初中数学三角形性质
数学初中教材第八章三角形与三角函数
数学初中教材第八章三角形与三角函数在初中数学教材的第八章中,我们将学习有关三角形与三角函数的知识。
本章内容涵盖了三角形的基本概念、性质以及与三角函数的关系。
通过学习本章内容,我们可以更好地理解和应用三角形和三角函数的知识。
一、三角形的基本概念与性质在初中数学中,我们首先学习了三角形的基本概念与性质。
三角形是由三条边和三个角所组成的图形,我们通常用大写字母A、B、C来表示三个角,用小写字母a、b、c来表示三条边。
根据三角形的边长关系,我们可以将三角形分为等边三角形、等腰三角形和普通三角形。
等边三角形的三条边长度相等,等腰三角形的两条边长度相等,普通三角形的三条边长度各不相等。
除了边长关系外,我们还学习了三角形的角度关系。
根据角度的大小,三角形可以分为锐角三角形、直角三角形和钝角三角形。
在直角三角形中,一个角为90度,而在锐角三角形中,所有角度都小于90度,钝角三角形则有一个角大于90度。
二、三角函数的概念与性质在学习了三角形的基本概念与性质后,我们进一步学习了三角函数的概念与性质。
三角函数是描述角度与边长关系的函数,其中常用的三角函数包括正弦函数、余弦函数和正切函数。
正弦函数是指一个角的对边与斜边的比值,通常用sin表示。
余弦函数是指一个角的邻边与斜边的比值,通常用cos表示。
正切函数是指一个角的对边与邻边的比值,通常用tan表示。
通过三角函数的性质,我们可以进一步研究三角形的性质。
例如,根据正弦定理和余弦定理,我们可以推导出三角形内角和、外角和以及边长的关系。
这些性质对于解决实际问题非常重要。
三、三角形的计算应用作为数学的一个重要分支,三角形的知识经常在实际生活中得到应用。
例如,在建筑设计、航海导航、地质勘测等领域,我们经常需要利用三角形的知识来计算距离、角度等问题。
在实际计算中,我们可以通过应用三角函数来解决各种三角形相关的计算问题。
例如,已知一个角和两条边的长度,我们可以利用正弦定理或余弦定理来计算出其他未知边或角的大小。
初中数学有关三角形的公理和定理
初中数学有关三角形的公理和定理
一、一般性质
1、三角形内角和定理:三角形的内角和等于180°
2、三角形外角的性质:
①三角形的一个外角等于与它不相邻的两个内角的和;
②三角形的一个外角大于任何一个与它不相邻的内角;③三角形的外角和等于360°
3、三边关系:
(1)两边之和大于第三边;
(2)两边之差小于第三边
4、三角形中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半.
5、三角形的三边的垂直平分线交于一点(外心),这点到三个顶点的距离(外接圆半径)相等。
6、三角形的三条角平分线交于一点(内心),这点到三边的距离(内切圆半径)相等。
二、特殊性质:
7、等腰三角形、等边三角形
(1)等腰三角形的两个底角相等.(简写成“等边对等角”)(2)如果一个三角形有两个角相等,那么这两个角所对的边也相等.(简写成“等角对等边”)
(3)“三线合一”定理:等腰三角形的顶角平分线、底边上的中线
和底边上的高互相重合
(4)等边三角形的三个内角都相等,并且每一个内角都等于60°.(5)三个角都相等的三角形是等边三角形。
(6)有一个角是60°的等腰三角形是等边三角形
8、直角三角形:
(1)直角三角形的两个锐角互余;
(2)勾股定理:直角三角形两直角边的平方和等于斜边的平方;(3)勾股定理逆定理:如果一个三角形的一条边的平方等于另外两条边的平方和,那么这个三角形是直角三角形.
(4)直角三角形斜边上的中线等于斜边的一半.
(5)在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.
(6)三角形一边的中线等于这边的一半,这个三角形是直角三角形。
数学初中六年级教案:三角形的性质与计算方法
数学初中六年级教案:三角形的性质与计算方法一、三角形的性质1. 三角形的定义和符号表示法在数学中,三角形是由三条边和三个顶点组成的多边形。
我们可以用大写字母A、B、C表示三角形的三个内角,用小写字母a、b、c表示与之对应的三条边,如下图所示:A/ \b/_____\cB Ca2. 三角形分类根据边长的关系,可以将三角形分为以下三类:- 等边三角形:三条边长度相等的三角形。
- 等腰三角形:两条边长度相等的三角形。
- 普通三角形:三条边长度各不相等的三角形。
根据角度的关系,可以将三角形分为以下三类:- 直角三角形:其中一个角为直角(90度)的三角形。
- 钝角三角形:其中一个角为钝角(大于90度)的三角形。
- 锐角三角形:三个角都为锐角(小于90度)的三角形。
3. 三角形的角度关系三角形的三个内角之和总是等于180度,即A + B + C = 180度。
4. 三角形的边长关系根据三角形的边长关系,我们可以推导出以下结论:- 在任意三角形中,任意两边之和大于第三边。
- 在一个锐角三角形中,最长边的对边为最大的内角,而最短边的对边为最小的内角。
- 在一个直角三角形中,最长边称为斜边,而两条边相交成直角的边称为直角边。
二、三角形的计算方法1. 三角形的面积计算- 对于任意三角形,我们可以使用海伦公式来计算其面积。
海伦公式的形式如下:面积= √[s * (s - a) * (s - b) * (s - c)]其中,s是半周长,计算公式为:s = (a + b + c) / 2。
- 对于特殊的直角三角形,我们可以使用简化的面积计算公式。
对于一个直角三角形,其面积计算公式为:面积 = (底边长度 * 高) / 22. 三角形的边长计算- 根据三角形的边长关系,我们可以使用勾股定理来计算三角形的边长。
勾股定理的表达式如下:c² = a² + b²其中,c表示斜边的长度,a和b分别表示直角边的长度。
初中数学定理大全三角形
初中数学定理大全三角形初中数学定理大全:三角形一、三角形的基本定义和性质三角形是由三条线段组成的图形。
三角形的名称通常根据其边长和角度特征来命名。
1.等边三角形:三条边的边长相等。
等边三角形的三个内角均为60度。
2.等腰三角形:两边的边长相等。
等腰三角形的两个底角(底边对应的两个内角)相等。
3.直角三角形:其中一个内角为90度。
直角三角形的直角边是斜边对应直角的两倍。
二、三角形的角度性质1.内角和定理:三角形的三个内角的和等于180度。
对于任意三角形ABC,角A + 角B + 角C = 180度。
2.外角和定理:三角形的一个内角的外角等于另外两个内角的和。
对于任意三角形ABC,角A的外角等于角B + 角C。
3.三角形内角的大小关系:(1)锐角三角形:三个内角均小于90度。
(2)直角三角形:一个内角为90度,其他两个内角为锐角。
(3)钝角三角形:其中一个内角大于90度,其他两个内角为锐角。
三、三角形的边长关系1.三边关系定理:三角形的任意两边之和大于第三边。
对于任意三角形ABC,AB + BC > AC,AC + BC > AB,AB + AC > BC。
2.等边三角形的性质:(1)等边三角形的三个角均为60度。
(2)等边三角形的角平分线、高线、中线重合。
3.等腰三角形的性质:(1)等腰三角形的底角相等。
(2)等腰三角形的高线、角平分线、中线重合。
四、三角形的重要线段和点1.中线:连接三角形任意两个顶点的中垂线交于一个点,该点距离三个顶点的距离相等,称为三角形的重心。
2.高线:从三角形的顶点向底边作垂线,交于底边或其延长线上的一点,称为三角形的高线。
3.角平分线:从三角形的一个内角中心点作垂线,平分该内角。
4.内心:三角形的三条角平分线交于一个点,称为三角形的内心。
五、三角形的相似与全等1.全等三角形:两个三角形的对应边长和对应角度相等。
如果三角形ABC的对应边长和对应角度分别与三角形DEF的对应边长和对应角度相等,则称三角形ABC和三角形DEF全等。
自学初中数学资料-三角形的定义与性质(资料附答案)
自学资料一、三角形的定义与性质【知识探索】1.三角形外角的性质:(1)三角形的一个外角等于和它不相邻的两个内角的和;第1页共44页自学七招之日计划护体神功:每日计划安排好,自学规划效率高非学科培训(2)三角形的一个外角大于任何一个与它不相邻的内角.2.三角形的三边关系:三角形任意两边的和大于第三边.【说明】三角形任意两边的差小于第三边.【错题精练】例1.如图,已知BE和CF是△ABC的两条高,∠ABC=42°,∠ACB=74°,则∠FDE=______.【解答】解:在△ABC中,∵∠A+∠ABC+∠ACB=180°∴∠A=180°-42°-74°=64°在四边形AFDE中,∵∠A+∠AFC+∠AEB+∠FDE=360°又∵∠AFC=∠AEB=90°,∠A=64°∴∠FDE=360°-90°-90°-64°=116°故答案为:116°【答案】116°例2.如图所示,在△ABC中,∠A=52°,若∠ABC与∠ACB的角平分线交于点D1,得到∠D1,∠ABD1与∠ACD1的角平分线交于点D2,得到∠D2;依此类推,∠ABD4与∠ACD4的角平分线交于点D5,得到∠D5,则∠D5的度数是______.【解答】解:∵∠A=52°,∴∠ABC+∠ACB=180°-52°=128°,又∠ABC与∠ACB的角平分线交于D1,∴∠ABD1=∠CBD1=12∠ABC,∠ACD1=∠BCD1=12∠ACB,∴∠CBD1+∠BCD1=12(∠ABC+∠ACB)=12×128°=64°,第2页共44页自学七招之举一反三剑:总结归纳典型题,多种解法开脑洞非学科培训∴∠BD1C=180°-1(∠ABC+∠ACB)=180°-64°=116°,2(∠ABC+∠ACB)=180°-96°=84°,同理∠BD2C=180°-34(∠ABC+∠ACB)=180°-124°=56°.依此类推,∠BD5C=180°-3132故答案为:56°.【答案】56°例3.如图,在△ABC中,BD平分∠ABC,DE⊥AB于E,AB=3cm,BC=2.5cm,△ABD的面积为2cm2,求△ABC的面积.【答案】解:在△ABD中,∵S△ABD=12AB•DE,AB=3cm,S△ABD=2cm2,∴DE=43cm…(2分)过D作DF⊥BC于F.