精品 中考数学填空题选择题难题 题集

合集下载

中考数学填空题专项练习经典练习卷(含答案解析)(1)

中考数学填空题专项练习经典练习卷(含答案解析)(1)

一、选择题1.如图,ABC ∆是O 的内接三角形,119A ∠=︒,过点C 的圆的切线交BO 于点P ,则P ∠的度数为( )A .32°B .31°C .29°D .61°2.如图,AB 是圆O 的直径,CD 是圆O 的弦,若35C ∠=︒,则ABD ∠=( )A .55︒B .45︒C .35︒D .65︒ 3.关于x 的一元二次方程2(1)20x k x k ---+=有两个实数根12,x x ,()1212122(2)2x x x x x x -+--+3=-,则k 的值( )A .0或2B .-2或2C .-2D .24.现有一块长方形绿地,它的短边长为20 m ,若将短边增大到与长边相等(长边不变),使扩大后的绿地的形状是正方形,则扩大后的绿地面积比原来增加300 m 2,设扩大后的正方形绿地边长为xm ,下面所列方程正确的是( )A .x(x-20)=300B .x(x+20)=300C .60(x+20)=300D .60(x-20)=300 5.如图,A 、D 是⊙O 上的两个点,BC 是直径,若∠D =34°,则∠OAC 等于( )A.68°B.58°C.72°D.56°6.下列图标中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.7.如图,点C是线段AB的黄金分割点(AC>BC),下列结论错误的是()A.AC BCAB AC=B.2·BC AB BC=C.51ACAB-=D.0.618≈BCAC8.下列函数中是二次函数的为()A.y=3x-1B.y=3x2-1C.y=(x+1)2-x2D.y=x3+2x-39.下列判断中正确的是()A.长度相等的弧是等弧B.平分弦的直线也必平分弦所对的两条弧C.弦的垂直平分线必平分弦所对的两条弧D.平分一条弧的直线必平分这条弧所对的弦10.一个不透明的袋子里装着质地、大小都相同的3个红球和2个绿球,随机从中摸出一球,不再放回袋中,充分搅匀后再随机摸出一球.两次都摸到红球的概率是()A.310B.925C.920D.3511.下列对二次函数y=x2﹣x的图象的描述,正确的是()A.开口向下B.对称轴是y轴C.经过原点D.在对称轴右侧部分是下降的12.二次函数y=3(x–2)2–5与y轴交点坐标为( )A.(0,2)B.(0,–5)C.(0,7)D.(0,3) 13.关于y=2(x﹣3)2+2的图象,下列叙述正确的是()A.顶点坐标为(﹣3,2)B.对称轴为直线y=3C.当x≥3时,y随x增大而增大D.当x≥3时,y随x增大而减小14.当ab>0时,y=ax2与y=ax+b的图象大致是()A .B .C .D .15.与y=2(x ﹣1)2+3形状相同的抛物线解析式为( )A .y=1+12x 2B .y=(2x+1)2C .y=(x ﹣1)2D .y=2x 2二、填空题16.如图,在矩形ABCD 中,AD=3,将矩形ABCD 绕点A 逆时针旋转,得到矩形AEFG ,点B 的对应点E 落在CD 上,且DE=EF ,则AB 的长为_____.17.从五个数1,2,3,4,5中随机抽出1个数 ,则数3被抽中的概率为_________.18.若一个圆锥的侧面展开图是一个半径为3cm ,圆心角为120°的扇形,则该圆锥的底面半径为__________cm .19.抛物线y =(x ﹣1)2﹣2与y 轴的交点坐标是_____.20.如图,AB 为O 的直径,弦CD AB ⊥于点E ,已知8CD =,3OE =,则O 的半径为______.21.如图,抛物线2y ax bx c =++的对称轴为1x =,点P ,点Q 是抛物线与x 轴的两个交点,若点P 的坐标为(4,0),则点Q 的坐标为__________.22.已知二次函数y =(x −2)2+3,当x _______________时,y 随x 的增大而减小.23.对于实数,a b ,定义运算“◎”如下:a ◎b 22()()a b a b =+--.若()2m +◎()3m -24=,则m =_____.24.半径为2的圆被四等分切割成四条相等的弧,将四个弧首尾顺次相连拼成如图所示的恒星图型,那么这个恒星的面积等于______.25.关于x 的一元二次方程(k-1)x 2-2x+1=0有两个不相等的实数根,则实数k 的取值范围是_______.三、解答题26.为满足市场需求,某超市在五月初五“端午节”来临前夕,购进一种品牌粽子,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.(1)试求出每天的销售量y (盒)与每盒售价x (元)之间的函数关系式;(2)当每盒售价定为多少元时,每天销售的利润P (元)最大?最大利润是多少?(3)为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于58元.如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售粽子多少盒?27.如图,在ABC 中,AB BC =,120ABC ∠=︒,点D 在边AC 上,且线段BD 绕着点B 按逆时针方向旋转120︒能与BE 重合,点F 是ED 与AB 的交点.(1)求证:AE CD =;(2)若45DBC ∠=︒,求BFE ∠的度数.28.在四张编号为A ,B ,C ,D 的卡片(除编号外,其余完全相同)的正面分别写上如图所示正整数后,背面朝上,洗匀放好,现从中随机抽取一张,不放回,再从剩下的卡片中随机抽取一张.(1)请用树状图或列表的方法表示两次抽取卡片的所有可能出现的结果(卡片用A ,B ,C ,D 表示);(2)我们知道,满足a 2+b 2=c 2的三个正整数a ,b ,c 成为勾股数,求抽到的两张卡片上的数都是勾股数的概率.29.如图,将△ABC 绕点C 顺时针旋转得到△DEC ,使点A 的对应点D 恰好落在边AB 上,点B 的对应点为E ,连接BE .(Ⅰ)求证:∠A=∠EBC;(Ⅱ)若已知旋转角为50°,∠ACE=130°,求∠CED和∠BDE的度数.30.从甲、乙、丙、丁4名同学中随机抽取同学参加学校的座谈会(1)抽取一名同学,恰好是甲的概率为(2) 抽取两名同学,求甲在其中的概率。

中考数学复习专题训练精选试题及答案

中考数学复习专题训练精选试题及答案

中考数学复习专题训练精选试题及答案一、选择题1. 以下哪一个数是最小的无理数?A. √2B. πC. 3.14D. √9答案:A2. 若一个等差数列的首项是2,公差是3,则第8项是多少?A. 17B. 18C. 19D. 20答案:A3. 一个二次函数的图像开口向上,顶点坐标为(3,-4),则该二次函数的一般式为:A. y = x² + 6x - 13B. y = x² - 6x + 13C. y = -x² + 6x - 13D. y = -x² - 6x + 13答案:B4. 在三角形ABC中,a = 5,b = 7,C = 60°,则边c 的长度等于:A. 6B. 8C. 10D. 12答案:C二、填空题1. 已知a = 3,b = 4,则a² + b² = _______。

答案:252. 已知一个等差数列的前5项和为35,首项为7,求公差d = _______。

答案:23. 在梯形ABCD中,AB // CD,AB = 6,CD = 8,AD = BC = 5,求梯形的高h = _______。

答案:34. 若函数f(x) = x² - 2x + 1的最小值为m,求m =_______。

答案:0三、解答题1. 已知一元二次方程x² - 4x - 12 = 0,求解该方程。

解:首先,将方程因式分解为(x - 6)(x + 2) = 0。

然后,解得x = 6或x = -2。

答案:x = 6或x = -22. 已知一个长方体的长为a,宽为b,高为c,且a、b、c成等差数列。

若长方体的体积为V,求V的表达式。

解:由题意可知,a + c = 2b,所以c = 2b - a。

长方体的体积V = abc = ab(2b - a)。

答案:V = ab(2b - a)3. 已知三角形ABC,AB = AC,∠BAC = 40°,BC = 6,求三角形ABC的周长。

中考数学选择填空题难题及答案

中考数学选择填空题难题及答案

中考数学选择题填空题荟萃及答案1.如图a 是长方形纸带,∠DEF = 20°,将纸带沿EF 折叠成图b ,再沿BF 折叠成 图c ,则图c 中 的∠CFE 的度数是 120°2. 已知关于x 的一次函数11()y k x kk=-+,其中实数k 满足0<k <1,当自变量x在1≤x ≤2的范围内变化时,此函数的最大值为( C ) A .1B .2C .kD .2k -1k3.福娃们在一起探讨研究下面的题目:参考下面福娃们的讨论,请你解该题,你选择的答案是( )贝贝:我注意到当x =0时,y=m >0. 晶晶:我发现图象的对称轴为x =21. 欢欢:我判断出x 1<a <x 2.迎迎:我认为关键要判断a -1的符号. 妮妮:m 可以取一个特殊的值.4. 如图,在Rt △ABC 中,AB AC =,D 、E 是斜边BC 上两点,且∠DAE =45°,将△ADC 绕点A 顺时针旋转90︒后,得到△AFB ,连接EF ,下列结论: ①△AED ≌△AEF ; ②△ABE ∽△ACD ; ③BE DC DE +=; ④222BE DC DE +=其中一定正确的是 ( D )图a 图b A DA C BA EA C AA 图c(第8题图)AB C D E FEA CBPDA .②④B .①③C .②③D .①④5.如图,在ABC △中,AB=15,AC=12,BC=9,经过点C 且与 边AB 相切的动圆与CB 、CA 分别相交于点E 、F ,则线段EF 长度的最小值是 5366. 如图,已知八边形ABCDEFGH , 对角线AE 、BF 、CG 、DH 交于点O , △OAB 、△OCD 、△OEF 和△OGH 是四个全等的 等边三角形,用这四个三角形围成一个四棱锥的侧面,用其余的四个三角形拼割出这个四棱锥的底面,则下面图形(实 线为拼割后的图形)中恰为此四棱锥底面的是 ( B )A BCD 7.如图,在矩形ABCD中,AB =3,BC =4,点P在BC 边上 运动,联结DP ,过点A 作AE⊥DP ,垂足为E ,设DP =x , AE =y ,则能反映y 与x 之间函数关系的大致图象是( C )8. 如图,在图1所示的正方形铁皮上剪下一个圆形和扇形,使之恰好围成图2所示的一个圆锥模型.设圆的半径为r ,扇形的半径为R ,则圆的半径与扇形的半径之间的关系为( D ) A .r R 2=B .r R 49=H GFEDCBAO图2……(1)(2)(3)C .r R 3=D .r R 4=9. 如图, A 、B 、C 、D 为O 的四等分点,动点P 从圆心O 出发,沿O C D O --- 路线作匀速运动,设运动时间为t (秒),∠APB=y (度),则下列图象中表示y 与t 之间函数关系最恰当的是( C )10.把长为8cm 的矩形按虚线对折,按图中的虚线剪出一个直角梯形,打开得到一个等腰梯形,剪掉部分的面积为6cm 2,则打开后梯形的周长是 (10213)+ cmA .B .(1013)+cmC .22cmD .18cm11. 根据如图所示的(1),(2),(3)三个图所表示的规律,依次下去第n 个图中平行四边形的个数是( B )A .3nB .3n (n +1)C .6nD .6n (n +1)AB C DOP B .ty4590 D .ty4590 A .ty4590 C .ty459012. 将一正方形纸片按下列顺序折叠,然后将最后折叠的纸片沿虚线剪去上方的小三角形.将纸片展开,得到的图形是 ( C )13.将圆柱形纸筒沿母线AB 剪开铺平,得到一个矩形(如图).如果将这个纸筒沿线路B M A →→剪开铺平,得到的图形是( D )A .矩形B . 半圆C .三角形D . 平行四边形14. 如图,平行四边形ABCD 中,点E 在边AD 上,以BE 为折痕,将△ABE 向上翻折,点A 正好落在CD 上的点F ,若△FDE 的周长为10,△FCB 的周长为22,则FC 的长为( B ) A. 5 B. 6 C. 7 D. 815. 如图,C 为⊙O 直径AB 上一动点,过点C 的直线交⊙O 于D 、E 两点, 且∠ACD=45°, DF ⊥AB 于点F,EG ⊥AB 于点G,当点C 在AB 上运动时, 设AF=x ,DE=y ,下列中图象中,能表示y 与x 的 函数关系式的图象大致是( A )A .B .C .D .ABMABM ()A ()BABCD EF16、如图,C为⊙O直径AB上一动点,过点C的直线交⊙O于D、E两点,且∠ACD=45°,DF⊥AB于点F,EG⊥AB于点G,当点C在AB上运动时,设AF=x,DE=y,下列中图象中,能表示y与x的函数关系式的图象大致是( A )17、如图,在ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,4,则ΔCEF 交DC的延长线于点F,BG⊥AE,垂足为G,BG=2的周长为( A )(A)8 (B)9.5 (C)10 (D)11.518、如图,矩形纸片ABCD 中,AB=4,AD=3,折叠纸片使AD 边与对角线BD 重合,折痕为DG ,则AG 的长为( C ) A .1B .34 C .23D .219、如图,点A 的坐标为(-1,0),点B 在直线y =x 上运动,当线段AB点B 的坐标为 ( C )(A )(0,0) (B)(22,22 )(C )(-21,-21)(D )(-22,-22)20、如图,点G 、D 、C 在直线a 上,点E 、F 、A 、B 在直线b 上,若a b Rt GEF ∥,△从如图所示的位置出发,沿直线b 向右匀速运动,直到EG 与BC 重合.运动过程中GEF △与矩形ABCD 重合部分....的面积(S )随时间(t )变化的图象大致是( B )G CG DCE FA BbaA .21、如图,△ABC 中,D 、E 分别是BC 、AC 的中点,BF 平分∠ABC ,交DE 于点F ,若BC=6,则DF 的长是( B ) (A )2 (B )3 (C )25(D )422、矩形ABCD 中,8cm 6cm AD AB ==,.动点E 从点C 开始沿边CB 向点B 以2cm/s 的速度运动,动点F 从点C 同时出发沿边CD 向点D 以1cm/s 的速度运动至点D 停止.如图可得到矩形CFHE ,设运动时间为x (单位:s ),此时矩形ABCD 去掉矩形CFHE 后剩余部分的面积为y (单位:2cm ),则y 与x 之间的函数关系用图象表示大致是下图中的( A )23、如图,双曲线)0(>k xky =经过矩形QABC 的边BC 的中点E ,交AB 于点D 。

中考数学选择题填空题难题及答案(2)

中考数学选择题填空题难题及答案(2)

中考数学综合难题(选择题填空题及答案)1、从-2,-1,0,1,2这5个树种,随机抽取一个数记为a ,则使关于x 的不等式组21162212x x a-⎧≥-⎪⎨⎪-<⎩,有解,且使关于x 的一元一次方程32123x a x a -++=的解为负数的概率为_____ ___53.2、关于x 的分式方程3111m x x+=--的解是正数,则m 的取值范围____m >2且m ≠3___3、如图,将矩形纸片的两只直角分别沿EF 、DF 翻折,点B 恰好落在AD 边上的点B ′ 处,点C 恰好落在边B ′ F 上.若AE =3,BE =5,则FC =___4__.4、已知抛物线bx x y +=221经过点A (4,0)。

设点C (1,-3),请在抛物线的对称轴上确定一点D ,使得CD AD -的值最大,则D 点的坐标为____(2,-6)_.5、如图,以BC 为直径的⊙O 与△ABC 的另两边分别相交于点D 、E .若∠A =70°,BC =2,则图中阴影部分面积为π187.OADEAB C DB'EFC'6、如图,在等边△ABC 内有一点D ,AD =5,BD =6,CD =4,将△ABD 绕A 点逆时针旋转, 使AB 与AC 重合,点D 旋转至点E ,则∠CDE 的正弦值为873 .7、如图抛物线322--=x x y 交x 轴于A(-1,0)、B (3,0),交y 轴于C (0,-3),M 是抛物线的顶点,现将抛物线沿平行于y 轴的方向向上平移三个单位,则曲线CMB 在平移过程中扫过的面积为 9(面积单位).8、 如图,将含60°角的直角三角板ABC 绕顶点A 顺时针旋转45°度后得△AB′C′,点B 经过的路径为弧BB′,若∠BAC=60°,AC=1,则图中阴影部分的面积是2π.9、如图,在一张矩形纸片ABCD 中,AD = 4,点E 、F 分别是CD 和AB 的中点,现将这张纸片折叠,使点B 落在EF 上的点G 处,折痕为AH ,若HG 延长线恰好经过点D ,则CD 的长为 32 .10、 如图,AB 是⊙O 的直径,点E 为BC 的中点,AB = 4,∠BED = 120°,则图中阴影部分的面积之和为311、在临桂新区建设中,需要修一段全长2400m 的道路,为了尽量减少施工对县城交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8天完成任务,求原计划每天修路的长度. 若设原计划每天修路x m ,则根据题意可得方程 x2400-x %)201(2400 = 812、在平面直角坐标系中,规定把一个三角形先沿着x 轴翻折,再向右平移2个单位称为1次变换. 如图,已知等边三角形 ABC 的顶点B ,C 的坐标分别是(-1,-1),(-3,-1),把 △ABC 经过连续9次这样的变换得到△A′B′C′,则点A 的对 应点A′ 的坐标是 (16,1+3)13、 如图,已知等腰Rt △ABC 的直角边长为1,以Rt △ABC 的斜边AC 为直角边,画第二个等腰Rt △ACD ,再以Rt △ACD 的斜边AD 为直角边,画第三个等腰Rt △ADE ……依此类推直到第五个等腰Rt △AFG ,则由这五个等腰直角三角形所构成的图形的面积为23114、如图,AC 是矩形ABCD 的对角线,AB=2,BC=23,点E 、F 分别是线段AB ,AD 上的点,连接CE ,CF ,当∠BCE=∠ACF ,且CE=CF 时,AE+AF=___433___.18题图E FDCAB4232xxGEFDCAB如图作FG ⊥AC,易证△BCE ≌△GCF (AAS ),∴BE=GF,BC=CG ,∵在Rt △ABC 中23tan 323AB ACB BC ∠===∴∠ACB=30°,∴AC=2AB=4,∠DAC=∠ACB=30°(内错角),∵FG ⊥AC ,∴AF=2GF,∴AE+AF=AE+2BE=AB+BE,设BE=x ,在Rt △AFG 中AG=33GF x = ,3234AC AG CG x ∴=+=+= ,解得4323x =- ∴AE+AF=AE+2BE=AB+BE=44232333+-=15、如图,直线1:1+=x y l 与直线2121:2+=x y l 相交于点)0,1(-P .直线1l 与y 轴交于点A .一动点C 从点A 出发,先沿平行于x 轴的方向运动,到达直线2l 上的点1B 处后,改为垂直于x 轴的方向运动,到达直线1l 上的点1A 处后,再沿平行于x 轴的方向运动,到达直线2l 上的点2B 处后,又改为垂直于x 轴的方向运动,到达直线1l 上的点2A 处后,仍沿平行于x 轴的方向运动,…… 照此规律运动,动点C 依次经过点1B ,1A ,2B ,2A ,3B ,3A ,…,2014B ,2014A ,…则当动点C 到达2014A 处时,运动的总路径的长为( B )A .22014 B .222015- C .122013+ D .122014-16、已知a b ,是关于x 的方程的两个实数根,则22a b +的最小值是12.17、如图,AB 是⊙O 的直径,∠BAC=30°,点P 在线段OB 上运动(包括O 点、B 点)。

(必考题)中考数学填空题专项练习经典测试题(含答案解析)

(必考题)中考数学填空题专项练习经典测试题(含答案解析)

