为增函数的是( )A .f (x )=3-xB .f (x )=x 2-3x C .f (x )=-1x +1D .f (x )=-|x | 【解析】选C 当x >0时,f (x )=3-x 为减函数;当x ∈⎝ ⎛⎭⎪⎫0,32时,f (x )=x 2-3x 为减函数,当x ∈⎝ ⎛⎭⎪⎫32,+∞时,f (x )=x 2-3x 为增函数;当x ∈(0,+∞)时,f (x )=-1x +1为增函数;当x ∈(0,+∞)时,f (x )=-|x |为减函数.故选C.【例2】判断函数g (x )=-2xx -1在(1,+∞)上的单调性.【解】任取x 1,x 2∈(1,+∞),且x 1<x 2,则g (x 1)-g (x 2)=-2x 1x 1-1--2x 2x 2-1=2(x 1-x 2)(x 1-1)(x 2-1),因为1<x 1<x 2,所以x 1-x 2<0,(x 1-1)(x 2-1)>0,因此g (x 1)-g (x 2)<0,即g (x 1)<g (x 2). 故g (x )在(1,+∞)上是增函数. 【例3】 求下列函数的单调区间.(1)f (x )=3|x |; (2)f (x )=|x 2+2x -3|; (3)y =-x 2+2|x |+1.【解】(1)∵f (x )=3|x |=⎩⎪⎨⎪⎧3x , x ≥0,-3x , x <0.图象如图所示.f(x )在(-∞,0]上是减函数,在[0,+∞)上是增函数.(2)令g (x )=x 2+2x -3=(x +1)2-4.先作出g (x )的图象,保留其在x 轴及x 轴上方部分,把它在x 轴下方的图象翻到x 轴上方就得到f (x )=|x 2+2x -3|的图象,如图所示.由图象易得:函数的递增区间是[-3,-1],[1,+∞); 函数的递减区间是(-∞,-3],[-1,1].(3)由于y =⎩⎪⎨⎪⎧ -x 2+2x +1,x ≥0,-x 2-2x +1,x <0,即y =⎩⎪⎨⎪⎧-(x -1)2+2,x ≥0,-(x +1)2+2,x <0.画出函数图象如图所示,单调递增区间为(-∞,-1]和[0,1], 单调递减区间为[-1,0]和[1,+∞). 【例4】求函数y =x 2+x -6的单调区间.【解】令u =x 2+x -6,y =x 2+x -6可以看作有y =u 与u =x 2+x -6的复合函数.由u =x 2+x -6≥0,得x ≤-3或x ≥2.∵u =x 2+x -6在(-∞,-3]上是减函数,在[2,+∞)上是增函数, 而y =u 在(0,+∞)上是增函数.∴y =x 2+x -6的单调减区间为(-∞,-3],单调增区间为[2,+∞). 【例5】证明:函数 在R 上是增函数【变式1】利用函数单调性的定义,证明函数 在区间 上是增函数。

函数的单调性最值(含例题详解)

函数的单调性最值(含例题详解)

函数的单调性与最值一、知识梳理1.增函数、减函数一般地,设函数f (x )的定义域为I ,区间D ⊆I ,如果对于任意x 1,x 2∈D ,且x 1<x 2,则 有:(1)f (x )在区间D 上是增函数⇔f (x 1)<f (x 2); (2)f (x )在区间D 上是减函数⇔f (x 1)>f (x 2). 2.单调区间的定义若函数y =f (x )在区间D 上是增函数或减函数,则称函数y =f (x )在这一区间上具有(严格的)单调性,区间D 叫做y =f (x )的单调区间. 3.函数的最值 前提设函数y =f (x )的定义域为I ,如果存在实数M 满足条件 ①对于任意x ∈I ,都有f (x )≤M ;②存在x 0∈I ,使得f (x 0)=M①对于任意x ∈I ,都有f (x )≥M ;②存在x 0∈I ,使得f (x 0)=M结论 M 为最大值 M 为最小值注意:1.函数的单调区间是指函数在定义域内的某个区间上单调递增或单调递减.单调区间 只能用区间表示,不能用集合或不等式表示;如有多个单调区间应分别写,不能用并集 符号“∪”联结,也不能用“或”联结.2.两函数f (x ),g (x )在x ∈(a ,b )上都是增(减)函数,则f (x )+g (x )也为增(减)函数,但f (x )·g (x ),()1f x 等的单调性与其正负有关,切不可盲目类比. [试一试]1.下列函数中,在区间(0,+∞)上为增函数的是( ) A .y =ln(x +2)B .y =-x +1C .12xy ⎛⎫= ⎪⎝⎭D .y =x +1x解析:选A 选项A 的函数y =ln(x +2)的增区间为(-2,+∞),所以在(0,+∞)上一定是增函数.2.