∵BD平分∠ABC,DE⊥AB,DF⊥BC,∴DE=DF,∴DF=43第3页共44页自学七招之以背代诵掌:高效记忆有妙招,以背代诵效果好非学科培训cm…(4分)在△BCD中,BC=2.5cm,DF=43cm∴S△BCD=12BC•DF=53(cm)2…(6分)∵S△ABC=S△ABD+S△BCD,∴S△ABC=2+53=113(cm)2…(8分)例4.已知:如图,在△ABC中,∠A=∠ABC,直线EF分别交△ABC 的边AB、AC和CB的延长线于D、E、F.求证:∠F+∠FEC=2∠A.【答案】证明:∵∠FEC=∠A+∠ADE,∠F+∠BDF=∠ABC,∴∠F+∠FEC=∠F+∠A+∠ADE,∵∠ADE=∠BDF,第4页共44页自学七招之举一反三剑:总结归纳典型题,多种解法开脑洞非学科培训∴∠F+∠FEC=∠A+∠ABC,∵∠A=∠ABC,∴∠F+∠FEC=∠A+∠ABC=2∠A.例5.问题1如图①,一张三角形ABC纸片,点D、E分别是△ABC边上两点.研究(1):如果沿直线DE折叠,使A点落在CE上,则∠BDA′与∠A的数量关系是______研究(2):如果折成图②的形状,猜想∠BDA′、∠CEA′和∠A的数量关系是______研究(3):如果折成图③的形状,猜想∠BDA′、∠CEA′和∠A的数量关系,并说明理由.猜想:______理由问题2研究(4):将问题1推广,如图④,将四边形ABCD纸片沿EF折叠,使点A、B落在四边形EFCD的内部时,∠1+∠2与∠A、∠B之间的数量关系是______.【解答】解:(1)根据折叠的性质可知∠DA′E=∠A,∠DA′E+∠A=∠BDA′,故∠BDA′=2∠A;(2)由图形折叠的性质可知,∠CEA′=180°-2∠DEA′…①,∠BDA′=180°-2∠A′DE…②,①+②得,∠BDA′+∠CEA′=360°-2(∠DEA′+∠A′DE即∠BDA′+∠CEA′=360°-2(180°-∠A),故∠BDA′+∠CEA′=2∠A;(3)∠BDA′-∠CEA′=2∠A.证明如下:连接AA′构造等腰三角形,∠BDA′=2∠DA'A,∠CEA'=2∠EA'A,得∠BDA'-∠CEA'=2∠A,(4)如图④,由图形折叠的性质可知∠1=180°-2∠AEF,∠2=180°-2∠BFE,两式相加得,∠1+∠2=360°-2(∠AEF+∠BFE)即∠1+∠2=360°-2(360°-∠A-∠B),所以,∠1+∠2=2(∠A+∠B)-360°.第5页共44页自学七招之以背代诵掌:高效记忆有妙招,以背代诵效果好非学科培训【答案】∠BDA′=2∠A∠BDA′+∠CEA′=2∠A∠BDA′-∠CEA′=2∠A∠1+∠2=2(∠A+∠B)-360°例6.我们定义:在一个三角形中,如果一个角的度数是另一个角度数的3倍,那么这样的三角形我们称之为“和谐三角形”.如:三个内角分别为105°,40°,35°的三角形是“和谐三角形”概念理解:如图1,∠MON=60°,在射线OM上找一点A,过点A作AB⊥OM交ON于点B,以A为端点作射线AD,交线段OB于点C(点C不与O,B重合)(1)∠ABO的度数为______,△AOB______(填“是”或“不是”)“和谐三角形”;(2)若∠ACB=80°,求证:△AOC是“和谐三角形”.应用拓展:如图2,点D在△ABC的边AB上,连接DC,作∠ADC的平分线交AC于点E,在DC上取点F,使∠EFC+∠BDC=180°,∠DEF=∠B.若△BCD是“和谐三角形”,求∠B的度数.【解答】解:(1)∵AB⊥OM,∴∠OAB=90°,∴∠ABO=90°-∠MON=30°,∵∠OAB=3∠ABO,∴△AOB为“和谐三角形”,故答案为:30;是;(2)证明:∵∠MON=60°,∠ACB=80°,∵∠ACB=∠OAC+∠MON,∴∠OAC=80°-60°=20°,∵∠AOB=60°=3×20°=3∠OAC,∴△AOC是“和谐三角形”;应用拓展:∵∠EFC+∠BDC=180°,∠ADC+∠BDC=180°,∴∠EFC=∠ADC,∴AD∥EF,∴∠DEF=∠ADE,第6页共44页自学七招之举一反三剑:总结归纳典型题,多种解法开脑洞非学科培训∵∠DEF=∠B,∴∠B=∠ADE,∴DE∥BC,∴∠CDE=∠BCD,∵AE平分∠ADC,∴∠ADE=∠CDE,∴∠B=∠BCD,∵△BCD是“和谐三角形”,∴∠BDC=3∠B,或∠B=3∠BDC,∵∠BDC+∠BCD+∠B=180°,∴∠B=36°或∠B=540°7.【答案】30°是【举一反三】1.如图所示,△ABC中,点D,E分别是AC,BD上的点,且∠A=65°,∠ABD=∠DCE=30°,则∠BEC的度数是______.【解答】解:∵∠BDC=∠A+∠ABD=65°+30°=95°,∠BEC=∠BDC+∠DCE=95°+30°=125°,故答案为125°.【答案】125°2.已知等腰三角形的周长为29,一边长为7,则此等腰三角形的腰长为______.【解答】解:若腰长为7,则底边=29-2×7=15,∵7+7<15∴不能组成三角形第7页共44页自学七招之以背代诵掌:高效记忆有妙招,以背代诵效果好非学科培训若底边为7,则腰长=(29-7)÷2=11故答案为11【答案】113.在△ABC中,已知点D,E,F分别是BC、AD、CE的中点,且三角形ABC的面积等于4cm2,则三角形BEF的面积等于______cm2.【解答】解:如图,点F是CE的中点,∴△BEF的底是EF,△BEC的底是EC,即EF=12EC,高相等;∴S△BEF=12S△BEC,同理得,S△EBC=12S△ABC,∴S△BEF=14S△ABC,且S△ABC=4cm2,∴S△BEF=1cm2,即阴影部分的面积为1cm2.故答案为:1.【答案】1第8页共44页自学七招之举一反三剑:总结归纳典型题,多种解法开脑洞非学科培训4.如图,将△ABC的三边AB,BC,CA分别延长至B′,C′,A′,且使BB′=AB,CC′=2BC,AA′=3AC.若S△ABC=1,那么S△A'B'C'是()A. 15B. 16C. 17D. 18【解答】解:连接CB',∵AB=BB',∴S△BB'C=S△ABC=1,又CC'=2BC,∴S△B'CC'=2S△BB'C=2.∴S△BB'C'=3.同理可得S△A'CC'=8,S△A'B'A=6.∴S△A'B'C'=3+8+6+1=18.∴故选D.【答案】D5.如图1,在△ABC中,AD平分∠BAC,AE⊥BC,垂足为E.(1)若∠B=35°,∠C=75°,求∠DAE的度数;(2)若∠B=α,∠C=β,且0°<α<β<90°,试探究下列问题:①∠DAE=______(用含α、β的代数式表示);②若点P为射线AD上任意一点(除点A、点D外),过点P作PQ⊥BC,垂足为Q(请在图2、图3中将图形补充完整),请用含α、β的代数式表示∠DPQ并说明理由.【解答】解:(1)∵∠B=35°,∠C=75°,∴∠BAC=180°-∠B-∠C=70°,∵AD平分∠BAC,∠BAC=35°,∴∠DAC=12∵AE⊥BC,∴∠AEC=90°,∵∠C=75°,第9页共44页自学七招之以背代诵掌:高效记忆有妙招,以背代诵效果好非学科培训∴∠EAC=90°-75°=15°,∴∠DAE=∠DAC-∠EAC=35°-15°=20°;(2)①∵∠B=α,∠C=β,∴∠BAC=180°-∠B-∠C=(180-α-β)°,∵AD平分∠BAC,∴∠DAC=12∠BAC=12(180-α-β)°=90°-12α-12β,∵AE⊥BC,∴∠AEC=90°,∵∠C=β,∴∠EAC=90°-β,∴∠DAE=∠DAC-∠EAC=(90°-12α-12β)-(90°-β)=12β-12α,故答案为:12β-12α;②如图,∵∠B=α,∠C=β,∴∠BAC=180°-∠B-∠C=180°-α-β,∵AD平分∠BAC,∴∠DAC=12∠BAC=12×(180°-α-β)=90°-12α-12β,∵∠ADC=180°-∠C-∠DAC=180°-β-(90°-12α-12β)=90°-12β+12α,∴∠QDP=∠ADC=90°-12β+12α,∵PQ⊥BC,∴∠PQD=90°,∴∠DPQ=90°-∠PDQ=90°-(90°-12β+12α)=1 2β-12α,即∠DPQ=12β-12α.【答案】12β-12α第10页共44页自学七招之举一反三剑:总结归纳典型题,多种解法开脑洞非学科培训6.(1)如图1,在△ABC中,BD、CD分别是△ABC两个内角∠ABC、∠ACB的平分线.①若∠A=70°,求∠BDC的度数.②∠A=α,请用含有α的代数式表示∠BDC的度数.(2)如图2,BE、CE分别是△ABC两个外角∠MBC、∠NCB的平分线.若∠A=α,请用含有α的代数式表示∠BEC的度数.【答案】解:(1)①∵∠ABC,∠ACB的平分线相交于点D,∴∠ABD=∠CBD,∠BCD=∠ACD,∵∠DBC+∠BCD+∠BDC=180°,∠ABD+∠CBD+∠BCD+∠ACD+∠A=180°,∴2∠DBC+2∠BCD+∠A=180°,∴2(180°-∠BDC)+∠A=180°,∴∠BDC=90°+12∠A,∵∠A=70°,∴∠BDC=90°+12×70°=90°+35°=125°.②∠A=90°+12α.(2)∵BE、CE分别是△ABC两个外角∠MBC、∠NCB的平分线,∴∠EBC=12∠MBC,∠BCE=12∠BCM,∵∠CBM、∠BCN是△ABC的两个外角∴∠CBM+∠BCN=360°-(180°-∠A)=180°+∠A∴∠EBC+∠BCE=12(∠MBC+∠BCN)=12(180°+∠A)=90°+12∠A,在△DBC中,∵∠BEC=180°-(∠EBC+∠BCE)=180°-(90°+12∠A)=90°-12∠A,且∠A=α,∴∠BEC=90°-12α.7.已知:∠MON=40°,OE平分∠MON,点A、B、C分别是射线OM、OE、ON上的动点(A、B、C 不与点O重合),连接AC交射线OE于点D.设∠OAC=x°.(1)如图1,若AB∥ON,则①∠ABO的度数是_______②当∠BAD=∠ABD时,求∠OAC;③当∠BAD=∠BDA时,求∠OAC.(2)如图2,若AB⊥OM,且D在线段OB上,则是否存在这样的x的值,使得△ADB中有两个相等的角?若存在,求出x的值;若不存在,说明理由.