一、选择题1.已知a ,b 是方程230x x +-=的两个实数根,则22019a b -+的值是( ) A .2023 B .2021 C .2020 D .20192.如图,AB 是圆O 的直径,CD 是圆O 的弦,若35C ∠=︒,则ABD ∠=( )A .55︒B .45︒C .35︒D .65︒3.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知4EF CD ==,则球的半径长是( )A .2B .2.5C .3D .4 4.已知y 关于x 的函数表达式是24y ax x a =--,下列结论不正确的是( )A .若1a =-,函数的最大值是5B .若1a =,当2x ≥时,y 随x 的增大而增大C .无论a 为何值时,函数图象一定经过点(1,4)-D .无论a 为何值时,函数图象与x 轴都有两个交点5.如图,在△ABC 中,∠CAB=65°,在同一平面内,将△ABC 绕点A 旋转到△AB′C′的位置,使得CC′∥AB ,则∠BAB′的度数为( )A .25°B .30°C .50°D .55°6.下列四个图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .7.五粮液集团2018年净利润为400亿元,计划2020年净利润为640亿元,设这两年的年净利润平均增长率为x ,则可列方程是( )A .400(1)640x +=B .2400(1)640x +=C .2400(1)400(1)640x x +++=D .2400400(1)400(1)640x x ++++=8.受益于电子商务发展和法治环境改善等多重因素,“快递业”成为我国经济的一匹“黑马”,2016年我国快递业务量为300亿件,2018年快递量将达到450亿件,若设快递量平均每年增长率为x ,则下列方程中,正确的是( )A .()3001x 450+=B .()30012x 450+=C .2300(1x)450+=D .2450(1x)300-= 9.如图,四边形ABCD 是菱形,∠A=60°,AB=2,扇形BEF 的半径为2,圆心角为60°,则图中阴影部分的面积是( )A .2332π-B .233π-C .32π-D .3π-10.如图,AC 是⊙O 的内接正四边形的一边,点B 在弧AC 上,且BC 是⊙O 的内接正六边形的一边.若AB 是⊙O 的内接正n 边形的一边,则n 的值为( )A .6B .8C .10D .1211.如图,A 、D 是⊙O 上的两个点,BC 是直径,若∠D =34°,则∠OAC 等于( )A .68°B .58°C .72°D .56°12.如图1,一个扇形纸片的圆心角为90°,半径为4.如图2,将这张扇形纸片折叠,使点A 与点O 恰好重合,折痕为CD ,图中阴影为重合部分,则阴影部分的面积为( )A .4233π-B .8433π-C .8233π-D .843π- 13.若a 是方程22x x 30--=的一个解,则26a 3a -的值为( )A .3B .3-C .9D .9-14.下列判断中正确的是( )A .长度相等的弧是等弧B .平分弦的直线也必平分弦所对的两条弧C .弦的垂直平分线必平分弦所对的两条弧D .平分一条弧的直线必平分这条弧所对的弦15.已知关于x 的一元二次方程2(2)0a x c -+=的两根为12x =-,26x =,则一元二次方程220ax ax a c -++=的根为( )A .0,4B .-3,5C .-2,4D .-3,1二、填空题16.“明天的太阳从西方升起”这个事件属于________事件(用“必然”、“不可能”、“不确定”填空).17.已知二次函数y =(x −2)2+3,当x _______________时,y 随x 的增大而减小.18.二次函数22(1)3y x =+-上一动点(,)P x y ,当21x -<≤时,y 的取值范围是_____.19.在一个不透明的口袋中装有5个红球和3个白球,他们除颜色外其他完全相同,任意摸出一个球是白球的概率为________.20.一元二次方程x 2﹣2x ﹣3=0的解是x 1、x 2(x 1<x 2),则x 1﹣x 2=_____.21.一元二次方程22x 20-=的解是______.22.飞机着陆后滑行的距离s (单位:米)关于滑行的时间t (单位:秒)的函数解析式是23602s t t =-,则飞机着陆后滑行的最长时间为 秒. 23.如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.已知点A 、B 、C 、D 分别是“果圆”与坐标轴的交点,抛物线的解析式为y=x 2﹣6x ﹣16,AB 为半圆的直径,则这个“果圆”被y 轴截得的线段CD 的长为_____.24.如图,点A 是抛物线24y x x =-对称轴上的一点,连接OA ,以A 为旋转中心将AO 逆时针旋转90°得到AO ′,当O ′恰好落在抛物线上时,点A 的坐标为______________.25.如图,△ABC 绕点A 顺时针旋转45°得到△AB′C′,若∠BAC =90°,AB =AC =2,则图中阴影部分的面积等于_____.三、解答题26.如图,斜坡AB 长10米,按图中的直角坐标系可用353y x =-+表示,点A ,B 分别在x 轴和y 轴上,且30OAB ︒∠=.在坡上的A 处有喷灌设备,喷出的水柱呈抛物线形落到B 处,抛物线可用213y x bx c =-++表示.(1)求抛物线的函数关系式(不必写自变量取值范围);(2)求水柱离坡面AB的最大高度;(3)在斜坡上距离A点2米的C处有一颗3.5米高的树,水柱能否越过这棵树?27.在平面直角坐标系中,已知二次函数y=ax2﹣2ax﹣3a(a>0)图象与x轴交于点A,B (点A在点B的左侧),与y轴交于点C,顶点为D.(1)求点A,B的坐标;(2)若M为对称轴与x轴交点,且DM=2AM.①求二次函数解析式;②当t﹣2≤x≤t时,二次函数有最大值5,求t值;③若直线x=4与此抛物线交于点E,将抛物线在C,E之间的部分记为图象记为图象P(含C,E两点),将图象P沿直线x=4翻折,得到图象Q,又过点(10,﹣4)的直线y=kx+b 与图象P,图象Q都相交,且只有两个交点,求b的取值范围.28.“六•一”前夕质监部门从某超市经销的儿童玩具、童车和童装中共抽查了300件儿童用品,以下是根据抽查结果绘制出的不完整的统计表和扇形图;类别儿童玩具童车童装抽查件数90请根据上述统计表和扇形提供的信息,完成下列问题:(1)分别补全上述统计表和统计图;(2)已知所抽查的儿童玩具、童车、童装的合格率分别为90%、88%、80%,若从该超市的这三类儿童用品中随机购买一件,买到合格品的概率是多少?29.如图,Rt△ABC中,∠ABC=90°,以AB为直径作⊙O,点D为⊙O上一点,且CD=CB、连接DO并延长交CB的延长线于点E(1)判断直线CD与⊙O的位置关系,并说明理由;(2)若BE=4,DE=8,求AC的长.30.某企业为响应国家教育扶贫的号召,决定对某乡镇全体贫困初、高中学生进行资助,初中学生每月资助200元,高中学生每月资助300元.已知该乡受资助的初中学生人数是受资助的高中学生人数的2倍,且该企业在2018年下半年7﹣12月这6个月资助学生共支出10.5万元.(1)问该乡镇分别有多少名初中学生和高中学生获得了资助?(2)2018年7﹣12月期间,受资助的初、高中学生中,分别有30%和40%的学生被评为优秀学生,从而获得了该乡镇政府的公开表扬.同时,提供资助的企业为了激发更多受资助学生的进取心和学习热情,决定对2019年上半年1﹣6月被评为优秀学生的初中学生每人每月增加a%的资助,对被评为优秀学生的高中学生每人每月增加2a%的资助.在此奖励政策的鼓励下,2019年1﹣6月被评为优秀学生的初、高中学生分別比2018年7﹣12月的人数增加了3a%、a%.这样,2019年上半年评为优秀学生的初、高中学生所获得的资助总金额一个月就达到了10800元,求a的值.【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.A2.A3.B4.D5.C6.D7.B8.C9.B10.D11.D12.C13.C14.C15.B二、填空题16.不可能【解析】根据所学知识可知太阳应该从东方升起所以明天的太阳从西方升起这个事件属于不可能事件故答案为:不可能17.<2(或x≤2)【解析】试题分析:对于开口向上的二次函数在对称轴的左边y随x 的增大而减小在对称轴的右边y随x的增大而增大根据性质可得:当x<2时y随x的增大而减小考点:二次函数的性质18.【解析】【分析】先确定抛物线的对称轴和顶点坐标再根据抛物线的性质以对称轴为界分情况求解即得答案【详解】解:∵抛物线的解析式是∴抛物线的对称轴是直线:顶点坐标是(-1-3)抛物线的开口向上当x<-1时19.【解析】【分析】【详解】解:∵在一个不透明的口袋中装有5个红球和3个白球∴任意从口袋中摸出一个球来P(摸到白球)==20.-4【解析】【分析】利用根与系数的关系求出所求即可此题也可解出x的值直接计算【详解】∵一元二次方程x2﹣2x﹣3=0的解是x1x2(x1<x2)∴x1+x2=2x1x2=﹣3则x1﹣x2=﹣(x1+21.x1=1x2=-1【解析】分析:方程整理后利用平方根定义开方即可求出解详解:方程整理得:x2=1开方得:x=±1解得:x1=1x2=﹣1故答案为x1=1x2=﹣1点睛:本题考查了解一元二次方程﹣直接22.【解析】【分析】把解析式化为顶点式再根据二次函数的性质得出答案即可【详解】解:∴当t=20时s取得最大值此时s=600故答案为20考点:二次函数的应用;最值问题;二次函数的最值23.20【解析】【分析】抛物线的解析式为y=x2-6x-16可以求出AB=10;在Rt△COM中可以求出CO=4;则:CD=CO+OD=4+16=20【详解】抛物线的解析式为y=x2-6x-16则D(024.(22)或(2-1)【解析】∵抛物线y=x2-4x对称轴为直线x=-∴设点A坐标为(2m)如图所示作AP⊥y轴于点P作O′Q⊥直线x=2∴∠APO=∠AQO′=90°∴∠QAO′+∠AO′Q=90°25.-1【解析】由题意得ABBC于DBC于EBC交BC于FAB=勾股定理得AE=AD=1DB=-1三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷 参考解析【参考解析】**科目模拟测试一、选择题1.A解析:A【解析】【分析】根据题意可知b=3-b 2,a+b=-1,ab =-3,所求式子化为a 2-b+2019=a 2-3+b 2+2019=(a+b )2-2ab+2016即可求解.【详解】a ,b 是方程230x x +-=的两个实数根,∴23b b =-,1a b +=-,-3ab =,∴222201932019a b a b -+=-++()2220161620162023a b ab =+-+=++=; 故选A .【点睛】本题考查一元二次方程的根与系数的关系;根据根与系数的关系将所求式子进行化简代入是解题的关键. 2.A【解析】【分析】根据同弧所对的圆周角相等可得35BAD C =∠=︒∠,再根据圆直径所对的圆周角是直角,可得90ADB ∠=︒,再根据三角形内角和定理即可求出ABD ∠的度数.【详解】∵35C ∠=︒∴35BAD C =∠=︒∠∵AB 是圆O 的直径∴90ADB ∠=︒∴18055ABD ADB BAD =︒--=︒∠∠∠故答案为:A .【点睛】本题考查了圆内接三角形的角度问题,掌握同弧所对的圆周角相等、圆直径所对的圆周角是直角、三角形内角和定理是解题的关键.3.B解析:B【解析】【分析】取EF 的中点M ,作MN ⊥AD 于点M ,取MN 上的球心O ,连接OF ,设OF=x ,则OM=4-x ,MF=2,然后在Rt △MOF 中利用勾股定理求得OF 的长即可.【详解】如图:EF 的中点M ,作MN ⊥AD 于点M ,取MN 上的球心O ,连接OF ,∵四边形ABCD 是矩形,∴∠C=∠D=90°,∴四边形CDMN 是矩形,∴MN=CD=4,设OF=x ,则ON=OF ,∴OM=MN-ON=4-x ,MF=2,在直角三角形OMF 中,OM 2+MF 2=OF 2,即:(4-x )2+22=x 2,解得:x=2.5,故选B .本题主考查垂径定理及勾股定理的知识,正确作出辅助线构造直角三角形是解题的关键.4.D解析:D【解析】【分析】将a 的值代入函数表达式,根据二次函数的图象与性质可判断A 、B ,将x=1代入函数表达式可判断C ,当a=0时,y=-4x 是一次函数,与x 轴只有一个交点,可判断D 错误.【详解】当1a =-时,()224125=--+=-++y x x x ,∴当2x =-时,函数取得最大值5,故A 正确;当1a =时,()224125y x x x =--=--,∴函数图象开口向上,对称轴为2x =,∴当2x ≥时,y 随x 的增大而增大,故B 正确;当x=1时,44=--=-y a a ,∴无论a 为何值,函数图象一定经过(1,-4),故C 正确;当a=0时,y=-4x ,此时函数为一次函数,与x 轴只有一个交点,故D 错误;故选D.【点睛】本题考查了二次函数的图象与性质,以及一次函数与x 轴的交点问题,熟练掌握二次函数的性质是解题的关键. 5.C解析:C【解析】试题解析:∵CC′∥AB ,∴∠ACC′=∠CAB=65°,∵△ABC 绕点A 旋转得到△AB′C′,∴AC=AC′,∴∠CAC′=180°﹣2∠ACC′=180°﹣2×65°=50°,∴∠CAC′=∠BAB′=50°.故选C .6.D解析:D【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A 、是轴对称图形,不是中心对称图形,故此选项错误;B 、不是轴对称图形,是中心对称图形,故此选项错误;C 、是轴对称图形,不是中心对称图形,故此选项错误;D 、既是轴对称图形,又是中心对称图形,故此选项正确.故选D .【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.7.B解析:B【解析】【分析】根据平均年增长率即可解题.【详解】解:设这两年的年净利润平均增长率为x ,依题意得:()24001640x +=故选B.【点睛】本题考查了一元二次方程的实际应用,属于简单题,熟悉平均年增长率概念是解题关键. 8.C解析:C【解析】【分析】快递量平均每年增长率为x ,根据我国2016年及2018年的快递业务量,即可得出关于x 的一元二次方程,此题得解.【详解】快递量平均每年增长率为x ,依题意,得:2300(1x)450+=,故选C .【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键. 9.B解析:B【解析】【分析】根据菱形的性质得出△DAB 是等边三角形,进而利用全等三角形的判定得出△ABG ≌△DBH ,得出四边形GBHD 的面积等于△ABD 的面积,进而求出即可.【详解】连接BD ,∵四边形ABCD 是菱形,∠A=60°,∴∠ADC=120°,∴∠1=∠2=60°,∴△DAB 是等边三角形,∵AB=2,∴△ABD 3,∵扇形BEF 的半径为2,圆心角为60°,∴∠4+∠5=60°,∠3+∠5=60°,∴∠3=∠4,设AD 、BE 相交于点G ,设BF 、DC 相交于点H ,在△ABG 和△DBH 中,2{34A AB BD ∠=∠=∠=∠,∴△ABG ≌△DBH (ASA ),∴四边形GBHD 的面积等于△ABD 的面积,∴图中阴影部分的面积是:S 扇形EBF -S △ABD =26021233602π⨯-⨯ =233π 故选B . 10.D解析:D【解析】【分析】连接AO 、BO 、CO ,根据中心角度数=360°÷边数n ,分别计算出∠AOC 、∠BOC 的度数,根据角的和差则有∠AOB =30°,根据边数n =360°÷中心角度数即可求解.【详解】连接AO 、BO 、CO ,∵AC 是⊙O 内接正四边形的一边,∴∠AOC =360°÷4=90°,∵BC 是⊙O 内接正六边形的一边,∴∠BOC =360°÷6=60°,∴∠AOB=∠AOC﹣∠BOC=90°﹣60°=30°,∴n=360°÷30°=12;故选:D.【点睛】本题考查正多边形和圆,解题的关键是根据正方形的性质、正六边形的性质求出中心角的度数.11.D解析:D【解析】【分析】根据圆周角定理求出∠AOC,再根据等腰三角形的性质以及三角形的内角和定理即可解决问题.【详解】∵∠ADC=34°,∴∠AOC=2∠ADC=68°.∵OA=OC,∴∠OAC=∠OCA12=(180°﹣68°)=56°.故选D.【点睛】本题考查了圆周角定理,等腰三角形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.12.C解析:C【解析】【分析】连接OD,根据勾股定理求出CD,根据直角三角形的性质求出∠AOD,根据扇形面积公式、三角形面积公式计算,得到答案.【详解】解:连接OD,在Rt△OCD中,OC=12OD=2,∴∠ODC=30°,CD2223OD OC+∴∠COD=60°,∴阴影部分的面积=260418223=23 36023π⨯-⨯⨯π-,故选:C .【点睛】本题考查的是扇形面积计算、勾股定理,掌握扇形面积公式是解题的关键.13.C解析:C【解析】由题意得:2a 2-a-3=0,所以2a 2-a=3,所以6a 2-3a=3(2a 2-a)=3×3=9, 故选C.14.C解析:C【解析】【分析】根据等弧概念对A 进行判断,根据垂径定理对B 、C 、D 选项进行逐一判断即可. 本题解析.【详解】A.能够互相重合的弧,叫等弧,不但长度相等而且半径相等.故本选项错误.B. 由垂径定理可知平分弦(不是直径)的直径平分弦所对的两条弧,而不是直线,也未注明被平分的弦不是直径,故选项B 错误;C. 由垂径定理可知弦的垂直平分线经过圆心,并且平分弦所对的两条弧,故选项C 正确D.由垂径定理可知平分一条弧的直径必平分这条弧所对的弦,而不是直线.故本选项错误. 故选C.15.B解析:B【解析】【分析】先将12x =-,26x =代入一元二次方程2(2)0a x c -+=得出a 与c 的关系,再将c 用含a 的式子表示并代入一元二次方程220ax ax a c -++=求解即得.【详解】∵关于x 的一元二次方程2(2)0a x c -+=的两根为12x =-,26x =∴()2620a c -+=或()2220a c --+=∴整理方程即得:160a c +=∴16c a =-将16c a =-代入220ax ax a c -++=化简即得:22150x x --=解得:13x =-,25x =故选:B .【点睛】本题考查了含参数的一元二次方程求解,解题关键是根据已知条件找出参数关系,并代入要求的方程化简为不含参数的一元二次方程.二、填空题16.不可能【解析】根据所学知识可知太阳应该从东方升起所以明天的太阳从西方升起这个事件属于不可能事件故答案为:不可能解析:不可能【解析】根据所学知识可知太阳应该从东方升起,所以”明天的太阳从西方升起”这个事件属于不可能事件,故答案为:不可能.17.<2(或x≤2)【解析】试题分析:对于开口向上的二次函数在对称轴的左边y 随x 的增大而减小在对称轴的右边y 随x 的增大而增大根据性质可得:当x <2时y 随x 的增大而减小考点:二次函数的性质解析:<2(或x≤2).【解析】试题分析:对于开口向上的二次函数,在对称轴的左边,y 随x 的增大而减小,在对称轴的右边,y 随x 的增大而增大.根据性质可得:当x <2时,y 随x 的增大而减小. 考点:二次函数的性质18.【解析】【分析】先确定抛物线的对称轴和顶点坐标再根据抛物线的性质以对称轴为界分情况求解即得答案【详解】解:∵抛物线的解析式是∴抛物线的对称轴是直线:顶点坐标是(-1-3)抛物线的开口向上当x<-1时 解析:35y -≤≤【解析】【分析】先确定抛物线的对称轴和顶点坐标,再根据抛物线的性质以对称轴为界分情况求解即得答案.【详解】解:∵抛物线的解析式是22(1)3y x =+-,∴抛物线的对称轴是直线:1x =-,顶点坐标是(-1,-3),抛物线的开口向上,当x <-1时,y 随x 的增大而减小,当x >-1时,y 随x 的增大而增大,且当2x =-时,1y =-;当x =1时,y =5;∴当21x -<≤-时,31y -≤<-,当11x -<≤ 时,35y -<≤,∴当21x -<≤时,y 的取值范围是:35y -≤≤.故答案为:35y -≤≤.【点睛】本题考查的是二次函数的图象和性质,属于基本题型,熟练掌握抛物线的性质是解题关键.19.【解析】【分析】【详解】解:∵在一个不透明的口袋中装有5个红球和3个白球∴任意从口袋中摸出一个球来P (摸到白球)== 解析:38【解析】【分析】【详解】解:∵在一个不透明的口袋中装有5个红球和3个白球,∴任意从口袋中摸出一个球来,P (摸到白球)=353+ =38. 20.-4【解析】【分析】利用根与系数的关系求出所求即可此题也可解出x 的值直接计算【详解】∵一元二次方程x2﹣2x ﹣3=0的解是x1x2(x1<x2)∴x1+x2=2x1x2=﹣3则x1﹣x2=﹣(x1+解析:-4【解析】【分析】利用根与系数的关系求出所求即可.此题也可解出x 的值,直接计算.【详解】∵一元二次方程x 2﹣2x ﹣3=0的解是x 1、x 2(x 1<x 2),∴x 1+x 2=2,x 1x 2=﹣3,则x 1﹣x 2=﹣√(x 1+x 2)2−4x 1x 2=﹣√4+12=﹣4.故答案为﹣4.【点睛】本题考查了根与系数的关系,弄清根与系数的关系是解答本题的关键.21.x1=1x2=-1【解析】分析:方程整理后利用平方根定义开方即可求出解详解:方程整理得:x2=1开方得:x=±1解得:x1=1x2=﹣1故答案为x1=1x2=﹣1点睛:本题考查了解一元二次方程﹣直接解析:x 1=1,x 2=-1【解析】分析:方程整理后,利用平方根定义开方即可求出解.详解:方程整理得:x 2=1,开方得:x =±1,解得:x 1=1,x 2=﹣1.故答案为x 1=1,x 2=﹣1.点睛:本题考查了解一元二次方程﹣直接开平方法,熟练掌握直接开平方法是解答本题的关键.22.【解析】【分析】把解析式化为顶点式再根据二次函数的性质得出答案即可【详解】解:∴当t=20时s 取得最大值此时s=600故答案为20考点:二次函数的应用;最值问题;二次函数的最值解析:【解析】【分析】把解析式化为顶点式,再根据二次函数的性质得出答案即可。

数学中考填空选择压轴题

数学中考填空选择压轴题

数学中考填空选择压轴题中考数学选择、填空压轴题一、选择题(共15小题)1.如图,已知四边形ABCD为等腰梯形,AD∥BC,AB=CD,AD=2AE,且E为CD中点,连AE,∠DAE=30°,作AE⊥AF交BC于F,则BF=()A。

1B。

3C。

-1D。

42.如图,已知l1∥l2∥l3,相邻两条平行直线间的距离相等,若等腰直角△ABC的三个顶点分别在这三条平行直线上,则sinα的值是()A。

1B。

2C。

D。

3.如图,已知:∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=1,则△A6B6A7的边长为()A。

6B。

12C。

32D。

644.如图,△ABC与△DEF均为等边三角形,O为BC、EF 的中点,则AD:BE的值为()A。

1B。

1C。

5:3D。

不确定5.如图所示,点P(3a,a)是反比例函数y=k/x与⊙O的一个交点,图中阴影部分的面积为10π,则反比例函数的解析式为()A。

y=4/xB。

y=5/xC。

y=6/xD。

y=6.如图,已知点A,B,C,D均在已知圆上,AD∥BC,AC平分∠BCD,∠ADC=120°,四边形ABCD的周长为10cm.图中阴影部分的面积为()A。

cm2B。

(π- )cm2C。

cm2D。

cm27.如图,在Rt△ABC中,∠C=90°,AC=8,BC=4,分别以AC、BC为直径画半圆,则图中阴影部分的面积为()A。

2π-16B。

1π-32C。

1π-16D。

2π-138.如图,将半径为6的⊙O沿AB折叠,则折痕AB的长为()与AB垂直的半径OC交于点D且CD=2OD。

A。

B。

C。

6D。

99.如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,⊙O 为△ABC的内切圆,点D是斜边AB的中点,则tan∠ODA=()A。

中考数学选择题、填空难题

中考数学选择题、填空难题

第11题AB CA 1A 2A 3B 1 B 2 B 3 OABCDxy中考选择题、填空题综合训练题1.小明尝试着将矩形纸片ABCD (如图①,AD 〉CD )沿过A 点的直线折叠,使得B 点落在AD 边上的点F 处,折痕为AE (如图②);再沿过D 点的直线折叠,使得C 点落在DA 边上的点N 处,E 点落在AE 边上的点M 处,折痕为DG (如图③).如果第二次折叠后,M 点正好在∠NDG 的平分线上,那么矩形ABCD 长与宽的比值为 .2。

如图,小明随意向水平放置的大正方形内部区域抛一个小球,则小球停在小正方形内部(阴影)区域的概率为:3。

下列事件中,必然事件是:A 。

抛掷1个均匀的骰子,出现6点向上B 。

两直线被第三条直线所截,同位角相等 C.366人中至少有2人的生日相同 D 。

实数的绝对值是非负数4.如图,AB 是⊙O 的直径,点C 在AB 的延长线上,CD 与⊙O 相切于点D 。

若,若∠C =18°,则∠CDA =___________.5.如图,Rt △ABC 中,∠B =90°,AB =3cm ,AC =5cm,将△ABC 折叠,使点C 与A 重合,得折痕DE ,则△ABE 的周长等于______cm 。

6。

某一公司共有51名员工(包括经理),经理的工资高于其他员工的工资。

今年经理的工资从去年的200000元增加到225000元,而其他员工的工资同去年一样,这样,这家公司所有员工今年工资的平均数和中位数与去年相比将会A.平均数和中位数不变 B 。

平均数增加,中位数不变 C 。

平均数不变,中位数增加 D.平均数和中位数都增加7.如图,一次函数y=221+-=x y 的图像上有两点A 、B,A 点的横坐标为2,B 点的横坐标为(042)a a a <<≠且,过点A 、B 分别作x 的垂线,垂足为C 、D ,△AOC 、△BOD 的面积分别为S 1、S 2,则S 1\S 2的大小关系是:A 。

中考数学填空题专项练习经典习题(含答案解析)(2)

中考数学填空题专项练习经典习题(含答案解析)(2)

