微卫星位点筛选方法综述

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

论文综述

微卫星分子标记筛选方法综述

摘要:微卫星是一种短的串联重复序列(short tandem repeat, STR)或简单重复序列(simple sequence repeats, SSR)。它作为一种重要的分子遗传标记,能较好地反映物种的遗传结构和遗传多样性变化,被广泛应用于实验动物的研究。本文概述了获得和富集微卫星位点的常用方法。最简便、最省时的方法是从从公共数据库(如Genbank、EMBL、EST数据库等)或已发表的文献中查找到微卫星位点,但只限于已经有序列数据发布的物种;第二种方法是种间转移扩增,即从相近物种的数据库中查找微卫星位点,或使用已有数据发表的遗传距离相近物种的微卫星标记。第三种方法是从基因组DNA中筛选微卫星位点,其中用于富集微卫星的方法有引物法、磁珠杂交法、尼龙膜杂交法以及分子标记技术法。

关键词:微卫星;分子标记;实验动物

微卫星(Microsatellite),又称为简单序列重复(Simple Sequence Repeat , SSR),短串联重复(Short Tandem Repeat STR),是以少数几个核苷酸(一般1~6个)为重复单位的串联重复DNA序列。微卫星位点广泛分布于真核生物的基因组中[1],在植物基因组中平均每33 Kb存在一个20 bp长的微卫星位点,而在哺乳动物中每6 Kb存在一个20 bp长的微卫星位点[2]。并且SSR的重复次数不同和重复程度不同,使其呈现高度的多态性。微卫星标记共显性的特点使它能够用于研究等位基因,区分二倍体(或多倍体)的纯合体或杂合体,这是AFLP、RAPD 等显性标记所无法做到的。另外,微卫星的特异性引物扩增具有良好的重复性和保真性,方便各实验室间的交流。目前,微卫星标记已被广泛应用到基因连锁与遗传图谱构建、遗传多样性研究、谱系和发育研究、疾病检测以及品种鉴定、亲本分析与个体、纯系检验上。

随着微卫星标记在图谱上的丰富,将显现出更大的优势。但微卫星分析中引

物的获得需要预先获知核酸序列,其广泛应用受限于从特定的物种中分离微卫星

位点的难度和花费。微卫星标记分离最大的困难是引物的获得。同RAPD、AFLP 等遗传标记不同,微卫星研究首先需要获知位点的序列信息,以便从重复序列两端侧翼的保守序列中设计引物。因而微卫星引物的开发是应用该技术的关键。目前已知微卫星位点的物种很有限,这是因为微卫星位点的获得需经过克隆、杂交筛选、测序等步骤,因此需花费一定的人力、金钱,这限制了微卫星标记的大量

使用。但近年来发展起来的各种微卫星位点富集技术已在一定程度上解决了这个问题。

已有的最常用的获得微卫星位点的方法包括:1.从公共数据库中查找微卫星位点;2.遗传距离相近物种间引物转移扩增;3.从基因组DNA中筛选微卫星位点。其中,最方便、最经济的方法就是从已发表的文献中获得微卫星引物,但该法在使用对象上,只限于已有引物开发出的物种,而且引物的数量不会有所增加,只能停留在原有基础上。对于近缘种引物的应用,其适用范围究竟有多大;原物种的微卫星基因座在其他物种间转移扩增时,其多态性如何。这些问题使得在不同物种间共用微卫星引物时,盲目性较大,可指导操作的理论依据不足。最好的途径就是从基因组DNA中筛选微卫星位点并进行引物的开发。

1 从数据库中查找微卫星位点

在上述三种方法中,最简便最省时的就是从公共数据库或已发表的文献中查找到微卫星位点。许多微卫星研究的出发点都是公共数据库,比如从EMBL、Genbank或EST数据库中查找微卫星位点。从这些数据库中,可通过电子查询方式方便地获得所需要的序列或寻找已存在的微卫星引物。研究者对大量序列进行处理,利用Clustal W等程序,根据相似性程度,剔除冗余的EST,再剔除过短的序列(小于100bp)和过长的序列(大于1000bp),再利用SSRHunter等软件搜索获得含有微卫星的序列,并根据其侧翼序列设计引物。