【解答】【答案】(1)①20∘②120∘③60∘(2)存在,x=20∘,30∘,50∘,125∘二、全等三角形【知识探索】1.能够重合的两个图形叫做全等形.两个三角形是全等形,就说它们是全等三角形.两个全等三角形,经过运动后一定重合,相互重合的顶点叫做对应顶点;相互重合的边叫做对应边;相互重合的角叫做对应角.【错题精练】例1.两个三角形的两条边及其中一条边的对角对应相等,下面说法正确的有()(1)这两个三角形一定全等;(2)这两个三角形不一定全等;(3)相等的角为锐角时,这两个三角形全等;(4)相等的角是钝角时,这两个三角形全等.A. 1种B. 2种C. 3种D. 4种【解答】解:两个三角形的两条边及其中一条边的对角对应相等,满足SSA,但是SSA不能判定三角形的全等.但当相等的角是钝角时,这两个三角形全等.则说法正确的只有(2)(4).故选:B.【答案】B例2.已知:BE⊥CD,BE=DE,BC=DA,求证:①△BEC≌△DEA;②DF⊥BC.【答案】证明:(1)∵BE⊥CD,BE=DE,BC=DA,∴△BEC≌△DEA(HL);(2)∵△BEC≌△DEA,∴∠B=∠D.∵∠D+∠DAE=90°,∠DAE=∠BAF,∴∠BAF+∠B=90°.即DF⊥BC.例3.【问题探究】(1)如图1,锐角△ABC中,分别以AB、AC为边向外作等腰△ABE和等腰△ACD,使AE=AB,AD=AC,∠BAE=∠CAD,连接BD,CE,试猜想BD与CE的大小关系,并说明理由.【深入探究】(2)如图2,四边形ABCD中,AB=5cm,BC=3cm,∠ABC=∠ACD=∠ADC=45°,求BD的长.(3)如图3,在(2)的条件下,当△ACD在线段AC的左侧时,求BD的长.例4.如图,点F、G分别是正五边形ABCDE边BC、CD上的点,且BF=CG,AF与BG交于点H.(1)求证:△ABF≌△BCG(2)求∠AHG的度数.【答案】(1)证明:∵正五边形ABCDE,∴AB=BC,∠ABF=∠C,∴在△ABF和△BCG中AB=CB∠ABF=∠C BF=CGAB=CB∠ABF=∠CBF=CG,∴△ABF≌△BCG(SAS);(2)解:∵△ABF≌△BCG,∴∠BAF=∠CBG,∵∠BAF+∠ABH=∠AHG,∴∠CBH+∠ABH=∠AHG=∠ABC=(5-2)180°5=108°.∴∠AHG=108°.例5.如图,点A、B、C在⊙O上,AĈ=CB̂.(1)若D、E分别是半径OA、OB的中点,如图1,求证:CD=CE.(2)如图2,⊙O的半径为4,∠AOB=90°,点P是线段OA上的一个动点(与点A、O不重合),将射线CP绕点C逆时针旋转90°,与OB相交于点Q,连接PQ,求出PQ的最小值.【答案】解:(1)连接CO.∵AĈ═CB̂,∴∠AOC=∠BOC,∵D、E分别是半径OA、OB的中点,∴OD=12OA,OE=12OB,∴OD=OE,在△ODC和△OEC中,∵OD=OE,∠AOC=∠BOC,OC=OC,∴△ODC≌△OEC(SAS)∴CD=CE;(2)当CP⊥OA时,∵∠AOB=90°,∠PCQ=90°,∴∠CQO=90°,即CQ⊥OB.∵∠AOC=∠BOC,∴CP=CQ,当CP与OA不垂直时,如图,过点C作CM⊥OA,CN⊥OB,M、N为垂足.∵∠AOC=∠BOC,∴CM=CN,又∵∠AOB=90°,∴∠MCN=90°,∴四边形CMON是正方形,∵∠PCQ=90°,∴∠PCM=∠QCN,∴△PCM≌△QCN(AAS)∴CP=CQ,∴PQ=√2CP,∴当CP取得最小值即CM的长时,PQ有最小值,∴PQ=√2CP≥√2CM=CO=4,PQ的最小值为4.【举一反三】1.下列4个判断:①有两边及第三边上的高对应相等的两个三角形全等;②两个三角形的6个边.角元素中,有5个元素分别相等的两个三角形全等;③有两边及其中一边上的高对应相等的两个三角形全等;④有两边及第三边上的中线对应相等的两个三角形全等;其中正确判断的编号是______.【解答】解:①如图,△ABC与△ABC′中,AB=AB,AC=AC′,高AD相同,但是,△ABC与△ABC′不全等,,故选项错误;②设△ABC的三边长分别为AB=16AC=24,BC=36;△A′B′C′的三边长分别为A′B′=24A′C′=36,B′C′=54.由于△ABC与△A′B′C′的对应边成比例故△ABC∽△A′B′C′,从而它们有5个边角元素分别相等:∠A=∠A′,∠B=∠B′,∠C=∠C′,AC=A′B′,BC=A′C′,但它们不全等;故该选项错误;③有两边及其中一边上的高对应相等的两个三角形不一定全等,如图:△ABC和△ACD,的边AC=AC,BC=CD,高AE=AE,但△ABC和△ACD不全等,故选项错误;④可根据SSS证明△ABD≌△A′B′D′以及利用SAS证明△ABC≌△A′B′C′,故选项正确.故选④.【答案】④2.如图,△ABC的两条高AD、BE相交于H,且AD=BD,试说明下列结论成立的理由.(1)∠DBH=∠DAC;(2)BH=AC;(3)如果BC=14,AH=2,AC=10,求HE的长度.【答案】解:(1)∵AD,BE是△ABC的高∴∠ADC=∠BEC=90°,∴∠DBH+∠C=90°,∠DAC+∠C=90°∴∠DBH=∠DAC;(2)由(1)题已得∠DBH=∠DAC,∵在△BDH和△ADC中,∠BDH=∠A DC BD=AD∠DBH=∠DAC∠BDH=∠A DCBD=AD∠DBH=∠DAC,∴△BDH≌△ADC(ASA),∴BH=AC;(3)由(2)题已证△BDH≌△ADC,∴HD=DC(设长度为x)设AD=BD=y,∵BC=14,AH=2,AC=10∴x+y=14,y-x=2.解得x=6,y=8,∵12×AC×BE=12×BC×AD,∴10×BE=14×8,解得BE=11.2,∴HE=BE-BH=11.2-10=1.2.3.如图,已知∠1=∠2,P为BN上一点,且PD⊥BC于D,AB+BC=2BD,求证:∠BAP+∠BCP=180°.【答案】证明:如图,过点P作PE⊥AB于E,∵∠1=∠2,PD⊥BC,∴PD=PE,在Rt△BPE和Rt△BPD中,BP=BP PE=PDBP=BPPE=PD,∴Rt△BPE≌Rt△BPD(HL),∴BE=BD,∵AB+BC=2BD,∴BE-AE+BD+CD=2BD,∴AE=CD,在△APE和△CPD中,AE=CDPD=PE∠AEP=∠CDP=90°PD=PE∠AEP=∠CDP=90°AE=CD,∴△APE≌△CPD(SAS),∴∠BCP=∠PAE,∵∠BAP+∠PAE=180°,∴∠BAP+∠BCP=180°.4.已知,如图,AB=AC,BD=CD,DE⊥AB于点E,DF⊥AC于点F,(1)求证:DE=DF.(2)连接BC,求证:线段AD垂直平分线段BC.【答案】解:(1)如图,连接AD . 在△ACD 和△ABD 中,AC=AB CD=BD AD=ADAC=AB CD=BD AD=AD∴△ACD ≌△ABD (SSS ). ∴∠FAD=∠EAD , 即AD 平分∠EAF .又∵DE ⊥AE ,DF ⊥AF , ∴DE=DF .(2)∵△ACD ≌△ABD (已证). ∴DC=DB ,∴点D 在线段BC 的垂直平分线上. 又∵AB=AC∴点A 在线段BC 的垂直平分线上. ∵两点确定一条直线, ∴AD 垂直平分BC .5.如图,AĈ是劣弧,M 是AC ̂的中点,B 为AM ̂上任意一点.自M 向BC 弦引垂线,垂足为D ,求证:AB+BD=DC .【答案】证明:在CD 上取点N ,使CN=AB ,连接CM ,MN∵M 是AC ̂的中点, ∴AM̂=CM ̂, ∴AM=CM (等弧对等弦), 又∵∠BAM=∠BCM , 在△ABM 和△CNM 中,{CN=AB∠BAM=∠BCMAM=CM,∴△ABM≌△CNM(SAS),∴BM=MN,∴△BMN为等腰三角形(BN为底),又∵MD⊥BN,∴D为BN中点(等腰三角形三线合一),∴BD=DN∴AB+BD=CD.三、等腰三角形【知识探索】1.有两边相等的三角形叫做等腰三角形2.三边都相等的三角形叫做等边三角形.【说明】等边三角形的三边都相等,它是特殊的等腰三角形.【错题精练】例1.如图,△ABC的面积为1cm2,BP平分∠ABC,AP⊥BP于P,则△PBC的面积为()A. 0.4cm2B. 0.5cm2C. 0.6cm2D. 0.7cm2【解答】解:∵BP平分∠ABC,∴∠ABP=∠EBP,∵AP⊥BP,∴∠APB=∠EPB=90°,在△ABP和△EBP中,∠ABP=∠EB P BP=BP∠APB=∠EPB∠ABP=∠EB PBP=BP∠APB=∠EPB,∴△ABP≌△EBP(ASA),∴AP=PE,∴S△ABP=S△EBP,S△ACP=S△ECP,∴S△PBC=12S△ABC=12×1cm2=0.5cm2,故选:B.【答案】B例2.如图,在△ABC中,AB=AC,E在AC上,经过A,B,E三点的圆O交BC于点D,且D点是弧BE的中点,(1)求证AB是圆的直径;(2)若AB=8,∠C=60°,求阴影部分的面积;(3)当∠A为锐角时,试说明∠A与∠CBE的关系.例3.如图钢架中,∠A=n°,依次焊上等长的钢条P1P2,P2P3,…,来加固钢架,若P1A=P1P2,要使得这样的钢条只能焊上4根,则n的取值范围是______.【解答】解:∵AP1=P1P2,P1P2=P2P3,P3P4=P2P3,P3P4=P4P5,∴∠A=∠P1P2A,∠P2P1P3=∠P2P3P1,∠P3P2P4=∠P3P4P2,∠P4P3P5=∠P4P5P3,∴∠P3P5P4=4∠A,∵要使得这样的钢条只能焊上4根,∴∠P5P4C=5∠A,由题意4n<905n≥904n<905n≥90,∴18≤n<22.5,故答案为:18≤n<22.5.【答案】18≤n<22.5例4.如图,∠AOB=45°,点M,N在边OA上,OM=3,ON=7,点P是直线OB 上的点,要使点P,M,N构成等腰三角形的点P有______个.【解答】解:过M作MM′⊥OB于M′,过N作NN′⊥OB于N′,∵OM=3,ON=7,∠AOB=45°,∴MN=4,MM′=OM×sin45°=32√2<4,NN′=ON×sin45°=72√2>4,MH=M′N′=4×sin45°=2√2<4,所以只有一小两种情况:①以M为圆心,以4为半径画弧,交直线OB于P1、P2,此时△NP1M和△NMP2都是等腰三角形;②作线段MN的垂直平分线,交直线PB于P3,此时△MNP3是等腰三角形,即有3个点P符合,故答案为:3.