一、选择题1.下列图形中,可以看作是中心对称图形的是( )A .B .C .D .2.如图,ABC ∆是O 的内接三角形,119A ∠=︒,过点C 的圆的切线交BO 于点P ,则P ∠的度数为( )A .32°B .31°C .29°D .61°3.下列智能手机的功能图标中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .4.关于x 的一元二次方程2(1)20x k x k ---+=有两个实数根12,x x ,()1212122(2)2x x x x x x -+--+3=-,则k 的值( )A .0或2B .-2或2C .-2D .25.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知4EF CD ==,则球的半径长是( )A .2B .2.5C .3D .46.等腰三角形一条边的边长为3,它的另两条边的边长是关于x 的一元二次方程x 2﹣12x+k=0的两个根,则k 的值是( )A.27B.36C.27或36D.187.若⊙O的半径为5cm,点A到圆心O的距离为4cm,那么点A与⊙O的位置关系是A.点A在圆外B.点A在圆上C.点A在圆内D.不能确定8.如图,⊙O是△ABC的外接圆,∠B=60°,⊙O的半径为4,则AC的长等于()A.43B.63C.23D.89.若抛物线y=kx2﹣2x﹣1与x轴有两个不同的交点,则k的取值范围为()A.k>﹣1B.k≥﹣1C.k>﹣1且k≠0D.k≥﹣1且k≠0 10.已知点P(﹣b,2)与点Q(3,2a)关于原点对称点,则a、b的值分别是()A.﹣1、3B.1、﹣3C.﹣1、﹣3D.1、311.二次函数y=3(x–2)2–5与y轴交点坐标为( )A.(0,2)B.(0,–5)C.(0,7)D.(0,3)12.关于y=2(x﹣3)2+2的图象,下列叙述正确的是()A.顶点坐标为(﹣3,2)B.对称轴为直线y=3C.当x≥3时,y随x增大而增大D.当x≥3时,y随x增大而减小13.若一元二次方程x2﹣2x+m=0有两个不相同的实数根,则实数m的取值范围是()A.m≥1B.m≤1C.m>1D.m<114.如图,矩形 ABCD 中,AB=8,BC=6,将矩形 ABCD 绕点 A 逆时针旋转得到矩形AEFG,AE,FG 分别交射线CD 于点 PH,连结 AH,若 P 是 CH 的中点,则△APH 的周长为()A.15B.18C.20D.2415.若关于x的方程x2﹣2x+m=0的一个根为﹣1,则另一个根为()A.﹣3B.﹣1C.1D.3二、填空题16.有一人患了流感,经过两轮传染后共有169人患了流感,每轮传染中平均一个人传染了__人.17.抛物线y=2(x−3)2+4的顶点坐标是__________________.18.如图,将二次函数y=12(x-2)2+1的图像沿y轴向上平移得到一条新的二次函数图像,其中A(1,m),B(4,n)平移后对应点分别是A′、B′,若曲线AB所扫过的面积为12(图中阴影部分),则新的二次函数对应的函数表达是__________________.19.已知关于x方程x2﹣3x+a=0有一个根为1,则方程的另一个根为_____.20.已知如图所示的图形的面积为24,根据图中的条件,可列出方程:_______.21.如图,已知射线BP BA,点O从B点出发,以每秒1个单位长度沿射线BA向右运动;同时射线BP绕点B顺时针旋转一周,当射线BP停止运动时,点O随之停止运动.以O为圆心,1个单位长度为半径画圆,若运动两秒后,射线BP与O恰好有且只有一个公共点,则射线BP旋转的速度为每秒______度.22.一个扇形的圆心角为135°,弧长为3πcm,则此扇形的面积是_____cm2.23.一个等边三角形边长的数值是方程x2﹣3x﹣10=0的根,那么这个三角形的周长为_____.24.关于x的一元二次方程(k-1)x2-2x+1=0有两个不相等的实数根,则实数k的取值范围是_______.25.不透明袋子中装有6个球,其中有5个红球、1个绿球,这些球除颜色外无其他差别,从袋子中随机取出1个球,则它是红球的概率是_________.三、解答题26.已知二次函数y=2x2+m.(1)若点(-2,y1)与(3,y2)在此二次函数的图象上,则y1_________y2(填“>”、“=”或“<”);(2)如图,此二次函数的图象经过点(0,-4),正方形ABCD的顶点C、D在x轴上,A、B恰好在二次函数的图象上,求图中阴影部分的面积之和.27.如图,BC是半圆O的直径,D是弧AC的中点,四边形ABCD的对角线AC、BD交于点E.(1)求证:△DCE∽△DBC;(2)若CE=5,CD=2,求直径BC的长.28.如图,已知△ABC,∠A=60°,AB=6,AC=4.(1)用尺规作△ABC的外接圆O;(2)求△ABC的外接圆O的半径;(3)求扇形BOC的面积.29.为了提高中学生身体素质,学校开设了A:篮球、B:足球、C:跳绳、D:羽毛球四种体育活动,为了解学生对这四种体育活动的喜欢情况,在全校随机抽取若干名学生进行问卷调查(每个被调查的对象必须选择而且只能在四种体育活动中选择一种),将数据进行整理并绘制成以下两幅统计图(未画完整).(1)这次调查中,一共调查了________名学生;(2)请补全两幅统计图;(3)若有3名喜欢跳绳的学生,1名喜欢足球的学生组队外出参加一次联谊活动,欲从中选出2人担任组长(不分正副),求一人是喜欢跳绳、一人是喜欢足球的学生的概率.30.“六•一”前夕质监部门从某超市经销的儿童玩具、童车和童装中共抽查了300件儿童用品,以下是根据抽查结果绘制出的不完整的统计表和扇形图;类别儿童玩具童车童装抽查件数90请根据上述统计表和扇形提供的信息,完成下列问题:(1)分别补全上述统计表和统计图;(2)已知所抽查的儿童玩具、童车、童装的合格率分别为90%、88%、80%,若从该超市的这三类儿童用品中随机购买一件,买到合格品的概率是多少?【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.A2.A3.C4.D5.B6.B7.C8.A9.C10.A11.C12.C13.D14.C15.D二、填空题16.12【解析】【分析】【详解】解:设平均一人传染了x人x+1+(x+1)x=169x=12或x=-14(舍去)平均一人传染12人故答案为1217.(34)【解析】【分析】根据二次函数配方的图像与性质即可以求出答案【详解】在二次函数的配方形式下x-3是抛物线的对称轴取x=3则y=4因此顶点坐标为(34)【点睛】本题主要考查二次函数的图像与性质18.y=05(x-2)+5【解析】解:∵函数y=(x﹣2)2+1的图象过点A(1m)B(4n)∴m=(1﹣2)2+1=1n=(4﹣2)2+1=3∴A(11)B(43)过A作AC∥x轴交B′B的延长线于点19.2【解析】分析:设方程的另一个根为m根据两根之和等于-即可得出关于m的一元一次方程解之即可得出结论详解:设方程的另一个根为m根据题意得:1+m=3解得:m=2故答案为2点睛:本题考查了根与系数的关系20.(x+1)2=25【解析】【分析】此图形的面积等于两个正方形面积的差据此即可列出方程【详解】根据题意得:(x+1)2-1=24即:(x+1)2=25故答案为(x+1)2=25【点睛】本题考查了一元二21.30或60【解析】【分析】射线与恰好有且只有一个公共点就是射线与相切分两种情况画出图形利用圆的切线的性质和30°角的直角三角形的性质求出旋转角然后根据旋转速度=旋转的度数÷时间即得答案【详解】解:如22.【解析】分析:先求出扇形对应的圆的半径再根据扇形的面积公式求出面积即可详解:设扇形的半径为Rcm∵扇形的圆心角为135°弧长为3πcm∴=3π解得:R=4所以此扇形的面积为=6π(cm2)故答案为623.15【解析】【分析】先解方程求出方程的根再确定等边三角形的边长然后求等边三角形的周长【详解】解:x2﹣3x﹣10=0(x﹣5)(x+2)=0即x﹣5=0或x+2=0∴x1=5x2=﹣2因为方程x2﹣24.k<2且k≠1【解析】试题解析:∵关于x的一元二次方程(k-1)x2-2x+1=0有两个不相等的实数根∴k-1≠0且△=(-2)2-4(k-1)>0解得:k<2且k≠1考点:1根的判别式;2一元二次25.【解析】【分析】【详解】解:从袋子中随机取出1个球总共有6种等可能结果这个球为红球的结果有5中所以从袋子中随机取出1个球则它是红球的概率是故答案为:三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.A解析:A【解析】分析:根据中心对称的定义,结合所给图形即可作出判断.详解:A、是中心对称图形,故本选项正确;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误;故选:A.点睛:本题考查了中心对称图形的特点,属于基础题,判断中心对称图形的关键是旋转180°后能够重合.2.A解析:A 【解析】 【分析】根据题意连接OC ,COP ∆为直角三角形,再根据BC 的优弧所对的圆心角等于圆周角的2倍,可计算的COP ∠的度,再根据直角三角形可得P ∠的度数. 【详解】根据题意连接OC.因为119A ∠=︒所以可得BC 所对的大圆心角为2119238BOC ︒︒∠=⨯= 因为BD 为直径,所以可得23818058COD ︒︒︒∠=-= 由于COP ∆为直角三角形 所以可得905832P ︒︒︒∠=-= 故选A. 【点睛】本题主要考查圆心角的计算,关键在于圆心角等于同弧所对圆周角的2倍.3.C解析:C 【解析】 【分析】根据轴对称图形与中心对称图形的概念求解. 【详解】A 、图形既不是轴对称图形是中心对称图形,B 、图形是轴对称图形,C 、图形是轴对称图形,也是中心对称轴图形,D 、图形是轴对称图形. 故选C . 【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.4.D解析:D 【解析】 【分析】将()1212122(2)2=3x x x x x x -+--+-化简可得,()21212124423x x x x x x +-+=--,利用韦达定理,()2142(2)3k k ----+=-,解得,k =±2,由题意可知△>0, 可得k =2符合题意. 【详解】解:由韦达定理,得:12x x +=k -1,122x x k +=-,由()1212122(2)23x x x x x x -+--+=-,得:()21212423x x x x --+=-,即()21212124423x x x x x x +-+=--, 所以,()2142(2)3k k ----+=-, 化简,得:24k =, 解得:k =±2,因为关于x 的一元二次方程2(1)20x k x k ---+=有两个实数根, 所以,△=()214(2)k k ---+=227k k +-〉0, k =-2不符合, 所以,k =2 故选:D. 【点睛】本题考查了一元二次方程根与系数的关系,熟练掌握并灵活运用是解题的关键.5.B解析:B 【解析】 【分析】取EF 的中点M ,作MN ⊥AD 于点M ,取MN 上的球心O ,连接OF ,设OF=x ,则OM=4-x ,MF=2,然后在Rt △MOF 中利用勾股定理求得OF 的长即可. 【详解】 如图:EF的中点M,作MN⊥AD于点M,取MN上的球心O,连接OF,∵四边形ABCD是矩形,∴∠C=∠D=90°,∴四边形CDMN是矩形,∴MN=CD=4,设OF=x,则ON=OF,∴OM=MN-ON=4-x,MF=2,在直角三角形OMF中,OM2+MF2=OF2,即:(4-x)2+22=x2,解得:x=2.5,故选B.【点睛】本题主考查垂径定理及勾股定理的知识,正确作出辅助线构造直角三角形是解题的关键.6.B解析:B【解析】试题分析:由于等腰三角形的一边长3为底或为腰不能确定,故应分两种情况进行讨论:(1)当3为腰时,其他两条边中必有一个为3,把x=3代入原方程可求出k的值,进而求出方程的另一个根,再根据三角形的三边关系判断是否符合题意即可;(2)当3为底时,则其他两条边相等,即方程有两个相等的实数根,由△=0可求出k的值,再求出方程的两个根进行判断即可.试题解析:分两种情况:(1)当其他两条边中有一个为3时,将x=3代入原方程,得:32-12×3+k=0解得:k=27将k=27代入原方程,得:x2-12x+27=0解得x=3或93,3,9不能组成三角形,不符合题意舍去;(2)当3为底时,则其他两边相等,即△=0,此时:144-4k=0解得:k=36将k=36代入原方程,得:x2-12x+36=03,6,6能够组成三角形,符合题意.故k的值为36.故选B.考点:1.等腰三角形的性质;2.一元二次方程的解.7.C解析:C【解析】【分析】要确定点与圆的位置关系,主要确定点与圆心的距离与半径的大小关系;利用d>r时,点在圆外;当d=r时,点在圆上;当d<r时,点在圆内判断出即可.【详解】解:∵⊙O的半径为5cm,点A到圆心O的距离为4cm,∴d<r,∴点A与⊙O的位置关系是:点A在圆内,故选C.8.A解析:A【解析】【分析】【详解】解:连接OA,OC,过点O作OD⊥AC于点D,∵∠AOC=2∠B,且∠AOD=∠COD=12∠AOC,∴∠COD=∠B=60°;在Rt△COD中,OC=4,∠COD=60°,∴33,∴3.故选A.【点睛】本题考查三角形的外接圆;勾股定理;圆周角定理;垂径定理.9.C解析:C【分析】根据抛物线y=kx2﹣2x﹣1与x轴有两个不同的交点,得出b2﹣4ac>0,进而求出k的取值范围.【详解】∵二次函数y=kx2﹣2x﹣1的图象与x轴有两个交点,∴b2﹣4ac=(﹣2)2﹣4×k×(﹣1)=4+4k>0,∴k>﹣1,∵抛物线y=kx2﹣2x﹣1为二次函数,∴k≠0,则k的取值范围为k>﹣1且k≠0,故选C.【点睛】本题考查了二次函数y=ax2+bx+c的图象与x轴交点的个数的判断,熟练掌握抛物线与x轴交点的个数与b2-4ac的关系是解题的关键.注意二次项系数不等于0.10.A解析:A【解析】【分析】让两个横坐标相加得0,纵坐标相加得0即可求得a,b的值.【详解】解:∵P(-b,2)与点Q(3,2a)关于原点对称点,∴-b+3=0,2+2a=0,解得a=-1,b=3,故选A.【点睛】用到的知识点为:两点关于原点对称,这两点的横纵坐标均互为相反数;互为相反数的两个数和为0.11.C解析:C【解析】【分析】由题意使x=0,求出相应的y的值即可求解.【详解】∵y=3(x﹣2)2﹣5,∴当x=0时,y=7,∴二次函数y=3(x﹣2)2﹣5与y轴交点坐标为(0,7).故选C.【点睛】本题考查了二次函数图象上点的坐标特征,解题的关键是二次函数图象上的点满足其解析式.12.C解析:C【解析】∵ y=2(x ﹣3)2+2的图象开口向上,顶点坐标为(3,2),对称轴为直线x=3, ∴当3x ≥时,y 随x 的增大而增大.∴选项A 、B 、D 中的说法都是错误的,只有选项C 中的说法是正确的.故选C.13.D解析:D【解析】分析:根据方程的系数结合根的判别式△>0,即可得出关于m 的一元一次不等式,解之即可得出实数m 的取值范围.详解:∵方程2x 2x m 0-+=有两个不相同的实数根,∴()2240m =-->,解得:m <1.故选D .点睛:本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键. 14.C解析:C【解析】【分析】连结AC ,先由△AGH ≌△ADH 得到∠GHA =∠AHD ,进而得到∠AHD =∠HAP ,所以△AHP 是等腰三角形,所以PH =PA =PC ,所以∠HAC 是直角,再在Rt △ABC 中由勾股定理求出AC 的长,然后由△HAC ∽△ADC ,根据=求出AH 的长,再根据△HAC ∽△HDA 求出DH 的长,进而求得HP 和AP 的长,最后得到△APH 的周长.【详解】∵P 是CH 的中点,PH =PC ,∵AH =AH ,AG =AD ,且AGH 与ADH 都是直角,∴△AGH ≌△ADH ,∴∠GHA =∠AHD ,又∵GHA =HAP ,∴∠AHD =∠HAP ,∴△AHP 是等腰三角形,∴PH =PA =PC ,∴∠HAC 是直角,在Rt △ABC 中,AC ==10,∵△HAC ∽△ADC ,∴=,∴AH ===7.5,又∵△HAC ∽△HAD ,=,∴DH =4.5,∴HP ==6.25,AP =HP =6.25,∴△APH 的周长=AP +PH +AH =6.25+6.25+7.5=20.【点睛】本题主要考查直角三角形的性质以及相似三角形的性质,解题的关键是清楚直角三角形斜边上的中线是斜边的一半以及会运用相似三角形线段成比例求出各边长的长.15.D解析:D【解析】【分析】设方程另一个根为x1,根据一元二次方程根与系数的关系得到x1+(-1)=2,解此方程即可.【详解】解:设方程另一个根为x1,∴x1+(﹣1)=2,解得x1=3.故选:D.【点睛】本题考查一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根分别为x1,x2,则x1+x2=-ba,x1•x2=ca.二、填空题16.12【解析】【分析】【详解】解:设平均一人传染了x人x+1+(x+1)x=169x=12或x=-14(舍去)平均一人传染12人故答案为12解析:12【解析】【分析】【详解】解:设平均一人传染了x人,x+1+(x+1)x=169x=12或x=-14(舍去).平均一人传染12人.故答案为12.17.(34)【解析】【分析】根据二次函数配方的图像与性质即可以求出答案【详解】在二次函数的配方形式下x-3是抛物线的对称轴取x=3则y=4因此顶点坐标为(34)【点睛】本题主要考查二次函数的图像与性质解析:(3,4)【解析】【分析】根据二次函数配方的图像与性质,即可以求出答案.【详解】在二次函数的配方形式下,x-3是抛物线的对称轴,取x=3,则y=4,因此,顶点坐标为(3,4).【点睛】本题主要考查二次函数的图像与性质.18.y=05(x-2)+5【解析】解:∵函数y=(x﹣2)2+1的图象过点A(1m)B(4n)∴m=(1﹣2)2+1=1n=(4﹣2)2+1=3∴A(11)B(43)过A作AC∥x轴交B′B的延长线于点解析:y=0.5(x-2)2+5【解析】解:∵函数y=12(x﹣2)2+1的图象过点A(1,m),B(4,n),∴m=12(1﹣2)2+1=112,n=12(4﹣2)2+1=3,∴A(1,112),B(4,3),过A作AC∥x轴,交B′B的延长线于点C,则C(4,112),∴AC=4﹣1=3.∵曲线段AB扫过的面积为12(图中的阴影部分),∴AC•AA′=3AA′=12,∴AA′=4,即将函数y=12(x﹣2)2+1的图象沿y轴向上平移4个单位长度得到一条新函数的图象,∴新图象的函数表达式是y=12(x﹣2)2+5.故答案为y=0.5(x﹣2)2+5.点睛:本题主要考查了二次函数图象与几何变换以及平行四边形面积求法等知识,根据已知得出AA′是解题的关键.19.2【解析】分析:设方程的另一个根为m根据两根之和等于-即可得出关于m的一元一次方程解之即可得出结论详解:设方程的另一个根为m根据题意得:1+m=3解得:m=2故答案为2点睛:本题考查了根与系数的关系解析:2【解析】分析:设方程的另一个根为m,根据两根之和等于-ba,即可得出关于m的一元一次方程,解之即可得出结论.详解:设方程的另一个根为m,根据题意得:1+m=3,解得:m=2.故答案为2.点睛:本题考查了根与系数的关系,牢记两根之和等于-ba是解题的关键.20.(x+1)2=25【解析】【分析】此图形的面积等于两个正方形面积的差据此即可列出方程【详解】根据题意得:(x+1)2-1=24即:(x+1)2=25故答案为(x+1)2=25【点睛】本题考查了一元二解析:(x+1)2=25【解析】【分析】此图形的面积等于两个正方形面积的差,据此即可列出方程.【详解】根据题意得:(x+1)2 -1=24,即:(x+1)2 =25.故答案为(x+1)2 =25.【点睛】本题考查了一元二次方程的应用——图形问题,解题的关键是明确图中不规则图形的面积计算方法.21.30或60【解析】【分析】射线与恰好有且只有一个公共点就是射线与相切分两种情况画出图形利用圆的切线的性质和30°角的直角三角形的性质求出旋转角然后根据旋转速度=旋转的度数÷时间即得答案【详解】解:如解析:30或60【解析】【分析】射线BP与O恰好有且只有一个公共点就是射线BP与O相切,分两种情况画出图形,利用圆的切线的性质和30°角的直角三角形的性质求出旋转角,然后根据旋转速度=旋转的度数÷时间即得答案.【详解】解:如图1,当射线BP与O在射线BA上方相切时,符合题意,设切点为C,连接OC,则OC⊥BP,于是,在直角△BOC中,∵BO=2,OC=1,∴∠OBC=30°,∴∠1=60°,此时射线BP旋转的速度为每秒60°÷2=30°;如图2,当射线BP与O在射线BA下方相切时,也符合题意,设切点为D,连接OD,则OD⊥BP,于是,在直角△BOD中,∵BO=2,OD=1,∴∠OBD=30°,∴∠MBP=120°,此时射线BP旋转的速度为每秒120°÷2=60°;故答案为:30或60.【点睛】本题考查了圆的切线的性质、30°角的直角三角形的性质和旋转的有关概念,正确理解题意、熟练掌握基本知识是解题的关键.22.【解析】分析:先求出扇形对应的圆的半径再根据扇形的面积公式求出面积即可详解:设扇形的半径为Rcm∵扇形的圆心角为135°弧长为3πcm∴=3π解得:R=4所以此扇形的面积为=6π(cm2)故答案为6解析:6π【解析】分析:先求出扇形对应的圆的半径,再根据扇形的面积公式求出面积即可.详解:设扇形的半径为Rcm,∵扇形的圆心角为135°,弧长为3πcm,∴135180Rπ⨯=3π,解得:R=4,所以此扇形的面积为21354180π⨯=6π(cm2),故答案为6π.点睛:本题考查了扇形的面积计算和弧长的面积计算,能熟记扇形的面积公式和弧长公式是解此题的关键.23.15【解析】【分析】先解方程求出方程的根再确定等边三角形的边长然后求等边三角形的周长【详解】解:x2﹣3x﹣10=0(x﹣5)(x+2)=0即x﹣5=0或x+2=0∴x1=5x2=﹣2因为方程x2﹣解析:15【解析】【分析】先解方程求出方程的根,再确定等边三角形的边长,然后求等边三角形的周长.【详解】解:x2﹣3x﹣10=0,(x﹣5)(x+2)=0,即x﹣5=0或x+2=0,∴x1=5,x2=﹣2.因为方程x2﹣3x﹣10=0的根是等边三角形的边长,所以等边三角形的边长为5.所以该三角形的周长为:5×3=15.故答案为:15.【点睛】本题考查了一元二次方程的解法、等边三角形的周长等知识点.求出方程的解是解决本题的关键.24.k<2且k≠1【解析】试题解析:∵关于x的一元二次方程(k-1)x2-2x+1=0有两个不相等的实数根∴k-1≠0且△=(-2)2-4(k-1)>0解得:k<2且k≠1考点:1根的判别式;2一元二次解析:k<2且k≠1【解析】试题解析:∵关于x的一元二次方程(k-1)x2-2x+1=0有两个不相等的实数根,∴k-1≠0且△=(-2)2-4(k-1)>0,解得:k<2且k≠1.考点:1.根的判别式;2.一元二次方程的定义.25.【解析】【分析】【详解】解:从袋子中随机取出1个球总共有6种等可能结果这个球为红球的结果有5中所以从袋子中随机取出1个球则它是红球的概率是故答案为:解析:5 6【解析】【分析】【详解】解:从袋子中随机取出1个球,总共有6种等可能结果,这个球为红球的结果有5中,所以从袋子中随机取出1个球,则它是红球的概率是56 故答案为:56.三、解答题26.<;(2)8.【解析】【分析】【详解】 解:(1)由二次函数22y x m =+图象知:其图像关于y 轴对称又∵点1(2,)y -在此二次函数的图象上∴1(2,)y 也在此二次函数的图象上∵当0x >时函数是增函数∴12y y <故答案为:<;(2)∵二次函数22y x m =+的图象经过点(0,-4)∴m = -4∵四边形ABCD 为正方形又∵抛物线和正方形都是轴对称图形,且y 轴为它们的公共对称轴∴OD=OC ,=BCOE S S 阴影矩形设点B 的坐标为(n ,2n )(n >0)∵点B 在二次函数224y x =-的图象上∴2224n n =-解得,122,1n n ==-(舍负)∴点B 的坐标为(2,4)∴=BCOE S S 阴影矩形=2⨯4=8.【点睛】本题考查二次函数的图象. 27.(1)见解析;(2)【解析】【分析】(1)由等弧所对的圆周角相等可得∠ACD =∠DBC ,且∠BDC =∠EDC ,可证△DCE ∽△DBC ;(2)由勾股定理可求DE =1,由相似三角形的性质可求BC 的长.【详解】(1)∵D是弧AC的中点,∴AD CD=,∴∠ACD=∠DBC,且∠BDC=∠EDC,∴△DCE∽△DBC;(2)∵BC是直径,∴∠BDC=90°,∴DE2254CE CD=-=-=1.∵△DCE∽△DBC,∴DE EC DC BC=,∴152BC =,∴BC=25.【点睛】本题考查了圆周角定理、相似三角形的判定和性质、勾股定理等知识,证明△DCE∽△DBC是解答本题的关键.28.(1)见解析;(2)2213;(3)289π【解析】【分析】(1)分别作出线段BC,线段AC的垂直平分线EF,MN交于点O,以O为圆心,OB为半径作⊙O即可.(2)连接OB,OC,作CH⊥AB于H.解直角三角形求出BC,即可解决问题.(3)利用扇形的面积公式计算即可.【详解】(1)如图⊙O即为所求.(2)连接OB,OC,作CH⊥AB于H.在Rt△ACH中,∵∠AHC=90°,AC=4,∠A=60°,∴∠ACH=30°,∴AH12=AC=2,CH3=3,∵AB=6,∴BH=4,∴BC22224(23)BH CH=+=+=7,∵∠BOC=2∠A=120°,OB=OC,OF⊥BC,∴BF=CF7=COF12=∠BOC=60°,∴OC7221603CFsin===︒.(3)S扇形OBC2221120(2833609ππ⋅⋅==.【点睛】本题考查了作图﹣复杂作图,勾股定理,解直角三角形,三角形的外接圆与外心等知识,解答本题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.29.(1)200;(2)答案见解析;(3)12.【解析】【分析】(1)由题意得:这次调查中,一共调查的学生数为:40÷20%=200(名);(2)根据题意可求得B占的百分比为:1-20%-30%-15%=35%,C的人数为:200×30%=60(名);则可补全统计图;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与一人是喜欢跳绳、一人是喜欢足球的学生的情况,再利用概率公式即可求得答案.【详解】解:(1)根据题意得:这次调查中,一共调查的学生数为:40÷20%=200(名);故答案为:200;(2)C组人数:200-40-70-30=60(名)B组百分比:70÷200×100%=35%如图(3)分别用A,B,C表示3名喜欢跳绳的学生,D表示1名喜欢足球的学生;画树状图得:∵共有12种等可能的结果,一人是喜欢跳绳、一人是喜欢足球的学生的有6种情况,∴一人是喜欢跳绳、一人是喜欢足球的学生的概率为:61 122.【点睛】此题考查了列表法或树状图法求概率以及条形统计图与扇形统计图.用到的知识点为:概率=所求情况数与总情况数之比.30.(1)详见解析(2)85%【解析】【分析】(1)根据童车的数量是300×25%,童装的数量是300-75-90,儿童玩具占得百分比是90÷300×100%,童装占得百分比1-30%-25%,即可补全统计表和统计图.(2)先分别求出儿童玩具、童车、童装中合格的数量之和,再根据概率公式计算即可.【详解】解:(1)童车的数量是300×25%=75,童装的数量是300-75-90=135;儿童玩具占得百分比是(90÷300)×100%=30%.童装占得百分比1-30%-25%=45%.补全统计表和统计图如下:类别儿童玩具 童车 童装 抽查件数 90 75 135(2)∵儿童玩具中合格的数量是90×90%=81,童车中合格的数量是75×88%=66,童装中合格的数量是135×80%=108, ∴从该超市的这三类儿童用品中随机购买一件,购买到合格品的概率是 816610885%300++=.。

