求三角函数定义域和值域题型
三角函数值域的求法及例题
标题:三角函数值域的求法及其应用
一、基本概念:
三角函数是描述周期性现象的关键工具,特别是一元函数微积分中的基本函数。
它们的值域,即能够表示的函数的取值范围,对于理解函数的性质和图形至关重要。
二、求值域的方法:
1. 观察法:根据三角函数的定义,我们知道正弦、余弦和正切函数的值域分别是-1 到1(包括-1,但不包括0),0 到正无穷(包括0),以及-π/2 到π/2(包括0,但不包括π/2 和-π/2)。
当已知函数的表达式时,可以通过观察函数的定义域和函数自身的性质来求值域。
2. 三角函数不等式法:可以利用三角函数的不等式来求值域,例如:对于正弦函数,有0 <= sin(x) <= 1。
3. 反函数法:对于反三角函数,如arcsin(x) 和arctan(x),可以通过求其反函数的定义域来得到值域。
4. 换元法:对于某些复杂的三角函数,可以通过换元法将问题简化。
5. 判别式法:对于二次或高次方程的解,可以通过判别式小于或等于零来求出函数的值域。
三、例题解析:
【例题】求函数f(x) = 3sin(2x + π/6) 的值域。
解:首先,我们可以看出函数的定义域为R(即所有实数),且函数的周期性表现为sin(x) 的形式。
由于正弦函数的值域为-1 到1(包括-1,但不包括0),因此我们可以得出f(x) 的值域为[-3, 3]。
四、总结:
求三角函数值域的方法多种多样,观察法、三角函数不等式法、反函数法、换元法以及判别式法都是常见的方法。
理解这些方法并灵活运用,可以帮助我们更好地解决实际问题。
以上就是关于三角函数值域求法的介绍以及例题解析,希望对你有所帮助。
三角函数的定义域与值域题库(精)
专题三:三角函数的定义域与值域(习题库)一、选择题1、函数f(x)的定义域为[﹣,],则f(sinx)的定义域为()A、[﹣,]B、[,]C、[2kπ+,2kπ+](k∈Z)D、[2kπ﹣,2kπ+]∪[2kπ+,2kπ+](k∈Z)分析:由题意知,求出x的范围并用区间表示,是所求函数的定义域;解答:∵函数f(x)的定义域为为[﹣,],∴,解答(k∈Z)∴所求函数的定义域是[2kπ﹣,2kπ+]∪[2kπ+,2kπ+](k∈Z)故选D.2、函数的定义域是()A、.B、.C、D、.解答:由题意可得sinx﹣≥0⇒sinx≥又x∈(0,2π)∴函数的定义域是.故选B.3、函数的定义域为()A、 B、C、 D、解答:由题意得tanx≥0,又tanx 的定义域为(kπ﹣,kπ+),∴,故选D.4、函数f(x)=cosx(cosx+sinx),x∈[0,]的值域是()A、[1,]B、C、D、解答:∵f(x)=cosx(cosx+sinx)=cos2x+sinxcosx===又∵∴∴则1≤f(x)≤故选A.5、函数y=﹣cos2x+sinx﹣的值域为()A、[﹣1,1]B、[﹣,1]C、[﹣,﹣1]D、[﹣1,]解答:函数y=﹣cos2x+sinx﹣=﹣(1﹣2sin2x)+sinx﹣=sin2x+sinx﹣1=﹣∵﹣1≤sinx≤1,∴当sinx=﹣时,函数y有最小值为﹣.sinx=1时,函数y 有最大值为1,故函数y 的值域为[﹣,1],故选B.6、函数值域是()A、 B、C、 D、[﹣1,3]解答:因为,所以sinx∈[],2sinx+1∈故选B7、函数的最大值是()A、5B、6C、7D、8解答:∵==∈[﹣7,7] ∴函数的最大值是78、若≤x≤,则的取值范围是()A、[﹣2,2]B、C、D、解答:=2(sinx+cosx)=2sin(),∵≤x≤,∴﹣≤≤,∴≤﹣sin()≤1,则函数f(x)的取值范围是:.故选C.9、若,则函数y=的值域为()A、 B、 C、 D、解答:函数y===因为,所以sin∈(0,)∈故选D10、函数,当f(x)取得最小值时,x的取值集合为()A、 B、C、 D、解答:∵函数,∴当 sin(﹣)=﹣1时函数取到最小值,∴﹣=﹣+2kπ,k∈Z函数,∴x=﹣+4kπ,k∈Z,∴函数取得最小值时所对应x的取值集合:为{x|x═﹣+4kπ,k∈Z} 故选A.11、函数y=sin2x﹣sinx+1(x∈R)的值域是()A、[,3]B、[1,2]C、[1,3]D、[,3]解答:令sinx=t,则y=t2﹣t+1=(t﹣)2+,t∈[﹣1,1],由二次函数性质,当t=时,y取得最小值.当t=﹣1时,y取得最大值3,∴y∈[,3] 故选A.12、已知函数,则f(x)的值域是()A、[﹣1,1]B、C、D、解答:解:由题=,当 x∈[,]时,f(x)∈[﹣1,];当 x∈[﹣,]时,f (x)∈[﹣1,]可求得其值域为.故选D.13、函数的值域为()A、 B、 C、[﹣1,1] D、[﹣2,2]解答:=﹣sinxcosx+cos2x=cos2x ﹣sin2x=cos (2x+)∴函数的值域为[﹣1,1] 故选C .14、若≥,则sinx 的取值范围为( ) A 、 B 、 C 、∪D 、∪解答:∵≥,∴解得x ∈[,)∪(,] ∴sinx ∈故选B15、函数y=sin2x+2cosx 在区间[﹣,]上的值域为( )A 、[﹣,2]B 、[﹣,2)C 、[﹣,]D 、(﹣,] 解答:∵x ∈[﹣,] ∴cosx ∈[﹣,1]又∵y=sin2x+2cosx=1﹣cos2x+2cosx=﹣(cosx ﹣1)2+2 则y ∈[﹣,2] 故选A 二、填空题(共7小题) 16、已知,则m 的取值范围是 .解答:∵=2(sinθ+cosθ)=2sin(θ+),∴﹣2≤≤2,∴m≥,或m≤﹣,故m的取值范围是(﹣∝,﹣]∪[,+∞).17、函数在上的值域是___________.解答:因为,故故答案为:18、函数的值域为.解答:由题意是减函数,﹣1≤sinx≤1,从而有函数的值域为,故答案为19、(理)对于任意,不等式psin2x+cos4x≥2sin2x恒成立,则实数p的范围为.解答:∵psin2x+cos4x≥2sin2x ∴psin2x≥2sin2x﹣1﹣sin4x+2sin2x=4sin2x﹣sin4x﹣1∴p≥4﹣(sin2x+)而sin2x+≥2∴4﹣(sin2x+)的最大值为2则p≥2 故答案为:[2,+∞)20、函数的值域是.解答:令t=sinx+cosx=,t2=1+2sinxcosx∵∴x+∴从而有:f(x)==﹣2 在单调递增当t+1=2即t=1时,此时x=0或x=,函数有最小值当t+1=1+即t=时此时x=,函数有最大值2﹣2故答案为:[﹣2]21、函数的定义域为.解答:要使函数有意义,必须解得,故答案为:(0,).三、解答题(共8小题)22.(1)已知f(x)的定义域为[0,1],求f(cosx)的定义域;(2)求函数y=lgsin(cosx)的定义域;分析:求函数的定义域:(1)要使0≤cosx≤1,(2)要使sin (cosx)>0,这里的cosx以它的值充当角。
三角函数的定义域、值域及单调区间(含答案)
三角函数的定义域、值域及单调区间一、单选题(共12道,每道8分)1.与函数定义域相同的一个函数是( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:三角函数的定义域2.函数的定义域是( )A.B.C.D.答案:C解题思路:试题难度:三颗星知识点:三角函数的定义域3.函数的定义域是( ) A.B.C.D.答案:D解题思路:试题难度:三颗星知识点:三角函数的定义域4.的值域是( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:三角函数的值域5.函数的值域是( )A.{3}B.{3,﹣1}C.{3,1,﹣1}D.{3,1,﹣1,﹣3}答案:B解题思路:试题难度:三颗星知识点:三角函数的值域6.函数的值域是( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:三角函数的值域7.已知函数,则f(x)在区间上的最大值与最小值分别是( )A.1,﹣2B.2,﹣1C.1,﹣1D.2,﹣2答案:A解题思路:试题难度:三颗星知识点:三角函数的最值8.已知函数的定义域为,值域为,则函数上,( )A.有最大值2B.有最小值2C.有最大值1D.有最小值1答案:B解题思路:试题难度:三颗星知识点:三角函数的最值9.函数的单调增区间为( ) A.B.C.D.答案:A解题思路:试题难度:三颗星知识点:复合三角函数的单调性10.设函数,在区间D上单调递增,则区间D可以是( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:复合三角函数的单调性11.函数的单调增区间是( )A.B.C.D.答案:A解题思路:先确定函数的定义域是全体实数,记,则,∵是递增函数,∴根据口诀“同增异减”可得,只需要找到的递增区间即可,∴.故选A试题难度:三颗星知识点:复合三角函数的单调性12.函数的单调递减区间是( ) A.B.C.D.答案:D解题思路:试题难度:三颗星知识点:复合三角函数的单调性第11页共11页。
三角函数的值域问题
y sin x
y cos x
2
(k∈z)
2
时y min 1 x 2k 时y min 1
(k∈z)
二、新课讲解
• 下列函数有最大值、最小值吗?如果有,请写出 取最大值、最小值时的自变量x的集合,并说出 最大值、最小值分别是什么? • (1)y=2sinx, xR • (2)y=-3sinx,xR • (3)y=asinx,xR(a>0) • (4)y=asinx,xR(a<0) • (5)y=asinx,xR(a≠0)
类型二:求y A sin( x )型函数的的值域与最值
例3:求函数y 2 sin( 2 x )的最值,并求取得最值时 3 自变量x的集合。
1 变式1:函数y 3 2 sin( x )的值域为 ______ . 2 3 变式2:已知y a sin( 2 x ) b(a 0)的最大值为3, 3 最小值为 1, 求a, b的值.