【答案】3例5.如图,D和E分别是△ABC的边BC和AC上的点,若AB=AC,AD=AE,则下列说法正确的是()A. 当∠1为定值时,∠CDE为定值B. 当∠2为定值时,∠CDE为定值C. 当∠3为定值时,∠CDE为定值D. 当∠B为定值时,∠CDE为定值【解答】解:A∵AB=AC,∴∠B=∠C,又∠ADC=∠1+∠B,∴∠ADE=∠ADC-∠CDE=∠1+∠B-∠CDE,∵AD=AE,∴∠ADE=∠3=∠CDE+∠C=∠CDE+∠B,∴∠1+∠B-∠CDE=∠CDE+∠B,∴∠1=2∠CDE,∴当∠1为定值时,∠CDE为定值,故选:A.【答案】A例6.等腰三角形一腰上的高等于腰长的一半,则顶角的度数是()A. 30°B. 60°C. 30°或150°D. 不能确定【解答】解:本题分两种情况讨论:(1)当BD在三角形内部时,AB,∠ADB=90°,∵BD=12∴∠A=30°;(2)当BD在三角形外部时,AB,∠ADB=90°,∵BD=12∴∠DAB=30°,∠ABC=180°-∠DAB=30°=150°.故选:C.【答案】C例7.如图,已知直线PQ⊥MN于点O,点A,B分别在MN,PQ上,OA=1,OB=2,在直线MN或直线PQ上找一点C,使△ABC是等腰三角形,则这样的C点有______个.【解答】解:使△ABC是等腰三角形,当AB当底时,则作AB的垂直平分线,交PQ,MN的有两点,即有两个三角形.当让AB当腰时,则以点A为圆心,AB为半径画圆交PQ,MN有三点,所以有三个.当以点B为圆心,AB为半径画圆,交PQ,MN有三点,所以有三个.所以共8个,故答案为:8【答案】8例8.等腰三角形一腰上的中线把周长分为15和12两部分,求该三角形各边的长.【答案】解:在△ABC 中,AB=AC ,BD 是中线,设AB=x ,BC=y(1)当AB+AD=12时,则{x +12x =12y +12x =15,解得{x =8y =11.∴三角形三边的长为8、8、11;(2)当AB+AD=15时,则{x +12x =15y +12x =12,解得{x =10y =7.∴三角形三边的长为10、10、7经检验,两种情况均符合三角形三边关系定理因此这个三角形的三边长分别为8,8,11或10,10,7.例9.如图,在△ABC 中,AB=AC ,∠B=30°,点D 从点B 出发,沿B→C 方向运动到点C (D 不与B ,C 重合),连接AD ,作∠ADE=30°,DE 交线段AC 于点E ,设∠BAD=x°,∠AED=y°. (1)当BD=AD 时,求∠DAE 的度数; (2)求y 与x 的关系式;(3)当BD=CE 时,求x 的值.【答案】解:(1)当BD=AD 时,∠B=∠BAD=30°,∵△ABC 等腰三角形,∴∠BAC=120°,∴∠DAE=∠BAC-∠BAD=120°-30°=90° (2)由题可知,∠BAD+∠DAE=120°即x+∠DAE=120 ∠AED+∠DAE=180°-∠ADE=150°即y+∠DAE=150 两式相减得y-x=30即y=x+30(3)由题可知,∠B+∠BAD=∠ADE+∠EDC 且∠B=∠ADE=30° ∴∠BAD=∠EDC=x 又∵∠B=∠C 和BD=CE ∴△ABD ≌△DCE∴CD=AB=AC∴△ACD为等腰三角形且∠C=30°∴∠DAE=75°∴x=∠BAC-∠DAE=120°-75°=45即x=45【举一反三】1.如图,△ABC中,AB=AC,点D在AC边上,若AD=BD=BC,则∠A的度数为()A. 70° B. 45° C. 36° D. 30°【解答】解:∵AB=AC,∴∠ABC=∠C,∵BD=BC=AD,∴∠A=∠ABD,∠C=∠BDC,,设∠A=∠ABD=x,则∠BDC=2x,∠C=180°−x2可得2x=180°−x,2解得:x=36°,则∠A=36°,故选:C.【答案】C2.如图,在△ABC中,AB=AC,∠BAC=108°,若AD、AE三等分∠BAC,则图中等腰三角形有()A. 3个B. 4个C. 5个D. 6个【解答】解:∵AB=AC,∠BAC=108°,∴∠B=∠C=36°,△ABC是等腰三角形,∵∠BAC=108°,AD、AE三等分∠BAC,∴∠BAD=∠DAE=∠EAC=36°,∴∠DAC=∠BAE=72°,∴∠AEB=∠ADC=72°,∴BD=AD=AE=CE,AB=BE=AC=CD,∴△ABE、△ADC、△ABD、△ADE、△AEC是等腰三角形,∴一共有6个等腰三角形.故选:D.【答案】D3.如图,BD、CE分别是∠ABC和∠ACB的角平分线,已知AG⊥BD,AF⊥CE,若BF=2,ED=3,GC=4,则△ABC的周长为______.【解答】解:由AG⊥BD,BD是∠ABC的角平分线,则在△ABD和△GBD中,BD=BD∠ADB=GDB∠ABD=∠GBD∠ABD=∠GBDBD=BD∠ADB=GDB,∴△ABD≌△GBD,∴AB=BG.即△ABG是等腰三角形,同理:△ACF也是等腰三角形.∴AB=BG,AC=CF,又∵AG⊥BD,AF⊥CE,∴E、D分别是AF和AG 的中点,∴ED是△AFG的中位线,∴FG=2DE,则△ABC的周长为:AB+BC+AC=BG+CG+BC=BF+FG+BF+FG+CG+FG+CG,由BF=2,ED=3,GC=4,FG=2DE=6得△ABC的周长为30.故答案为:30.4.等腰三角形一腰上的高与另一腰所在直线的夹角为40°,该等腰三角形的顶角等于______.【解答】解:①如图,等腰三角形为锐角三角形,∵BD⊥AC,∠ABD=40°,∴∠A=50°,即顶角的度数为50°.②如图,等腰三角形为钝角三角形,∵BD⊥AC,∠DBA=40°,∴∠BAD=50°,∴∠BAC=130°.故答案为50°或130°.【答案】50°或130°5.等腰三角形一腰上的高与另一腰的夹角为30°,则底角为______.【解答】解:当等腰三角形为锐角三角形时,如图1,由已知可知,∠ABD=30°,又BD⊥AC,∴∠ADB=90°,∴∠A=60°,∴∠ABC=∠C=60°.当等腰三角形为钝角三角形时,如图2,由已知可知,∠ABD=30°,∴∠DAB=60°,∴∠C=∠ABC=30°.故答案为:60°或30°.【答案】60°或30°6.如图,已知在△ABC中,∠ACB=90°,在AB上截取AE=AC,BD=BC.求证:∠DCE=45°.【答案】证明:∵∠ACB=90°,∴∠A+∠B=90°,∵AC=AE,BD=BC,∴∠BCD=∠BDC=12(180°-∠B),∠ACE=∠AEC=12(180°-∠A),∴∠BCD+∠ACE=180°-12(∠A+∠B)=135°,∴∠DCE=∠BCD+∠ACE-∠ACB=135°-90°=45°.7.如图所示,△ABC中,AC=BC,以AC为直径的⊙O交AB于E,作△BCA的外角平分线CF交⊙O于F,连接EF,求证:EF=BC.【答案】证明:∵CA=CB,∴∠B=∠A,又∵∠DCA=2∠FCA,∠DCA=∠A+∠B=2∠A,∴∠FCA=∠A.∴CF∥AB.又∵∠FCA=∠FEA(同弧所对的圆周角相等),∴∠FEA=∠B.∴BC∥EF.∴四边形CFEB为平行四边形.∴EF=BC.8.如图,在△ABC中,AB=AC,⊙O是△ABC的外接圆,D为弧AC的中点,E是BA延长线上一点,∠DAE=105°.(1)求∠DAC的度数;(2)若⊙O的半径为3,求弧BC的长.【答案】解:(1)∵AB=AC,̂=AĈ,∴AB∴∠ABC=∠ACB,̂的中点,∵D为AĈ=CD̂,∴AD∴∠CAD=∠ACD,̂=2AD̂,∴AB∴∠ACB=2∠ACD,又∵∠DAE=105°,∴∠BCD=105°,×105°=35°,∴∠ACD=13∴∠CAD=35°;(2)∵∠DAE=105°,∠CAD=35°,∴∠BOC=80°,∴弧BC的长=80•π×32360=2π.1.等腰三角形一腰上的高线与底边的夹角等于()A. 顶角B. 底角C. 顶角的一半D. 底角的一半【解答】解:如图,过点A作AE⊥BC,则AE平分∠BAC,∴∠2=12∠A,∵BD⊥AC,∴∠1+∠C=90°,又∠2+∠C=90°,∴∠1=∠2,∴∠1=12∠A,即等腰三角形一腰上的高与底边的夹角等于顶角的一半,故选:C.【答案】C2.如图,点D是△ABC的边BC上的一点,则在△ABC中∠C所对的边是______;在△ACD中∠C所对的边是______;在△ABD中边AD所对的角是______;在△ACD中边AD 所对的角是______.【解答】解:在△ABC中∠C所对的边是AB;在△ACD中边AD所对的角是∠C;故答案为:AB;AD;∠B;∠C.【答案】ABAD∠B∠C3.如图,△ABC中,∠A=96°,D是BC延长线上的一点,∠ABC与∠ACD(△ACB的外角)的平分线交于A1点,则∠A1=______度;如果∠A=α,按以上的方法依次作出∠BA2C,∠BA3C…∠BA n C(n为正整数),则∠A n=______度(用含α的代数式表示).【解答】解:∵∠ABC与∠ACD(△ACB的外角)的平分线交于A1点,∴∠A1BC=12∠ABC,∠A1CA=∠A1CD=12∠ACD,∴∠A1=180°-(∠A1BC+∠A1CB)=180°-(12∠ABC+12∠ACD+∠ACB)=180°-[12∠ABC+12(∠ABC+∠A)+∠ACB]=180°-[∠ABC+∠ACB+12∠A]=180°-[180°-∠A+12∠A]=12∠A.∵∠A=96°,∴∠A1=48°.∵∠A=α,依此类推可知∠A n=12nα度.【答案】4812nα4.如图,将一张三角形纸片ABC的一角折叠,使点A落在△ABC外的A'处,折痕为DE.如果∠A=α,∠CEA′=β,∠BDA'=γ,则α,β,γ三者之间的等量关系是______.【解答】解:由折叠得:∠A=∠A',∵∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',∵∠A=α,∠CEA′=β,∠BDA'=γ,∴∠BDA'=γ=α+α+β=2α+β,故答案为:γ=2α+β.【答案】γ=2α+β5.