中考数学总复习《选择、填空、解答题重难点》专项提升练习题(附答案)

中考数学总复习《选择、填空、解答题重难点》专项提升练习题(附答案)

中考数学总复习《选择、填空、解答题重难点》专项提升练习题(附答案) 学校:___________班级:___________姓名:___________考号:___________一、选择题(每题4分,共48分)1.某回收公司有四包可回收垃圾,每包以标准克数(50千克)为基准,超过的千克数记作正数,不足的千克数记作负数,以下数据是记录结果,其中表示实际质量最接近标准千克数的是 ( )A. -1B. +2C. -0. 5D.02.如图是由一个长方体和一个圆柱组成的几何体,它的俯视图是 ( )3.某市政府在 2022 年着力稳定宏观经济大盘,全市经济发展取得新成效,全年生产总值实现2502.7亿元.数据2502.7亿用科学记数法表示为 ( )A.2502.7×10⁸B.2.5027×10¹¹C.2.5027×10¹⁰D.2.5027×10³4.关于等边三角形,下列说法不正确的是 ( )A. 等边三角形是轴对称图形B. 等边三角形是中心对称图形C. 等边三角形是旋转对称图形D. 等边三角形都相似5.为贯彻落实教育部办公厅关于“保障学生每天校内、校外各 1小时体育活动时间”的要求,学校要求学生每天坚持体育锻炼.小亮记录了自己一周内每天校外锻炼的时间(单位:分钟),并制作了如图所示的统计图.根据统计图,下列关于小亮该周每天校外锻炼时间的描述,正确的是 ( )A. 平均数为 70分钟B. 众数为 67 分钟C. 中位数为 67分钟D. 方差为06.如图,正五边形ABCDE放入平面直角坐标系后,若顶点 A,B,C,E的坐标分别是(0,a),(b,m),(-2,-1),(e,m),则点 D 的坐标是 ( )A.(2,-1)B.(2,1)C.(-1,-2)D.(-2,1)7.已知a=√23−2,a 介于两个连续自然数之间,则下列结论正确的是 ( )A.1<a<2B.2<a<3C.3<a<4D.4<a<<58.一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4,随机摸出一个小球,不放回,再随机摸出一个小球,两次摸出的小球标号的积不大于4的概率是 ( )B. 712 C. 13 D. 12 A.5129.如图,⊙O 的圆心O 与正方形的中心重合,已知⊙O 的半径和正方形的边长都为4,则圆上任意一点到正方形边上任意一点距离的最小值为 ( ) A. √2 B.2 C.4+2√2 D.4−2√210.如图1,在菱形ABCD 中,∠.A=60°,动点P 从点A 出发,沿折线AD→DC→CB 方向匀速运动,运动到点 B 停止.设点 P 的运动路程为x ,△APB 的面积为y ,y 与x 的函数图象如图2所示,则 AB 的长为 ( ) A. √3 B.2√3 C.3 √3 D.4 √311.已知抛物线 y =ax²+bx +c (a ≠0)的部分图象如图所示,则下列结论中正确的是 ( ) A. abc<0 B.4a -2b+c<0C.3a+c=0D.am²+bm +a ≤0(m 为实数)12.如图,点E 在正方形ABCD 的对角线AC 上,EF ⊥AB 于点F,连接 DE 并延长,交边BC 于点M,交边AB 的延长线于点G.若AF=2,FB=1,则MG= ( ) A.2√3 B.3√52C.√5+1D.√10二、填空题(每题4分,共24分) 13.因式分解: 18a −2a³=. 14.方程 23x−1=1x+2的解是 。

中考数学总复习《选择、填空题》专项测试卷带答案

中考数学总复习《选择、填空题》专项测试卷带答案

中考数学总复习《选择、填空题》专项测试卷带答案学校:___________班级:___________姓名:___________考号:___________一、选择题1.如图,比数轴上点A表示的数大3的数是()A.-1B.0C.1D.22.截面为扇环的几何体与长方体组成的摆件如图所示,它的主视图是()A.B.C.D.3.苏步青来自“数学家之乡”,为纪念其卓越贡献,国际上将一颗距地球约218 000 000公里的行星命名为“苏步青星”,数据218000 000 用科学记数法表示为()A.0.218×10° B.2.18×108C.21.8×101D.218×1054.下列数学符号中,既属于轴对称图形又属于中心对称图形的是()A.B.C.D.5.一瓶牛奶的营养成分中,碳水化合物的含量是蛋白质的1.5倍,碳水化合物、蛋白质与脂肪的含量共30g.设蛋白质、脂肪的含量分别为x(g),y(g),则可列方程为()A.52x+y=30B.x+52y=30C.32x+y=30D.x+32y=306.一副三角尺如图所示放置,两把三角尺的斜边互相平行,每把三角尺的直角顶点都在另一把三角尺的斜边上,则∠α的度数为()A.45°B.60°C.75°D.85°7.(2022·绍兴)已知抛物线y=x2+mx的对称轴为直线x=2 ,则关于x的方程x2+mx=5的根是()A.0,4B.1,5C.1,-5D.-1,58.如图,已知PA ,PB 是∠O 的两条切线,A ,B 为切点,线段OP 交∠O 于点M.有下列说法:①PA=PB ;②OP∠AB ;③四边形OAPB 有外接圆;④点M 是∠AOP 的外接圆圆心.其中正确的个数是( )A .1B .2C .3D .49.已知(x 1,y 1),(x 2,y 2),(x 3,y 3)为直线y=-2x+3上的三个点,且x 1<x 2<x 3,,则下列判断正确的是( )A .若x 1x 2>0,则y 1y 3>0B .若x 1x 3<0,则y 1y 2>0C .若x 2x 3>0,则y 1y 3>0D .若x 2x 3<0,则y 1y 2>010.(2023·绍兴)如图,在矩形ABCD 中,O 为对角线BD 的中点∠ABD =60°.动点E 在线段OB 上,动点F 在线段OD 上,点E ,F 同时从点O 出发,分别向终点B ,D 运动,且始终保持OE =OF .点E 关于AD ,AB 的对称点为E 1,E 2;点F 关于BC ,CD 的对称点为F 1,F 2.在整个过程中,四边形E 1E 2F 1F 2形状的变化依次是( )A .菱形→平行四边形→矩形→平行四边形→菱形B .菱形→正方形→平行四边形→菱形→平行四边形C .平行四边形→矩形→平行四边形→菱形→平行四边形D .平行四边形→菱形→正方形→平行四边形→菱形二、填空题11.分解因式:3a 3-75a= .12.不等式组{x +3≥2,3x−12<4的解是 . 13.数学兴趣小组利用无人机测量学校旗杆高度.已知无人机的飞行高度为40m ,当无人机与旗杆的水平距离是45m 时,观测旗杆顶部的俯角为 30°,则旗杆的高度约为 m(结果精确到 1m.参考数据: √2≈1.41,√3≈1.73).14.三个能够重合的正六边形如图所示摆放.已知点B 的坐标为(-√3,3),则点A 的坐标为.15.为了预防传染病,某校定期对教室进行“药熏消毒”.如图,在药物燃烧阶段,教室内每立方米空气中的含药量y(mg)与燃烧时间x(min)成正比例关系;燃烧后,y与x成反比例关系. 若y>1.6,则x 的取值范围是.16.如图,在∠ABC中,AB=AC,∠A<90°,点D,E,F 分别在边AB,BC,AC 上,连结DE,EF,DF,已知点B 和点F 关于直线DE 对称.设BCAB=k,若AD=DF,则CFFA=(结果用含k的代数式表示).答案解析部分1.【答案】D【知识点】数轴及有理数在数轴上的表示;有理数的加法【解析】【解答】解:由数轴可得点A所表示的数为-1,∴比点A所表示的数大3的数为-1+3=2.故答案为:D.【分析】由数轴上的点所表示的数的特点,可得点A表示的数是-1,进而用求出-1与3的和即可得出答案.2.【答案】A【知识点】简单组合体的三视图【解析】【解答】解: 截面为扇环的几何体与长方体组成的摆件的主视图是A 选项的图形.故答案为:A.【分析】主视图,就是从正面看得到的图形,看得见的轮廓线画成实线,看不见但又存在的轮廓线画成虚线,从而即可判断得出答案.3.【答案】B【知识点】科学记数法表示大于10的数【解析】【解答】解:将218000000用科学记数法表示为2.18×108.故答案为:B .【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正数;当原数的绝对值<1时,n 是负数.4.【答案】D【知识点】轴对称图形;中心对称图形【解析】【解答】A 、∵该图形属于轴对称图形但不属于中心对称图形,∴A 不符合题意;B 、∵该图形不属于轴对称图形但属于中心对称图形,∴B 不符合题意;C 、∵该图形属于轴对称图形但不属于中心对称图形,∴C 不符合题意;D 、∵该图形既属于轴对称图形又属于中心对称图形,∴D 符合题意;故答案为:D.【分析】根据轴对称图形和中心对称图形的定义逐项分析判断即可。

初三数学典型题精选(50页)

初三数学典型题精选(50页)

初三数学典型题精选一、选择题1. 下列哪个数是质数?A. 21B. 29C. 33D. 392. 若一个三角形的两边长分别为5厘米和12厘米,则第三边的长度可能是多少?A. 7厘米B. 13厘米C. 18厘米D. 20厘米3. 下列哪个图形的面积最大?A. 一个半径为2厘米的圆B. 一个边长为2厘米的正方形C. 一个长为4厘米,宽为2厘米的长方形D. 一个直径为4厘米的圆4. 下列哪个数是平方数?A. 15B. 16C. 17D. 185. 若一个等腰三角形的底边长为8厘米,腰长为5厘米,则该三角形的周长是多少?A. 18厘米B. 20厘米C. 22厘米D. 24厘米二、填空题1. 下列哪个数是质数?A. 21B. 29C. 33D. 392. 若一个三角形的两边长分别为5厘米和12厘米,则第三边的长度可能是多少?A. 7厘米B. 13厘米C. 18厘米D. 20厘米3. 下列哪个图形的面积最大?A. 一个半径为2厘米的圆B. 一个边长为2厘米的正方形C. 一个长为4厘米,宽为2厘米的长方形D. 一个直径为4厘米的圆4. 下列哪个数是平方数?A. 15B. 16C. 17D. 185. 若一个等腰三角形的底边长为8厘米,腰长为5厘米,则该三角形的周长是多少?A. 18厘米B. 20厘米C. 22厘米D. 24厘米三、解答题1. 设函数 $ f(x) = x^3 3x^2 + 2 $,求 $ f(x) $ 在 $ x =1 $ 处的切线方程。