当题目中有出现自变量x属于某个小区间,那么
要用换元 2 x )的范围。 3
类型三:值域与最值的应用
延伸:
0 (2014 湖北高考改编)某实验室一天的温度(单位: C)
随时间t (单位:h)的变化近似满足函数: t ),t 0,24 12 6 求实验室一天的最大温差。 f (t ) 10 2 sin(
1.在同一坐标系内,用五点法分别画出函数 y= sinx和 y= cosx, x[0, 2]的简图:
y
1
一.复习
y=cosx,x[0, 2]
2
o
-1
2
3 2
三角函数的定义域与值域题库
专题三:三角函数的定义域与值域(习题库)一、选择题1、函数f(x)的定义域为[﹣,],则f(sinx)的定义域为()A、[﹣,]B、[,]C、[2kπ+,2kπ+](k∈Z)D、[2kπ﹣,2kπ+]∪[2kπ+,2kπ+](k∈Z)分析:由题意知,求出x的范围并用区间表示,是所求函数的定义域;解答:∵函数f(x)的定义域为为[﹣,],∴,解答(k∈Z)∴所求函数的定义域是[2kπ﹣,2kπ+]∪[2kπ+,2kπ+](k∈Z)故选D.2、函数的定义域是()A、.B、.C、D、.解答:由题意可得sinx﹣≥0⇒sinx≥又x∈(0,2π)∴函数的定义域是.故选B.3、函数的定义域为()A、B、C、 D、解答:由题意得tanx≥0,又tanx 的定义域为(kπ﹣,kπ+),∴,故选D.4、函数f(x)=cosx(cosx+sinx),x∈[0,]的值域是()A、[1,]B、C、D、解答:∵f(x)=cosx(cosx+sinx)=cos2x+sinxcosx===又∵∴∴则1≤f(x)≤故选A.5、函数y=﹣cos2x+sinx﹣的值域为()A、[﹣1,1]B、[﹣,1]C、[﹣,﹣1]D、[﹣1,]解答:函数y=﹣cos2x+sinx﹣=﹣(1﹣2sin2x)+sinx﹣=sin2x+sinx﹣1=﹣∵﹣1≤sinx≤1,∴当sinx=﹣时,函数y有最小值为﹣.sinx=1时,函数y 有最大值为1,故函数y 的值域为[﹣,1],故选B.6、函数值域是()A、B、 C、D、[﹣1,3]解答:因为,所以sinx∈[],2sinx+1∈故选B7、函数的最大值是()A、5B、6C、7D、8解答:∵==∈[﹣7,7] ∴函数的最大值是78、若≤x≤,则的取值范围是()A、[﹣2,2]B、C、D、解答:=2(sinx+cosx)=2sin(),∵≤x≤,∴﹣≤≤,∴≤﹣sin()≤1,则函数f(x)的取值范围是:.故选C.9、若,则函数y=的值域为()A、B、 C、D、解答:函数y===因为,所以sin∈(0,)∈故选D10、函数,当f(x)取得最小值时,x的取值集合为()A、 B、C、 D、解答:∵函数,∴当 sin(﹣)=﹣1时函数取到最小值,∴﹣=﹣+2kπ,k∈Z函数,∴x=﹣+4kπ,k∈Z,∴函数取得最小值时所对应x的取值集合:为{x|x═﹣+4kπ,k∈Z}故选A.11、函数y=sin2x﹣sinx+1(x∈R)的值域是()A、[,3]B、[1,2]C、[1,3]D、[,3]解答:令sinx=t,则y=t2﹣t+1=(t﹣)2+,t∈[﹣1,1],由二次函数性质,当t=时,y取得最小值.当t=﹣1时,y取得最大值3,∴y∈[,3] 故选A.12、已知函数,则f(x)的值域是()A、[﹣1,1]B、C、D、解答:解:由题=,当x∈[,]时,f(x)∈[﹣1,];当x∈[﹣,]时,f(x)∈[﹣1,] 可求得其值域为.故选D.13、函数的值域为()A、B、 C、[﹣1,1] D、[﹣2,2]解答:=﹣sinxcosx+cos2x=cos2x﹣sin2x=cos(2x+)∴函数的值域为[﹣1,1] 故选C.14、若≥,则sinx的取值范围为()A、 B、C、∪D、∪解答:∵≥,∴解得x∈[,)∪(,] ∴sinx∈故选B15、函数y=sin2x+2cosx在区间[﹣,]上的值域为()A、[﹣,2]B、[﹣,2)C、[﹣,]D、(﹣,]解答:∵x∈[﹣,] ∴cosx∈[﹣,1]又∵y=sin2x+2cosx=1﹣cos2x+2cosx=﹣(cosx﹣1)2+2则y∈[﹣,2] 故选A二、填空题(共7小题)16、已知,则m的取值范围是.解答:∵=2(sinθ+cosθ)=2sin(θ+),∴﹣2≤≤2,∴m≥,或m≤﹣,故m的取值范围是(﹣∝,﹣]∪[,+∞).17、函数在上的值域是___________.解答:因为,故故答案为:18、函数的值域为.解答:由题意是减函数,﹣1≤sinx≤1,从而有函数的值域为,故答案为19、(理)对于任意,不等式psin2x+cos4x≥2sin2x恒成立,则实数p的范围为.解答:∵psin2x+cos4x≥2sin2x ∴psin2x≥2sin2x﹣1﹣sin4x+2sin2x=4sin2x﹣sin4x ﹣1∴p≥4﹣(sin2x+)而sin2x+≥2∴4﹣(sin2x+)的最大值为2则p≥2故答案为:[2,+∞)20、函数的值域是.解答:令t=sinx+cosx=,t2=1+2sinxcosx∵∴x+∴从而有:f(x)==﹣2在单调递增当t+1=2即t=1时,此时x=0或x=,函数有最小值当t+1=1+即t=时此时x=,函数有最大值2﹣2故答案为:[﹣2]21、函数的定义域为.解答:要使函数有意义,必须解得,故答案为:(0,).三、解答题(共8小题)22.(1)已知f(x)的定义域为[0,1],求f(cosx)的定义域;(2)求函数y=lgsin(cosx)的定义域;分析:求函数的定义域:(1)要使0≤cosx≤1,(2)要使sin(cosx)>0,这里的cosx以它的值充当角。
三角函数的定义域、值域和最值
三角函数的定义域、值域和最值一 知识点精讲:1 三角函数的定义域 (1)r y =αsin 定义域为R. (2)rx =αcos 定义域为R.(3)xy =αtan 定义域为 ⎭⎬⎫⎩⎨⎧∈+≠Z k k ,2|ππαα. (4)y x =αcot 定义域为{}Z k k ∈≠,|παα.2 三角函数的值域① )0(,sin ≠+=a b x a y 型当0>a 时,],[b a b a y ++-∈ ; 当0<a 时 ],[b a b a y +-+∈ ② c x b x a y ++=sin sin2型此类型的三角函数可以转化成关于sinx 的二次函数形式。
通过配方,结合sinx 的取值范围,得到函数的值域。
x sin 换为x cos 也可以。
③ x b x a y cos sin +=型 利用公式ab x b a x b x a =++=+φφtan ),sin(cos sin 22, 可以转化为一个三角函数的情形。
④x x b x x a y cos sin )cos (sin ++=型利用换元法,设x x t cos sin +=, ]2,2[-∈t ,则212cos sin -=t x x ,转化为关于t 的二次函数222122b at t b t bat y -+=-+=.⑤x x c x b x a y cos sin cos sin 22++=型这是关于x x cos ,sin 的二次齐次式,通过正余弦的降幂公式以及正弦的倍角公式,22sin cos sin ,22cos 1cos,22cos 1sin22x x x xx xx =+=-=,可转化为p x n x m y ++=2cos 2sin 的形式。
⑥ d x c bx a y ++=sin sin 型 可以分离常数,利用正弦函数的有界性。
⑦bx ax y ++=cos sin 型 可以利用反解的思想方法,把分母乘过去,整理得,a by x y x -=-cos sin ,11,1)sin(22≤+-+-=-ya by ya by x φ, 通过解此不等式可得到y的取值范围。
高三高考文科数学《三角函数》题型归纳与汇总
高三高考文科数学《三角函数》题型归纳与汇总高考文科数学题型分类汇总:三角函数篇本文旨在汇总高考文科数学中的三角函数题型,包括定义法求三角函数值、诱导公式的使用、三角函数的定义域或值域、三角函数的单调区间、三角函数的周期性、三角函数的图象变换和三角函数的恒等变换。
题型一:定义法求三角函数值这类题目要求根据三角函数的定义,求出给定角度的正弦、余弦、正切等函数值。
这类题目的难点在于熟练掌握三角函数的定义,以及对角度的准确度量。
题型二:诱导公式的使用诱导公式是指通过对已知的三角函数进行代数变形,得到新的三角函数值的公式。
这类题目需要熟练掌握各种诱导公式,以及灵活应用。
题型三:三角函数的定义域或值域这类题目要求确定三角函数的定义域或值域。
需要掌握各种三角函数的性质和图象,以及对函数的定义域和值域的概念和计算方法。
题型四:三角函数的单调区间这类题目要求确定三角函数的单调区间,即函数在哪些区间上单调递增或单调递减。
需要掌握各种三角函数的性质和图象,以及对函数单调性的判定方法。
题型五:三角函数的周期性这类题目要求确定三角函数的周期。
需要掌握各种三角函数的性质和图象,以及对函数周期的计算方法。
题型六:三角函数的图象变换这类题目要求根据给定的变换规律,确定三角函数图象的变化。
需要掌握各种三角函数的性质和图象,以及对图象变换的计算方法。
题型七:三角函数的恒等变换这类题目要求根据已知的三角函数恒等式,进行变形和推导。