如图:将△ABC纸片沿DE折叠成图①,此时点A落在四边形BCDE内部,则∠A与∠1、∠2之间有一种数量关系保持不变,请找出这种数量关系并说明理由.(1)若折成图②或图③,即点A落在BE或CD上时,分别写出∠A与∠2;∠A与∠1之间的关系;(不必证明)(2)若折成图④,写出∠A与∠1、∠2之间的关系式;(不必证明)(3)若折成图⑤,写出∠A与∠1、∠2之间的关系式.(不必证明)【答案】解:延长BD、CE,交于点P;则△BCP即为折叠前的三角形,由折叠的性质知:∠DAE=∠DPE.图①中:连接AP;由三角形的外角性质知:∠1=∠DAP+∠DPA,∠2=∠EAP+∠EPA;则∠1+∠2=∠DAE+∠DPE=2∠DAE,即∠1+∠2=2∠A.图②中:由三角形的外角性质知:∠2=∠DPE+∠DAE=2∠DAE,即∠2=2∠A.图③中:∠1=2∠A,解法同图②.图④中:由三角形的外角性质,知:∠2=∠3+∠P,∠3=∠1+∠A,即∠2=∠P+∠1+∠A=2∠A+∠1,故∠2-∠1=2∠A.图⑤中:∠1-∠2=2∠A,解法同图④.故当点A落在四边形BCDE内部,∠1+∠2=2∠A.(1)图②中,∠2=2∠A;图③中,∠1=2∠A.(2)图④中,∠2-∠1=2∠A.(3)图⑤中,∠1-∠2=2∠A.6.如图,在△ABC中,AD是BC边上的中线.若△ABC的周长为35,BC=11,且△ABD与△ACD的周长差为3,求AB,AC的长.【答案】解:∵AD是BC边上的中线,△ABD与△ACD的周长差为3,∴AB-AC=3,∵△ABC的周长为35,BC=11,∴AB+AC=35-11=24,∴AC+3+AC=24,解得:AC=10.5,∴AB=13.5.7.已知△ABC.(1)如图1,若P点为∠ABC和∠ACB的角平分线的交点,试说明:∠P=90°+12∠A;(2)如图2,若P点为∠ABC和外角∠ACD的角平分线的交点,试说明:∠P=12∠A;(3)如图3,若P点为外角∠CBD和∠BCE的角平分线的交点,试说明:∠P=90°-12∠A.【答案】证明:(1)∠P=180°-12∠ABC-12∠ACB=180°-12(180°-∠A)=90+12∠A(2)∠P=∠PCD-∠PBD=12∠ACD-12∠ABC=12∠A(3)∠P=180°-12∠CBD-12∠BCE=180°-12(∠CBD+∠BCE)=180°-12(∠A+∠ACB+∠A+∠ABC)=180°-12(180°+∠A)=90°-12∠A.8.如图,在△ABC中,AD是∠BAC的外角平分线,P是AD上异于点A的任一点,试比较PB+PC与AB+AC的大小,并说明理由.【答案】解:PB+PC>AB+AC.如图,在BA的延长线上取一点E,使AE=AC,连接EP,由AD是∠BAC的外角平分线,可知∠CAP=∠EAP,又AP是公共边,AE=AC,在△ACP与△AEP中,{AE=AC∠EAP=∠CAPAP=AP,∴△ACP≌△AEP(SAS),从而有PC=PE,在△BPE中,PB+PE>BE,而BE=AB+AE=AB+AC,故PB+PE>AB+AC,所以PB+PC>AB+AC.9.已知AB是⊙O的直径,半径OC⊥AB,D为AĈ上任意一点,E为弦BD上一点,且BE=AD.(1)试判断△CDE的形状,并加以证明.(2)若∠ABD=15°,AO=4,求DE的长.证明如下:如图1,连接AC、BC,则∠DAC=∠DBC,∵AB为直径,CO⊥AB,∴△ABC为等腰直角三角形,∴AC=BC,在△ADC和△BEC中{AD=BE∠DAC=∠EBCAC=BC∴△ADC≌△BEC(SAS),∴CD=CE,∠DCA=∠BCE,∵∠ACB=90°,∴∠ACE+∠BCE=90°,∴∠DCA+∠ACE=90°,即∠DCE=90°,∴△CDE为等腰直角三角形;(2)如图2,连接OD,则∠AOD=2∠ABD=2×15°=30°,∵∠AOC=90°,∴∠DOC=60°,且OD=OC=OA=4,∴△OCD为等边三角形,∴CD=CE=OA=4,在Rt△CDE中,由勾股定理可得DE=√CD2+CE2=√42+42=4√2.10.如图,⊙O是△ABC的外接圆,AO⊥BC于F,D为AĈ的中点,E是BA延长线上一点,∠DAE=126°,则∠CAD等于()A. 36°B. 42°C. 38°D. 27°【解答】解:∵AO⊥BC,且AO是⊙O的半径,∴AO垂直平分BC,∴AB=AC,即∠ABC=∠ACB,̂的中点,∵D是AC∴∠ABC=2∠DCA=2∠DAC,∴∠ACB=2∠DCA,∵四边形ABCD内接于⊙O,∴∠BCD=∠DAE=126°,∴∠ACB+∠DCA=126°,即3∠DCA=126°,∴∠DAC=∠DCA=42°.故选:B.【答案】B11.一个等腰三角形一个内角是另一个内角的2倍,则这个三角形底角为()A. 72°或45°B. 45°或36°C. 36°或45°D. 72°或90°【解答】解:①设三角形底角为x,顶角为2x,则x+x+2x=180°,解得:x=45°,②设三角形底角为2x,顶角为x,则2x+2x+x=180°,解得:x=36°,∴2x=72°,综上所述,这个三角形底角为72°或45°,故选:A.【答案】A12.如图钢架中,焊上等长的钢条P1P2,P2P3,P3P4,P4P5…至多需要8根加固钢架,若P1A=P1P2,则∠A的取值范围为______.【解答】解:设∠A=x,∴∠P2P1P3=2x,∴∠P3P2P4=3x,…,∠P8P9P7=8x,∴8x≤90°且9x>90°,则10°≤∠A<11.25°.故答案为:10°≤∠A<11.25°.【答案】10°≤∠A<11.25°13.(1)如图1,在△ABC中,AB=AC,点D在AC上,且AD=BD=BC,求∠A的度数;(2)如图2,点B,D在射线AM上,点C,E在射线AN上,且AB=BC=CD=DE.①若∠EDM=84°,求∠A的度数:②若以E为圆心,ED为半径作弧,与射线DM上没有交点(除D点外),直接写出∠A的取值范围.【答案】解:(1)设∠A=x°,∵AD=BD,∴∠ABD=∠A=x°,∴∠BDC=∠A+∠ABD=2x°,∵BD=BC,∴∠C=∠BDC=2x°,∵AB=AC,∴∠ABC=∠C=2x°,在△ABC中,∠A+∠ABC+∠C=180°,∴x+2x+2x=180,解得:x=36,∴∠A=36°;(2)①∵AB=BC=CD=DE,∴∠A=∠BCA,∠CBD=∠BDC,∠ECD=∠CED,根据三角形的外角性质,∠A+∠BCA=∠CBD,∠A+∠CDB=∠ECD,∠A+∠CED=∠EDM,又∵∠EDM=84°,∴∠A+3∠A=84°,解得:∠A=21°;②∵以E为圆心,ED为半径作弧,与射线DM上没有交点(除D点外)∴E到射线AM的距离大于DE,∴90°≤∠EDM<120°,14.在△ABC中,AB=AC.(1)如图1,如果∠BAD=30°,AD是BC上的高,AD=AE,则∠EDC=______(2)如图2,如果∠BAD=40°,AD是BC上的高,AD=AE,则∠EDC=______(3)思考:通过以上两题,你发现∠BAD与∠EDC之间有什么关系?请用式子表示:______(4)如图3,如果AD不是BC上的高,AD=AE,是否仍有上述关系?如有,请你写出来,并说明理由.【解答】解:(1)∵在△ABC中,AB=AC,AD是BC上的高,∴∠BAD=∠CAD,∵∠BAD=30°,∴∠BAD=∠CAD=30°,∵AD=AE,∴∠ADE=∠AED=75°,∴∠EDC=15°.(2)∵在△ABC中,AB=AC,AD是BC上的高,∴∠BAD=∠CAD,∵∠BAD=40°,∴∠BAD=∠CAD=40°,∵AD=AE,∴∠ADE=∠AED=70°,∴∠EDC=20°.∠BAD)(3)∠BAD=2∠EDC(或∠EDC=12(4)仍成立,理由如下∵AD=AE,∴∠ADE=∠AED,∴∠BAD+∠B=∠ADC=∠ADE+∠EDC=∠AED+∠EDC=(∠EDC+∠C)+∠EDC=2∠EDC+∠C又∵AB=AC,∴∠B=∠C∴∠BAD=2∠EDC.故分别填15°,20°,∠EDC=1∠BAD2【答案】15°20°∠BAD∠EDC=1215.已知:如图,BD、CE是△ABC的高,F是BC的中点,G是ED的中点,(1)求证:FG⊥DE;(2)若BC=16,ED=4,求FG的长.(结果保留根号)【答案】(1)证明:∵BD、CE是△ABC的高,F是BC的中点,BC,∴在Rt△CEB中,EF=12在Rt△BDC中,FD=1BC,2∴FE=FD,∵G是ED的中点,∴FG是等腰三角形EFD的中线,∴FG⊥DE;(2)解:由(1)得,EF=1BC=8,2∵FE=FD,G是ED的中点,∴EF=1ED=2,2在Rt△FGE中,FG=√EF2−EG2=4√15.。
初中数学 全等三角形的性质有哪些
初中数学全等三角形的性质有哪些全等三角形是指具有相等的三个内角和相等的对应边的三角形。
以下是关于全等三角形的性质:1. 对应角相等性质:全等三角形的对应内角是相等的。
也就是说,如果两个三角形的一个内角相等,那么它们的对应内角也相等。
2. 对应边相等性质:全等三角形的对应边的长度是相等的。
也就是说,如果两个三角形的一个边的长度相等,那么它们的对应边的长度也相等。
3. 全等三角形只有一个解:如果两个三角形的三个内角和三条边都相等,那么它们就是全等的。
这意味着全等三角形的相等条件是唯一的,不存在其他满足条件的三角形。
4. 全等三角形的对称性:如果两个三角形是全等的,那么它们的对应边和对应角都是相等的。
也就是说,如果三角形ABC和三角形DEF是全等的,那么AB=DE,AC=DF,BC=EF,∠A=∠D,∠B=∠E,∠C=∠F。
5. 全等三角形的面积相等:如果两个三角形是全等的,那么它们的面积也是相等的。
也就是说,如果三角形ABC和三角形DEF是全等的,那么它们的面积相等,记作∠ABC∠∠DEF。
6. 全等三角形的角平分线相等性质:如果两个三角形是全等的,那么它们的对应角的角平分线也是相等的。
也就是说,如果三角形ABC和三角形DEF是全等的,那么它们的∠A的角平分线等于∠D的角平分线,∠B的角平分线等于∠E的角平分线,∠C的角平分线等于∠F的角平分线。
7. 全等三角形的重心、垂心、外心、内心等特殊点重合性质:如果两个三角形是全等的,那么它们的重心、垂心、外心、内心等特殊点都重合。