2. 设函数 $ f(x) = e^x $,求 $ f(x) $ 在 $ x = 0 $ 处的切线方程。

3. 设函数 $ f(x) = \sin x $,求 $ f(x) $ 在 $ x =\frac{\pi}{2} $ 处的切线方程。

4. 设函数 $ f(x) = \ln x $,求 $ f(x) $ 在 $ x = 1 $ 处的切线方程。

5. 设函数 $ f(x) = x^2 $,求 $ f(x) $ 在 $ x = 2 $ 处的切线方程。

中考数学几何选择填空压轴题精选

中考数学几何选择填空压轴题精选

中考数学几何选择填空压轴题精选一.选择题〔共13小题〕1.〔2021•蕲春县模拟〕如图,点O为正方形ABCD的中心,BE平分∠DBC交DC于点E,延长BC到点F,使FC=EC,连接DF交BE的延长线于点H,连接OH交DC于点G,连接HC.则以下四个结论中正确结论的个数为〔〕①OH=BF;②∠CHF=45°;③GH=BC;④DH2=HE•HB.A.1个B.2个C.3个D.4个2.〔2021•模拟〕如图,Rt△ABC中,BC=,∠ACB=90°,∠A=30°,D1是斜边AB的中点,过D1作D1E1⊥AC于E1,连结BE1交CD1于D2;过D2作D2E2⊥AC于E2,连结BE2交CD1于D3;过D3作D3E3⊥AC于E3,…,如此继续,可以依次得到点E4、E5、…、E2021,分别记△BCE1、△BCE2、△BCE3、…、△BCE2021的面积为S1、S2、S3、…、S2021.则S2021的大小为〔〕A.B.C.D.3.如图,梯形ABCD中,AD∥BC,,∠ABC=45°,AE⊥BC于点E,BF⊥AC于点F,交AE于点G,AD=BE,连接DG、CG.以下结论:①△BEG≌△AEC;②∠GAC=∠GCA;③DG=DC;④G为AE中点时,△AGC的面积有最大值.其中正确的结论有〔〕A.1个B.2个C.3个D.4个4.如图,正方形ABCD中,在AD的延长线上取点E,F,使DE=AD,DF=BD,连接BF分别交CD,CE于H,G以下结论:;④图中有8个等腰三角形.其中正确的选项是〔〕①EC=2DG;②∠GDH=∠GHD;③S△CDG=S▭DHGEA.①③B.②④C.①④D.②③5.〔2021•荆州〕如图,直角梯形ABCD中,∠BCD=90°,AD∥BC,BC=CD,E为梯形一点,且∠BEC=90°,将△BEC 绕C点旋转90°使BC与DC重合,得到△DCF,连EF交CD于M.BC=5,CF=3,则DM:MC的值为〔〕A.5:3 B.3:5 C.4:3 D.3:46.如图,矩形ABCD的面积为5,它的两条对角线交于点O1,以AB,AO1为两邻边作平行四边形ABC1O1,平行四边形ABC1O1的对角线交BD于点02,同样以AB,AO2为两邻边作平行四边形ABC2O2.…,依此类推,则平行四边形ABC2021O2021的面积为〔〕A.B.C.D.7.如图,在锐角△ABC中,AB=6,∠BAC=45°,∠BAC的平分线交BC于点D,M,N分别是AD和AB上的动点,则BM+MN 的最小值是〔〕A.B.6C.D.38.〔2021•〕如图,在△ABC中∠A=60°,BM⊥AC于点M,⊥AB于点N,P为BC边的中点,连接PM,PN,则以下结论:①PM=PN;②;③△PMN为等边三角形;④当∠ABC=45°时,BN=PC.其中正确的个数是〔〕A.1个B.2个C.3个D.4个9.〔2021•〕Rt△ABC中,AB=AC,点D为BC中点.∠MDN=90°,∠MDN绕点D旋转,DM、DN分别与边AB、AC交于E、F两点.以下结论:①〔BE+CF〕=BC;②S△AEF≤S△ABC;③S四边形AEDF=AD•EF;④AD≥EF;⑤AD与EF可能互相平分,其中正确结论的个数是〔〕A.1个B.2个C.3个D.4个10.〔2021•一模〕如图,在正方形纸片ABCD中,对角线AC、BD交于点O,折叠正方形纸片ABCD,使AD落在BD上,点A恰好与BD上的点F重合,展开后折痕DE分别交AB、AC于点E、G,连接GF.以下结论①∠ADG=22.5°;②tan∠AED=2;③S△AGD=S△OGD;④四边形AEFG是菱形;⑤BE=2OG.其中正确的结论有〔〕A.①④⑤B.①②④C.③④⑤D.②③④11.如图,正方形ABCD中,O为BD中点,以BC为边向正方形作等边△BCE,连接并延长AE交CD于F,连接BD分别交CE、AF于G、H,以下结论:①∠CEH=45°;②GF∥DE;③2OH+DH=BD;④BG=DG;⑤.其中正确的结论是〔〕A.①②③B.①②④C.①②⑤D.②④⑤12.如图,在正方形ABCD中,AB=4,E为CD上一动点,AE交BD于F,过F作FH⊥AE于H,过H作GH⊥BD于G,以下有四个结论:①AF=FH,②∠HAE=45°,③BD=2FG,④△CEH的周长为定值,其中正确的结论有〔〕A.①②③B.①②④C.①③④D.①②③④13.〔2021•模拟〕正方形ABCD、正方形BEFG和正方形RKPF的位置如下列图,点G在线段DK上,正方形BEFG的边长为4,则△DEK的面积为〔〕A.10 B.12 C.14 D.16二.填空题〔共16小题〕14.如图,在梯形ABCD中,AD∥BC,EA⊥AD,M是AE上一点,F、G分别是AB、CM的中点,且∠BAE=∠MCE,∠MBE=45°,则给出以下五个结论:①AB=CM;②A E⊥BC;③∠BMC=90°;④EF=EG;⑤△BMC是等腰直角三角形.上述结论中始终正确的序号有_________ .15.〔2021•门头沟区一模〕如图,对面积为1的△ABC逐次进展以下操作:第一次操作,分别延长AB、BC、CA至A1、B1、C1,使得A1B=2AB,B1C=2BC,C1A=2CA,顺次连接A1、B1、C1,得到△A1B1C1,记其面积为S1;第二次操作,分别延长A1B1,B1C1,C1A1至A2,B2,C2,使得A2B1=2A1B1,B2C1=2B1C1,C2A1=2C1A1,顺次连接A2,B2,C2,得到△A2B2C2,记其面积为S2…,按此规律继续下去,可得到△A5B5C5,则其面积为S5= _________ .第n次操作得到△A n B n,则△A n B n 的面积S n= _________ .16.〔2021•〕如图,边长为1的菱形ABCD中,∠DAB=60度.连接对角线AC,以AC为边作第二个菱形ACC1D1,使∠D1AC=60°;连接AC1,再以AC1为边作第三个菱形AC1C2D2,使∠D2AC1=60°;…,按此规律所作的第n个菱形的边长为_________ .17.〔2021•通州区二模〕如图,在△ABC中,∠A=α.∠ABC与∠ACD的平分线交于点A1,得∠A1;∠A1BC与∠A1CD的平分线相交于点A2,得∠A2;…;∠A2021BC与∠A2021CD的平分线相交于点A2021,得∠A2021,则∠A2021= _________ .18.〔2021•〕如图,Rt△ABC,D1是斜边AB的中点,过D1作D1E1⊥AC于E1,连接BE1交CD1于D2;过D2作D2E2⊥AC 于E2,连接BE2交CD1于D3;过D3作D3E3⊥AC于E3,…,如此继续,可以依次得到点D4,D5,…,D n,分别记△BD1E1,△BD2E2,△BD3E3,…,△BD n E n的面积为S1,S2,S3,…S n.则S n= _________ S△ABC〔用含n的代数式表示〕.19.〔2021•丰台区二模〕:如图,在Rt△ABC中,点D1是斜边AB的中点,过点D1作D1E1⊥AC于点E1,连接BE1交CD1于点D2;过点D2作D2E2⊥AC于点E2,连接BE2交CD1于点D3;过点D3作D3E3⊥AC于点E3,如此继续,可以依次得到点D4、D5、…、D n,分别记△BD1E1、△BD2E2、△BD3E3、…、△BD n E n的面积为S1、S2、S3、…S n.设△ABC的面积是1,则S1= _________ ,S n= _________ 〔用含n的代数式表示〕.20.〔2021•路北区三模〕在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的最小值为_________ .21.如图,Rt△ABC中,AC=3,BC=4,过直角顶点C作CA1⊥AB,垂足为A1,再过A1作A1C1⊥BC,垂足为C1,过C1作C1A2⊥AB,垂足为A2,再过A2作A2C2⊥BC,垂足为C2,…,这样一直做下去,得到了一组线段CA1,A1C1,C1A2,…,则CA1= _________ ,= _________ .22.〔2021•沐川县二模〕如图,点A1,A2,A3,A4,…,A n在射线OA上,点B1,B2,B3,…,B n﹣1在射线OB上,且A1B1∥A2B2∥A3B3∥…∥A n﹣1B n﹣1,A2B1∥A3B2∥A4B3∥…∥A n B n﹣1,△A1A2B1,△A2A3B2,…,△A n﹣1A n B n﹣1为阴影三角形,假设△A2B1B2,△A3B2B3的面积分别为1、4,则△A1A2B1的面积为_________ ;面积小于2021的阴影三角形共有_________ 个.23.〔2021•鲤城区质检〕如图,点A1〔a,1〕在直线l:上,以点A1为圆心,以为半径画弧,交*轴于点B1、B2,过点B2作A1B1的平行线交直线l于点A2,在*轴上取一点B3,使得A2B3=A2B2,再过点B3作A2B2的平行线交直线l于点A3,在*轴上取一点B4,使得A3B4=A3B3,按此规律继续作下去,则①a=_________ ;②△A4B4B5的面积是_________ .24.〔2021•松北区二模〕如图,以Rt△ABC的斜边BC为一边在△ABC的同侧作正方形BCEF,设正方形的中心为O,连接AO,如果AB=4,AO=6,则AC的长等于_________ .25.〔2007•淄川区二模〕如图,将矩形ABCD的四个角向折起,恰好拼成一个既无缝隙又无重叠的四边形EFGH,假设EH=3,EF=4,则线段AD与AB的比等于_________ .26.〔2021•泰兴市模拟〕梯形ABCD中AB∥CD,∠ADC+∠BCD=90°,以AD、AB、BC为斜边向形外作等腰直角三角形,其面积分别是S1、S2、S3且S1+S3=4S2,则CD= _________ AB.27.如图,观察图中菱形的个数:图1中有1个菱形,图2中有5个菱形,图3中有14个菱形,图4中有30个菱形…,则第6个图中菱形的个数是_________ 个.28.〔2021•贵港一模〕如图,E、F分别是平行四边形ABCD的边AB、CD上的点,AF与DE相交于点P,BF与CE相交于点Q,假设S△APD=15cm2,S△BQC=25cm2,则阴影局部的面积为_________ cm2.29.〔2021•**〕如图,正方形ABCD的边长为1,以顶点A、B为圆心,1为半径的两弧交于点E,以顶点C、D为圆心,1为半径的两弧交于点F,则EF的长为_________ .30.如图,ABCD是凸四边形,AB=2,BC=4,CD=7,求线段AD的取值围〔〕.参考答案与试题解析一.选择题〔共13小题〕1.〔2021•蕲春县模拟〕如图,点O为正方形ABCD的中心,BE平分∠DBC交DC于点E,延长BC到点F,使FC=EC,连接DF交BE的延长线于点H,连接OH交DC于点G,连接HC.则以下四个结论中正确结论的个数为〔〕①OH=BF;②∠CHF=45°;③GH=BC;④DH2=HE•HB.A.1个B.2个C.3个D.4个解答:解:作EJ⊥B D于J,连接EF①∵BE平分∠DBC∴EC=EJ,∴△DJE≌△ECF∴DE=FE∴∠HEF=45°+22.5°=67.5°∴∠HFE==22.5°∴∠EHF=180°﹣67.5°﹣22.5°=90°∵DH=HF,OH是△DBF的中位线∴OH∥BF∴OH=BF②∵四边形ABCD是正方形,BE是∠DBC的平分线,∴BC=CD,∠BCD=∠DCF,∠EBC=22.5°,∵CE=CF,∴Rt△BCE≌Rt△DCF,∴∠EBC=∠CDF=22.5°,∴∠BFH=90°﹣∠CDF=90°﹣22.5°=67.5°,∵OH是△DBF的中位线,CD⊥AF,∴OH是CD的垂直平分线,∴DH=CH,∴∠CDF=∠DCH=22.5°,∴∠HCF=90°﹣∠DCH=90°﹣22.5°=67.5°,∴∠CHF=180°﹣∠HCF﹣∠BFH=180°﹣67.5°﹣67.5°=45°,故②正确;③∵OH是△BFD的中位线,∴DG=CG=BC,GH=CF,∵CE=CF,∴GH=CF=CE∵CE<CG=BC,∴GH<BC,故此结论不成立;④∵∠DBE=45°,BE是∠D BF的平分线,∴∠DBH=22.5°,由②知∠HBC=∠CDF=22.5°,∴∠DBH=∠CDF,∵∠BHD=∠BHD,∴△DHE∽△BHD,∴=∴DH=HE•HB,故④成立;所以①②④正确.应选C.2.〔2021•模拟〕如图,Rt△ABC中,BC=,∠ACB=90°,∠A=30°,D1是斜边AB的中点,过D1作D1E1⊥AC于E1,连结BE1交CD1于D2;过D2作D2E2⊥AC于E2,连结BE2交CD1于D3;过D3作D3E3⊥AC于E3,…,如此继续,可以依次得到点E4、E5、…、E2021,分别记△BCE1、△BCE2、△BCE3、…、△BCE2021的面积为S1、S2、S3、…、S2021.则S2021的大小为〔〕A.B.C.D.解答:解:∵Rt△ABC中,BC=,∠ACB=90°,∠A=30°,∴AC==BC=6,∴S△ABC=AC•BC=6,∵D1E1⊥AC,∴D1E1∥BC,∴△BD1E1与△CD1E1同底同高,面积相等,∵D1是斜边AB的中点,∴D1E1=BC,CE1=AC,∴S1=BC•CE1=BC×AC=×AC•BC=S△ABC;∴在△ACB中,D2为其重心,∴D2E1=BE1,∴D2E2=BC,CE2=AC,S2=××AC•BC=S△ABC,∴D3E3=BC,CE2=AC,S3=S△ABC…;∴S n=S△ABC;∴S2021=×6=.应选C.3.如图,梯形ABCD中,AD∥BC,,∠ABC=45°,AE⊥BC于点E,BF⊥AC于点F,交AE于点G,AD=BE,连接DG、CG.以下结论:①△BEG≌△AEC;②∠GAC=∠GCA;③DG=DC;④G为AE中点时,△AGC的面积有最大值.其中正确的结论有〔〕A.1个B.2个C.3个D.4个解答:解:根据BE=AE,∠GBE=∠CAE,∠BEG=∠CEA可判定①△BEG≌△AEC;用反证法证明②∠GAC≠∠GCA,假设∠GAC=∠GCA,则有△AGC为等腰三角形,F为AC的中点,又BF⊥AC,可证得AB=BC,与题设不符;由①知△BEG≌△AEC 所以GE=CE 连接ED、四边形ABED为平行四边形,∵∠ABC=45°,AE⊥BC于点E,∴∠GED=∠CED=45°,∴△GED≌△CED,∴DG=DC;④设AG为*,则易求出GE=EC=2﹣* 因此,S△AGC=S AEC﹣S GEC=﹣+*=﹣〔*2﹣2*〕=﹣〔*2﹣2*+1﹣1〕=﹣〔*﹣1〕2+,当*取1时,面积最大,所以AG等于1,所以G是AE中点,故G为AE中点时,GF最长,故此时△AGC的面积有最大值.故正确的个数有3个.应选C.4.如图,正方形ABCD中,在AD的延长线上取点E,F,使DE=AD,DF=BD,连接BF分别交CD,CE于H,G以下结论:;④图中有8个等腰三角形.其中正确的选项是〔〕①EC=2DG;②∠GDH=∠GHD;③S△CDG=S▭DHGEA.①③B.②④C.①④D.②③解答:解:∵DF=BD,∴∠DFB=∠DBF,∵AD∥BC,DE=BC,∴∠DEC=∠DBC=45°,∴∠DEC=2∠EFB,∴∠EFB=22.5°,∠CGB=∠CBG=22.5°,∴CG=BC=DE,∵DE=DC,∴∠DEG=∠DCE,∵∠GHC=∠CDF+∠DFB=90°+22.5°=112.5°,∠DGE=180°﹣〔∠BGD+∠EG F〕,=180°﹣〔∠BGD+∠BGC〕,=180°﹣〔180°﹣∠DCG〕÷2,=180°﹣〔180°﹣45°〕÷2,=112.5°,∴∠GHC=∠DGE,∴△CHG≌△EGD,∴∠EDG=∠CGB=∠CBF,∴∠GDH=∠GHD,.∴S△CDG=S▭DHGE应选D.5.〔2021•荆州〕如图,直角梯形ABCD中,∠BCD=90°,AD∥BC,BC=CD,E为梯形一点,且∠BEC=90°,将△BEC 绕C点旋转90°使BC与DC重合,得到△DCF,连EF交CD于M.BC=5,CF=3,则DM:MC的值为〔〕A.5:3 B.3:5 C.4:3 D.3:4解答:解:由题意知△BCE绕点C顺时转动了90度,∴△BCE≌△DCF,∠ECF=∠DFC=90°,∴CD=BC=5,DF∥CE,∴∠ECD=∠CDF,∵∠EMC=∠DMF,∴△ECM∽△FDM,∴DM:MC=DF:CE,∵DF==4,∴DM:MC=DF:CE=4:3.应选C.6.如图,矩形ABCD的面积为5,它的两条对角线交于点O1,以AB,AO1为两邻边作平行四边形ABC1O1,平行四边形ABC1O1的对角线交BD于点02,同样以AB,AO2为两邻边作平行四边形ABC2O2.…,依此类推,则平行四边形ABC2021O2021的面积为〔〕A.B.C.D.解答:解:∵矩形ABCD的对角线互相平分,面积为5,∴平行四边形ABC1O1的面积为,∵平行四边形ABC1O1的对角线互相平分,∴平行四边形ABC2O2的面积为×=,…,依此类推,平行四边形ABC2021O2021的面积为.应选B.7.如图,在锐角△ABC中,AB=6,∠BAC=45°,∠BAC的平分线交BC于点D,M,N分别是AD和AB上的动点,则BM+MN 的最小值是〔〕A.B. 6 C.D. 3解答:解:如图,作BH⊥AC,垂足为H,交AD于M′点,过M′点作M′N′⊥AB,垂足为N′,则BM′+M′N′为所求的最小值.∵AD是∠BAC的平分线,∴M′H=M′N′,∴BH是点B到直线AC的最短距离〔垂线段最短〕,∵AB=4,∠BAC=45°,∴BH=AB•sin45°=6×=3.∵BM+MN的最小值是BM′+M′N′=BM′+M′H=B H=3.应选C.8.〔2021•〕如图,在△ABC中∠A=60°,BM⊥AC于点M,⊥AB于点N,P为BC边的中点,连接PM,PN,则以下结论:①PM=PN;②;③△PMN为等边三角形;④当∠ABC=45°时,BN=PC.其中正确的个数是〔〕A.1个B.2个C.3个D.4个解答:解:①∵BM⊥AC于点M,⊥AB于点N,P为BC边的中点,∴PM=BC,PN=BC,∴PM=PN,正确;②在△ABM与△A中,∵∠A=∠A,∠AMB=∠ANC=90°,∴△ABM∽△A,∴,正确;③∵∠A=60°,BM⊥AC于点M,⊥AB于点N,∴∠ABM=∠A=30°,在△ABC中,∠B+∠CBM═180°﹣60°﹣30°×2=60°,∵点P是BC的中点,BM⊥AC,⊥AB,∴PM=PN=PB=PC,∴∠BPN=2∠B,∠CPM=2∠CBM,∴∠BPN+∠CPM=2〔∠B+∠CBM〕=2×60°=120°,∴∠MPN=60°,∴△PMN是等边三角形,正确;④当∠ABC=45°时,∵⊥AB于点N,∴∠BNC=90°,∠B=45°,∴BN=,∵P为BC边的中点,∴PN⊥BC,△BPN为等腰直角三角形∴BN=PB=PC,正确.应选D.9.〔2021•〕Rt△ABC中,AB=AC,点D为BC中点.