需要掌握各种三角函数的恒等式,以及灵活应用。
2)已知角α的终边经过一点P,则可利用点P在单位圆上的性质,结合三角函数的定义求解.在求解过程中,需注意对角终边位置进行讨论,避免忽略或重复计算.例2已知sinα=0.8,且α∈[0,π2],则cosα=.答案】0.6解析】∵sinα=0.8,∴cosα=±√1-sin²α=±0.6XXXα∈[0,π2],∴cosα>0,故cosα=0.6易错点】忘记对cosα的正负进行讨论思维点拨】在求解三角函数值时,需注意根据已知条件确定函数值的正负,避免出现多解或无解的情况.同时,需根据角度范围确定函数值的取值范围,避免出现超出范围的情况.题型二诱导公式的使用例3已知tanα=√3,且α∈(0,π2),则sin2α=.答案】34解析】∵ta nα=√3,∴α=π/30<α<π/2,∴0<2α<πsin2α=sin(π-2α)=sinπcos2α-cosπsin2α=-sin2α2sin2α=0,∴sin2α=0sin2α=3/4易错点】忘记利用诱导公式将sin2α转化为sin(π-2α)思维点拨】在解决三角函数的复合问题时,可利用诱导公式将一个三角函数转化为其他三角函数的形式,从而简化计算.同时,需注意根据角度范围确定函数值的取值范围,避免出现超出范围的情况.题型三三角函数的定义域或值域例4已知f(x)=2sinx+cosx,则f(x)的值域为.答案】[−√5,√5]解析】∵f(x)=2sinx+cosx=√5(sin(x+α)+sin(α-x)),其中tanα=-121≤sin(x+α)≤1,-1≤sin(α-x)≤15≤f(x)≤√5f(x)的值域为[−√5,√5]易错点】忘记利用三角函数的性质将f(x)转化为含有同一三角函数的形式思维点拨】在确定三角函数的定义域或值域时,可利用三角函数的性质将其转化为含有同一三角函数的形式,从而方便计算.同时,需注意对于复合三角函数,需先将其转化为含有同一三角函数的形式,再确定其定义域或值域.题型四三角函数的单调区间例5已知f(x)=sin2x,则f(x)在区间[0,π]上的单调递增区间为.答案】[0,π/4]∪[3π/4,π]解析】∵f'(x)=2cos2x=2(2cos²x-1)=4cos²x-2f'(x)>0的充要条件为cosx12f(x)在[0,π/4]∪[3π/4,π]上单调递增易错点】忘记将f'(x)化简为含有同一三角函数的形式,或对于三角函数的单调性判断不熟练思维点拨】在求解三角函数的单调区间时,需先求出其导数,并将其化简为含有同一三角函数的形式.然后,利用三角函数的单调性进行判断,得出函数的单调区间.题型五三角函数的周期性例6已知f(x)=sin(2x+π),则f(x)的周期为.答案】π解析】∵sin(2x+π)=sin2xcosπ+cos2xsinπ=-sin2xf(x)的周期为π易错点】忘记利用三角函数的周期性质思维点拨】在求解三角函数的周期时,需利用三角函数的周期性质,即f(x+T)=f(x),其中T为函数的周期.同时,需注意对于复合三角函数,需先将其转化为含有同一三角函数的形式,再确定其周期.题型六三角函数的图象变换例7已知f(x)=sinx,g(x)=sin(x-π4),则g(x)的图象相对于f(x)的图象向左平移了.答案】π4解析】∵g(x)=sin(x-π4)=sinxcosπ4-cosxsinπ4g(x)的图象相对于f(x)的图象向左平移π4易错点】忘记利用三角函数的图象变换公式,或对于三角函数的图象不熟悉思维点拨】在求解三角函数的图象变换时,需利用三角函数的图象变换公式,即y=f(x±a)的图象相对于y=f(x)的图象向左(右)平移a个单位.同时,需对于各种三角函数的图象有一定的了解,以便准确判断图象的变化情况.题型七三角函数的恒等变换例8已知cosα=12,且α∈(0,π2),则sin2α的值为.答案】34解析】∵cosα=12,∴sinα=√3/2sin2α=2sinαcosα=√3/2×1/2=3/4易错点】忘记利用三角函数的恒等变换公式思维点拨】在求解三角函数的恒等变换时,需熟练掌握三角函数的基本恒等式和常用恒等式,从而简化计算.同时,需注意根据已知条件确定函数值的正负,避免出现多解或无解的情况.已知角α的终边所在的直线方程,可以通过设出终边上一点的坐标,求出此点到原点的距离,然后利用三角函数的定义来解决相关问题。
三角函数定义域-值域-周期测试题
数学限时测试三 一、选择题1、 在同一坐标系中函数[]π2,0,sin ∈=x x y 与[]ππ4,2,sin ∈=x x y 的图象A .重合B .形状相同,位置不同C .形状不同,位置相同D .形状不同,位置不同2、函数[]π2,0,sin 1∈+=x x y 的图象与直线2=y 的交点个数为A .0B .1C .2D .33、在(02)π,内,使sin cos x x <成立的x 的取值范围是( )A.ππ5π⎛⎫⎛⎫π ⎪⎪424⎝⎭⎝⎭,, B.π⎛⎫π ⎪4⎝⎭, C.02π5π⎛⎫⎛⎫π ⎪ ⎪44⎝⎭⎝⎭,, D.5ππ⎛⎫⎪44⎝⎭,4、若动直线x a =与函数()sin f x x =和()cos g x x =的图像分别交于M N ,两点,则MN 的最大值为()A B .1 CD .25、当-π2≤x≤π2时,函数f(x)= sinx +3cosx 的( )A 、最大值是1,最小值是--1B 、最大值是1,最小值是--2C 、最大值是2,最小值是--2D 、最大值是2,最小值是--1 6、函数f (x )=3sin x +sin(π2+x )的最大值是( )A .1BCD .27、函数y=1-sinx+3cosx 的周期是( )A. πB. π2C. π21D. 32π 8、求y=sin 2x+2sinxcosx+3cos 2x 的周期是( )A. πB. π2C. π3D. 4π 9、函数y = 12cos 2sin -+x x 的定义域是A [ 0 ,4π] B [ 42,2πππ+k k ]C [2,πππ+k k ] D [432,42ππππ++k k ]10.函数2cos 3cos 2++=x x y 的最小值为( )A .2B .0C .1D .6班别__________ 姓名__________二.填空题:11.如果直线m y =与函数[)π2,0,sin ∈=x x y 无交点,则∈m __________;12.求函数y =2cos 2x +5sinx -4的值域为__________;三.解答题:13.求函数)2474(cos sin 4sin 3cos 35)(22ππ≤<-+=x x x x x x f 的最值,并求取得最值时x 的值。
求三角函数的值域(最值)题型例析
2
2
1
3
3
s
i
n2
x c
o
s2
x +
=
3 =
2
2
2
s
i
n2
x-
(
3
7π
π
。 由 0≤x ≤
,可 得
+
2
1
2
3
)
π
π
5π
3
,所 以 - ≤ 2
x ≤
≤
3
3
6
2
s
i
n2
x-
(
π
π
≤1,所 以 0 ≤ s
i
n2
+
x3
3
)
(
)
[
;
当定义域为某个给定
-|A|+k,
|A|+k]
函数的单调性求值域。
题 型 2:
(
或 y=Ac
Aω≠0)
o
s(
ωx+φ)
+k(
Aω≠0)
例1
(32π-x) - 3 cosx + 3。 当 x ∈
[0,712π] 时,函 数 f(x)的 最 小 值 和 最 大 值 分
s
i
n
2
。
别为
解:
函数 f(
x)= (-s
i
nx)(-c
o
sx)-
1
3
(
o
s2x+ 3= s
i
n2
xc
o
s2
x+1)+
i
n(
ωx+φ)
+k 或y=Ac
三角函数的定义域、值域和最值讲解
三角函数的定义域、值域和最值一知识点精讲:1 三角函数的定义域(1)sinα=yryxxr定义域为R. (2)cosα=⎧⎩定义域为R.(3)tanα=定义域为⎨α|α≠πx⎫定义域为+kπ,k∈Z⎬. (4)cotα=2y⎭{α|α≠kπ,k∈Z}.2 三角函数的值域① y=asinx+b,(a≠0) 型当a>0时,y∈[-a+b,a+b] ;当a<0时 y∈[a+b,-a+b] ② y=asin2x+bsinx+c型此类型的三角函数可以转化成关于sinx的二次函数形式。
通过配方,结合sinx的取值范围,得到函数的值域。
sinx换为cosx也可以。
③ y=asinx+bcosx型利用公式asinx+bcosx=的情形。
④y=a(sinx+cosx)+bsinxcosx型利用换元法,设t=sinx+cosx, t∈[-2,2],则sinxcosx=t-122a+bsin(x+φ),tanφ=22ba,可以转化为一个三角函数22,转化为关于t 的二次函数y=at+b22=b2t+at-2b2.⑤y=asinx+bcosx+csinxcosx型这是关于sinx,cosx的二次齐次式,通过正余弦的降幂公式以及正弦的倍角公式,sin2x=1-cos2x2,cos2x=1+cos2x2,sinxcosx=sin2x2,可转化为y=msin2x+ncos2x+p的形式。
⑥ y=⑦y=asinx+bcsinx+dsinx+a型可以分离常数,利用正弦函数的有界性。