函数f (x )=x 2-2x (x ∈[-2,4])的单调增区间为______;f (x )max =________.解析:函数f (x )的对称轴x =1,单调增区间为[1,4],f (x )max =f (-2)=f (4)=8. 答案:[1,4] 8二、方法归纳1.判断函数单调性的四种方法(1)定义法:取值、作差、变形、定号、下结论;(2)复合法:同增异减,即内外函数的单调性相同时,为增函数,不同时为减函数; (3)图像法:如果f (x )是以图像形式给出的,或者f (x )的图像易作出,可由图像的直观性判断函数单调性.(4)导数法:利用导函数的正负判断函数单调性. 2.求函数最值的五个常用方法(1)单调性法:先确定函数的单调性,再由单调性求最值.(2)图像法:先作出函数的图像,再观察其最高点、最低点,求出最值.(3)换元法:对比较复杂的函数可通过换元转化为熟悉的函数,再用相应的方法求最值. (4)基本不等式法:先对解析式变形,使之具备“一正二定三相等”的条件后用基本不 等式求出最值.(5)导数法:先求导,然后求出在给定区间上的极值,最后结合端点值,求出最值. 提醒:在求函数的值域或最值时,应先确定函数的定义域. [练一练]1.下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是( ) A .y =1xB .y =e -xC .y =-x 2+1 D. y =lg|x |答案:C 2.函数f (x )=1x 2+1在区间[2,3]上的最大值是________,最小值是________. 答案:15 110三、考点精练考点一 求函数的单调区间1、函数()()5log 21f x x =+的单调增区间是________. 解析:要使()5log 21y x =+有意义,则210x +>,即12x >-,而5l og y u =为()0,+∞上的增函数,当12x >-时,u =2x +1也为R 上的增函数,故原函数的单调增区间是 1,2⎛⎫-+∞ ⎪⎝⎭. 答案:1,2⎛⎫-+∞ ⎪⎝⎭2.函数y =x -|1-x |的单调增区间为________. 解析:y =x -|1-x |=1,121,1x x x ≥⎧⎨-<⎩作出该函数的图像如图所示.由图像可知,该函数的单调增区间是(-∞,1]. 答案:(-∞,1]3.设函数y =f (x )在(),-∞+∞内有定义.对于给定的正数k ,定义函数()()()(),,k f x f x k f x k f x k⎧≤⎪=⎨>⎪⎩取函数()2xf x -=,当k =12时,函数()k f x 的单调递增区间为( )A .(-∞,0)B .(0,+∞)C .(-∞,-1)D .(1,+∞)解析:选C 由f (x )>12,得-1<x <1.由f (x )≤12,得x ≤-1或x ≥1.所以()122,11,1122,1x x x f x x x -⎧≥⎪⎪=-<<⎨⎪⎪≤-⎩,故()12f x 的单调递增区间为(-∞,-1).[解题通法]求函数单调区间的方法与判断函数单调性的方法相同即: (1)定义法;(2)复合法;(3)图像法;(4)导数法.考点二 函数单调性的判断 [典例] 试讨论函数()()0kf x x k x=+>的单调性. [解] 法一:由解析式可知,函数的定义域是()(),00,-∞⋃+∞.在(0,+∞)内任取1x ,2x ,令12x x <,那么()()()()122121212121211211x x k k k f x f x x x x x k x x x x x x x x ⎛⎫⎛⎫⎛⎫--=+-+=-+-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 因为120x x <<,所以210x x ->,120x x >. 故当()12,,x x k ∈+∞时,()()12f x f x <,即函数在(),k +∞上单调递增.当()12,0,x x k ∈时,()()12f x f x >,即函数在()0,k 上单调递减. 考虑到函数()()0kf x x k x=+>是奇函数,在关于原点对称的区间上具有相同的单调 性,故在(),k -∞-单调递增,在(),0k -上单调递减. 综上,函数f (x )在(),k -∞-和(),k +∞上单调递增,在(),0k -和()0,k 上单调递减. [解题通法]1.