∠MDN=90°,∠MDN绕点D旋转,DM、DN分别与边AB、AC交于E、F两点.以下结论:①〔BE+CF〕=BC;②S△AEF≤S△ABC;③S四边形AEDF=AD•EF;④AD≥EF;⑤AD与EF可能互相平分,其中正确结论的个数是〔〕A.1个B.2个C.3个D.4个解答:解:∵Rt△ABC中,AB=AC,点D为BC中点,∴∠C=∠BAD=45°,AD=BD=CD,∵∠MDN=90°,∴∠ADE+∠ADF=∠ADF+∠CDF=90°,∴∠ADE=∠CDF.在△AED与△CFD中,∵,∴△AED≌△CFD〔ASA〕,∴AE=CF,在Rt△ABD中,BE+CF=BE+AE=AB==BD=BC.故①正确;设AB=AC=a,AE=CF=*,则AF=a﹣*.∵S△AEF=AE•AF=*〔a﹣*〕=﹣〔*﹣a〕2+a2,∴当*=a时,S△AEF有最大值a2,又∵S△ABC=×a2=a2,∴S△AEF≤S△ABC.故②正确;EF2=AE2+AF2=*2+〔a﹣*〕2=2〔*﹣a〕2+a2,∴当*=a时,EF2取得最小值a2,∴EF≥a〔等号当且仅当*=a时成立〕,而AD=a,∴EF≥AD.故④错误;由①的证明知△AED≌△CFD,∴S四边形AEDF=S△AED+S△ADF=S△CFD+S△ADF=S△ADC=AD2,∵EF≥AD,∴AD•EF≥AD2,∴AD•EF>S四边形AEDF故③错误;当E、F分别为AB、AC的中点时,四边形AEDF为正方形,此时AD与EF互相平分.故⑤正确.综上所述,正确的有:①②⑤,共3个.应选C.10.〔2021•一模〕如图,在正方形纸片ABCD中,对角线AC、BD交于点O,折叠正方形纸片ABCD,使AD落在BD上,点A恰好与BD上的点F重合,展开后折痕DE分别交AB、AC于点E、G,连接GF.以下结论①∠ADG=22.5°;②tan∠AED=2;③S△AGD=S△OGD;④四边形AEFG是菱形;⑤BE=2OG.其中正确的结论有〔〕A.①④⑤B.①②④C.③④⑤D.②③④解答:解:∵四边形ABCD是正方形,∴∠GAD=∠ADO=45°,由折叠的性质可得:∠ADG=∠ADO=22.5°,故①正确.∵tan∠AED=,由折叠的性质可得:AE=EF,∠EFD=∠EAD=90°,∴AE=EF<BE,∴AE<AB,∴tan∠AED=>2,故②错误.∵∠AOB=90°,∴AG=FG>OG,△AGD与△OGD同高,∴S△AGD>S△OGD,故③错误.∵∠EFD=∠AOF=90°,∴EF∥AC,∴∠FEG=∠AGE,∵∠AGE=∠FGE,∴∠FEG=∠FGE,∴EF=GF,∵AE=EF,∴AE=GF,故④正确.∵AE=EF=GF,AG=GF,∴AE=EF=GF=AG,∴四边形AEFG是菱形,∴∠OGF=∠OAB=45°,∴EF=GF=OG,∴BE=EF=×OG=2OG.故⑤正确.∴其中正确结论的序号是:①④⑤.应选:A.11.如图,正方形ABCD中,O为BD中点,以BC为边向正方形作等边△BCE,连接并延长AE交CD于F,连接BD分别交CE、AF于G、H,以下结论:①∠CEH=45°;②GF∥DE;③2OH+DH=BD;④BG=DG;⑤.其中正确的结论是〔〕A.①②③B.①②④C.①②⑤D.②④⑤解答:解:①由∠ABC=90°,△BEC为等边三角形,△ABE为等腰三角形,∠AEB+∠BEC+∠CEH=180°,可求得∠CEH=45°,此结论正确;②由△EGD≌△DFE,EF=GD,再由△HDE为等腰三角形,∠DEH=30°,得出△HGF为等腰三角形,∠HFG=30°,可求得GF∥DE,此结论正确;③由图可知2〔OH+HD〕=2OD=BD,所以2OH+DH=BD此结论不正确;④如图,过点G作GM⊥CD垂足为M,GN⊥BC垂足为N,设GM=*,则GN=*,进一步利用勾股定理求得GD=*,BG=*,得出BG=GD,此结论不正确;⑤由图可知△BCE和△BCG同底不等高,它们的面积比即是两个三角形的高之比,由④可知△BCE的高为〔*+*〕和△BCG的高为*,因此S△BCE:S△BCG=〔*+*〕:*=,此结论正确;故正确的结论有①②⑤.应选C.12.如图,在正方形ABCD中,AB=4,E为CD上一动点,AE交BD于F,过F作FH⊥AE于H,过H作GH⊥BD于G,以下有四个结论:①AF=FH,②∠HAE=45°,③BD=2FG,④△CEH的周长为定值,其中正确的结论有〔〕A.①②③B.①②④C.①③④D.①②③④解答:解:〔1〕连接FC,延长HF交AD于点L,∵BD为正方形ABCD的对角线,∴∠ADB=∠CDF=45°.∵AD=CD,DF=DF,∴△ADF≌△CDF.∴FC=AF,∠ECF=∠DAF.∵∠ALH+∠LAF=90°,∴∠LHC+∠DAF=90°.∵∠ECF=∠DAF,∴∠FHC=∠FCH,∴FH=FC.∴FH=AF.〔2〕∵FH⊥AE,FH=AF,∴∠HAE=45°.〔3〕连接AC交BD于点O,可知:BD=2OA,∵∠AFO+∠GFH=∠GHF+∠GFH,∴∠AFO=∠GHF.∵AF=HF,∠AOF=∠FGH=90°,∴△AOF≌△FGH.∴OA=GF.∵BD=2OA,∴BD=2FG.〔4〕延长AD至点M,使AD=DM,过点C作CI∥HL,则:LI=HC,根据△MEC≌△CIM,可得:CE=IM,同理,可得:AL=HE,∴HE+HC+EC=AL+LI+IM=AM=8.∴△CEH的周长为8,为定值.故〔1〕〔2〕〔3〕〔4〕结论都正确.应选D.13.〔2021•模拟〕正方形ABCD、正方形BEFG和正方形RKPF的位置如下列图,点G在线段DK上,正方形BEFG的边长为4,则△DEK的面积为〔〕A.10 B.12 C.14 D.16解答:解:如图,连DB,GE,FK,则DB∥GE∥FK,在梯形GDBE中,S△DGE=S△GEB〔同底等高的两三角形面积相等〕,同理S△GKE=S△GFE.∴S阴影=S△DGE+S△GKE,=S△GEB+S△GEF,=S正方形GBEF,=4×4=16应选D.二.填空题〔共16小题〕14.如图,在梯形ABCD中,AD∥BC,EA⊥AD,M是AE上一点,F、G分别是AB、CM的中点,且∠BAE=∠MCE,∠MBE=45°,则给出以下五个结论:①AB=CM;②A E⊥BC;③∠BMC=90°;④EF=EG;⑤△BMC是等腰直角三角形.上述结论中始终正确的序号有①②④.解答:解:∵梯形ABCD中,AD∥BC,EA⊥AD,∴AE⊥BC,即②正确.∵∠MBE=45°,∴BE=ME.在△ABE与△CME中,∵∠BAE=∠MCE,∠AEB=∠CEM=90°,BE=ME,∴△ABE≌△CME,∴AB=CM,即①正确.∵∠MCE=∠BAE=90°﹣∠ABE<90°﹣∠MBE=45°,∴∠MCE+∠MBC<90°,∴∠BMC>90°,即③⑤错误.∵∠AEB=∠CEM=90°,F、G分别是AB、CM的中点,∴EF=AB,EG=CM.又∵AB=CM,∴EF=EG,即④正确.故正确的选项是①②④.15.〔2021•门头沟区一模〕如图,对面积为1的△ABC逐次进展以下操作:第一次操作,分别延长AB、BC、CA至A1、B1、C1,使得A1B=2AB,B1C=2BC,C1A=2CA,顺次连接A1、B1、C1,得到△A1B1C1,记其面积为S1;第二次操作,分别延长A1B1,B1C1,C1A1至A2,B2,C2,使得A2B1=2A1B1,B2C1=2B1C1,C2A1=2C1A1,顺次连接A2,B2,C2,得到△A2B2C2,记其面积为S2…,按此规律继续下去,可得到△A5B5C5,则其面积为S5= 2476099 .第n次操作得到△A n B n,则△A n B n 的面积S n= 19n.解答:解:连接A1C;S△AA1C=3S△ABC=3,S△AA1C1=2S△AA1C=6,所以S△A1B1C1=6×3+1=19;同理得S△A2B2C2=19×19=361;S△A3B3C3=361×19=6859,S△A4B4C4=6859×19=130321,S△A5B5C5=130321×19=2476099,从中可以得出一个规律,延长各边后得到的三角形是原三角形的19倍,所以延长第n次后,得到△A n B n,则其面积S n=19n•S1=19n故答案是:2476099;19n.16.〔2021•〕如图,边长为1的菱形ABCD中,∠DAB=60度.连接对角线AC,以AC为边作第二个菱形ACC1D1,使∠D1AC=60°;连接AC1,再以AC1为边作第三个菱形AC1C2D2,使∠D2AC1=60°;…,按此规律所作的第n个菱形的边长为〔〕n﹣1.解答:解:连接DB,∵四边形ABCD是菱形,∴AD=AB.AC⊥DB,∵∠DAB=60°,∴△ADB是等边三角形,∴DB=AD=1,∴BM=,∴AM==,∴AC=,同理可得AC1=AC=〔〕2,AC2=AC1=3=〔〕3,按此规律所作的第n个菱形的边长为〔〕n﹣1故答案为〔〕n﹣1.17.〔2021•通州区二模〕如图,在△ABC中,∠A=α.∠ABC与∠ACD的平分线交于点A1,得∠A1;∠A1BC与∠A1CD的平分线相交于点A2,得∠A2;…;∠A2021BC与∠A2021CD的平分线相交于点A2021,得∠A2021,则∠A2021=.解答:解:∵∠ABC与∠ACD的平分线交于点A1,∴∠A1BC=∠ABC,∠A1CD=∠ACD,根据三角形的外角性质,∠A+∠ABC=∠ACD,∠A1+∠A1BC=∠A1CD,∴∠A1+∠A1BC=∠A1+∠ABC=〔∠A+∠ABC〕,整理得,∠A1=∠A=,同理可得,∠A2=∠A1=×=,…,∠A2021=.故答案为:.18.〔2021•〕如图,Rt△ABC,D1是斜边AB的中点,过D1作D1E1⊥AC于E1,连接BE1交CD1于D2;过D2作D2E2⊥AC 于E2,连接BE2交CD1于D3;过D3作D3E3⊥AC于E3,…,如此继续,可以依次得到点D4,D5,…,D n,分别记△BD1E1,△BD2E2,△BD3E3,…,△BD n E n的面积为S1,S2,S3,…S n.则S n=S△ABC〔用含n的代数式表示〕.解答:解:易知D1E1∥BC,∴△BD1E1与△CD1E1同底同高,面积相等,以此类推;根据直角三角形的性质以及相似三角形的性质可知:D1E1=BC,CE1=AC,S1=S△ABC;∴在△ACB中,D2为其重心,∴D2E1=BE1,∴D2E2=BC,CE2=AC,S2=S△ABC,∵D2E2:D1E1=2:3,D1E1:BC=1:2,∴BC:D2E2=2D1E1:D1E1=3,∴CD3:CD2=D3E3:D2E2=CE3:CE2=3:4,∴D3E3=D2E2=×BC=BC,CE3=CE2=×AC=AC,S3=S△ABC…;∴S n=S△ABC.19.〔2021•丰台区二模〕:如图,在Rt△ABC中,点D1是斜边AB的中点,过点D1作D1E1⊥AC于点E1,连接BE1交CD1于点D2;过点D2作D2E2⊥AC于点E2,连接BE2交CD1于点D3;过点D3作D3E3⊥AC于点E3,如此继续,可以依次得到点D4、D5、…、D n,分别记△BD1E1、△BD2E2、△BD3E3、…、△BD n E n的面积为S1、S2、S3、…S n.设△ABC的面积是1,则S1=,S n=〔用含n的代数式表示〕.解答:解:易知D1E1∥BC,∴△BD1E1与△CD1E1同底同高,面积相等,以此类推;∴S1=S△D1E1A=S△ABC,根据直角三角形的性质以及相似三角形的性质可知:D1E1=BC,CE1=AC,S1=S△ABC;∴在△ACB中,D2为其重心,又D1E1为三角形的中位线,∴D1E1∥BC,∴△D2D1E1∽△CD2B,且相似比为1:2,即=,∴D2E1=BE1,∴D2E2=BC,CE2=AC,S2=S△ABC,∴D3E3=BC,CE3=AC,S3=S△ABC…;∴S n=S△ABC.故答案为:,.20.〔2021•路北区三模〕在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的最小值为 2.4 .解答:解:∵四边形AFPE是矩形∴AM=AP,AP⊥BC时,AP最短,同样AM也最短∴当AP⊥BC时,△ABP∽△CAB∴AP:AC=AB:BC∴AP:8=6:10∴AP最短时,AP=4.8∴当AM最短时,AM=AP÷2=2.4.点评:解决此题的关键是理解直线外一点到直线上任一点的距离,垂线段最短,利用相似求解.21.如图,Rt△ABC中,AC=3,BC=4,过直角顶点C作CA1⊥AB,垂足为A1,再过A1作A1C1⊥BC,垂足为C1,过C1作C1A2⊥AB,垂足为A2,再过A2作A2C2⊥BC,垂足为C2,…,这样一直做下去,得到了一组线段CA1,A1C1,C1A2,…,则CA1=,=.解答:解:在Rt△ABC中,AC=3,BC=4,∴AB=,又因为CA1⊥AB,∴AB•CA1=AC•BC,即CA1===.∵C4A5⊥AB,∴△BA5C4∽△BCA,∴,∴==.所以应填和.22.〔2021•沐川县二模〕如图,点A1,A2,A3,A4,…,A n在射线OA上,点B1,B2,B3,…,B n﹣1在射线OB上,且A1B1∥A2B2∥A3B3∥…∥A n﹣1B n﹣1,A2B1∥A3B2∥A4B3∥…∥A n B n﹣1,△A1A2B1,△A2A3B2,…,△A n﹣1A n B n﹣1为阴影三角形,假设△A2B1B2,△A3B2B3的面积分别为1、4,则△A1A2B1的面积为;面积小于2021的阴影三角形共有 6 个.解答:解:由题意得,△A2B1B2∽△A3B2B3,∴==,==,又∵A1B1∥A2B2∥A3B3,∴===,==,∴OA1=A1A2,B1B2=B2B3继而可得出规律:A1A2=A2A3=A3A4…;B1B2=B2B3=B3B4…又△A2B1B2,△A3B2B3的面积分别为1、4,∴S△A1B1A2=,S△A2B2A3=2,继而可推出S△A3B3A4=8,S△A,4B4A5=32,S△A5B5A6=128,S△A6B6A7=512,S△A7B7A8=2048,故可得小于2021的阴影三角形的有:△A1B1A2,△A2B2A3,△A3B3A4,△A4B4A5,△A5B5A6,△A6B6A7,共6个.故答案是:;6.23.〔2021•鲤城区质检〕如图,点A1〔a,1〕在直线l:上,以点A1为圆心,以为半径画弧,交*轴于点B1、B2,过点B2作A1B1的平行线交直线l于点A2,在*轴上取一点B3,使得A2B3=A2B2,再过点B3作A2B2的平行线交直线l于点A3,在*轴上取一点B4,使得A3B4=A3B3,按此规律继续作下去,则①a=;②△A4B4B5的面积是.解答:解:如下列图:①将点A1〔a,1〕代入直线1中,可得,所以a=.②△A1B1B2的面积为:S==;因为△OA1B1∽△OA2B2,所以2A1B1=A2B2,又因为两线段平行,可知△A1B1B2∽△A2B2B3,所以△A2B2B3的面积为S1=4S;以此类推,△A4B4B5的面积等于64S=.24.〔2021•松北区二模〕如图,以Rt△ABC的斜边BC为一边在△ABC的同侧作正方形BCEF,设正方形的中心为O,连接AO,如果AB=4,AO=6,则AC的长等于16 .解答:解:如图,过O点作OG垂直AC,G点是垂足.∵∠BAC=∠BOC=90°,∴ABCO四点共圆,∴∠OAG=∠OBC=45°∴△AGO是等腰直角三角形,∴2AG2=2GO2=AO2==72,∴OG=AG=6,∵∠BAH=∠0GH=90°,∠AHB=∠OHG,∴△ABH∽△GOH,∴AB/OG=AH/〔AG﹣AH〕,∵AB=4,OG=AG=6,∴AH=2.4在直角△OHC中,∵HG=AG﹣AH=6﹣2.4=3.6,OG又是斜边HC上的高,∴OG2=HG×GC,而OG=6,GH=3.6,∴GC=10.∴AC=AG+GC=6+10=16.故AC边的长是16.25.〔2007•淄川区二模〕如图,将矩形ABCD的四个角向折起,恰好拼成一个既无缝隙又无重叠的四边形EFGH,假设EH=3,EF=4,则线段AD与AB的比等于.解答:解:∵∠1=∠2,∠3=∠4,∴∠2+∠3=90°,∴∠HEF=90°,同理四边形EFGH的其它角都是90°,∴四边形EFGH是矩形.∴EH=FG〔矩形的对边相等〕;又∵∠1+∠4=90°,∠4+∠5=90°,∴∠1=∠5〔等量代换〕,同理∠5=∠7=∠8,∴∠1=∠8,∴Rt△AHE≌Rt△CFG,∴AH=CF=FN,又∵HD=HN,∴AD=HF,在Rt△HEF中,EH=3,EF=4,根据勾股定理得HF=,∴HF=5,又∵HE•EF=HF•EM,∴EM=,又∵AE=EM=EB〔折叠后A、B都落在M点上〕,∴AB=2EM=,∴AD:AB=5:=.故答案为:.26.〔2021•泰兴市模拟〕梯形ABCD中AB∥CD,∠ADC+∠BCD=90°,以AD、AB、BC为斜边向形外作等腰直角三角形,其面积分别是S1、S2、S3且S1+S3=4S2,则CD= 3 AB.解答:解:∵以AD、AB、BC为斜边向外作等腰直角三角形,其面积分别是S1、S2、S3,∴S1=,S2=,S3=∵S1+S3=4S2,∴AD2+BC2=4AB2过点B作BK∥AD交CD于点K,∵AB∥CD∴AB=DK,AD=BK,∠BKC=∠ADC∵∠ADC+∠BCD=90°∴∠BKC+∠BCD=90°∴BK2+BC2=CK2∴AD2+BC2=CK2∴CK2=4AB2∴CK=2AB∴CD=3AB.27.如图,观察图中菱形的个数:图1中有1个菱形,图2中有5个菱形,图3中有14个菱形,图4中有30个菱形…,则第6个图中菱形的个数是91 个.解答:解:观察图形,发现规律:图1中有1个菱形,图2中有1+22=5个菱形,图3中有5+32=14个菱形,图4中有14+42=30个菱形,则第5个图中菱形的个数是30+52=55,第6个图中菱形的个数是55+62=91个.故答案为91.28.〔2021•贵港一模〕如图,E、F分别是平行四边形ABCD的边AB、CD上的点,AF与DE相交于点P,BF与CE相交于点Q,假设S△APD=15cm2,S△BQC=25cm2,则阴影局部的面积为40 cm2.解答:解:如图,连接EF∵△ADF与△DEF同底等高,∴S△ADF=S△DEF即S△ADF﹣S△DPF=S△DEF﹣S△DPF,即S△APD=S△EPF=15cm2,同理可得S△BQC=S△EFQ=25cm2,∴阴影局部的面积为S△EPF+S△EFQ=15+25=40cm2.故答案为40.29.〔2021•**〕如图,正方形ABCD的边长为1,以顶点A、B为圆心,1为半径的两弧交于点E,以顶点C、D为圆心,1为半径的两弧交于点F,则EF的长为.解答:解:连接AE,BE,DF,CF.∵以顶点A、B为圆心,1为半径的两弧交于点E,AB=1,∴AB=AE=BE,∴△AEB是等边三角形,∴边AB上的高线为EN=,延长EF交AB于N,并反向延长EF交DC于M,则E、F、M,N共线,则EM=1﹣EN=1﹣,∴NF=EM=1﹣,∴EF=1﹣EM﹣NF=﹣1.故答案为﹣1.30.如图,ABCD是凸四边形,AB=2,BC=4,CD=7,求线段AD的取值围.解答:解:连接AC.∵AB=2,BC=4,在△ABC中,根据三角形的三边关系,4﹣2<AC<2+4,即2<AC<6.∴﹣6<﹣AC<﹣2,1<CD﹣AC<5,9<CD+AC<13,在△ACD中,根据三角形的三边关系,得CD﹣AC<AD<CD+AC,∴1<AD<13.故AD的取值围是1<AD<13.. 1。