cosx+b型可以利用反解的思想方法,把分母乘过去,整理得,sinx-ycosx=by-a,sin(x-φ)=by-a+y,by-a+y≤1, 通过解此不等式可得到y的取值范围。
或者转化成两点连线的斜率。
以上七种类型是从表达的形式上进行分类的,如果x有具体的角度范围,则再进行限制。
二典例解析:例1.求下列函数的定义域(1)y=3-3sinx-2cos2x;(2)y例2.求下列函数的值域(1) y=-2sinx+3 (2)y=2cos2x+5sinx-4;(3)y=5sin2x-4sinxcosx+2cos2x; (4)y=sinx+cosx+sinxcosx (5)yπ6=3sinx+13sinx+2=logsinx(cosx+12). (3) y=25-x+lgcosx;;(6)y=sinx+2cosx+21-tan()cosx.π4-x)(7)y=sin(x-(8)y=1+tan(π4-x)(9)求函数y=sin2x1-sinx-cosx+sin2x的值域.三课堂练习:1.若cosα⋅cscαsec2α-1=-1,则α所在的象限是A.第二象限限2.不解等式:(1)sinx<-3.已知f(x)的定义域为(-4.求下列函数的定义域(1)y=1tanx-112 () B.第四象限 C.第二象限或第四象限 D.第一或第三象(2)cosx>12 12,32),则f(cosx)的定义域为____________. (2)y=sinx+125-x2.5.求下列函数的值域(1)y=2cosx-1(3)y=1+sinx+cosx+(5)y=12+sinx12sin2xx∈[-π,π]. (4)y=-cos3 (2)y=2sinxcos1+sinx2x. xsinx. (6)y=tan2x+4cot+1 26.有一块扇形铁板,半径为R,圆心角为60°,从这个扇形中切割下一个内接矩形,即矩形的各个顶点都半径或弧在扇形的上,求这个内接矩形的最大面积.。
专题4.3三角函数的图象与性质(2021年高考数学一轮复习专题)
专题 三角函数的图象与性质一、题型全归纳题型一 三角函数的定义域【题型要点】三角函数定义域的求法(1)以正切函数为例,应用正切函数y =tan x 的定义域求函数y =A tan(ωx +φ)的定义域. (2)转化为求解简单的三角不等式来求复杂函数的定义域.【例1】(2020·昆山一中模拟)1.函数y =lg(3tan x -3)的定义域为 .【答案】:Z k k k ∈⎪⎭⎫⎝⎛++,2,6ππππ【解析】:要使函数y =lg(3tan x -3)有意义,则3tan x -3>0,即tan x >33.所以π6+k π<x <π2+k π,k ∈Z . 【例2】函数y =cos x -12的定义域为 .【答案】 ⎭⎬⎫⎩⎨⎧∈+≤≤+-Z k k x k x ,2323ππππ【解析】 要使函数有意义,则cos x -12≥0,即cos x ≥12,解得-π3+2k π≤x ≤π3+2k π(k ∈Z ),所以函数的定义域为⎭⎬⎫⎩⎨⎧∈+≤≤+-Z k k x k x ,2323ππππ. 题型二 三角函数的单调性命题角度一 确定三角函数的单调性(单调区间)【题型要点】求三角函数单调区间的两种方法(1)代换法:就是将比较复杂的三角函数含自变量的代数式整体当作一个角u (或t ),利用复合函数的单调性列不等式求解.(2)图象法:画出三角函数的正、余弦曲线,结合图象求它的单调区间.【易错提醒】要注意求函数y =A sin(ωx +φ)的单调区间时ω的符号,若ω<0,那么一定要先借助诱导公式将ω化为正数.同时切莫漏掉考虑函数自身的定义域.【例1】(2020·广东省七校联考)函数f (x )=tan ⎪⎭⎫⎝⎛-62πx 的单调递增区间是( ) A.Z k k k ∈⎥⎦⎤⎢⎣⎡+-,342,322ππππ B.Z k k k ∈⎪⎭⎫ ⎝⎛+-,342,322ππππ C.Z k k k ∈⎥⎦⎤⎢⎣⎡+-,344,324ππππ D.Z k k k ∈⎪⎭⎫ ⎝⎛+-,344,324ππππ 【解析】:由-π2+k π<x 2-π6<π2+k π,k ∈Z ,得2k π-2π3<x <2k π+4π3,k ∈Z ,所以函数f (x )=tan ⎪⎭⎫⎝⎛-62πx 的单调递增区间是Z k k k ∈⎪⎭⎫ ⎝⎛+-,342,322ππππ,故选B. 【例2】.(2019·高考全国卷Ⅱ)下列函数中,以π2为周期且在区间⎪⎭⎫⎝⎛24ππ,单调递增的是( )A .f (x )=|cos 2x |B .f (x )=|sin 2x |C .f (x )=cos|x |D .f (x )=sin|x |【解析】A 中,函数f (x )=|cos 2x |的周期为π2,当x ∈⎪⎭⎫ ⎝⎛24ππ,时,2x ∈⎪⎭⎫⎝⎛ππ,2,函数f (x )单调递增,故A正确;B 中,函数f (x )=|sin 2x |的周期为π2,当x ∈⎪⎭⎫ ⎝⎛24ππ,时,2x ∈⎪⎭⎫⎝⎛ππ,2,函数f (x )单调递减,故B 不正确;C 中,函数f (x )=cos|x |=cos x 的周期为2π,故C 不正确;D 中,f (x )=sin|x |=⎩⎪⎨⎪⎧sin x ,x ≥0,-sin x ,x <0,由正弦函数图象知,在x ≥0和x <0时,f (x )均以2π为周期,但在整个定义域上f (x )不是周期函数,故D 不正确.故选A.命题角度二 利用三角函数的单调性比较大小利用单调性比较大小的方法:首先利用诱导公式把已知角转化为同一区间内的角且函数名称相同,再利用其单调性比较大小.【例3】已知函数f (x )=2sin ⎪⎭⎫⎝⎛+3πx ,设a =⎪⎭⎫⎝⎛7πf ,b =⎪⎭⎫⎝⎛6πf ,c =⎪⎭⎫⎝⎛3πf ,则a ,b ,c 的大小关系是( ) A .a <c <b B .c <a <b C .b <a <cD .b <c <a【解析】 a =⎪⎭⎫⎝⎛7πf =2sin 10π21,b =⎪⎭⎫⎝⎛6πf =2sin π2=2,c =⎪⎭⎫⎝⎛3πf =2sin 2π3=2sin π3, 因为y =sin x 在⎥⎦⎤⎢⎣⎡20π,上单调递增,且π3<10π21<π2,所以c <a <b .命题角度三 已知三角函数的单调区间求参数【题型要点】已知函数单调性求参数——明确一个不同,掌握两种方法(1)明确一个不同:“函数f (x )在区间M 上单调”与“函数f (x )的单调区间为N ”两者的含义不同,显然M 是N 的子集.(2)抓住两种方法.已知函数在区间M 上单调求解参数问题,主要有两种方法:一是利用已知区间与单调区间的子集关系建立参数所满足的关系式求解;二是利用导数,转化为导函数在区间M 上的保号性,由此列不等式求解.【例4】(2020·湖南师大附中3月月考)若函数f (x )=23sin ωx cos ωx +2sin 2ωx +cos 2ωx 在区间⎥⎦⎤⎢⎣⎡2323-ππ,上单调递增,则正数ω的最大值为( ) A.18 B.16 C.14D .13【解析】 法一:因为f (x )=23sin ωx cos ωx +2sin 2ωx +cos 2ωx =3sin 2ωx +1在区间⎥⎦⎤⎢⎣⎡2323-ππ,上单调递增,所以⎩⎨⎧-3ωπ≥-π2,3ωπ≤π2.解得ω≤16,所以正数ω的最大值是16.故选B.法二:易知f (x )=3sin 2ωx +1,可得f (x )的最小正周期T =πω,所以⎩⎨⎧-π4ω≤-3π2,π4ω≥3π2,解得ω≤16.所以正数ω的最大值是16.故选B.命题角度四 利用三角函数的单调性求值域(最值)【题型要点】1.三角函数值域的求法 (1)利用y =sin x 和y =cos x 的值域直接求.(2)把所给的三角函数式变换成y =A sin(ωx +φ)+b (或y =A cos(ωx +φ)+b )的形式求值域. (3)把sin x 或cos x 看作一个整体,将原函数转换成二次函数求值域. (4)利用sin x ±cos x 和sin x cos x 的关系将原函数转换成二次函数求值域. 2.换元法求三角函数的值域(最值)的策略(1)形如y =a sin 2x +b sin x +c 的三角函数,可先设sin x =t ,化为关于t 的二次函数求值域(最值). (2)形如y =a sin x cos x +b (sin x ±cos x )+c 的三角函数,可先设t =sin x ±cos x ,化为关于t 的二次函数求值域(最值).【例5】 (2019·高考全国卷Ⅱ)函数f (x )=sin ⎪⎭⎫⎝⎛+32πx -3cos x 的最小值为 . 【解析】 f (x )=sin(2x +3π2)-3cos x =-cos 2x -3cos x =1-2cos 2x -3cos x =-2243cos ⎪⎭⎫ ⎝⎛+x +178,因为cosx ∈[-1,1],所以当cos x =1时,f (x )取得最小值,f (x )min =-4.【例6】(2020·河北省中原名校联盟联考)若函数f (x )=3sin ⎪⎭⎫⎝⎛+10πx -2在区间⎥⎦⎤⎢⎣⎡a ,2π上单调,则实数a 的最大值是 .【解析】:法一:令2k π+π2≤x +π10≤2k π+3π2,k ∈Z ,即2k π+2π5≤x ≤2k π+7π5,k ∈Z ,所以函数f (x )在区间⎥⎦⎤⎢⎣⎡5752ππ,上单调递减,所以a 的最大值为7π5.