利用定义判断或证明函数的单调性时,作差后要注意差式的分解变形彻底. 2.利用导数法证明函数的单调性时,求导运算及导函数符号判断要准确. [针对训练]判断函数g (x )=-2x x -1在 (1,+∞)上的单调性.解:任取x 1,x 2∈(1,+∞),且x 1<x 2, 则()()()()()12121212122221111x x x x g x g x x x x x ----=-=----, 由于1<x 1<x 2,所以x 1-x 2<0,(x 1-1)(x 2-1)>0, 因此g (x 1)-g (x 2)<0,即g (x 1)<g (x 2). 故g (x )在(1,+∞)上是增函数. 考点三 函数单调性的应用 角度一 求函数的值域或最值1.已知函数f (x )对于任意x ,y ∈R ,总有f (x )+f (y )=f (x +y ),且当x >0时,f (x )<0,f (1)=-23.(1)求证:f (x )在R 上是减函数;(2)求f (x )在[-3,3]上的最大值和最小值. 解:(1)证明:∵函数f (x )对于任意x ,y ∈R ,总有f (x )+f (y )=f (x +y ),∴令x =y =0,得f (0)=0. 再令y =-x ,得f (-x )=-f (x ). 在R 上任取x 1>x 2,则x 1-x 2>0,f (x 1)-f (x 2)=f (x 1)+f (-x 2)=f (x 1-x 2).又∵当x >0时,f (x )<0,而x 1-x 2>0,∴f (x 1-x 2)<0,即f (x 1)<f (x 2). 因此f (x )在R 上是减函数.(2)∵f (x )在R 上是减函数,∴f (x )在[-3,3]上也是减函数, ∴f (x )在[-3,3]上的最大值和最小值分别为f (-3)与f (3). 而f (3)=3f (1)=-2,f (-3)=-f (3)=2. ∴f (x )在[-3,3]上的最大值为2,最小值为-2. 角度二 比较两个函数值或两个自变量的大小 2.已知函数f (x )=log 2x +11-x,若x 1∈(1,2),x 2∈(2,+∞),则( ) A .f (x 1)<0,f (x 2)<0 B .f (x 1)<0,f (x 2)>0 C .f (x 1)>0,f (x 2)<0D .f (x 1)>0,f (x 2)>0解析:选 B ∵函数f (x )=log 2x +11-x在(1,+∞)上为增函数,且f (2)=0,∴当x 1∈(1,2)时,f (x 1)<f (2)=0,当x 2∈(2,+∞) 时,f (x 2)>f (2)=0,即f (x 1)<0,f (x 2)>0. 角度三 解函数不等式3.已知函数()2243,023,0x x x f x x x x ⎧-+≤⎪=⎨--+>⎪⎩则不等式f (a 2-4)>f (3a )的解集为( )A .(2,6)B .(-1,4)C .(1,4)D .(-3,5)解析:选B 作出函数f (x )的图像,如图所示,则函数f (x )在R 上是单调递减的.由f (a 2-4)>f (3a ),可得a 2-4<3a ,整理得a 2-3a -4<0,即(a +1)(a -4)<0,解得-1<a <4,所以不等式的解集为(-1,4).角度四 求参数的取值范围或值4.已知函数()()2,211,22x a x x f x x ⎧-≥⎪=⎨⎛⎫-<⎪ ⎪⎝⎭⎩满足对任意的实数12x x ≠,都有()()12120f x f x x x -<-成立,则实数a 的取值范围为( )A .(-∞,2)B.13,8⎛⎤-∞ ⎥⎝⎦C .(-∞,2]D.13,28⎡⎫⎪⎢⎣⎭解析:选B 函数f (x )是R 上的减函数,于是有()22012212a a -<⎧⎪⎨⎛⎫-⨯≤- ⎪⎪⎝⎭⎩,由此解得a ≤138, 即实数a 的取值范围是13,8⎛⎤-∞ ⎥⎝⎦. [解题通法]1.含“f ”不等式的解法首先根据函数的性质把不等式转化为f (g (x ))>f (h (x ))的形式,然后根据函数的单调性去掉“f ”,转化为具体的不等式(组),此时要注意g (x )与h (x )的取值应在外层函数的定义域内.2.比较函数值大小的思路比较函数值的大小时,若自变量的值不在同一个单调区间内,要利用其函数性质,转化到同一个单调区间上进行比较,对于选择题、填空题能数形结合的尽量用图像法求解.巩固练习一、选择题1.