中考数学填空题专项练习经典习题(含答案解析)

中考数学填空题专项练习经典习题(含答案解析)

一、选择题1.毕业前期,某班的全体学生互赠贺卡,共赠贺卡1980张.设某班共有x 名学生,那么所列方程为( )A .()1119802x x +=B .()1119802x x -= C .()11980x x +=D .()11980x x -= 2.把抛物线y =2(x ﹣3)2+k 向下平移1个单位长度后经过点(2,3),则k 的值是( ) A .2B .1C .0D .﹣1 3.一元二次方程的根是( ) A .3x = B .1203x x ==-, C .1203x x ==, D .1203x x ==,4.关于x 的一元二次方程2(1)20x k x k ---+=有两个实数根12,x x ,()1212122(2)2x x x x x x -+--+3=-,则k 的值( )A .0或2B .-2或2C .-2D .2 5.已知y 关于x 的函数表达式是24y ax x a =--,下列结论不正确的是( )A .若1a =-,函数的最大值是5B .若1a =,当2x ≥时,y 随x 的增大而增大C .无论a 为何值时,函数图象一定经过点(1,4)-D .无论a 为何值时,函数图象与x 轴都有两个交点6.如图,在宽为20米、长为32米的矩形地面上修筑同样宽的道路(图中阴影部分),余下部分种植草坪.要使草坪的面积为540平方米,设道路的宽x 米.则可列方程为( )A .32×20﹣32x ﹣20x =540 B .(32﹣x )(20﹣x )=540 C .32x +20x =540 D .(32﹣x )(20﹣x )+x 2=5407.甲袋里有红、白两球,乙袋里有红、红、白三球,两袋的球除颜色不同外都相同,分别往两袋里任摸一球,则同时摸到红球的概率是( )A .13B .14C .15D .168.在一个不透明纸箱中放有除了标注数字不同外,其他完全相同的3张卡片,上面分别标有数字1,2,3,从中任意摸出一张,放回搅匀后再任意摸出一张,两次摸出的数字之和为奇数的概率为( )A .59B .49C .56D .139.某同学在解关于x 的方程ax 2+bx +c =0时,只抄对了a =1,b =﹣8,解出其中一个根是x =﹣1.他核对时发现所抄的c 是原方程的c 的相反数,则原方程的根的情况是( ) A .有两个不相等的实数根B .有两个相等的实数根C .有一个根是x =1D .不存在实数根10.下列函数中是二次函数的为( )A .y =3x -1B .y =3x 2-1C .y =(x +1)2-x 2D .y =x 3+2x -3 11.如图,二次函数2y ax bx c =++的图象与x 轴相交于(﹣2,0)和(4,0)两点,当函数值y >0时,自变量x 的取值范围是( )A .x <﹣2B .﹣2<x <4C .x >0D .x >4 12.已知点P (﹣b ,2)与点Q (3,2a )关于原点对称点,则a 、b 的值分别是( )A .﹣1、3B .1、﹣3C .﹣1、﹣3D .1、3 13.如图,AOB 中,30B ∠=︒.将AOB 绕点O 顺时针旋转52︒得到A OB ''△,边A B ''与边OB 交于点C (A '不在OB 上),则A CO '∠的度数为( )A .22︒B .52︒C .60︒D .82︒ 14.若一元二次方程x 2﹣2x+m=0有两个不相同的实数根,则实数m 的取值范围是( )A .m≥1B .m≤1C .m >1D .m <1 15.二次函数2(0)y ax bx c a =++≠的图像如图所示,下列结论正确是( )A .0abc >B .20a b +<C .30a c +<D.230++-=有两个不相等的实数根ax bx c二、填空题16.若直角三角形两边分别为6和8,则它内切圆的半径为_____.17.半径为2的圆被四等分切割成四条相等的弧,将四个弧首尾顺次相连拼成如图所示的恒星图型,那么这个恒星的面积等于______.18.点A(x1,y1)、B(x2,y2)在二次函数y=x2﹣4x﹣1的图象上,若当1<x1<2,3<x2<4时,则y1与y2的大小关系是y1_____y2.(用“>”、“<”、“=”填空)19.两块大小相同,含有30°角的三角板如图水平放置,将△CDE绕点C按逆时针方向旋转,当点E的对应点E′恰好落在AB上时,△CDE旋转的角度是______度.20.如图,Rt△OAB的顶点A(﹣2,4)在抛物线y=ax2上,将Rt△OAB绕点O顺时针旋转90°,得到△OCD,边CD与该抛物线交于点P,则点P的坐标为_____.21.某校组织“优质课大赛”活动,经过评比有两名男教师和两名女教师获得一等奖,学校将从这四名教师中随机挑选两位教师参加市教育局组织的决赛,挑选的两位教师恰好是一男一女的概率为____.22.已知二次函数y=a(x+3)2﹣b(a≠0)有最大值1,则该函数图象的顶点坐标为_____.23.如图,在Rt△ABC中,∠ACB=90°,CB=4,以点C为圆心,CB的长为半径画弧,与AB边交于点D,将BD绕点D旋转180°后点B与点A恰好重合,则图中阴影部分的面积为_____.24.廊桥是我国古老的文化遗产.如图,是某座抛物线型的廊桥示意图,已知抛物线的函数表达式为y =−140x 2+10,为保护廊桥的安全,在该抛物线上距水面AB 高为8米的点E ,F 处要安装两盏警示灯,则这两盏灯的水平距离EF 是______米.(精确到1米)25.不透明袋子中装有6个球,其中有5个红球、1个绿球,这些球除颜色外无其他差别,从袋子中随机取出1个球,则它是红球的概率是_________.三、解答题26.用你喜欢的方法解方程(1)x 2﹣6x ﹣6=0(2)2x 2﹣x ﹣15=027.“校园安全”越来越受到人们的关注,我市某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图.根据图中信息回答下列问题:(1)接受问卷调查的学生共有______人,条形统计图中m 的值为______;(2)扇形统计图中“了解很少”部分所对应扇形的圆心角的度数为______;(3)若该中学共有学生1800人,根据上述调查结果,可以估计出该学校学生中对校园安全知识达到“非常了解”和“基本了解”程度的总人数为______人;(4)若从对校园安全知识达到“非常了解”程度的2名男生和2名女生中随机抽取2人参加校园安全知识竞赛,请用列表或画树状图的方法,求恰好抽到1名男生和1名女生的概率.28.二次函数2y x bx =+上部分点的横坐标x 与纵坐标y 的对应值如下表:x…1-12-0123…y (35)401-0m…(1)直接写出此二次函数的对称轴;(2)求b的值;(3)直接写出表中的m值,m= ;(4)在平面直角坐标系xOy中,画出此二次函数的图象.29.如图,Rt△ABC中,∠ABC=90°,以AB为直径作⊙O,点D为⊙O上一点,且CD=CB、连接DO并延长交CB的延长线于点E(1)判断直线CD与⊙O的位置关系,并说明理由;(2)若BE=4,DE=8,求AC的长.30.在平面直角坐标系xOy中,抛物线y=a2x-4ax与x轴交于A,B两点(A在B的左侧).(1)求点A,B的坐标;(2)已知点C(2,1),P(1,-32a),点Q在直线PC上,且Q点的横坐标为4.①求Q点的纵坐标(用含a的式子表示);②若抛物线与线段PQ恰有一个公共点,结合函数图象,求a的取值范围.【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.D2.A3.D4.D5.D6.B7.A8.B9.A10.B11.B12.A13.D14.D15.C二、填空题16.2或-1【解析】【分析】根据已知题意求第三边的长必须分类讨论即8是斜边或直角边的两种情况然后利用勾股定理求出另一边的长再根据内切圆半径公式求解即可【详解】若8是直角边则该三角形的斜边的长为:∴内切圆17.16﹣4π【解析】【分析】恒星的面积=边长为4的正方形面积-半径为2的圆的面积依此列式计算即可【详解】解:如图2+2=4恒星的面积=4×4-4π=16-4π故答案为16-4π【点睛】本题考查了扇形面18.<【解析】【分析】先根据二次函数的解析式判断出抛物线的开口方向及对称轴根据图象上的点的横坐标距离对称轴的远近来判断纵坐标的大小【详解】由二次函数y=x2-4x-1=(x-2)2-5可知其图象开口向上19.30【解析】【分析】根据含有30°角的直角三角形的性质可知CE′是△ACB的中线可得△E′CB是等边三角形从而得出∠ACE′的度数和CE′的长从而得出△CDE旋转的度数【详解】解:∵三角板是两块大小20.(2)【解析】由题意得:即点P的坐标21.【解析】【分析】根据列表法求出所有可能及可得出挑选的两位教师恰好是一男一女的结果数而利用概率公式计算可得【详解】解:所有可能的结果如下表:男1男2女1女2男1(男1男2)(男1女122.(﹣31)【解析】【分析】根据二次函数y=a(x-h)2+k(a≠0)的顶点坐标是(hk)即可求解【详解】解:∵二次函数y=a(x+3)2﹣b(a≠0)有最大值1∴﹣b=1根据二次函数的顶点式方程y23.【解析】【分析】根据题意用的面积减去扇形的面积即为所求【详解】由题意可得AB =2BC∠ACB=90°弓形BD与弓形AD完全一样则∠A=30°∠B=∠BCD=60°∵CB=4∴AB =8AC=4∴阴影部24.85【解析】由于两盏EF距离水面都是8m因而两盏景观灯之间的水平距离就是直线y=8与抛物线两交点的横坐标差的绝对值故有-140x2+10=8即x2=80x1=45x2=-45所以两盏警示灯之间的水平25.【解析】【分析】【详解】解:从袋子中随机取出1个球总共有6种等可能结果这个球为红球的结果有5中所以从袋子中随机取出1个球则它是红球的概率是故答案为:三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.D解析:D【解析】【分析】根据题意得:每人要赠送(x-1)张贺卡,有x个人,然后根据题意可列出方程:(x-1)x=1980.【详解】解:根据题意得:每人要赠送(x-1)张贺卡,有x个人,∴全班共送:(x-1)x=1980,故选:D.【点睛】此题主要考查了由实际问题抽象出一元二次方程,本题要注意读清题意,弄清楚每人要赠送(x-1)张贺卡,有x个人是解决问题的关键.2.A解析:A【解析】【分析】把点坐标代入y=2(x-3)2+k-1解方程即可得到结论.【详解】解:设抛物线y=2(x-3)2+k 向下平移1个单位长度后的解析式为y=2(x-3)2+k-1,把点(2,3)代入y=2(x-3)2+k-1得,3=2(2-3)2+k-1,∴k=2,故选A .【点睛】本题考查二次函数的图象与几何变换,熟练掌握抛物线的平移规律是解题关键.3.D解析:D【解析】x 2−3x=0,x(x−3)=0,∴x 1=0,x 2=3.故选:D.4.D解析:D【解析】【分析】将()1212122(2)2=3x x x x x x -+--+-化简可得,()21212124423x x x x x x +-+=--, 利用韦达定理,()2142(2)3k k ----+=-,解得,k =±2,由题意可知△>0, 可得k =2符合题意.【详解】解:由韦达定理,得: 12x x +=k -1,122x x k +=-,由()1212122(2)23x x x x x x -+--+=-,得:()21212423x x x x --+=-,即()21212124423x x x x x x +-+=--,所以,()2142(2)3k k ----+=-,化简,得:24k =,解得:k =±2,因为关于x 的一元二次方程2(1)20x k x k ---+=有两个实数根,所以,△=()214(2)k k ---+=227k k +-〉0,k =-2不符合,所以,k =2故选:D.【点睛】本题考查了一元二次方程根与系数的关系,熟练掌握并灵活运用是解题的关键. 5.D解析:D【解析】【分析】将a 的值代入函数表达式,根据二次函数的图象与性质可判断A 、B ,将x=1代入函数表达式可判断C ,当a=0时,y=-4x 是一次函数,与x 轴只有一个交点,可判断D 错误.【详解】当1a =-时,()224125=--+=-++y x x x ,∴当2x =-时,函数取得最大值5,故A 正确;当1a =时,()224125y x x x =--=--,∴函数图象开口向上,对称轴为2x =,∴当2x ≥时,y 随x 的增大而增大,故B 正确;当x=1时,44=--=-y a a ,∴无论a 为何值,函数图象一定经过(1,-4),故C 正确;当a=0时,y=-4x ,此时函数为一次函数,与x 轴只有一个交点,故D 错误;故选D.【点睛】本题考查了二次函数的图象与性质,以及一次函数与x 轴的交点问题,熟练掌握二次函数的性质是解题的关键. 6.B解析:B【解析】【分析】先将图形利用平移进行转化,可得剩余图形的长等于原来的长减去小路的宽,剩余图形的宽等于原来的宽减去路宽,然后再根据矩形面积公式计算.【详解】利用图形平移可将原图转化为下图,设道路的宽为x ,根据题意得:(32-x )(20-x )=540.故选B.【点睛】本题考查的是一元二次方程的实际运用,找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.7.A解析:A【解析】【分析】先画树状图求出任摸一球的组合情况总数,再求出同时摸到红球的数目,利用概率公式计算即可.【详解】画树状图如下:分别往两袋里任摸一球的组合有6种:红红,红红,红白,白红,白红,白白;其中红红的有2种,所以同时摸到红球的概率是21 63 .故选A.【点睛】本题考查了用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.8.B解析:B【解析】【分析】先画出树状图得出所有等可能的情况的数量和所需要的情况的数量,再计算所需要情况的概率即得.【详解】解:由题意可画树状图如下:根据树状图可知:两次摸球共有9种等可能情况,其中两次摸出球所标数字之和为奇数的情况有4种,所以两次摸出球所标数字之和为奇数的概率为:49. 【点睛】本题考查了概率的求法,能根据题意列出树状图或列表是解题关键.9.A解析:A 【解析】 【分析】直接把已知数据代入进而得出c 的值,再解方程根据根的判别式分析即可. 【详解】∵x =﹣1为方程x 2﹣8x ﹣c =0的根, 1+8﹣c =0,解得c =9, ∴原方程为x 2-8x +9=0,∵24b ac ∆=-=(﹣8)2-4×9>0, ∴方程有两个不相等的实数根. 故选:A . 【点睛】本题考查一元二次方程的解、一元二次方程根的判别式,解题的关键是掌握一元二次方程根的判别式,对于一元二次方程()200++=≠ax bx c a ,根的情况由24b ac ∆=-来判别,当24b ac ->0时,方程有两个不相等的实数根,当24b ac -=0时,方程有两个相等的实数根,当24b ac -<0时,方程没有实数根.10.B解析:B 【解析】A. y =3x −1是一次函数,故A 错误;B. y =3x 2−1是二次函数,故B 正确;C. y =(x +1)2−x 2不含二次项,故C 错误;D. y =x 3+2x −3是三次函数,故D 错误; 故选B.11.B解析:B【解析】【分析】【详解】当函数值y>0时,自变量x的取值范围是:﹣2<x<4.故选B.12.A解析:A【解析】【分析】让两个横坐标相加得0,纵坐标相加得0即可求得a,b的值.【详解】解:∵P(-b,2)与点Q(3,2a)关于原点对称点,∴-b+3=0,2+2a=0,解得a=-1,b=3,故选A.【点睛】用到的知识点为:两点关于原点对称,这两点的横纵坐标均互为相反数;互为相反数的两个数和为0.13.D解析:D【解析】【分析】根据旋转的性质可得∠B′=∠B=30°,∠BOB′=52°,再由三角形外角的性质即可求得∠'的度数.A CO【详解】∵△A′OB′是由△AOB绕点O顺时针旋转得到,∠B=30°,∴∠B′=∠B=30°,∵△AOB绕点O顺时针旋转52°,∴∠BOB′=52°,∵∠A′CO是△B′OC的外角,∴∠A′CO=∠B′+∠BOB′=30°+52°=82°.故选D.【点睛】本题主要考查了旋转的性质,熟知旋转的性质是解决问题的关键.14.D解析:D【解析】分析:根据方程的系数结合根的判别式△>0,即可得出关于m的一元一次不等式,解之即可得出实数m 的取值范围.详解:∵方程2x 2x m 0-+=有两个不相同的实数根, ∴()2240m =-->, 解得:m <1. 故选D .点睛:本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.15.C解析:C 【解析】【分析】观察图象:开口向下得到a <0;对称轴在y 轴的右侧得到a 、b 异号,则b >0;抛物线与y 轴的交点在x 轴的上方得到c >0,所以abc <0;由对称轴为x=2ba-=1,可得2a+b=0;当x=-1时图象在x 轴下方得到y=a-b+c <0,结合b=-2a 可得 3a+c <0;观察图象可知抛物线的顶点为(1,3),可得方程230ax bx c ++-=有两个相等的实数根,据此对各选项进行判断即可.【详解】观察图象:开口向下得到a <0;对称轴在y 轴的右侧得到a 、b 异号,则b >0;抛物线与y 轴的交点在x 轴的上方得到c >0,所以abc <0,故A 选项错误; ∵对称轴x=2ba-=1,∴b=-2a ,即2a+b=0,故B 选项错误; 当x=-1时, y=a-b+c <0,又∵b=-2a ,∴ 3a+c <0,故C 选项正确; ∵抛物线的顶点为(1,3),∴230ax bx c ++-=的解为x 1=x 2=1,即方程有两个相等的实数根,故D 选项错误, 故选C.【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y=ax 2+bx+c (a≠0)的图象,当a >0,开口向上,函数有最小值,a <0,开口向下,函数有最大值;对称轴为直线x=2ba-,a 与b 同号,对称轴在y 轴的左侧,a 与b 异号,对称轴在y 轴的右侧;当c >0,抛物线与y 轴的交点在x 轴的上方;当△=b 2-4ac >0,抛物线与x 轴有两个交点.二、填空题 16.2或-1【解析】【分析】根据已知题意求第三边的长必须分类讨论即8是斜边或直角边的两种情况然后利用勾股定理求出另一边的长再根据内切圆半径公式求解即可【详解】若8是直角边则该三角形的斜边的长为:∴内切圆解析:2-1 【解析】 【分析】根据已知题意,求第三边的长必须分类讨论,即8是斜边或直角边的两种情况,然后利用勾股定理求出另一边的长,再根据内切圆半径公式求解即可.【详解】若8是直角边,则该三角形的斜边的长为:226+8=10,∴内切圆的半径为:6+810=22-;若8是斜边,则该三角形的另一条直角边的长为:228627=-,∴内切圆的半径为:6+278=712--.故答案为2或7-1.【点睛】本题考查了勾股定理,三角形的内切圆,以及分类讨论的数学思想,分类讨论是解答本题的关键.17.16﹣4π【解析】【分析】恒星的面积=边长为4的正方形面积-半径为2的圆的面积依此列式计算即可【详解】解:如图2+2=4恒星的面积=4×4-4π=16-4π故答案为16-4π【点睛】本题考查了扇形面解析:16﹣4π【解析】【分析】恒星的面积=边长为4的正方形面积-半径为2的圆的面积,依此列式计算即可.【详解】解:如图.2+2=4,恒星的面积=4×4-4π=16-4π.故答案为16-4π.【点睛】本题考查了扇形面积的计算,关键是理解恒星的面积=边长为4的正方形面积-半径为2的圆的面积.18.<【解析】【分析】先根据二次函数的解析式判断出抛物线的开口方向及对称轴根据图象上的点的横坐标距离对称轴的远近来判断纵坐标的大小【详解】由二次函数y=x2-4x-1=(x-2)2-5可知其图象开口向上解析:<【解析】【分析】先根据二次函数的解析式判断出抛物线的开口方向及对称轴,根据图象上的点的横坐标距离对称轴的远近来判断纵坐标的大小. 【详解】由二次函数y=x 2-4x-1=(x-2)2-5可知,其图象开口向上,且对称轴为x=2, ∵1<x 1<2,3<x 2<4,∴A 点横坐标离对称轴的距离小于B 点横坐标离对称轴的距离, ∴y 1<y 2. 故答案为<.19.30【解析】【分析】根据含有30°角的直角三角形的性质可知CE′是△ACB 的中线可得△E′CB 是等边三角形从而得出∠ACE′的度数和CE′的长从而得出△CDE 旋转的度数【详解】解:∵三角板是两块大小解析:30 【解析】 【分析】根据含有30°角的直角三角形的性质可知CE′是△ACB 的中线,可得△E′CB 是等边三角形,从而得出∠ACE′的度数和CE′的长,从而得出△CDE 旋转的度数. 【详解】解:∵三角板是两块大小一样且含有30°的角, ∴CE′是△ACB 的中线, ∴CE′=BC =BE′, ∴△E′CB 是等边三角形, ∴∠BCE′=60°,∴∠ACE′=90°﹣60°=30°, 故答案为:30. 【点睛】本题考查了含有30°角的直角三角形的性质,等边三角形的判定和性质,旋转的性质,本题关键是得到CE ´是△ABC 的中线.20.(2)【解析】由题意得:即点P 的坐标解析: ,2). 【解析】由题意得:441a a =⇒= 2y x ⇒=222OD x x =⇒=⇒=,即点P 的坐标)2.21.【解析】【分析】根据列表法求出所有可能及可得出挑选的两位教师恰好是一男一女的结果数而利用概率公式计算可得【详解】解:所有可能的结果如下表:男1男2女1女2男1(男1男2)(男1女1解析:2 3【解析】【分析】根据列表法求出所有可能及可得出挑选的两位教师恰好是一男一女的结果数而利用概率公式计算可得.【详解】解:所有可能的结果如下表:的结果有8种,所以其概率为挑选的两位教师恰好是一男一女的概率为812=23,故答案为23.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.22.(﹣31)【解析】【分析】根据二次函数y=a(x-h)2+k(a≠0)的顶点坐标是(hk)即可求解【详解】解:∵二次函数y=a(x+3)2﹣b(a≠0)有最大值1∴﹣b=1根据二次函数的顶点式方程y解析:(﹣3,1)【解析】【分析】根据二次函数y=a(x-h)2+k(a≠0)的顶点坐标是(h,k),即可求解.【详解】解:∵二次函数y=a(x+3)2﹣b(a≠0)有最大值1,∴﹣b=1,根据二次函数的顶点式方程y=a(x+3)2﹣b(a≠0)知,该函数的顶点坐标是:(﹣3,﹣b),∴该函数图象的顶点坐标为(﹣3,1).故答案为:(﹣3,1).【点睛】本题考查了二次函数的性质,解答该题时,需熟悉二次函数的顶点式y=a (x-h )2+k 中的h 、k 所表示的意义.23.【解析】【分析】根据题意用的面积减去扇形的面积即为所求【详解】由题意可得AB =2BC∠ACB=90°弓形BD 与弓形AD 完全一样则∠A=30°∠B=∠BCD=60°∵CB=4∴AB=8AC =4∴阴影部解析:83π. 【解析】 【分析】 根据题意,用ABC 的面积减去扇形CBD 的面积,即为所求.【详解】 由题意可得,AB =2BC ,∠ACB =90°,弓形BD 与弓形AD 完全一样, 则∠A =30°,∠B =∠BCD =60°, ∵CB =4,∴AB =8,AC =,2604360π⨯⨯-=83π,故答案为:83π. 【点睛】本题考查不规则图形面积的求法,属中档题.24.85【解析】由于两盏EF 距离水面都是8m 因而两盏景观灯之间的水平距离就是直线y=8与抛物线两交点的横坐标差的绝对值故有-140x2+10=8即x2=80x1=45x2=-45所以两盏警示灯之间的水平解析:8√5 【解析】由于两盏E 、F 距离水面都是8m ,因而两盏景观灯之间的水平距离就 是直线y=8与抛物线两交点的横坐标差的绝对值. 故有−140x 2+10=8,即x 2=80,x 1=4√5,x 2=−4√5.所以两盏警示灯之间的水平距离为:|x 1−x 2|=|4√5−(−4√5)|=8√5≈18(m )25.【解析】【分析】【详解】解:从袋子中随机取出1个球总共有6种等可能结果这个球为红球的结果有5中所以从袋子中随机取出1个球则它是红球的概率是故答案为:解析:56【解析】 【分析】 【详解】解:从袋子中随机取出1个球,总共有6种等可能结果,这个球为红球的结果有5中,所以从袋子中随机取出1个球,则它是红球的概率是56故答案为:56.三、解答题 26.(1)x 1=x 2=32)x 1=﹣2.5,x 2=3 【解析】 【分析】(1)先求出b 2﹣4ac 的值,再代入公式求出即可;(2)先分解因式,即可得出两个一元一次方程,求出方程的解即可. 【详解】 x 2﹣6x ﹣6=0, ∵a=1,b=-6,c=-6,∴b 2﹣4ac =(﹣6)2﹣4×1×(﹣6)=60,x =632±=x 1=x 2=3 (2)2x 2﹣x ﹣15=0, (2x +5)(x ﹣3)=0, 2x +5=0,x ﹣3=0, x 1=﹣2.5,x 2=3. 【点睛】此题考查一元二次方程的解法,根据每个方程的特点选择适合的方法是关键,由此才能使计算更简便.27.(1)60,10;(2)96°;(3)1020;(4)23【解析】 【分析】(1)根据基本了解的人数以及所占的百分比可求得接受调查问卷的人数,进行求得不了解的人数,即可求得m 的值;(2)用360度乘以“了解很少”的比例即可得;(3)用“非常了解”和“基本了解”的人数和除以接受问卷的人数,再乘以1800即可求得答案; (4)画树状图表示出所有可能的情况数,再找出符合条件的情况数,利用概率公式进行求解即可. 【详解】(1)接受问卷调查的学生共有3050%60÷=(人),604301610m =---=, 故答案为:60,10;(2)扇形统计图中“了解很少”部分所对应扇形的圆心角的度数163609660=︒⨯=︒, 故答案为:96°;(3)该学校学生中对校园安全知识达到“非常了解”和“基本了解”程度的总人数为:4301800102060+⨯=(人), 故答案为:1020; (4)由题意列树状图:由树状图可知,所有等可能的结果有12 种,恰好抽到1名男生和1名女生的结果有8种, ∴恰好抽到1名男生和1名女生的概率为82123=. 【点睛】本题考查了条形统计图与扇形统计图信息关联,列表法或树状图法求概率,弄清题意,读懂统计图,从中找到必要的信息是解题的关键.28.(1)对称轴x =1;(2)b=-2;(3)m=3;(4)见解析 【解析】 【分析】(1)根据图表直接写出此二次函数的对称轴即可; (2)图象经过点(1,-1),代入求b 的值即可;(3)由题意将x=3代入解析式得到并直接写出表中的m 值; (4)由题意采用描点法画出图像即可. 【详解】解:(1)观察图像直接写出此二次函数的对称轴x=1.(2)∵二次函数2y x bx =+的图象经过点(1,-1),∴2b =-.(3)将x=3代入解析式得m=3.(4)如图.【点睛】本题考查了二次函数的图象和性质,根据二次函数的图象和性质分析是解此题的关键.29.(1)相切,证明见解析;(2)62.【解析】【分析】(1)欲证明CD是切线,只要证明OD⊥CD,利用全等三角形的性质即可证明;(2)设⊙O的半径为r.在Rt△OBE中,根据OE2=EB2+OB2,可得(8﹣r)2=r2+42,推出r=3,由tan∠E=OB CDEB DE=,推出348CD=,可得CD=BC=6,再利用勾股定理即可解决问题.【详解】解:(1)相切,理由如下,如图,连接OC,∵CB=CD,CO=CO,OB=OD,∴△OCB≌△OCD,∴∠ODC=∠OBC=90°,∴OD⊥DC,∴DC是⊙O的切线;(2)设⊙O的半径为r,在Rt△OBE中,∵OE2=EB2+OB2,∴(8﹣r)2=r2+42,∴r=3,AB=2r=6,∵tan ∠E=OB CD EB DE=, ∴348CD =, ∴CD=BC=6,在Rt △ABC 中,=【点睛】本题考查直线与圆的位置关系、圆周角定理、勾股定理、锐角三角函数等知识,正确添加辅助线,熟练掌握和灵活应用相关知识解决问题是关键. 30.(1)A (0,0),B (4,0);(2)①Q 点的纵坐标为3+3a ,②符合题意的a 的取值范围是 -1≤a <0.【解析】【分析】(1)令y =0,则a 2x -4ax =0,可求得A 、B 点坐标;(2)①设直线PC 的解析式为,将点P (1,-32a ),C (2,1)代入可解得31,13.2k a b a =+=-- ()3113.2y x a =+-- 由于Q 点的横坐标为4,可求得Q 点的纵坐标为3+3a ②当a >0时,如图1,不合题意;当a <0时,由图2,图3可知,3+3a≥0,可求出a 的取值范围.【详解】(1)令y =0,则a 2x -4ax =0.解得 120, 4.x x ==∴ A (0,0),B (4,0)(2)①设直线PC 的解析式为.y kx b =+将点P (1,-32a ),C (2,1)代入上式, 解得31,13.2k ab a =+=-- ∴y=(1+32a)x-1-3a. ∵点Q 在直线PC 上,且Q 点的横坐标为4,∴Q 点的纵坐标为3+3a②当a >0时,如图1,不合题意;当a <0时,由图2,图3可知,3+3a≥0.∴a≥-1.∴符合题意的a的取值范围是 -1≤a<0.图1 图2 图3【点睛】本题考查二次函数的图象及性质;熟练掌握二次函数图象上点的特征,数形结合讨论交点是解题的关键.。

中考数学填空题专项练习经典练习题(含答案解析)(1)

中考数学填空题专项练习经典练习题(含答案解析)(1)