也就是说,如果三角形ABC和三角形DEF是全等的,那么它们的重心、垂心、外心、内心等特殊点都重合。
8. 全等三角形的旁边关系:如果两个三角形是全等的,那么它们的对应边的旁边关系也是相等的。
也就是说,如果三角形ABC和三角形DEF是全等的,那么∠A的旁边边BC=∠D的旁边边EF,∠B的旁边边AC=∠E的旁边边DE,∠C的旁边边AB=∠F的旁边边CD。
初中数学知识归纳三角形的性质与判定
初中数学知识归纳三角形的性质与判定三角形是初中数学中的基本图形之一,它具有许多特性和性质。
掌握三角形的性质和判定方法对于解题和证明来说是至关重要的。
本文将对初中数学中常见的三角形性质和判定方法进行归纳总结。
一、三角形的基本概念在深入探讨三角形的性质之前,我们首先需要了解三角形的基本概念。
1. 定义:三角形是由三条线段组成的图形,其中每两条线段之间的组合被称为三角形的边,而相交的端点称为三角形的顶点。
2. 分类:根据三角形的边长关系,三角形可以分为等边三角形、等腰三角形和一般三角形。
二、三角形的性质1. 三角形的内角和性质:三角形的内角和等于180度。
即∠A + ∠B + ∠C = 180°,其中∠A、∠B和∠C分别表示三角形的三个内角。
2. 三角形的外角性质:三角形的一个内角的补角,就是其对应的外角。
即∠D = 180° - ∠A,∠E = 180° - ∠B,∠F = 180° - ∠C。
3. 三角形的两边之和大于第三边:设三角形的三边长分别为a、b和c,则a + b > c,a + c > b,b + c > a。
如果三条边长中有任意一组边长不满足这个条件,则无法构成三角形。
4. 三角形的两角之和大于第三角:设三角形的三个内角的度数分别为∠A、∠B和∠C,则∠A + ∠B > ∠C,∠A + ∠C > ∠B,∠B + ∠C > ∠A。
如果三个内角的度数中有任意一组不满足这个条件,则无法构成三角形。
5. 等边三角形的性质:等边三角形是指三条边的边长相等的三角形。
在等边三角形中,三个内角的度数都是60°,且三条高度、角平分线和中线的长度都相等。
6. 等腰三角形的性质:等腰三角形是指两条边的边长相等的三角形。
在等腰三角形中,两个底角的角度相等,而顶角的角度则小于两个底角。
另外,等腰三角形的高度、角平分线、中线都有一些特殊性质。
初中数学知识归纳直角三角形的性质与运算
初中数学知识归纳直角三角形的性质与运算直角三角形是指一个内角为90度的三角形。
在初中数学中,学生需要掌握直角三角形的性质与运算。
本文将对直角三角形的性质进行归纳,并介绍一些常见的运算方法。
一、直角三角形的性质1. 边长关系:在一个直角三角形ABC中,AB和BC分别为直角三角形的两条直角边,AC为斜边。
根据勾股定理,直角三角形的两个直角边的平方和等于斜边的平方,即AB^2 + BC^2 = AC^2。
2. 角度关系:直角三角形的两个锐角相加等于90度,即∠A + ∠B = 90°,∠B + ∠C = 90°,∠A + ∠C = 90°。
3. 特殊直角三角形:当直角三角形的两个直角边相等时,这个直角三角形称为等腰直角三角形。
在等腰直角三角形中,两个锐角相等,且为45度。
二、直角三角形的运算1. 应用勾股定理求边长:已知直角三角形的两个直角边的长度,可以利用勾股定理求斜边的长度。
例如,在一个直角三角形中,已知AB = 3,BC = 4,可以用勾股定理计算AC的值。
根据勾股定理,AC^2 = AB^2 + BC^2,代入数值计算得到AC的值。
2. 应用三角函数求角度:已知直角三角形的两边长度,可以利用三角函数求角度。
例如,在一个直角三角形中,已知AB = 3,BC = 4,可以用正弦函数求∠A的值。
根据正弦函数的定义,sin∠A = AB/AC,代入数值计算得到∠A 的值。
3. 应用特殊直角三角形求值:在等腰直角三角形中,若已知一个锐角的值,可以通过特殊直角三角形的性质求解其他角度和边长的值。
例如,在一个等腰直角三角形中,已知∠A = 45°,可以得出∠B也等于45°,并且AB = BC。
三、直角三角形的应用直角三角形广泛应用于实际生活和工作中,尤其是在测量和建筑领域。
以下是一些直角三角形的应用案例:1. 地理测量:航空测量和地理测量中经常使用直角三角形进行测量,通过测量一个或多个角的大小和边长,可以计算出距离和方向。
初中数学知识归纳三角形的性质与定理
初中数学知识归纳三角形的性质与定理三角形是初中数学中非常重要的一个概念,它具有丰富的性质与定理。
在本文中,我们将对初中数学中与三角形有关的性质与定理进行归纳总结。
一、三角形的基本性质1. 三角形的定义:一个平面内由三条不在同一直线上的线段所组成的图形叫做三角形。
2. 三角形的元素:三角形有三个顶点、三条边和三个内角。
3. 三角形的两个重要角度和角度和:三角形的角度和等于180度,即∠A + ∠B + ∠C = 180°。
4. 三角形的边对应角:三角形的边与其对应角有对应关系,即边a对应∠A,边b对应∠B,边c对应∠C。
二、三角形的分类1. 三角形的按边长分类:a. 等边三角形:三条边的长度相等,如三边长都是5cm的三角形。
b. 等腰三角形:两条边的长度相等,如底边长度为4cm,两腰边长度都是3cm的三角形。
c. 普通三角形:三条边的长度都不相等。
2. 三角形的按角度分类:b. 直角三角形:一个内角是90度的三角形。
c. 钝角三角形:一个内角是钝角的三角形。
三、三角形的诱导性质与定理1. 等腰三角形的性质与定理:a. 等腰三角形的底边上的两个角相等。
b. 等腰三角形的两条腰相等。
c. 等腰三角形的两条腰上的两个角相等。
d. 等腰三角形的底角和顶角互补,即底角 + 顶角 = 180°。
2. 直角三角形的性质与定理:a. 直角三角形中,直角的两条直角边相等。
b. 直角三角形中,斜边的平方等于两直角边平方和,即c² = a² + b²。
c. 两个边长相等的直角三角形,两个锐角也相等。
3. 等边三角形的性质与定理:a. 等边三角形的三个角都是60度。
b. 等边三角形的三条边都相等。
4. 锐角三角形的性质与定理:b. 锐角三角形中,最长的一边是斜边,最长的一边的对角是最大的角。
5. 外角定理:三角形的一个外角等于其它两个内角的和。
6. 三角形内角和定理:三角形的内角和等于180度。
初中数学 直角三角形的性质及判定
直角三角形的性质及判定•直角三角形定义:有一个角为90°的三角形,叫做直角三角形。
直角三角形可用Rt△表示,如直角三角形ABC写作Rt△ABC。
•直角三角形的判定方法:判定1:定义,有一个角为90°的三角形是直角三角形。
判定2:判定定理:以a、b、c为边的三角形是以c为斜边的直角三角形。
如果三角形的三边a,b,c满足,那么这个三角形就是直角三角形。
(勾股定理的逆定理)。
判定3:若一个三角形30°内角所对的边是某一边的一半,则这个三角形是以这条长边为斜边的直角三角形。
判定4:两个锐角互为余角(两角相加等于90°)的三角形是直角三角形。
判定5:若两直线相交且它们的斜率之积互为负倒数,则两直线互相垂直。
那么判定6:若在一个三角形中一边上的中线等于其所在边的一半,那么这个三角形为直角三角形。
判定7:一个三角形30°角所对的边等于这个三角形斜边的一半,则这个三角形为直角三角形。
(与判定3不同,此定理用于已知斜边的三角形。
)•直角三角形性质:直角三角形是一种特殊的三角形,它除了具有一般三角形的性质外,具有一些特殊的性质:性质1:直角三角形两直角边a,b的平方和等于斜边c的平方。
即。
如图,∠BAC=90°,则AB2+AC2=BC2(勾股定理)性质2:在直角三角形中,两个锐角互余。
如图,若∠BAC=90°,则∠B+∠C=90°性质3:在直角三角形中,斜边上的中线等于斜边的一半(即直角三角形的外心位于斜边的中点,外接圆半径R=C/2)。
性质4:直角三角形的两直角边的乘积等于斜边与斜边上高的乘积。
性质5:如图,Rt△ABC中,∠BAC=90°,AD是斜边BC上的高,则有射影定理如下:(1)(AD)2=BD·DC。
(2)(AB)2=BD·BC。
(3)(AC)2=CD·BC。
性质6:在直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半。
初中数学 什么是正三角形
初中数学什么是正三角形
正三角形,也被称为等边三角形,是一种特殊的三角形。
下面我将详细介绍正三角形的定义、性质和相关概念。
1. 正三角形的定义:
-正三角形:边长相等的三角形称为正三角形,也就是每条边都有相等的长度。
2. 正三角形的性质:
-边长相等:正三角形的每条边都有相等的长度。
-内角相等:正三角形的每个内角都有相等的度数,每个内角都是60度。
-外角相等:正三角形的每个外角都有相等的度数,每个外角都是120度。
-对称性:正三角形具有三个对称轴,对称轴通过正三角形的顶点和中点。
-高度:正三角形的高度等于边长的一半,也就是高度是边长的正弦函数值的一半。
3. 正三角形的相关概念:
-正多边形:边长相等且内角相等的多边形称为正多边形。
正三角形是正多边形中边数为3的特殊情况。
-等腰三角形:具有至少两条边相等的三角形称为等腰三角形。
正三角形是等腰三角形的一种特殊情况,其中所有三边都相等。
正三角形是初中数学中的一个重要概念,它有着许多特殊的性质和规律。
正三角形的边长相等、内角相等以及对称性等性质,使得我们能够利用这些特点进行几何证明和计算。
正三角形的高度和等腰三角形等概念可以帮助我们进一步研究和推导正三角形的性质。
希望以上内容能够满足你对正三角形的了解。
初中数学全等三角形
初中数学全等三角形
1、全等三角形的概念
能够完全重合的两个三角形叫做全等三角形。
两个三角形全等时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。
夹边就是三角形中相邻两角的公共边,夹角就是三角形中有公共端点的两边所成的角。
2、全等三角形的表示和性质
全等用符号“≌”表示,读作“全等于”。
如△ABC≌△DEF,读作“三角形ABC全等于三角形DEF”。
注:记两个全等三角形时,通常把表示对应顶点的字母写在对应的位置上。