何蔚[3]等选用前人分离得到的42对大熊猫微卫星引物,分别用圈养大熊猫的血液DNA和野生大熊猫的粪便DNA对其进行PCR扩增,结果表明不同标记的多态性差异较大,并筛选出13对能较好地应用于大熊猫遗传多样性研究的微卫星引物。匡刚桥[4]等利用生物信息学方法从公开发表的鳜鱼GenBank数据库中寻找多态信息含量丰富的微卫星位点中共搜索到304条鳜鱼核酸序列,经计算机筛选和人工选择, 最终获得22 条含微卫星重复单元的序列,利用SSRHunter软件在此22条含有微卫星的序列中发现30个微卫星位点,设计出17对引物,其余位点两端序列短无法设计引物。其中13对引物扩增条带清晰,经过多态性分析,最终筛选获得6对多态性微卫星引物。徐玲玲[5]等从资料和GenBank中选取扩增效果好、等位基因多、均匀分布于小型猪18条常染色体和X染色体上的100个微卫星位点合成引物,对封闭群小型猪基因组进行PCR扩增及条件优化,筛选出32个分布于不同染色体且等位基因多的微卫星位点。

近年来随着数据库中EST序列的增加,通过数据库搜寻法获得EST微卫星位点的报道越来越多。在此基础上进行SSR引物开发也就成了一种既经济又有效的方法。许新[6]等从杂色鲍cDNA文库中用SSRHunter软件搜索获得173个重复序列,

从中设计93对引物,有78对可以扩增,占合成总引物的83.9%,用深圳、汕尾等3个群体中挑选出多态性引物19对,多态性微卫星比例24.36%。石耀华[7]等从马氏珠母贝cDNA文库查找到了268个重复序列,含微卫星的EST数占EST总数的

3.48%,设计151对微卫星引物,有130对可以扩增,占合成引物总数的86.09%,其中多态性引物45对,占微卫星总数的3

4.6%。EST微卫星位于编码区,由于基因序列的保守性,EST微卫星序列比从基因组中筛选的微卫星多态性低。Eujayl[8]比较了小麦EST的微卫星和基因组微卫星多态性,结果发现基因组微卫星多态性(53%)远高于EST微卫星(25%)。

从数据库中查找微卫星最大的缺点是只限于已经有序列数据发布的物种。一个替代方法是从相近的物种数据库中查找微卫星位点,或使用已发表的遗传距离相近物种的微卫星标记。

2 近缘物种交叉扩增获得微卫星引物

由于微卫星重复序列和包含引物位点的侧翼序列在物种间具有保守性,所以某一个物种的微卫星引物可以在其相近的物种中使用,用来检测相近物种同源位点的多态性。这样就大大地减少了检测微卫星位点的工作量。微卫星在近缘种之间的通用性已有研究,但在属间应用还不多。根据M. Rossetto[9]对近年来发表文献的总结,微卫星位点可在物种间扩增,其多态性也相当高。

Zucoloto[10]等利用密西西比鳄和宽吻凯门鳄的微卫星在其他3种鳄鱼中进行扩增,扩增率均在85%以上。Küpper[11]等使用的环颈鸻微卫星成功地在4种鸻科鸟类中获得扩增,平均扩增率为75%。蔡清秀[12]等从从非洲象31个微卫星位点和5个已知亚洲象微卫星位点中筛选出14个勐养亚洲象的微卫星位点,其中9个多态位点能在185份粪便样品DNA中稳定扩增。孙涛[13]等利用138条人类微卫星引物在黑叶猴中进行筛选,得到了23个具有多态性的微卫星位点。其中有7个位点偏离Hardy-Weinberg 平衡,9个位点存在无效等位基因现象,但是各位点之间均未检测到连锁不平衡现象,这些位点将在黑叶猴种群遗传结构的研究中发挥重要作用。洪艳云[14]等选用10对非洲糜羚微卫星引物和10对绵羊微卫星引物作为筛选普氏原羚基因组DNA微卫星位点的引物,结果发现20对引物中有8对引物在普氏原羚基因组DNA中扩增出了多态性位点。

谭元卿[15]等利用小鼠微卫星位点引物536对,对长爪沙鼠基因组DNA扩增出了313个阳性条带,经测序分析确定130个长爪沙鼠的微卫星位点,与小鼠同源性为24.3%。

引物跨物种共用的有效程度除与其亲缘关系的远近有关外。Primmer[16]等对大量鸟类微卫星交叉扩增研究的数据进行总结后提出,交叉扩增中微卫星在来源

相关文档
最新文档