“a =1”是“函数f (x )=x 2-2ax +3在区间[1,+∞)上为增函数”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件答案:A 解析:f (x )对称轴x =a ,当a ≤1时f (x )在[1,+∞)上单调递增.∴“a =1”为f (x )在[1,+∞)上递增的充分不必要条件.2.已知函数()224,04,0x x x f x x x x ⎧+≥⎪=⎨-<⎪⎩,若f (2-a 2)>f (a ),则实数a 的取值范围是( )A .(-∞,-1)∪(2,+∞)B .(-1,2)C .(-2,1)D .(-∞,-2)∪(1,+∞)答案:C 解析:由题知f (x )在R 上是增函数,由题得2-a 2>a ,解得-2<a <1. 3.用min{a ,b ,c }表示a ,b ,c 三个数中的最小值.设f (x )=min{2x,x +2,10-x }(x ≥0),则f (x )的最大值为 ( ) A .4B .5C .6D .7答案:C解析:由题意知函数f (x )是三个函数y 1=2x,y 2=x +2,y 3=10-x 中的较小者,作出三个函数在同一坐标系之下的图象(如图中实线部分为f (x )的图象)可知A (4,6)为函数f (x )图象的最高点.4.若f (x )=-x 2+2ax 与g (x )=ax +1在区间[1,2]上都是减函数,则a 的取值范围是( )A .(-1,0)∪(0,1)B .(-1,0)∪(0,1]C .(0,1)D .(0,1]答案:D 解析:f (x )在[a ,+∞)上是减函数,对于g (x ),只有当a >0时,它有两个减区间为(-∞,-1)和(-1,+∞),故只需区间[1,2]是f (x )和g (x )的减区间的子集即可,则a的取值范围是0<a ≤1.5.已知定义在R 上的增函数f (x ),满足f (-x )+f (x )=0,x 1,x 2,x 3∈R ,且x 1+x 2>0,x 2+x 3>0,x 3+x 1>0,则f (x 1)+f (x 2)+f (x 3)的值 ( )A .一定大于0B .一定小于0C .等于0D .正负都有可能答案:A 解析:∵f (-x )+f (x )=0,∴f (-x )=-f (x ). 又∵x 1+x 2>0,x 2+x 3>0,x 3+x 1>0,∴x 1>-x 2,x 2>-x 3,x 3>-x 1.又∵f (x 1)>f (-x 2)=-f (x 2),f (x 2)>f (-x 3)=-f (x 3),f (x 3)>f (-x 1)=-f (x 1), ∴f (x 1)+f (x 2)+f (x 3)>-f (x 2)-f (x 3)-f (x 1). ∴f (x 1)+f (x 2)+f (x 3)>0.] 二、填空题6.函数y =-(x -3)|x |的递增区间是________.7.设f (x )是增函数,则下列结论一定正确的是________(填序号). ①y =[f (x )]2是增函数;②y =1f (x )是减函数;③y =-f (x )是减函数;④y =|f (x )|是增函数.答案:[0,32]解析:()()()()3030x x x y x x x ⎧--≥⎪=⎨-<⎪⎩画图象如图所示:可知递增区间为[0,32].8.设0<x <1,则函数y =1x +11-x 的最小值是________.答案:4解析 y =1x +11-x =1x (1-x ),当0<x <1时,x (1-x )=-(x -12)2+14≤14,∴y ≥4.三、解答题9.已知函数f (x )=a -1|x |.(1)求证:函数y =f (x )在(0,+∞)上是增函数;(2)若f (x )<2x 在(1,+∞)上恒成立,求实数a 的取值范围. (1)证明:当x ∈(0,+∞)时,f (x )=a -1x,设0<x 1<x 2,则x 1x 2>0,x 2-x 1>0.f (x 1)-f (x 2)=(a -1x 1)-(a -1x 2)=1x 2-1x 1=x 1-x 2x 1x 2<0.∴f (x 1)<f (x 2),即f (x )在(0,+∞)上是增函数. (2)解:由题意a -1x<2x 在(1,+∞)上恒成立,设h (x )=2x +1x,则a <h (x )在(1,+∞)上恒成立.∵h ′(x )=2-1x 2,x ∈(1,+∞),∴2-1x2>0,∴h (x )在(1,+∞)上单调递增.