3、三角形全等的判定
三角形全等的判定定理:
(1)边角边定理:有两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS”)
(2)角边角定理:有两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA”)
(3)边边边定理:有三边对应相等的两个三角形全等(可简写成“边边边”或“SSS”)。
直角三角形全等的判定:
对于特殊的直角三角形,判定它们全等时,还有HL定理(斜边、直角边定理):有斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL”)
4、全等变换
只改变图形的位置,二不改变其形状大小的图形变换叫做全等变换。
全等变换包括一下三种:
(1)平移变换:把图形沿某条直线平行移动的变换叫做平移变换。
(2)对称变换:将图形沿某直线翻折180°,这种变换叫做对称变换。
(3)旋转变换:将图形绕某点旋转一定的角度到另一个位置,这种变换叫做旋转变换。
八年级数学上册直角三角形知识点总结
八年级数学上册直角三角形知识点总结
直角三角形是初中数学中的重要内容,下面是八年级数学上册直角三角形的知识点总结:
1. 三角函数
- 正弦函数:sin(A) = 对边/斜边
- 余弦函数:cos(A) = 邻边/斜边
- 正切函数:tan(A) = 对边/邻边
2. 特殊直角三角形
- 等腰直角三角形:两条直角边相等
- 30度-60度-90度特殊直角三角形:长边:短边:斜边 = 1:√3:2
- 45度-45度-90度特殊直角三角形:两条直角边相等,斜边等于直角边的√2倍
3. 定义和性质
- 直角三角形的定义:一个角为直角(90度)
- 直角三角形的性质:直角三角形的两条直角边平方和等于斜边平方(勾股定理)
4. 三角形的解题方法
- 已知两边求第三边:利用勾股定理求第三边的长度
- 已知一个角和一边求其他边:利用三角函数计算其他边的长度
- 解决实际问题:将实际问题转化为数学问题,利用三角函数解题
这些是八年级数学上册直角三角形的主要知识点总结,请认真研究,掌握这些内容,将有助于你在数学研究中的进一步理解和应用。
初中数学考点解直角三角形
解直角三角形考点一、直角三角形的性质1、直角三角形的两个锐角互余可表示如下:∠C=90°⇒∠A+∠B=90°2、在直角三角形中,30°角所对的直角边等于斜边的一半。
∠A=30°可表示如下: ⇒BC=21AB ∠C=90°3、直角三角形斜边上的中线等于斜边的一半∠ACB=90°可表示如下: ⇒CD=21AB=BD=AD D 为AB 的中点4、勾股定理直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即222c b a =+5、摄影定理在直角三角形中,斜边上的高线是两直角边在斜边上的摄影的比例中项,每条直角边是它们在斜边上的摄影和斜边的比例中项∠ACB=90° BD AD CD ∙=2⇒AB AD AC ∙=2 CD ⊥ABAB BD BC ∙=26、常用关系式 由三角形面积公式可得:AB ∙CD=AC ∙BC考点二、直角三角形的判定1、有一个角是直角的三角形是直角三角形。
2、如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
3、勾股定理的逆定理:如果222c b a =+,那么这个三角形是直角三角形。
考点三、锐角三角函数的概念1、如图,在△ABC 中,∠C=90°①锐角A 的对边与斜边的比叫做∠A 的正弦,记为sinA ,即ca s i n =∠=斜边的对边A A ②锐角A 的邻边与斜边的比叫做∠A 的余弦,记为cosA ,即cb c o s =∠=斜边的邻边A A ③锐角A 的对边与邻边的比叫做∠A 的正切,记为tanA ,即ba t a n =∠∠=的邻边的对边A A A 2、锐角三角函数的概念锐角A 的正弦、余弦、正切、余切都叫做∠A 的锐角三角函数3、一些特殊角的三角函数值考点四、解直角三角形1、解直角三角形的概念在直角三角形中,除直角外,一共有五个元素,即三条边和两个锐角,由直角三角形中除直角外的已知元素求出所有未知元素的过程叫做解直角三角形。
三角形的性质
三角形的性质三角形是初中数学中的重要概念,它具有丰富的性质和特点。
在学习三角形的过程中,了解和掌握它的性质对于解决各种与三角形相关的问题至关重要。
本文将从三角形的角度、边角关系和面积等方面,详细介绍三角形的性质。
一、三角形的角度性质三角形的内角和等于180度是三角形的基本性质之一。
对于任意一个三角形ABC,我们可以得到以下结论:1. 三角形内角和等于180度:∠A + ∠B + ∠C = 180°。
这个性质在解决三角形相关问题时经常用到。
例如,如果已知一个三角形的两个角的度数,我们可以通过180度减去这两个角的度数,得到第三个角的度数。
2. 三角形的角平分线相交于一点:三角形的内角平分线相交于一点,该点被称为三角形的内心。
内心是三角形的一个重要点,它到三角形的三条边的距离相等,可以用于解决与三角形内角平分线相关的问题。
3. 三角形的垂心、重心和外心:三角形的垂心是三条高线的交点,重心是三条中线的交点,外心是三条外接圆的圆心。
垂心、重心和外心分别对应于三角形的不同特点,它们在解决与高线、中线和外接圆相关的问题时起到了重要作用。
二、三角形的边角关系三角形的边角关系是指三角形的边与角之间的关系,其中包括边长关系和角度关系。
1. 三角形的边长关系:在一个三角形中,任意两边之和大于第三边。
这个性质被称为三角形的三边关系定理,它是解决与三角形边长相关问题的基础。
例如,当我们知道一个三角形的两边长,想要确定第三边长时,可以利用这个定理进行判断。
2. 三角形的角度关系:三角形的角度关系包括内角和外角之间的关系。
内角和外角之间有一定的关系,具体表现为内角和外角之和等于180度。
这个性质可以用于解决与三角形内角和外角相关的问题。
三、三角形的面积性质三角形的面积是三角形的重要属性之一,它的计算方法有多种,其中包括利用底边和高、两边和夹角的正弦定理等。
1. 三角形的面积公式:对于一个三角形ABC,它的面积可以通过以下公式计算:面积 = 1/2 ×底边长度 ×高这个公式是计算三角形面积最常用的方法之一,它的推导和证明可以通过几何和代数的方法进行。
初中数学7三角形的有关概念与性质(教师)
三角形的有关概念与性质课时目标1. 了解三角形的有关概念及三角形的分类;2. 理解三角形的任意两边之和大于第三边的性质;3. 掌握三角形的内角和定理以及外角的性质.知识精要1. 三角形的主要概念(1)三角形:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.(2)三角形的边、角:组成三角形的三条线段叫做三角形的边,每两边所组成的角叫做三角形的内角,简称角.(3)三角形的表示方法:三角形用符号“∆”表示,三角形ABC可记作“∆ABC”或“∆BCA”或“∆ACB”.(4)三角形的外角:三角形的内角的一边与另一边的反向延长线所组成的角叫做三角形的外角.一个三角形的每个顶点上各有两个外角,这两个外角是对顶角.2. 三角形的分类(1)按角来分类:锐角三角形、直角三角形、钝角三角形;(2)按边来分类:不等边三角形、等腰三角形(等边三角形);注:等边三角形(正三角形)是特殊的等腰三角形.3. 三角形中的主要线段(1)三角形的角平分线:三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线. (2)三角形的中线:联结三角形的一个顶点和它的对边中点的线段叫做三角形的中线.(3)三角形的高:从三角形的一个顶点向它的对边(或其延长线)引垂线,顶点和垂足之间的线段叫做三角形的高.(4)一个三角形有三条角平分线,三条中线,三条高.注意:①三角形的角平分线、中线都在三角形内部,而高线可以在内部(锐角三 角形),可以在外部(钝角三角形),也可以在三角形的边上(直角三角形). ②三角形的三条角平分线交于三角形内部一点,三条中线交于三角形内部 一点,三条高线所在直线交于一点.③三角形的角平分线、中线、高线都是线段.④三角形的中线将三角形分成面积相等的两个三角形.4. 三角形的基本要素及基本性质三角形有三个顶点、三个角、三条边共九个要素. (1)三角形边与边的关系:①三角形中任意两边之和大于第三边; ②三角形中任意两边之差小于第三边; ③直角三角形中,斜边大于直角边. (2)三角形角与角的关系:①三角形内角关系:三角形的内角和等于︒180 ②三角形的外角性质: <a >三角形的外角和等于︒360<b >三角形的一个外角等于与它不相邻的两个内角的和 <c >三角形的一个外角大于与它不相邻的任何一个内角 5. 三角形具有稳定性,而四边形不具有稳定性热身练习1. 如图,为估计池塘岸边A 、B 两点的距离,小方在池塘的一侧选取一点O ,测得15=OA 米,10=OB 米,A 、B 间的距离不可能是 ( A ) A . 5米 B .10米 C . 15米D .20米2. 在一个三角形中,下列说法中错误的是( B ) A .至少有两个锐角 B . 最多能有两个钝角 C .至多有一个直角 D . 最多能有三个锐角3. 在△ABC 中,︒=∠︒=∠50,90A C ,则=∠B 40° .4. 在三角形ABC 中,若3:2:1::=∠∠∠C B A ,则=∠+∠B A 90° .5. 三角形的三边为1,a -1,9,则a 的取值范围是 -7< a <-9 . 6.一个三角形的两边分别是2厘米和9厘米,第三边长是一个奇数,则第三边长为 9 厘米7. 建造房屋时,屋顶的支架通常为三角形,这是利用了三角形的 稳定 性. 8. 已知等腰三角形的一条边长为4,周长为10,那么它的底边长是 2 或 4 . 9. 已知等腰三角形一边长为20 cm ,另一边长为10cm ,则这个三角形的周长为 50cm .10. 若三角形边分别是3,4,5,8,用其中的三条线段组成三角形,可以有 2 种 不同选择.11. ∠ACD 是△ABC 的外角,则图中x 的值为 60° .C'B'C(11题图) (13题图)12. △ABC 的BC 边上的高把∠A 分成两个角分别为30°,50°,则∠B ,∠C 的度数分别为 60°,40°13. 