法二:因为π2≤x ≤a ,所以π2+π10≤x +π10≤a +π10,而f (x )在⎥⎦⎤⎢⎣⎡a ,2π上单调,所以a +π10≤3π2,即a ≤7π5,所以a 的最大值为7π5.题型三 三角函数的周期性与奇偶性【题型要点】(1)奇偶性的判断方法:三角函数中奇函数一般可化为y =A sin ωx 或y =A tan ωx 的形式,而偶函数一般可化为y =A cos ωx +b 的形式.(2)周期的计算方法:利用函数y =A sin(ωx +φ)(ω>0),y =A cos(ωx +φ)(ω>0)的最小正周期为2πω,函数y =A tan(ωx +φ)(ω>0)的最小正周期为πω求解.【例1】(2020·湖北宜昌联考)已知函数y =2sin(ωx +θ)(0<θ<π)为偶函数,其图象与直线y =2的某两个交点的横坐标分别为x 1,x 2,|x 2-x 1|的最小值为π,则( ) A .ω=2,θ=π2 B .ω=12,θ=π2 C .ω=12,θ=π4D .ω=2,θ=π4【答案】因为函数y =2sin(ωx +θ)的最大值为2,且其图象与直线y =2的某两个交点的横坐标分别为x 1,x 2,|x 2-x 1|的最小值为π,所以函数y =2sin(ωx +θ)的最小正周期是π. 由2πω=π得ω=2.因为函数y =2sin(ωx +θ)为偶函数,所以θ=π2+k π,k ∈Z . 又0<θ<π,所以θ=π2,故选A.【例2】(2020·石家庄市质量检测)设函数f (x )=sin ⎪⎭⎫ ⎝⎛-+4πϕωx ⎪⎭⎫⎝⎛<>2,0πϕω的最小正周期为π,且f (-x )=f (x ),则( )A .f (x )在⎪⎭⎫⎝⎛20π,上单调递增 B .f (x )在⎪⎭⎫⎝⎛22-ππ,上单调递减 C .f (x )在⎪⎭⎫⎝⎛20π,上单调递减 D .f (x )在⎪⎭⎫⎝⎛22-ππ,上单调递增 【解析】:.f (x )=sin ⎪⎭⎫⎝⎛-+4πϕωx ,因为f (x )的最小正周期为π,所以ω=2,所以f (x )=sin ⎪⎭⎫ ⎝⎛-+42πϕx .f (-x )=f (x ),即f (x )为偶函数,所以φ-π4=k π+π2(k ∈Z ),所以φ=k π+3π4(k ∈Z ).因为|φ|<π2,所以φ=-π4,所以f (x )=-cos 2x ,所以f (x )在⎪⎭⎫ ⎝⎛20π,上单调递增,在⎪⎭⎫⎝⎛02-,π上单调递减,故选A. 题型四 三角函数的对称性【题型要点】对称中心的求解思路和方法(1)思路:函数y =A sin(ωx +φ)图象的对称轴和对称中心可结合y =sin x 图象的对称轴和对称中心求解. (2)方法:利用整体代换的方法求解,令ωx +φ=k π+π2,k ∈Z ,解得x =(2k +1)π-2φ2ω,k ∈Z ,即对称轴方程;令ωx +φ=k π,k ∈Z ,解得x =k π-φω,k ∈Z ,即对称中心的横坐标(纵坐标为0).对于y =A cos(ωx +φ),y =A tan(ωx +φ),可以利用类似方法求解(注意y =A tan(ωx +φ)的图象无对称轴).【例1】(2020·北京西城区模拟)函数f (x )=A sin(ωx +φ)⎪⎭⎫⎝⎛<>>2,0,0πϕωA 的图象关于直线x =π3对称,它的最小正周期为π,则函数f (x )图象的一个对称中心是( )A.⎪⎭⎫⎝⎛13,π B.⎪⎭⎫ ⎝⎛012,π C.⎪⎭⎫ ⎝⎛0125,π D .⎪⎭⎫⎝⎛012-,π 【解析】 由题意可得2πω=π,所以ω=2,可得f (x )=A sin(2x +φ),再由函数图象关于直线x =π3对称,故⎪⎭⎫ ⎝⎛3πf =A sin ⎪⎭⎫⎝⎛+ϕπ32=±A ,故可取φ=-π6. 故函数f (x )=A sin ⎪⎭⎫⎝⎛-62πx ,令2x -π6=k π,k ∈Z , 可得x =k π2+π12,k ∈Z ,故函数的对称中心为⎪⎭⎫⎝⎛+0122,ππk ,k ∈Z . 所以函数f (x )图象的一个对称中心是⎪⎭⎫⎝⎛012,π. 【例2】已知函数f (x )=|sin x ||cos x |,则下列说法错误的是( )A .f (x )的图象关于直线x =π2对称B .f (x )的周期为π2C .(π,0)是f (x )的一个对称中心D .f (x )在区间⎥⎦⎤⎢⎣⎡24ππ,上单调递减【解析】:f (x )=|sin x ||cos x |=|sin x cos x |=12·|sin 2x |,则⎪⎭⎫ ⎝⎛2πf =12|sin π|=0,则f (x )的图象不关于直线x =π2对称,故A 错误;函数周期T =12×2π2=π2,故B 正确;f (π)=12|sin 2π|=0,则(π,0)是f (x )的一个对称中心,故C 正确;当x ∈⎥⎦⎤⎢⎣⎡24ππ,时,2x ∈⎥⎦⎤⎢⎣⎡ππ,2,此时sin 2x >0,且sin 2x 为减函数,故D 正确.题型五 三角函数的图象与性质的综合问题【题型要点】解决三角函数图象与性质综合问题的方法先将y =f (x )化为y =a sin x +b cos x 的形式,然后用辅助角公式化为y =A sin(ωx +φ)的形式,再借助y =A sin(ωx +φ)的性质(如周期性、对称性、单调性等)解决相关问题.【例1】 已知函数f (x )=2sin ⎪⎭⎫⎝⎛-42πx . (1)求函数的最大值及相应的x 值的集合;(2)求函数f (x )的图象的对称轴方程与对称中心.【解析】:(1)当sin ⎪⎭⎫⎝⎛-42πx =1时,2x -π4=2k π+π2,k ∈Z , 即x =k π+3π8,k ∈Z ,此时函数取得最大值为2;故f (x )的最大值为2,使函数取得最大值的x 的集合为⎭⎬⎫⎩⎨⎧∈+=Z k k x x ,83ππ(2)由2x -π4=π2+k π,k ∈Z ,得x =3π8+12k π,k ∈Z .即函数f (x )的图象的对称轴方程为x =3π8+12k π,k ∈Z .由2x -π4=k π,k ∈Z 得x =π8+12k π,k ∈Z ,即对称中心为⎪⎭⎫⎝⎛+0,28ππk k ∈Z . 【例2】已知函数f (x )=sin(2π-x )·sin ⎪⎭⎫⎝⎛x -23π-3cos 2x + 3.(1)求f (x )的最小正周期和图象的对称轴方程;(2)当x ∈⎣⎡⎦⎤0,7π12时,求f (x )的最小值和最大值. 【解析】 (1)由题意,得f (x )=(-sin x )(-cos x )-3cos 2x +3=sin x cos x -3cos 2x +3=12sin 2x -32(cos 2x +1)+3=12sin 2x -32cos 2x +32=sin ⎪⎭⎫ ⎝⎛3-2πx +32, 所以f (x )的最小正周期T =2π2=π;令2x -π3=k π+π2(k ∈Z ),则x =k π2+5π12(k ∈Z ),故所求图象的对称轴方程为x =k π2+5π12(k ∈Z ).(2)当0≤x ≤7π12时,-π3≤2x -π3≤5π6,由函数图象(图略)可知,-32≤sin ⎪⎭⎫ ⎝⎛3-2πx ≤1,即0≤sin(2x -π3)+32≤2+32. 故f (x )的最小值为0,最大值为2+32.二、高效训练突破 一、选择题1.当x ∈[0,2π],则y =tan x +-cos x 的定义域为( )A.⎪⎭⎫⎢⎣⎡20π, B.⎥⎦⎤⎝⎛ππ,2 C.⎪⎭⎫⎢⎣⎡23ππ, D .⎥⎦⎤ ⎝⎛ππ223, 【解析】:法一:由题意得⎩⎪⎨⎪⎧tan x ≥0,-cos x ≥0,x ∈[0,2π],x ≠k π+π2,k ∈Z ,所以函数y 的定义域为⎪⎭⎫⎢⎣⎡23ππ,.故选C.法二:当x =π时,函数有意义,排除A ,D ;当x =5π4时,函数有意义,排除B.故选C.2.f (x )=tan x +sin x +1,若f (b )=2,则f (-b )=( ) A .0B .3C .-1D .-2【解析】:因为f (b )=tan b +sin b +1=2,即tan b +sin b =1. 所以f (-b )=tan(-b )+sin(-b )+1=-(tan b +sin b )+1=0.3.已知函数f (x )=cos 2x +sin 2⎪⎭⎫ ⎝⎛+6πx ,则( )A .f (x )的最小正周期为πB .f (x )的最小正周期为2πC .f (x )的最大值为12D .f (x )的最小值为-12【解析】:.f (x )=1+cos 2x 2+1-cos ⎝⎛⎭⎫2x +π32=12+12cos 2x +12-12⎝⎛⎭⎫cos 2x cos π3-sin 2x sin π3=14cos 2x +34sin 2x +1=12sin⎪⎭⎫ ⎝⎛+62πx +1,则f (x )的最小正周期为π,最小值为-12+1=12,最大值为12+1=32. 4.(2020·福州市第一学期抽测)已知函数f (x )=sin 2x +2sin 2x -1在[0,m ]上单调递增,则m 的最大值是( ) A.π4 B.π2 C.3π8D .