故a ≤h (1),即a ≤3. ∴a 的取值范围为(-∞,3].10.已知f (x )=x 2+ax +3-a ,若x ∈[-2,2]时,f (x )≥0恒成立,求a 的取值范围. 解:设f (x )的最小值为g (a ),则只需g (a )≥0, 由题意知,f (x )的对称轴为-a2.(1)当-a 2<-2,即a >4时,g (a )=f (-2)=7-3a ≥0,得a ≤73.又a >4,故此时的a 不存在.(2)当-a 2∈[-2,2],即-4≤a ≤4时,g (a )=f (-a 2)=3-a -a 24≥0得-6≤a ≤2. 又-4≤a ≤4,故-4≤a ≤2.(3)当-a2>2,即a <-4时,g (a )=f (2)=7+a ≥0得a ≥-7. 又a <-4,故-7≤a <-4.综上得所求a 的取值范围是-7≤a ≤2.11.已知f (x )是定义在[-1,1]上的奇函数,且f (1)=1,若a ,b ∈[-1,1],a +b ≠0时, 有()()0f a f b a b+>+成立.(1)判断f (x )在[-1,1]上的单调性,并证明它; (2)解不等式:f (x +12)<f (1x -1);(3)若f (x )≤m 2-2am +1对所有的a ∈[-1,1]恒成立,求实数m 的取值范围. 解:(1)任取x 1,x 2∈[-1,1],且x 1<x 2, 则-x 2∈[-1,1],∵f (x )为奇函数, ∴()()()()()()()()1212121212f x f x f x f x f x f x x x x x +--=+-=-+-由已知得()()()12120f x f x x x +->+-,x 1-x 2<0,∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2).∴f(x)在[-1,1]上单调递增.(2)∵f(x)在[-1,1]上单调递增,∴112111121111xxxx⎧+<⎪-⎪⎪-≤+≤⎨⎪⎪-≤<⎪-⎩∴-32≤x<-1.(3)∵f(1)=1,f(x)在[-1,1]上单调递增.∴在[-1,1]上,f(x)≤1.问题转化为m2-2am+1≥1,即m2-2am≥0,对a∈[-1,1]成立.下面来求m的取值范围.设g(a)=-2m·a+m2≥0.①若m=0,则g(a)=0≥0,自然对a∈[-1,1]恒成立.②若m≠0,则g(a)为a的一次函数,若g(a)≥0,对a∈[-1,1]恒成立,必须g(-1)≥0,且g(1)≥0,∴m≤-2,或m≥2.∴m的取值范围是m=0或|m|≥2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数的单调性与最值【知识要点】 1.函数的单调性(1)单调函数的定义(2)单调区间的定义如果函数y =f (x )在区间D 上是增函数或减函数,那么就说函数y =f (x )在这一区间具有(严格的)单调性,区间D 叫做函数y =f (x )的单调区间.(3)判断函数单调性的方法①根据定义;②根据图象;③利用已知函数的增减性;④利用导数;⑤复合函数单调性判定方法。

2.函数的最值求函数最值的方法:①若函数是二次函数或可化为二次函数型的函数,常用配方法;②利用函数的单调性求最值:先判断函数在给定区间上的单调性,然后利用单调性求最值; ③基本不等式法:当函数是分式形式且分子、分母不同次时常用此法。

【复习回顾】一次函数(0)y kx b k =+≠具有下列性质: (1)当0k >时,函数y 随x 的增大而增大 (2)当0k <时,函数y 随x 的增大而减小 二次函数y =ax 2+bx +c (a ≠0)具有下列性质:(1)当a >0时,函数y =ax 2+bx +c 图象开口向上,对称轴为直线x =-2ba;当x <2b a -时,y 随着x 的增大而减小;当x >2ba-时,y 随着x 的增大而增大; (2)当a <0时,函数y =ax 2+bx +c 图象开口向下,对称轴为直线x =-2ba;当x <2b a -时,y 随着x 的增大而增大;当x >2ba-时,y 随着x 的增大而减小; 提出问题:①如图所示为一次函数y=x ,二次函数y=x 2和y=-x 2的图象,它们的图象有什么变化规律?这反映了相应的函数值的哪些变化规律?①这些函数走势是什么?在什么范围上升,在什么区间下降?②如何理解图象是上升的?如何用自变量的大小关系与函数值的大小关系表示函数的增减性?③定义:一般地,设函数f(x)的定义域为I ,如果对于定义域I 内某个区间D 上的任意两个自变量的值x 1、x 2,当x 1<x 2时,都有f(x 1)<f(x 2),那么就说函数f(x)在区间D 上是增函数.简称为:步调一致增函数.几何意义:增函数的从左向右看,图象是的。