在△ABC 中,∠B=∠C=45°,将△ABC 以A 为旋转中心顺时针旋转25°至AB C ''V ,则B C ''与AB 、BC 的夹角BEB '∠= 70 度,CDC '∠= 25 度. 14. 若一个三角形的一个内角为120°,那么另两个角的外角和为 300° .15. 在R t △ABC 中,AB=AC ,∠BAD=20°,AD=AE , ∠CDE= 25 度·ED CB AFE DCBA(15题图) (16题图)16. ∠A+∠B+∠C+∠D+∠E+∠F= 360° .17. 已知:△GEF ,分别画出此三角形的高GH ,中线EM ,角平分线FN .精解名题例1 如图,∠A=70°,P 为△ABC 角平分线的交点,求∠BPC. 解:∠BPC=125°EGHEDC BAGF EDC BA例2如图,BE平分∠ABD,CF平分∠ACD,BE与CF相交于G,若∠BDC=140°,∠BGC=100°,求∠A的度数.解:∵∠DBC+∠DCB=40°,∠GBC+∠GCB=80°∴∠GBD+∠GCD=80°-40°=40°∵BE平分∠ABD,CF平分∠ACD,∴∠ABD+∠ACD=2(∠GBD+∠GCD)=80°∴∠ABC+∠ACB=80°+40°=120°∴∠A=60°例3 求图中∠A+∠B+∠C+∠D+∠E的大小.解:∠A+∠B+∠C+∠D+∠E=180°(提示:三角形外角的性质)例4纸片△ABC中,∠A=65°,∠B=75°,将纸片的一角折叠,使点C落在△ABC内(如图),若∠1=20°,求∠2的度数.解:∠B=80°例5 如图所示,将△ABC 沿着DE 翻折,若∠1+∠2=80O ,求∠B 的度数. 解:∠B =40°巩固练习1. 已知在△ABC 中,C B A ∠=∠=∠2121,则=∠B 72° . 2. 已知三角形两边的长分别为1和2,如果第三边为整数,那么第三边长为 2 . 3. 在ABC ∆中,AB=3,BC=7,则AC 的取值范围是 4 < AC < 7 . 4. 如图,将三角尺的直角顶点放在直尺的一边上,已知∠1=30°,∠2=50°,则∠3= 20°.1FE BACDCBA(4题图) (6题图) (7题图)5. 已知一个三角形中两条边的长分别是a 、b ,且b a >,那么这个三角形的周长L 的取值范围是( B )A .b L a 33>>B .a L b a 2)(2>>+C .a b L b a +>>+262D .b a L b a 23+>>-6. 如图,在△ABC 中,90C ∠=。
初二数学三角形的性质与判定
初二数学三角形的性质与判定三角形是初中数学中一个重要的几何概念,它由三条线段组成,且满足两边之和大于第三边的条件。
在初二数学中,我们将学习三角形的性质与判定,深入了解三角形的各种特征和性质。
1. 三角形的定义三角形是由三条线段组成的图形,线段叫做三角形的边,它们的端点叫做三角形的顶点。
三角形的符号可以用大写字母表示,比如ΔABC。
2. 三角形的分类根据边的长度,我们可以将三角形分为三类:- 等边三角形:三条边的长度相等,即三个顶点之间的距离都相等。
- 等腰三角形:两条边的长度相等,即两对顶点之间的距离相等。
- 普通三角形:三条边的长度都不相等,即三个顶点之间的距离都不相等。
3. 三角形的角度三角形中有三个内角,记作∠A、∠B和∠C。
这些角的性质如下:- 内角和定理:三角形的三个内角的和等于180°,即∠A + ∠B +∠C = 180°。
- 直角三角形:如果三角形中有一个角是90°,那么这个三角形就是直角三角形。
- 钝角三角形:如果三角形中有一个角大于90°,那么这个三角形就是钝角三角形。
- 锐角三角形:如果三角形中的三个角都小于90°,那么这个三角形就是锐角三角形。
4. 三角形的边长关系三角形中的边还有一些特殊的关系:- 三角不等式:三角形任意两边之和大于第三边,即AB + BC > AC,AC + BC > AB,AB + AC > BC。
- 等边三角形的性质:等边三角形的三条边都相等,且任意两个角都是60°。
- 等腰三角形的性质:等腰三角形的两条边相等,且两个底角(底边的对角)相等。
- 等腰直角三角形的性质:等腰直角三角形的两条直角边相等。
5. 三角形的判定在初二数学中,我们还需要学习如何根据给定的条件判定一个图形是否是三角形:- 三边判定:给定三条边的长度,如果任意两边之和大于第三边,那么这三条边可以构成一个三角形。
数学人教版八年级上册《第三节 直角三角形的性质》
数学人教版八年级上册《第三节直角三角形的性质》直角三角形是初中数学中比较重要的概念之一,它具有一些独特的性质。
本文将介绍《数学人教版八年级上册》第三节《直角三角形的性质》,包括直角三角形的定义、勾股定理、特殊的直角三角形以及与直角三角形相关的一些例题和应用。
通过学习本节内容,读者将能够更好地理解和运用直角三角形的性质。
直角三角形是指一个角为90度的三角形。
在直角三角形中,有一个特殊的定理,被称为勾股定理。
勾股定理表明,在直角三角形中,直角边的平方等于其他两条边平方的和。
例如,在一个直角三角形中,较短的直角边为3,较长的直角边为4,那么斜边的长度可以通过勾股定理计算得出,即斜边的长度为5。
勾股定理是直角三角形的重要性质,我们可以通过它解决一些实际问题,比如测量不可直接测量的距离或确定物体之间的距离和角度关系。
除了勾股定理,直角三角形还有一些特殊的性质。
我们先来看一下等腰直角三角形。
等腰直角三角形是指两条直角边长度相等的直角三角形。
在等腰直角三角形中,斜边的长度可以通过直角边的长度计算得出,即斜边长度为直角边长度的平方根乘以2。
比如,如果等腰直角三角形的直角边长为3,那么斜边的长度可以通过计算√3^2+3^2得出,即斜边的长度为3√2。
另一个特殊的直角三角形是45度角三角形。
45度角三角形是指一个角为45度的直角三角形。
在45度角三角形中,两条直角边长度相等,即两条直角边的长度均为斜边长度的平方根。
比如,如果45度角三角形的斜边长度为2,那么两条直角边的长度也为2的平方根。
45度角三角形经常在实际问题中出现,比如在建筑和几何图形设计中的应用。
了解了直角三角形的基本性质和特殊情况后,我们来看一些与直角三角形相关的例题和应用。
通过解答这些问题,我们可以更深入地理解直角三角形的性质。
例如,题目如下:已知一个直角三角形的直角边为3,斜边为5,求另一直角边的长度。
解答:根据勾股定理,直角边的长度可以通过计算√5^2-3^2得出,即直角边的长度为4。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、内心性质
1、三角形的三条内角平分线交于一点。
该点即为三角形的内心。
2、直角三角形的内心到边的距离等于两直角边的和与斜边的差的二分之一。
3、P为ΔABC所在空间中任意一点,点0是ΔABC内心的充要条件是:向量P0=(a×向量PA+b×向量PB+c×向量PC)/(a+b+c).
4、O为三角形的内心,A、B、C分别为三角形的三个顶点,延长AO交BC边于N,则有AO:ON=AB:BN=AC:CN=(AB+AC):BC
5、(欧拉定理)⊿ABC中,R和r分别为外接圆为和内切圆的半径,O和I分别为其外心和内心,则OI^2=R^2-2Rr.
6、(内角平分线分三边长度关系)
△ABC中,0为内心,∠A 、∠B、∠C的内角平分线分别交BC、AC、AB于Q、P、R,则BQ/QC=c/b, CP/PA=a/c, BR/RA=a/b.
7、内心到三角形三边距离相等。
2、外心性质
1、三角形的三条边的垂直平分线交于一点,该点即为该三角形的外心。
2、若O是△ABC的外心,则∠BOC=2∠A(∠A为锐角或直角)或∠BOC=360°-2∠A(∠A为钝角)。
3、当三角形为锐角三角形时,外心在三角形内部;当三角形为钝角三角形时,外心在三角形外部;当三角形为直角三角形时,外心在斜边上,与斜边的中点重合。
4、计算外心的坐标应先计算下列临时变量:d1,d2,d3分别是三角形三个顶点连向另外两个顶点向量的点乘。
c1=d2d3,c2=d1d3,c3=d1d2;c=c1+c2+c3。
外心坐标:( (c2+c3)/2c,(c1+c3)/2c,(c1+c2)/2c )。
5、外心到三顶点的距离相等
3、重心性质
三角形的三条边的中线交于一点。
该点叫做三角形的重心。
三中线交于一点可用燕尾定理证明,十分简单。
1、重心到顶点的距离与重心到对边中点的距离之比为2︰1。
2、重心和三角形任意两个顶点组成的3个三角形面积相等。
即重心到三条边的距离与三条边的长成反比。
3、重心到三角形3个顶点距离的平方和最小。
4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均数,即其重心坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3)。
5. 以重心为起点,以三角形三顶点为终点的三条向量之和等于零向量。
4、垂心性质
1、三角形三个顶点,三个垂足,垂心这7个点可以得到6个四点圆。
2、三角形外心O、重心G和垂心H三点共线,且OG︰GH=1︰2。
(此直线称为三角形的欧拉线(Euler line))
3、垂心到三角形一顶点距离为此三角形外心到此顶点对边距离的2倍。
4、垂心分每条高线的两部分乘积相等。
定理证明
已知:ΔABC中,AD、BE是两条高,AD、BE相交于点O,连接CO并延长交AB 于点F ,求证:CF⊥AB
证明:
连接DE ∵∠ADB=∠AEB=90度∴A、B、D、E四点共圆∴∠ADE=∠ABE
∵∠EAO=∠DAC ∠AEO=∠ADC∴ΔAEO∽ΔADC
∴AE/AO=AD/AC ∴ΔEAD∽ΔOAC ∴∠ACF=∠ADE=∠ABE
又∵∠ABE+∠BAC=90度∴∠ACF+∠BAC=90度∴CF⊥AB
因此,垂心定理成立!
5、旁心性质
三角形的旁切圆(与三角形的一边和其他两边的延长线相切的圆)的圆心,叫做三角形的旁心。
旁心的性质:
1、三角形一内角平分线和另外两顶点处的外角平分线交于一点,该点即为三角形的旁心。
2、每个三角形都有三个旁心。
3、旁心到三边的距离相等。