π【解析】:由题意,得f (x )=sin 2x -cos 2x =2sin⎪⎭⎫ ⎝⎛4-2πx ,由-π2+2k π≤2x -π4≤π2+2k π(k ∈Z ), 解得-π8+k π≤x ≤3π8+k π(k ∈Z ),当k =0时,-π8≤x ≤3π8,即函数f (x )在⎥⎦⎤⎢⎣⎡838-ππ,上单调递增.因为函数f (x )在[0,m ]上单调递增,所以0<m ≤3π8,即m 的最大值为3π8,故选C.5.若⎪⎭⎫⎝⎛08,π是函数f (x )=sin ωx +cos ωx 图象的一个对称中心,则ω的一个取值是( ) A .2 B .4 C .6D .8【解析】:因为f (x )=sin ωx +cos ωx =2sin ⎪⎭⎫ ⎝⎛+4πωx ,由题意,知⎪⎭⎫ ⎝⎛8πf =2sin ⎪⎭⎫ ⎝⎛+48πωπ=0,所以ωπ8+π4=k π(k ∈Z ),即ω=8k -2(k ∈Z ),当k =1时,ω=6. 6.关于函数y =tan(2x -π3),下列说法正确的是( )A .是奇函数B .在区间(0,π3)上单调递减C .(π6,0)为其图象的一个对称中心 D .最小正周期为π【解析】:函数y =tan(2x -π3)是非奇非偶函数,A 错;在区间(0,π3)上单调递增,B 错;最小正周期为π2,D错;由2x -π3=k π2,k ∈Z 得x =k π4+π6,当k =0时,x =π6,所以它的图象关于(π6,0)中心对称,故选C.7.(2020·武汉市调研测试)已知函数f (x )=2sin ⎪⎭⎫ ⎝⎛+4πωx 在区间⎪⎭⎫ ⎝⎛80π,上单调递增,则ω的最大值为( ) A.12 B .1 C .2D .4【解析】:法一:因为x ∈⎪⎭⎫ ⎝⎛80π,,所以ωx +π4∈⎪⎭⎫ ⎝⎛+484πωππ,,因为f (x )=2sin ⎪⎭⎫ ⎝⎛+4πωx 在⎪⎭⎫ ⎝⎛80π,上单调递增,所以ωπ8+π4≤π2,所以ω≤2,即ω的最大值为2,故选C.法二:将选项逐个代入函数f (x )进行验证,选项D 不满足条件,选项A 、B 、C 满足条件f (x )在⎪⎭⎫⎝⎛80π,上单调递增,所以ω的最大值为2,故选C.8.已知函数f (x )=(x -a )k ,角A ,B ,C 为锐角三角形ABC 的三个内角,则下列判断正确的是( ) A .当k =1,a =2时,f (sin A )<f (cos B ) B .当k =1,a =2时,f (cos A )>f (sin B ) C .当k =2,a =1时,f (sin A )>f (cos B ) D .当k =2,a =1时,f (cos A )>f (sin B )【解析】:A ,B ,C 为锐角三角形ABC 的三个内角,因为A +B >π2,所以π2>A >π2-B >0,所以sin A >sin⎪⎭⎫ ⎝⎛-B 2π=cos B ,cos A <cos ⎪⎭⎫ ⎝⎛-B 2π=sin B ,且sin A ,sin B ,cos A ,cos B ∈(0,1).当k =1,a =2时,函数f (x )=x -2单调递增,所以f (sin A )>f (cos B ),f (cos A )<f (sin B ),故A ,B 错误; 当k =2,a =1时,函数f (x )=(x -1)2在(0,1)上单调递减,所以f (sin A )<f (cos B ),f (cos A )>f (sin B ),故C 错误,D 正确.9.已知函数f (x )=sin ωx +3cos ωx (x ∈R ),又f (α)=2,f (β)=2,且|α-β|的最小值是π2,则正数ω的值为( )A .1B .2C .3D .4【解析】:函数f (x )=sin ωx +3cos ωx =2sin ⎪⎭⎫ ⎝⎛+3πωx . 由f (α)=2,f (β)=2,且|α-β|的最小值是π2,所以函数f (x )的最小正周期T =π2,所以ω=2ππ2=4.10.(2020·江西八所重点中学联考)已知函数f (x )=2sin(ωx +φ)⎪⎭⎫⎝⎛<<<2,10πϕω的图象经过点(0,1),且关于直线x =2π3对称,则下列结论正确的是( )A .f (x )在⎥⎦⎤⎢⎣⎡3212ππ,上是减函数 B .若x =x 0是f (x )图象的对称轴,则一定有f ′(x 0)≠0 C .f (x )≥1的解集是⎥⎦⎤⎢⎣⎡+32,2πππk k ,k ∈Z D .f (x )图象的一个对称中心是⎪⎭⎫⎝⎛03-,π 【解析】:由f (x )=2sin(ωx +φ)的图象经过点(0,1),得sin φ=12,又|φ|<π2,所以φ=π6,则f (x )=2sin⎪⎭⎫ ⎝⎛+6πωx .因为f (x )的图象关于直线x =2π3对称,所以存在m ∈Z 使得2π3ω+π6=m π+π2,得ω=3m 2+12(m ∈Z ),又0<ω<1,所以ω=12,则f (x )=2sin ⎪⎭⎫ ⎝⎛+62πx .令2n π+π2≤12x +π6≤2n π+3π2,n ∈Z ,得4n π+2π3≤x ≤4n π+8π3,n ∈Z ,故A 错误;若x =x 0是f (x )图象的对称轴,则f (x )在x =x 0处取得极值,所以一定有f ′(x 0)=0,故B 错误;由f (x )≥1得4k π≤x ≤4k π+4π3,k ∈Z ,故C 错误;因为⎪⎭⎫ ⎝⎛-3πf =0,所以⎪⎭⎫⎝⎛03-,π是其图象的一个对称中心,故D 正确.选D.二、填空题1.比较大小:sin ⎪⎭⎫ ⎝⎛18-π sin ⎪⎭⎫⎝⎛10-π. 【解析】:因为y =sin x 在⎥⎦⎤⎢⎣⎡02-,π上为增函数且-π18>-π10>-π2,故sin ⎪⎭⎫ ⎝⎛18-π>sin ⎪⎭⎫⎝⎛10-π. 2.已知函数f (x )=4sin⎪⎭⎫ ⎝⎛3-2πx ,x ∈[-π,0],则f (x )的单调递增区间是 . 【解析】:由-π2+2k π≤2x -π3≤π2+2k π(k ∈Z ),得-π12+k π≤x ≤5π12+k π(k ∈Z ),又因为x ∈[-π,0],所以f (x )的单调递增区间为⎥⎦⎤⎢⎣⎡127--ππ,和⎥⎦⎤⎢⎣⎡012-,π 3.设函数f (x )=cos ⎪⎭⎫ ⎝⎛6-πωx (ω>0).若f (x )≤⎪⎭⎫ ⎝⎛4πf 对任意的实数x 都成立,则ω的最小值为 . 【解析】:由于对任意的实数都有f (x )≤⎪⎭⎫⎝⎛4πf 成立,故当x =π4时,函数f (x )有最大值,故⎪⎭⎫⎝⎛4πf =1,πω4-π6=2k π(k ∈Z ),所以ω=8k +23(k ∈Z ),又ω>0,所以ωmin =23. 4.若函数y =cos ⎪⎭⎫ ⎝⎛+6πωx (ω∈N *)图象的一个对称中心是⎪⎭⎫⎝⎛06,π,则ω的最小值为 . 【解析】:由题意知πω6+π6=k π+π2(k ∈Z )∈ω=6k +2(k ∈Z ),又ω∈N *,所以ωmin =2.5.(2020·无锡期末)在函数∈y =cos|2x |;∈y =|cos 2x |;∈y =cos⎪⎭⎫ ⎝⎛+62πx ;∈y =tan 2x 中,最小正周期为π的所有函数的序号为 .【解析】:∈y =cos|2x |=cos 2x ,最小正周期为π;∈y =cos 2x ,最小正周期为π,由图象知y =|cos 2x |的最小正周期为π2;∈y =cos⎪⎭⎫ ⎝⎛+62πx 的最小正周期T =2π2=π;∈y =tan 2x 的最小正周期T =π2.因此∈∈的最小正周期为π.6.已知函数f (x )=2sin(ωx -π6)+1(x ∈R )的图象的一条对称轴为x =π,其中ω为常数,且ω∈(1,2),则函数f (x )的最小正周期为 .【解析】:由函数f (x )=2sin(ωx -π6)+1(x ∈R )的图象的一条对称轴为x =π,可得ωπ-π6=k π+π2,k ∈Z ,所以ω=k +23,又ω∈(1,2),所以ω=53,从而得函数f (x )的最小正周期为2π53=6π5.三 解答题1.已知函数f (x )=3cos⎪⎭⎫ ⎝⎛3-2πx -2sin x cos x . (1)求f (x )的最小正周期;(2)求证:当x ∈⎥⎦⎤⎢⎣⎡44-ππ,时,f (x )≥-12. 【解析】:(1)f (x )=3cos⎪⎭⎫ ⎝⎛3-2πx -2sin x cos x =32cos 2x +32sin 2x -sin 2x =12sin 2x +32cos 2x =sin ⎪⎭⎫ ⎝⎛+32πx ,所以T =2π2=π. (2)证明:令t =2x +π3,因为-π4≤x ≤π4,所以-π6≤2x +π3≤5π6,因为y =sin t 在⎥⎦⎤⎢⎣⎡26-ππ,上单调递增,在⎥⎦⎤⎢⎣⎡652ππ,上单调递减,且sin ⎪⎭⎫⎝⎛6-π<sin 5π6, 所以f (x )≥sin ⎪⎭⎫⎝⎛6-π=-12,得证. 2.已知f (x )=2sin⎪⎭⎫ ⎝⎛+62πx +a +1. (1)求f (x )的单调递增区间;(2)当x ∈⎥⎦⎤⎢⎣⎡20π,时,f (x )的最大值为4,求a 的值;(3)在(2)的条件下,求满足f (x )=1且x ∈[-π,π]的x 的取值集合.