④定义:一般地,设函数f(x)的定义域为I ,如果对于定义域I 内某个区间D 上的任意两个自变量的值x 1、x 2,当x 1<x 2时,都有f(x 1)>f(x 2),那么就说函数f(x)在区间D 上是减函数.简称为:步调不一致减函数.几何意义:减函数的从左向右看,图象是的.例如图是定义在区间[-5,5]上的函数y=f(x),根据图象说出函数的单调区间,以及在每一单调区间上,它是增函数还是减函数?解:函数y=f(x)的单调区间是[-5,2),[-2,1),[1,3),[3,5].其中函数y=f(x)在区间[-5,2),[1,3)上是减函数,在区间[-2,1),[3,5]上是增函数.点评:图象法求函数单调区间的步骤是第一步:画函数的图象;第二步:观察图象,利用函数单调性的几何意义写出单调区间.【典例精讲】题型一函数单调性的判定与证明(1)单调性的证明①函数单调性的证明的最基本方法是依据函数单调性的定义来进行,其步骤如下: 第一步:设元,即设x 1,x 2是该区间内的任意两个值,且x 1<x 2; 第二步:作差,即作差f (x 1)-f (x 2);第三步:变形,即通过因式分解、配方、有理化等方法,向有利于判断差的符号的方向变形; 第四步:判号,即确定f (x 1)-f (x 2)的符号,当符号不确定时,可以进行分类讨论; 第五步:定论,即根据单调性的定义作出结论.其中第三步是关键,在变形中一般尽量化成几个最简因式的乘积或几个完全平方的形式. ②利用单调性定义的等价形式证明:设x 1,x 2∈[m ,n ],x 1≠x 2,那么(x 1-x 2)[f (x 1)-f (x 2)]>0⇔>0⇔f (x )在区间[m ,n ]上是增函数; (x 1-x 2)[f (x 1)-f (x 2)]<0⇔<0⇔f (x )在区间[m ,n ]上是减函数. (2)复合函数y =f (g (x ))的单调性:复合函数的单调性可简记为“f (x )的单调性相同时y =f (g (x ))是增函数,单调性相反时y =f (g (x ))是减函数.(3)判断复合函数单调性的步骤:以复合函数y =f (g (x ))为例.可按下列步骤操作:①将复合函数分解成基本初等函数:y =f (t ),t =g (x );②分别确定各个函数的定义域;③分别确定分解成的两个基本初等函数的单调区间;④若两个基本初等函数在对应的区间上的单调性是同增或同减,则y =f (g (x ))为增函数;若为一增一减,则y =f (g (x ))为减函数. 例1用定义法求证函数3()f x x =在R 为增函数变式1用定义法求证函数()f x =(0,)+∞增函数变式2证明:函数()f x x =在定义域上是减函数例2求函数y =的单调区间.题型二图像法求函数的单调区间 例3求出下列函数的单调区间:(1)2()3f x x x =--;(2)1()f x x x=+.(3)34)(2+-=x x x f ;(4)34)(2+-=x x x f .变式1用图像法求下列函数的单调区间 (1)32()2x f x x +=+ (2)2()|2|f x x x =+ (3)2()2||1f x x x =--变式2求函数532+-+=x x y的单调区间和值域。

题型三抽象函数的单调性例4(1)已知函数()f x 是减函数,则2(1)f x x ++与3()4f 的大小关系是 (2)已知函数()f x 是减函数,解不等式(21)(2)f x f x ->+(3)已知()f x 是定义在(0,+∞)上的减函数,若22(21)(341)f a a f a a ++<-+成立,则a 的取值范围是______.变式函数f(x)对任意的a,b ∈R ,都有f(a+b)=f(a)+f(b)-1,并且当x >0时,f(x)>1.(1)求证:f(x)是R 上的增函数; (2)若f(4)=5,解不等式f(3m 2-m-2)<3.题型四已知函数的单调性求参数的取值范围 例5已知函数21,2(),2ax x f x x x +≤⎧=⎨>⎩在R 上是增函数,则a 的取值范围是变式1若f (x )=x 2+2(a -1)x +4是区间(-∞,4]上的减函数,则实数a 的取值范围是_______. 变式2(1)画出已知函数2()23f x x x =-++的图象;(2)证明函数2()23f x x x =-++在区间(-∞,1]上是增函数; (3)当函数f(x)在区间(-∞,m ]上是增函数时,求实数m 的取值范围. 题型五函数的最值例6①如图所示,是函数2221,1,)()y x x y x x y f x =--=-+∈-+∞=、[、的图象.观察这三个图象的共同特征.②在函数y =f (x )的图象上任取一点A(x ,y ),如图所示,x 的范围是函数的,y 的范围是函数的。

图1-3-1-12③怎样理解函数图象最高点的?设点C 的坐标为(x 0,y 0),用数学符号解释:函数y=f(x)的图象有最高点C ?④函数最大值的定义?一般地,设函数y =f (x)的定义域为I ,如果存在实数M 满足: (1)对于任意的x ∈I ,都有f (x )≤M ; (2)存在x 0∈I ,使得f (x 0)=M. 那么,称M 是函数y =f (x )的最大值.⑤函数最大值的定义中()f x M ≤即0()()f x f x ≤,这个不等式反映了函数y ()f x =的函数值具有什么特点?其图象又具有什么特征?函数最大值的几何意义是什么? ⑥函数21,(1,)y x x =-+∈-+∞最大值吗?为什么?点(1,3)-是不是函数21,(1,)y x x =-+∈-+∞的最高点?⑦由⑥这个问题你发现了什么值得注意的地方?⑧类比函数的最大值,请你给出函数的最小值的定义及其几何意义. 例7求函数y=12-x 在区间26[,]上的最大值和最小值.例8求函数xx y 4+=,]3,21[∈x 的最值。

变式函数y=11x -在[2,3]上的最小值为()A.2B.12C.13D.-12【课堂练习】1.下列函数中,在区间(0,2)上为增函数的是() A.y=-x+1B.y=x C.y=x 2-4x+5D.y=2x2.如果函数f(x)=x 2+2(a-1)x+2在区间(-∞,4]上是减函数,则实数a 的取值范围是() A.[-3,+∞)B.(-∞,-3]C.(-∞,3]D.[3,+∞)3.若一次函数y=f(x)在区间[-1,2]上的最小值为1,最大值为3,则函数f(x)的解析式为__________.4.设x 1,x 2为y =f (x )的定义域内的任意两个变量,有以下几个命题:①(x 1-x 2)[f (x 1)-f (x 2)]>0;②(x 1-x 2)[f (x 1)-f (x 2)]<0; ③>0;④<0.其中能推出函数y =f (x )为增函数的命题为________.(填序号)5.(1)已知函数2()42f x x ax =-+在[3,)-+∞上是增函数,则a 的取值范围是 (2)已知函数2()42f x x ax =-+在[3,3)-上是单调函数,则a 的取值范围是 6.用定义法求证函数21()2f x x x=+在(0,)+∞减函数【课外作业】函数y =-x 2的单调减区间是( )A .[0,+∞)B .(-∞,0]C .(-∞,0)D .(-∞,+∞)函数f (x )=2x 2-mx +3,当x ∈[-2,+∞)时,f (x )为增函数,当x ∈(-∞,-2]时,函数f (x )为减函数,则m 等于( )A .-4B .-8C .8D .无法确定 函数f (x )在R 上是增函数,若a +b ≤0,则有( )A .f (a )+f (b )≤-f (a )-f (b )B .f (a )+f (b )≥-f (a )-f (b )C .f (a )+f (b )≤f (-a )+f (-b )D .f (a )+f (b )≥f (-a )+f (-b )已知()f x 为R 上的减函数,则满足1(1)f f x ⎛⎫>⎪⎝⎭的实数x 的取值范围是( ) A.(1)-∞, B.(1)+∞, C.(0)(01)-∞,, D.(0)(1)-∞+∞,,5.若函数f (x )=4x 2-kx -8在[5,8]上是单调函数,则k 的取值范围是________.6.已知f (x )是定义在[-1,1]上的增函数,且f (x -1)<f (1-3x ),求x 的取值范围.7.若f (x )=x 2+bx +c ,且f (1)=0,f (3)=0. (1)求b 与c 的值;(2)试证明函数f (x )在区间(2,+∞)上是增函数.(3)若a >0且f (x )在(1,+∞)内单调递减,求a 的取值范围.。

相关文档
最新文档