【解析】:(1)f (x )=2sin ⎪⎭⎫ ⎝⎛+62πx +a +1,由2k π-π2≤2x +π6≤2k π+π2,k ∈Z ,可得k π-π3≤x ≤k π+π6,k ∈Z , 所以f (x )的单调递增区间为⎣⎡⎦⎤k π-π3,k π+π6,k ∈Z . (2)当x =π6时,f (x )取得最大值4,即⎪⎭⎫⎝⎛6πf =2sin π2+a +1=a +3=4,所以a =1. (3)由f (x )=2sin ⎪⎭⎫ ⎝⎛+62πx +2=1,可得sin⎪⎭⎫ ⎝⎛+62πx =-12, 则2x +π6=7π6+2k π,k ∈Z 或2x +π6=116π+2k π,k ∈Z ,即x =π2+k π,k ∈Z 或x =5π6+k π,k ∈Z ,又x ∈[-π,π],解得x =-π2,-π6,π2,5π6,所以x 的取值集合为⎩⎨⎧⎭⎬⎫-π2,-π6,π2,5π6.3.已知函数f (x )=sin(ωx +φ)⎪⎭⎫⎝⎛<<320πϕ的最小正周期为π. (1)求当f (x )为偶函数时φ的值;(2)若f (x )的图象过点⎪⎪⎭⎫⎝⎛236,π,求f (x )的单调递增区间.【解析】:由f (x )的最小正周期为π,则T =2πω=π,所以ω=2,所以f (x )=sin(2x +φ).(1)当f (x )为偶函数时,f (-x )=f (x ).所以sin(2x +φ)=sin(-2x +φ),展开整理得sin 2x cos φ=0, 已知上式对∈x ∈R 都成立,所以cos φ=0.因为0<φ<2π3,所以φ=π2.(2)因为⎪⎭⎫ ⎝⎛6πf =32,所以sin⎪⎭⎫ ⎝⎛+⨯ϕπ62=32,即π3+φ=π3+2k π或π3+φ=2π3+2k π(k ∈Z ), 故φ=2k π或φ=π3+2k π(k ∈Z ),又因为0<φ<2π3,所以φ=π3,即f (x )=sin ⎪⎭⎫ ⎝⎛+32πx ,由-π2+2k π≤2x +π3≤π2+2k π(k ∈Z )得k π-5π12≤x ≤k π+π12(k ∈Z ), 故f (x )的单调递增区间为⎣⎡⎦⎤k π-5π12,k π+π12(k ∈Z ).4.已知函数f (x )=sin ⎪⎭⎫⎝⎛x -2πsin x -3cos 2x +32. (1)求f (x )的最大值及取得最大值时x 的值;(2)若方程f (x )=23在(0,π)上的解为x 1,x 2,求cos(x 1-x 2)的值.【解】:(1)f (x )=cos x sin x -32(2cos 2x -1)=12sin 2x -32cos 2x =sin⎪⎭⎫ ⎝⎛3-2πx . 当2x -π3=π2+2k π(k ∈Z ),即x =512π+k π(k ∈Z )时,函数f (x )取最大值,且最大值为1.(2)由(1)知,函数f (x )图象的对称轴为x =512π+k π(k ∈Z ),所以当x ∈(0,π)时,对称轴为x =512π.又方程f (x )=23在(0,π)上的解为x 1,x 2.所以x 1+x 2=56π,则x 1=56π-x 2,所以cos(x 1-x 2)=cos ⎪⎭⎫ ⎝⎛22-65x π=sin ⎪⎭⎫ ⎝⎛3-22πx ,又f (x 2)=sin⎪⎭⎫ ⎝⎛3-22πx =23,故cos(x 1-x 2)=23.。
求三角函数值域及最值的常用方法+练习题
求三角函数值域及最值的常用方法(一)一次函数型或利用:=+=x b x a y cos sin )sin(22ϕ+⋅+x b a化为一个角的同名三角函数形式,利用三角函数的有界性或单调性求解; (2)2sin(3)512y x π=--+,x x y cos sin =(3)函数x x y cos 3sin +=在区间[0,]2π上的最小值为 1 .(4)函数tan()2y x π=-(44x ππ-≤≤且0)x ≠的值域是 (,1][1,)-∞-⋃+∞(二)二次函数型利用二倍角公式,化为一个角的同名三角函数形式的一元二次式,利用配方法、 换元及图像法求解。
(2)函数)(2cos 21cos )(R x x x x f ∈-=的最大值等于43.(3).当20π<<x 时,函数x xx x f 2sin sin 82cos 1)(2++=的最小值为 4 .(4).已知k <-4,则函数y =cos2x +k (cos x -1)的最小值是 1 .(5).若2αβπ+=,则cos 6sin y βα=-的最大值与最小值之和为____2____.(三)借助直线的斜率的关系,用数形结合求解型如dx c bx a x f ++=cos sin )(型。
此类型最值问题可考虑如下几种解法:①转化为c x b x a =+cos sin 再利用辅助角公式求其最值;②利用万能公式求解;③采用数形结合法(转化为斜率问题)求最值。
例1:求函数sin cos 2xy x =-的值域。
解法1:数形结合法:求原函数的值域等价于求单位圆上的点P(cosx , sinx )与定点Q(2, 0)所确定的直线的斜率的范围。
作出如图得图象,当过Q 点的直线与单位圆相切时得斜率便是函数sin cos 2xy x =-得最值,由几何知识,易求得过Q 的两切线得斜率分别为33-、33。
结合图形可知,此函数的值域是33[,]33-。
3.2 三角函数的定义域与值域(无附答案)人教版
3.2 三角函数的定义域与值域例1.求下列函数的定义域 (1)x x y 2cos 2sin 33--=;(2))21(cos log sin +=x y x . 例2.求下列函数的定义域(1)x x y cos lg 252+-=;(2)).0)(cos sin 3|cos |2lg(π<≤--=x x x x y 例3.求下列函数的值域 (1)4sin 5cos 22-+=x x y ; (2)x x x x y 22cos 2cos sin 4sin 5+-=;(3)2sin 31sin 3++=x x y ;(4))4(tan 1)4(tan 122x x y -+--=ππ; 例4.求下列函数的值域 (1))2sin 5sin 2(log 2-+-=x x y a ;(2)x x y cos )6sin(π-=.【备用题】求函数x xx xy 2sin cos sin 12sin +--=的值域.【基础训练】1.在坐标系中,分别画出满足不等式的角x 的区域,并写出不等式的解集:(1)∈-<x x ,21sin _____________.(2)∈>x x ,21cos ______________. (3)∈->x x ,1tan ______________.(4)∈>x x ,3cot _____________.2.(1)1tan 1-=x y 的定义域为________________.(2)xx y cot tan 1-=的定义域为________________.3..____________3)1sin 2(_,__________1cos 22的值域为的值域为+-=-=x y x y 4.4|cos sin 3|--=x x y 的值域为___________,2cos 1cos 4+-=x x y 的值域为_____________.5.当x x x x sin ,cot ,cos ,40时π<<从小到大排列为_____________.【拓展练习】1.若αααα则,11sec csc cos 2-=-⋅所在的象限是 ( )A .第二象限B .第四象限C .第二象限或第四象限D .第一或第三象限 2.若θ为锐角,则θθcos sin +的取值范围是 ( )A .]2,1(B .]2,1[C .]2,0[D .]2,2[- 3.α在第三、四象限,m mm 则,432sin --=α的取值范围是( )A .(-1,0)B .(-1,21)C .(-1,23)D .(-1,1) 4.函数||sin |sin |x x y +=的值域是( )A .[-2,2]B .[-1,1]C .[0,2]D .[0,1]5.(1)已知)(cos ),23,21()(x f x f 则的定义域为-的定义域为____________.(2)设)(,cos )1sin 2(2x f x x f 则=-的定义域为_____________. 6.xy sin 21+=的值域为___________,)cos(sin x y =的值域为___________,1cot 4tan 22++=x y 的值域为_____________.7.求下列函数的定义域 (1).251sin 2xx y -+=(2).3sin 2lg(cos 21++=x x y8.求下列函数的定义域(1)).cot tan 2lg(cos sin 2x x x x y +++= (2)).2sin(cos lg x y =9.求下列函数的值域(1)).1sin 2)(1cos 2(22++=x x y(2).sin 1cos sin 22xxx y +=10.求下列函数的值域(1)].,[2sin 21cos sin 1ππ-∈+++=x xx x y(2).cos cos 3x x y -=11.求下列函数的值域(1).csc 2sec 22x x y +=(2)).80sin(5)20sin(3οο+++=x x y12.求).2|(|sin )cos 2(22≤+-=m m y 的最小值θθ。
高一三角函数定义域、值域习题及答案
高一三角函数定义域、值域习题及答案
三角函数是数学中重要的概念之一,它在解决各种实际问题中发挥着重要的作用。
本文将介绍高一三角函数的定义域、值域,并提供一些题及答案供参考。
一、正弦函数的定义域和值域
正弦函数是三角函数中常见的一种,表示为sin(x)。
它的定义域是所有实数集合R,即无限制。
而它的值域是闭区间[-1, 1],即sin(x)的取值范围在-1到1之间。
例题1:求函数y = sin(x)的定义域和值域。
答案:
定义域:D = R
值域:V = [-1, 1]
二、余弦函数的定义域和值域
余弦函数是另一种常见的三角函数,表示为cos(x)。
它的定义域也是所有实数集合R,无限制。
值域同样是闭区间[-1, 1],即cos(x)的取值范围在-1到1之间。
例题2:求函数y = cos(x)的定义域和值域。
答案:
定义域:D = R
值域:V = [-1, 1]
三、正切函数的定义域和值域
正切函数是三角函数中另一个重要的函数,表示为tan(x)。
它的定义域是除去所有使得tan(x)无定义的点的实数集合。
tan(x)在x = (2n+1)π/2 (n为整数)时无定义,因此其定义域为除去这些点的实数集合。
正切函数的值域是全体实数R。
例题3:求函数y = tan(x)的定义域和值域。
答案:
定义域:D = R - {(2n+1)π/2} (n为整数)
值域:V = R
以上是高一三角函数定义域、值域的基本介绍以及一些习题的答案。
希望对您的学习有所帮助!。
求三角函数定义域和值域题型
二.求 三角函值域的几种典型形式
一)一次型 y=asinx+b
直接代入法
例1:求y 2sin x 1 值域。
分析:利用 sinx 1 cos x 1有界性
函数y 2sin x 1的值域为1,3
练习:口答下列函数的值域
(1)y=-2sinx+1
[-1,3]
(2) y=3cosx+2
[-1,5]
cos
x
t2
1 2
例5:y sin x cos x sin x cos x
y
解: 设t=sinx+cosx,则t 2, 2
原式化为: y=t+ t2 1 2
= 1 t2 t 1 = 1(t 1)2 1
2, 2
ymin =-1 ,
ymax
=
1 2
+
2
练习:y sin x cos x 1 sin x cos x
(2)cosx ≤1/2
解:作出余弦函数y=cosx,x∈[0,2π]的图象:
y
1
1/2
o
/2
3/2
2 x
-1
由图形可以得到,满足条件的x的集合为:
[π/3+2kπ,5 π/3+2kπ] k Z
题型二. 求三角函定义域:
【例 2】 求下列函数的定义域: (1)y= 36-x2+lg cos x; (2)y=logsin x(cos x+12).
例4. y sin x 3 cos x的值域.
解:原式= 12 ( 3)2 sin( x ) 2 sin( x )
3
3
原式的值域为2,2
练习:y 2sin x cos x的值域. 值域为 5, 5
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)要使函数有意义,必须使sin x>
x≠
x>-12.
得 2kπ<x<2kπ+π,
∴原函数的定义域为
≠2kπ+π, 2
-23π<x<2kπ+23π, (k∈Z).
(2kπ,2kπ+π2)∪(2kπ+π2,2kπ+23π)(k∈Z).
函数的定义域主要考虑以下几点:偶次根号下不小于 0;对数的真数大于 0,底数大于 0 且不等于 1;分母不能为 0 等.一般我们解满足这些条件的不等式求出 x 的 取值范围,再取交集即可.
•
4、越是无能的人,越喜欢挑剔别人的 错儿。 15:12:4 215:12: 4215:1 2Saturday, December 12, 2020
•
5、知人者智,自知者明。胜人者有力 ,自胜 者强。 20.12.1 220.12. 1215:1 2:4215: 12:42D ecembe r 12, 2020
•
1、有时候读书是一种巧妙地避开思考 的方法 。20.1 2.1220. 12.12Sa turday, December 12, 2020
•
2、阅读一切好书如同和过去最杰出的 人谈话 。15:1 2:4215: 12:4215 :1212/ 12/2020 3:12:42 PM
•
3、越是没有本领的就越加自命不凡。 20.12.1 215:12: 4215:1 2Dec-20 12-Dec-20
解:(1)要使函数有意义,必须使{36-x2≥0.
x>0 ,
得-6点≤x拨≤:12..列根出-据π2三图<x角象<不2写kπ等+出π2式不,k等∈Z式. 的解集
由图知不等式组的解集为 [-6,-32π)∪(-π2,π2)∪(32π,6]. 故原函数的定义域为 [-6,-32π)∪(-π2,π2)∪(32π,6].
cos
x
t2
1 2
例5:y sin x cos x sin x cos x
y
解: 设t=sinx+cosx,则t 2, 2
原式化为: y=t+ t2 1 2
= 1 t2 t 1 = 1(t 1)2 1
2
22
1
2
0
2x
t 2, 2
ymin =-1 ,
ymax
=
1 2
+
2
练习:y sin x cos x 1 sin x cos x
(2)cosx ≤1/2
解:作出余弦函数y=cosx,x∈[0,2π]的图象:
y
1
1/2
o
/2
3/2
2 x
-1
由图形可以得到,满足条件的x的集合为:
[π/3+2kπ,5 π/3+2kπ] k Z
题型二. 求三角函定义域:
【例 2】 求下列函数的定义域: (1)y= 36-x2+lg cos x; (2)y=logsin x(cos x+12).
y (t 1 )2 3
24
当t
1 2
时,y
min
3 4
当t=-1时,ymax =3
-1
0
1 2
1
t
练习: y cos2 x sin x 2 的值域。
点拨:统一函数名
三) 分式型 y a sin x b
c sin x d
例3: 求y sin x 的值域。 sin x 2
反表示法
•
6、意志坚强的人能把世界放在手中像 泥块一 样任意 揉捏。 2020年 12月12 日星期 六下午 3时12 分42秒1 5:12:42 20.12.1 2
•
7、最具挑战性的挑战莫过于提升自我 。。20 20年12 月下午 3时12 分20.12. 1215:1 2December 12, 2020
一.复习(3分钟完成)
1.在同一坐标系内,用五点法分别画出函数
y= sinx和 y= cosx, x[0, 2]的简图:
y
1
o
2
2
-1
y=cosx,x[0, 2]
3 2
2
x
y=sinx,x[0, 2]
三、解三角不等式(数形结合)
1.sin x 1 2
-
7
6
6
1 2
3.cos(2x ) 3 32
点拨: 1.反表示 2.利用 sinx 1, cos x 1有界性
解: sin x 2 y 1 y
sinx 1
| 2 y | 1 1 y
两边平方
值域为
1,
1 3
练习: y cos x 2
cos x 1
四)二合一 y a sin x b cos x
利用a sin x b cos x a2 b2 sin( x )
总结:形如y=asinx+b的函数的最大值是 a b
最小值是 a b
二)二次型 y a sin2 x bsin x c
例2:求 y sin2 x sin x 1的值域。 二次函数法
点拨:1.换元(注明新元取值)
2.运用二次函数图象性质(一看对称轴,二看区间端点)
y
解:令t sin x 1,1
二.求 三角函值域的几种典型形式
一)一次型 y=asinx+b
直接代入法
例1:求y 2sin x 1 值域。
分析:利用 sinx 1 cos x 1有界性
函数y 2sin x 1的值域为1,3
练习:口答下列函数的值域
(1)y=-2sinx+1
[-1,3]
(2) y=3cosx+2
[-1,5]
将2x 看作一个整体 3
3
2
11
6
6
返回目录
题型一:利用正弦函数和余弦函数的图象,解三角不等式
(1)sinx≥1/2
(2)cosx ≤1/2
解(1)作出正弦函数y=sinx,x∈[0,2π]的图象: y
1
1/2
o
/2
3/2
2
x
-1 由图形可以得到,满足条件的x的集合为:
[π/6+2k π,5 π/6+2k π] k Z
2
例5. y 2cos x sin( x )
2
2
3 sin2 x sin x cos x的值域.
3
1.统一角 2.降次 3.二合一
五) 其他形式:
一般一个式子中同时出现了sin x cos x和sin x cos x.
想到了
令t sin x cos x(t
2,
2
) 则sin
x
例4. y sin x 3 cos x的值域.
解:原式= 12 ( 3)2 sin( x ) 2 sin( x )
3
3
原式的值域为2,2
练习:y 2sin x cos x的值域. 值域为 5, 5
例5. y cos2 x sin x cos x的值域.
1.降次
2.二合一
sin x cos x 1 sin 2 x cos2 x 1 cos 2x sin2 x 1 cos 2x