一、选择题1.一元二次方程的根是( ) A .3x =B .1203x x ==-,C .1203x x =,D .1203x x ==, 2.把抛物线y =﹣2x 2向上平移1个单位,再向右平移1个单位,得到的抛物线是( )A .y =﹣2(x +1)2+1B .y =﹣2(x ﹣1)2+1C .y =﹣2(x ﹣1)2﹣1D .y =﹣2(x +1)2﹣1 3.等腰三角形一条边的边长为3,它的另两条边的边长是关于x 的一元二次方程x 2﹣12x+k=0的两个根,则k 的值是( )A .27B .36C .27或36D .18 4.一种药品原价每盒25元,经过两次降价后每盒16元,设两次降价的百分率都为x ,则x 满足等式( )A .16(1+2x)=25B .25(1-2x)=16C .25(1-x)²=16D .16(1+x)²=255.下列命题错误..的是 ( ) A .经过三个点一定可以作圆B .经过切点且垂直于切线的直线必经过圆心C .同圆或等圆中,相等的圆心角所对的弧相等D .三角形的外心到三角形各顶点的距离相等6.在一个不透明纸箱中放有除了标注数字不同外,其他完全相同的3张卡片,上面分别标有数字1,2,3,从中任意摸出一张,放回搅匀后再任意摸出一张,两次摸出的数字之和为奇数的概率为( )A .59B .49C .56D .13 7.抛物线2y x 2=-+的对称轴为A .x 2=B .x 0=C .y 2=D .y 0=8.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是( )A .12B .14C .16D .1129.二次函数2y (x 3)2=-++图象的开口方向、对称轴和顶点坐标分别为( )A .向下,直线x 3=,()3,2B .向下,直线x 3=-,()3,2C .向上,直线x 3=-,()3,2D .向下,直线x 3=-,()3,2- 10.“射击运动员射击一次,命中靶心”这个事件是( )A .确定事件B .必然事件C .不可能事件D .不确定事件11.如图,某中学计划靠墙围建一个面积为280m 的矩形花圃(墙长为12m ),围栏总长度为28m ,则与墙垂直的边x 为( )A .4m 或10mB .4mC .10mD .8m12.天虹商场一月份鞋帽专柜的营业额为100万元,三月份鞋帽专柜的营业额为150万元.设一到三月每月平均增长率为x ,则下列方程正确的是( )A .100(1+2x )=150B .100(1+x )2=150C .100(1+x )+100(1+x )2=150D .100+100(1+x )+100(1+x )2=150 13.若一元二次方程x 2﹣2x+m=0有两个不相同的实数根,则实数m 的取值范围是( )A .m≥1B .m≤1C .m >1D .m <114.如图,在△ABC 中,BC =4,以点A 为圆心,2为半径的⊙A 与BC 相切于点D ,交AB 于点E ,交AC 于点F .P 是⊙A 上一点,且∠EPF =40°,则图中阴影部分的面积是( )A .4-9πB .4-89πC .8-49πD .8-89π 15.已知二次函数y =ax 2+bx +c(a≠0)的图象如图所示,当y >0时,x 的取值范围是( )A .-1<x <2B .x >2C .x <-1D .x <-1或x >2二、填空题16.关于x 的230x ax a --=的一个根是2x =-,则它的另一个根是___.17.如图,将二次函数y =12(x -2)2+1的图像沿y 轴向上平移得到一条新的二次函数图像,其中A (1,m ),B (4,n )平移后对应点分别是A′、B′,若曲线AB 所扫过的面积为12(图中阴影部分),则新的二次函数对应的函数表达是__________________.18.“明天的太阳从西方升起”这个事件属于________事件(用“必然”、“不可能”、“不确定”填空).19.如图,AB 为O 的直径,弦CD AB ⊥于点E ,已知8CD =,3OE =,则O 的半径为______.20.△ABC 中,∠A =90°,AB =AC ,以A 为圆心的圆切BC 于点D ,若BC =12cm ,则⊙A 的半径为_____cm .21.一个等边三角形边长的数值是方程x 2﹣3x ﹣10=0的根,那么这个三角形的周长为_____.22.若二次函数y =x 2﹣3x +3﹣m 的图象经过原点,则m =_____.23.如图,P 是⊙O 的直径AB 延长线上的一点,PC 与⊙O 相切于点C ,若∠P=20°,则∠A=___________°.24.已知二次函数y =kx 2﹣6x ﹣9的图象与x 轴有两个不同的交点,求k 的取值范围_____.25.如图,△ABC 绕点A 顺时针旋转45°得到△AB′C′,若∠BAC =90°,AB =AC =2,则图中阴影部分的面积等于_____.三、解答题26.关于x 的一元二次方程x 2﹣2x ﹣(n ﹣1)=0有两个不相等的实数根.(1)求n 的取值范围;(2)若n 为取值范围内的最小整数,求此方程的根.27.如图,AB 是O 的直径,AC 是上半圆的弦,过点C 作O 的切线DE 交AB 的延长线于点E ,过点A 作切线DE 的垂线,垂足为D ,且与O 交于点F ,设DAC ∠,、.CEA∠的度数分别是aβ()1用含a的代数式表示β,并直接写出a的取值范围;()2连接OF与AC交于点'O,当点'O是AC的中点时,求aβ、的值.28.在四张编号为A,B,C,D的卡片(除编号外,其余完全相同)的正面分别写上如图所示正整数后,背面朝上,洗匀放好,现从中随机抽取一张,不放回,再从剩下的卡片中随机抽取一张.(1)请用树状图或列表的方法表示两次抽取卡片的所有可能出现的结果(卡片用A,B,C,D 表示);(2)我们知道,满足a2+b2=c2的三个正整数a,b,c成为勾股数,求抽到的两张卡片上的数都是勾股数的概率.29.商场某种商品平均每天可销售30件,每件盈利50元,为了尽快减少库存,商场决定采取适当的降价措施.经调査发现,每件商品每降价1元,商场平均每天可多售出2件.(1)若某天该商品每件降价3元,当天可获利多少元?(2)设每件商品降价x元,则商场日销售量增加____件,每件商品,盈利______元(用含x的代数式表示);(3)在上述销售正常情况下,每件商品降价多少元时,商场日盈利可达到2000元?30.如图,以矩形ABCD的边CD为直径作⊙O,点E是AB的中点,连接CE交⊙O于点F,连接AF并延长交BC于点H.(1)若连接AO,试判断四边形AECO的形状,并说明理由;(2)求证:AH是⊙O的切线;(3)若AB=6,CH=2,则AH的长为.【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.D2.B3.B4.C5.A6.B7.B8.C9.D10.D11.C12.B13.D14.B15.D二、填空题16.6【解析】【分析】【详解】解:设方程另一根为x1把x=-2代入方程得(-2)2+2a-3a=0解得a=4∴原方程化为x2-4x-12=0∵x1+(-2)=4∴x1=6故答案为6点睛:本题考查了一元二17.y=05(x-2)+5【解析】解:∵函数y=(x﹣2)2+1的图象过点A(1m)B(4n)∴m=(1﹣2)2+1=1n=(4﹣2)2+1=3∴A(11)B(43)过A作AC∥x轴交B′B的延长线于点18.不可能【解析】根据所学知识可知太阳应该从东方升起所以明天的太阳从西方升起这个事件属于不可能事件故答案为:不可能19.5【解析】【分析】连接OD根据垂径定理求出DE根据勾股定理求出OD即可【详解】解:连接OD∵CD⊥AB于点E∴DE=CE=CD=×8=4∠OED=90°由勾股定理得:OD=即⊙O的半径为5故答案为:20.【解析】【分析】由切线性质知AD⊥BC根据AB=AC可得BD=CD=AD=BC=6【详解】解:如图连接AD则AD⊥BC∵AB=AC∴BD=CD=AD=BC=6故答案为:6【点睛】本题考查了圆的切线性21.15【解析】【分析】先解方程求出方程的根再确定等边三角形的边长然后求等边三角形的周长【详解】解:x2﹣3x﹣10=0(x﹣5)(x+2)=0即x﹣5=0或x+2=0∴x1=5x2=﹣2因为方程x2﹣22.【解析】【分析】此题可以将原点坐标(00)代入y=x2-3x+3-m求得m的值即可【详解】由于二次函数y=x2-3x+3-m的图象经过原点把(00)代入y=x2-3x+3-m得:3-m=0解得:m=23.35【解析】【分析】【详解】解:∵PC与⊙O相切∴∠OCP=90°∴∠COP=90°-∠P=90°-20°=70°∵OA=OC∴∠A=∠ACO∵∠A+∠ACO=∠COP∴∠A=35°故答案为3524.k>﹣1且k≠0【解析】【分析】根据函数与方程的关系求出根的判别式的符号根据△>0建立关于的不等式通过解不等式即可求得的取值范围【详解】令y=0则kx2﹣6x﹣9=0∵二次函数y=kx2﹣6x﹣9的25.-1【解析】由题意得ABBC于DBC于EBC交BC于FAB=勾股定理得AE=AD=1DB=-1三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.D解析:D【解析】x2−3x=0,x(x−3)=0,∴x1=0,x2=3.故选:D.2.B解析:B【解析】【详解】∵函数y=-2x2的顶点为(0,0),∴向上平移1个单位,再向右平移1个单位的顶点为(1,1),∴将函数y=-2x2的图象向上平移1个单位,再向右平移1个单位,得到抛物线的解析式为y=-2(x-1)2+1,故选B.【点睛】二次函数的平移不改变二次项的系数;关键是根据上下平移改变顶点的纵坐标,左右平移改变顶点的横坐标得到新抛物线的顶点.3.B解析:B【解析】试题分析:由于等腰三角形的一边长3为底或为腰不能确定,故应分两种情况进行讨论:(1)当3为腰时,其他两条边中必有一个为3,把x=3代入原方程可求出k的值,进而求出方程的另一个根,再根据三角形的三边关系判断是否符合题意即可;(2)当3为底时,则其他两条边相等,即方程有两个相等的实数根,由△=0可求出k的值,再求出方程的两个根进行判断即可.试题解析:分两种情况:(1)当其他两条边中有一个为3时,将x=3代入原方程,得:32-12×3+k=0解得:k=27将k=27代入原方程,得:x2-12x+27=0解得x=3或93,3,9不能组成三角形,不符合题意舍去;(2)当3为底时,则其他两边相等,即△=0,此时:144-4k=0解得:k=36将k=36代入原方程,得:x2-12x+36=0解得:x=63,6,6能够组成三角形,符合题意.故k的值为36.故选B.考点:1.等腰三角形的性质;2.一元二次方程的解.4.C解析:C【解析】解:第一次降价后的价格为:25×(1﹣x),第二次降价后的价格为:25×(1﹣x)2.∵两次降价后的价格为16元,∴25(1﹣x)2=16.故选C.5.A解析:A【解析】选项A,经过不在同一直线上的三个点可以作圆;选项B,经过切点且垂直于切线的直线必经过圆心,正确;选项C,同圆或等圆中,相等的圆心角所对的弧相等,正确;选项D,三角形的外心到三角形各顶点的距离相等,正确;故选A.6.B解析:B【解析】【分析】先画出树状图得出所有等可能的情况的数量和所需要的情况的数量,再计算所需要情况的概率即得.【详解】解:由题意可画树状图如下:根据树状图可知:两次摸球共有9种等可能情况,其中两次摸出球所标数字之和为奇数的情况有4种,所以两次摸出球所标数字之和为奇数的概率为:49.【点睛】本题考查了概率的求法,能根据题意列出树状图或列表是解题关键.7.B解析:B【解析】【分析】根据顶点式的坐标特点,直接写出对称轴即可.【详解】解∵:抛物线y=-x2+2是顶点式,∴对称轴是直线x=0,即为y轴.故选:B.【点睛】此题考查了二次函数的性质,二次函数y=a(x-h)2+k的顶点坐标为(h,k),对称轴为直线x=h.8.C解析:C【解析】【分析】画树状图求出共有12种等可能结果,符合题意得有2种,从而求解.【详解】解:画树状图得:∵共有12种等可能的结果,两次都摸到白球的有2种情况,∴两次都摸到白球的概率是:21 126.故答案为C.【点睛】本题考查画树状图求概率,掌握树状图的画法准确求出所有的等可能结果及符合题意的结果是本题的解题关键.9.D解析:D【解析】【分析】已知抛物线解析式为顶点式,根据二次项系数可判断开口方向,根据解析式可知顶点坐标及对称轴.【详解】解:由二次函数y=-(x+3)2+2,可知a=-1<0,故抛物线开口向下;顶点坐标为(-3,2),对称轴为x=-3.故选:D.【点睛】顶点式可判断抛物线的开口方向,对称轴,顶点坐标,最大(小)值,函数的增减性.10.D解析:D【解析】试题分析:“射击运动员射击一次,命中靶心”这个事件是随机事件,属于不确定事件,故选D.考点:随机事件.11.C解析:C【解析】【分析】设与墙相对的边长为(28-2x)m,根据题意列出方程x(28-2x)=80,求解即可.【详解】设与墙相对的边长为(28-2x)m,则0<28-2x≤12,解得8≤x<14,根据题意列出方程x(28-2x)=80,解得x1=4,x2=10因为8≤x<14∴与墙垂直的边x为10m故答案为C.【点睛】本题考查一元二次方程的应用,根据题意列出方程并求解是解题的关键,注意题中限制条件,选取适合的x值.12.B解析:B【解析】【分析】可设每月营业额平均增长率为x ,则二月份的营业额是100(1+x ),三月份的营业额是100(1+x )(1+x ),则可以得到方程即可.【详解】设二、三两个月每月的平均增长率是x .根据题意得:100(1+x )2=150,故选:B .【点睛】本题考查数量平均变化率问题.原来的数量为a ,平均每次增长或降低的百分率为x 的话,经过第一次调整,就调整到a×(1±x ),再经过第二次调整就是a (1±x )(1±x )=a (1±x )2.增长用“+”,下降用“-”. 13.D解析:D【解析】分析:根据方程的系数结合根的判别式△>0,即可得出关于m 的一元一次不等式,解之即可得出实数m 的取值范围.详解:∵方程2x 2x m 0-+=有两个不相同的实数根,∴()2240m =-->,解得:m <1.故选D .点睛:本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键. 14.B解析:B【解析】试题解析:连接AD ,∵BC 是切线,点D 是切点,∴AD ⊥BC ,∴∠EAF=2∠EPF=80°,∴S 扇形AEF =280?283609ππ=, S △ABC =12AD•BC=12×2×4=4,∴S阴影部分=S△ABC-S扇形AEF=4-89π.15.D解析:D【解析】【分析】根据已知图象可以得到图象与x轴的交点是(-1,0),(2,0),又y>0时,图象在x 轴的上方,由此可以求出x的取值范围.【详解】依题意得图象与x轴的交点是(-1,0),(2,0),当y>0时,图象在x轴的上方,此时x<-1或x>2,∴x的取值范围是x<-1或x>2,故选D.【点睛】本题考查了二次函数与不等式,解答此题的关键是求出图象与x轴的交点,然后由图象找出当y>0时,自变量x的范围,注意数形结合思想的运用.二、填空题16.6【解析】【分析】【详解】解:设方程另一根为x1把x=-2代入方程得(-2)2+2a -3a=0解得a=4∴原方程化为x2-4x-12=0∵x1+(-2)=4∴x1=6故答案为6点睛:本题考查了一元二解析:6【解析】【分析】【详解】解:设方程另一根为x1,把x=-2代入方程得(-2)2+2a-3a=0,解得a=4,∴原方程化为x2-4x-12=0,∵x1+(-2)=4,∴x1=6.故答案为6.点睛:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根为x1,x2,则x1+ x2=ba,x1·x2=ca.也考查了一元二次方程的解.17.y=05(x-2)+5【解析】解:∵函数y=(x﹣2)2+1的图象过点A(1m)B (4n)∴m=(1﹣2)2+1=1n=(4﹣2)2+1=3∴A(11)B(43)过A作AC∥x轴交B′B的延长线于点解析:y=0.5(x-2)2+5【解析】解:∵函数y=12(x﹣2)2+1的图象过点A(1,m),B(4,n),∴m=12(1﹣2)2+1=112,n=12(4﹣2)2+1=3,∴A(1,112),B(4,3),过A作AC∥x轴,交B′B的延长线于点C,则C(4,112),∴AC=4﹣1=3.∵曲线段AB扫过的面积为12(图中的阴影部分),∴AC•AA′=3AA′=12,∴AA′=4,即将函数y=12(x﹣2)2+1的图象沿y轴向上平移4个单位长度得到一条新函数的图象,∴新图象的函数表达式是y=12(x﹣2)2+5.故答案为y=0.5(x﹣2)2+5.点睛:本题主要考查了二次函数图象与几何变换以及平行四边形面积求法等知识,根据已知得出AA′是解题的关键.18.不可能【解析】根据所学知识可知太阳应该从东方升起所以明天的太阳从西方升起这个事件属于不可能事件故答案为:不可能解析:不可能【解析】根据所学知识可知太阳应该从东方升起,所以”明天的太阳从西方升起”这个事件属于不可能事件,故答案为:不可能.19.5【解析】【分析】连接OD根据垂径定理求出DE根据勾股定理求出OD即可【详解】解:连接OD∵CD⊥AB于点E∴DE=CE=CD=×8=4∠OED=90°由勾股定理得:OD=即⊙O的半径为5故答案为:解析:5【解析】【分析】连接OD,根据垂径定理求出DE,根据勾股定理求出OD即可.【详解】解:连接OD,∵CD⊥AB于点E,∴DE=CE= 12CD=12×8=4,∠OED=90°,由勾股定理得:OD= 2222345OE DE+=+=,即⊙O的半径为5.故答案为:5.【点睛】本题考查了垂径定理和勾股定理的应用,能根据垂径定理求出DE的长是解此题的关键.20.【解析】【分析】由切线性质知AD⊥BC根据AB=AC可得BD=CD=AD=BC =6【详解】解:如图连接AD则AD⊥BC∵AB=AC∴BD=CD=AD=BC=6故答案为:6【点睛】本题考查了圆的切线性解析:【解析】【分析】由切线性质知AD⊥BC,根据AB=AC可得BD=CD=AD=12BC=6.【详解】解:如图,连接AD,则AD⊥BC,∵AB=AC,∴BD=CD=AD=12BC=6,故答案为:6.【点睛】本题考查了圆的切线性质,解题的关键在于掌握圆的切线性质.21.15【解析】【分析】先解方程求出方程的根再确定等边三角形的边长然后求等边三角形的周长【详解】解:x2﹣3x﹣10=0(x﹣5)(x+2)=0即x﹣5=0或x+2=0∴x1=5x2=﹣2因为方程x2﹣解析:15【解析】【分析】先解方程求出方程的根,再确定等边三角形的边长,然后求等边三角形的周长.【详解】解:x2﹣3x﹣10=0,(x﹣5)(x+2)=0,即x﹣5=0或x+2=0,∴x1=5,x2=﹣2.因为方程x2﹣3x﹣10=0的根是等边三角形的边长,所以等边三角形的边长为5.所以该三角形的周长为:5×3=15.故答案为:15.【点睛】本题考查了一元二次方程的解法、等边三角形的周长等知识点.求出方程的解是解决本题的关键.22.【解析】【分析】此题可以将原点坐标(00)代入y=x2-3x+3-m求得m的值即可【详解】由于二次函数y=x2-3x+3-m的图象经过原点把(00)代入y=x2-3x+3-m得:3-m=0解得:m=解析:【解析】【分析】此题可以将原点坐标(0,0)代入y=x2-3x+3-m,求得m的值即可.【详解】由于二次函数y=x2-3x+3-m的图象经过原点,把(0,0)代入y=x2-3x+3-m,得:3-m=0,解得:m=3.故答案为3.【点睛】本题考查了二次函数图象上点的坐标特征,通过代入点的坐标即可求解.23.35【解析】【分析】【详解】解:∵PC与⊙O相切∴∠OCP=90°∴∠COP=90°-∠P=90°-20°=70°∵OA=OC∴∠A=∠ACO∵∠A+∠ACO=∠COP∴∠A=35°故答案为35解析:35【解析】【分析】【详解】解:∵PC与⊙O相切,∴∠OCP=90°,∴∠COP=90°-∠P=90°-20°=70°,∵OA=OC ,∴∠A=∠ACO ,∵∠A+∠ACO=∠COP ,∴∠A=35°,故答案为35.24.k >﹣1且k≠0【解析】【分析】根据函数与方程的关系求出根的判别式的符号根据△>0建立关于的不等式通过解不等式即可求得的取值范围【详解】令y =0则kx2﹣6x ﹣9=0∵二次函数y =kx2﹣6x ﹣9的解析:k >﹣1且k ≠0.【解析】【分析】根据函数与方程的关系,求出根的判别式的符号,根据△>0建立关于k 的不等式,通过解不等式即可求得k 的取值范围.【详解】令y =0,则kx 2﹣6x ﹣9=0.∵二次函数y =kx 2﹣6x ﹣9的图象与x 轴有两个不同的交点,∴一元二次方程kx 2﹣6x ﹣9=0有两个不相等的解,()()206490k k ≠⎧⎪∴⎨=--⨯->⎪⎩, 解得:k >﹣1且k ≠0.故答案是:k >﹣1且k ≠0.【点睛】本题考查了一元二次方程与函数的关系,函数与x 轴的交点的横坐标就是方程的根,若函数与x 轴有交点说明方程有根,两者互相转化,要充分运用这一点来解题..25.-1【解析】由题意得ABBC 于DBC 于EBC 交BC 于FAB=勾股定理得AE=AD=1DB=-1 解析:2-1 【解析】由题意得, AB ⊥B’C’于D ,BC 'AC ⊥于E ,BC 交B’C’于F .AB =2,勾股定理得∴AE =AD=1,∴DB =2-122112122ABE DBF S S S AE BD =-=-=-阴影.三、解答题26.(1)n >0;(2)x 1=0,x 2=2.【解析】【分析】(1)根据方程有两个不相等的实数根可知240b ac ∆=-> ,即可求出n 的取值范围; (2)根据题意得出n 的值,将其代入方程,即可求得答案.【详解】(1)根据题意知,[]224(2)41(1)0b ac n ∆=-=--⨯⨯-->解之得:0n >;(2)∵0n > 且n 为取值范围内的最小整数,∴1n =,则方程为220x x -=,即(2)0x x -=,解得120,2x x ==.【点睛】本题主要考查了一元二次方程根的判别式,明确和掌握一元二次方程20(a 0)++=≠ax bx c 的根与24b ac ∆=-的关系(①当>0∆ 时,方程有两个不相等的实数根;②当0∆= 时方程有两个相等的实数根;③当∆<0 时,方程无实数根)是解题关键.27.(1)β=90°-2α(0°<α<45°);(2)α=β=30°【解析】【分析】(1)首先证明2DAE α∠= ,在t R ADE △ 中,根据两锐角互余,可知()290045αβα+=︒︒︒<< ;(2)连接OF 交AC 于O′,连接CF ,只要证明四边形AFCO 是菱形,推出AFO 是等边三角形即可解决问题.【详解】解:(1)连接OC .∵DE 是⊙O 的切线,∴OC⊥DE,∵AD⊥DE,∴AD∥OC,∴∠DAC=∠ACO,∵OA=OC,∴∠OCA=∠OAC,∴∠DAE=2α,∵∠D=90°,∴∠DAE+∠E=90°,∴2α+β=90°∴β=90°-2α(0°<α<45°).(2)连接OF交AC于O′,连接CF.∵AO′=CO′,∴AC⊥OF,∴FA=FC,∴∠FAC=∠FCA=∠CAO,∴CF∥OA,∵AF∥OC,∴四边形AFCO是平行四边形,∵OA=OC,∴四边形AFCO是菱形,∴AF=AO=OF,∴△AOF是等边三角形,∴∠FAO=2α=60°,∴α=30°,∵2α+β=90°,∴β=30°,∴α=β=30°.【点睛】本题考查了圆和三角形的问题,掌握圆的切线的性质以及等边三角形的性质和证明是解题的关键.28.(1)图形见解析(2)1 2【解析】【分析】(1)本题属于不放回的情况,画出树状图时要注意;(2)B、C、D三个卡片的上的数字是勾股数,选出选中B、C、D其中两个的即可(1)画树状图如下:(2)∵共有12种等可能的结果数,抽到的两张卡片上的数都是勾股数的结果数为6种,∴抽到的两张卡片上的数都是勾股数的概率61 122 ==.29.(1)若某天该商品每件降价3元,当天可获利1692元;(2)2x;50﹣x.(3)每件商品降价25元时,商场日盈利可达到2000元.【解析】【分析】(1)根据“盈利=单件利润×销售数量”即可得出结论;(2)根据“每件商品每降价1元,商场平均每天可多售出2件”结合每件商品降价x元,即可找出日销售量增加的件数,再根据原来没见盈利50元,即可得出降价后的每件盈利额;(3)根据“盈利=单件利润×销售数量”即可列出关于x的一元二次方程,解之即可得出x的值,再根据尽快减少库存即可确定x的值.【详解】(1)当天盈利:(50-3)×(30+2×3)=1692(元).答:若某天该商品每件降价3元,当天可获利1692元.(2)∵每件商品每降价1元,商场平均每天可多售出2件,∴设每件商品降价x元,则商场日销售量增加2x件,每件商品,盈利(50-x)元.故答案为2x;50-x.(3)根据题意,得:(50-x)×(30+2x)=2000,整理,得:x2-35x+250=0,解得:x1=10,x2=25,∵商城要尽快减少库存,∴x=25.答:每件商品降价25元时,商场日盈利可达到2000元.【点睛】考查了一元二次方程的应用,解题的关键是根据题意找出数量关系列出一元二次方程(或算式).30.(1)详见解析;(2)详见解析;(3)13 2【解析】(1)根据矩形的性质得到AE∥OC,AE=OC即可证明;(2)根据平行四边形的性质得到∠AOD=∠OCF,∠AOF=∠OFC,再根据等腰三角形的性质得到∠OCF=∠OFC.故可得∠AOD=∠AOF,利用SAS证明△AOD≌△AOF,由ADO=90°得到AH⊥OF,即可证明;(3)根据切线长定理可得AD=AF,CH=FH=2,设AD=x,则AF=x,AH=x+2,BH=x-2,再利用在Rt△ABH中,AH2=AB2+BH2,代入即可求x,即可得到AH的长.【详解】(1)解:连接AO,四边形AECO是平行四边形.∵四边形ABCD是矩形,∴AB∥CD,AB=CD.∵E是AB的中点,∴AE=12 AB.∵CD是⊙O的直径,∴OC=12CD.∴AE∥OC,AE=OC.∴四边形AECO为平行四边形.(2)证明:由(1)得,四边形AECO为平行四边形,∴AO∥EC∴∠AOD=∠OCF,∠AOF=∠OFC.∵OF=OC∴∠OCF=∠OFC.∴∠AOD=∠AOF.∵在△AOD和△AOF中,AO=AO,∠AOD=∠AOF,OD=OF ∴△AOD≌△AOF.∴∠ADO=∠AFO.∵四边形ABCD是矩形,∴∠ADO=90°.∴∠AFO=90°,即AH⊥OF.∵点F在⊙O上,∴AH是⊙O的切线.(3)∵HC、FH为圆O的切线,AD、AF是圆O的切线∴AD=AF,CH=FH=2,设AD=x,则AF=x,AH=x+2,BH=x-2,在Rt△ABH中,AH2=AB2+BH2,即(x+2)2=62+(x-2)2,解得x=9 2∴AH=92+2=132.【点睛】此题主要考查直线与圆的关系,解题法的关键是熟知切线的判定定理与性质,及勾股定理的运用.。

(必考题)中考数学填空题专项练习经典练习(答案解析)

(必考题)中考数学填空题专项练习经典练习(答案解析)

一、选择题1.如图,AB 是圆O 的直径,CD 是圆O 的弦,若35C ∠=︒,则ABD ∠=( )A .55︒B .45︒C .35︒D .65︒2.如图,在△ABC 中,∠CAB=65°,在同一平面内,将△ABC 绕点A 旋转到△AB′C′的位置,使得CC′∥AB ,则∠BAB′的度数为( )A .25°B .30°C .50°D .55°3.现有一块长方形绿地,它的短边长为20 m ,若将短边增大到与长边相等(长边不变),使扩大后的绿地的形状是正方形,则扩大后的绿地面积比原来增加300 m 2,设扩大后的正方形绿地边长为xm ,下面所列方程正确的是( )A .x(x-20)=300B .x(x+20)=300C .60(x+20)=300D .60(x-20)=300 4.如图,AC 是⊙O 的内接正四边形的一边,点B 在弧AC 上,且BC 是⊙O 的内接正六边形的一边.若AB 是⊙O 的内接正n 边形的一边,则n 的值为( )A .6B .8C .10D .125.关于下列二次函数图象之间的变换,叙述错误的是( )A .将y =﹣2x 2+1的图象向下平移3个单位得到y =﹣2x 2﹣2的图象B .将y =﹣2(x ﹣1)2的图象向左平移3个单位得到y =﹣2(x+2)2的图象C .将y =﹣2x 2的图象沿x 轴翻折得到y =2x 2的图象D .将y =﹣2(x ﹣1)2+1的图象沿y 轴翻折得到y =﹣2(x+1)2﹣1的图象6.如图,A 、D 是⊙O 上的两个点,BC 是直径,若∠D =34°,则∠OAC 等于( )A .68°B .58°C .72°D .56° 7.若关于x 的一元二次方程()26230a x x --+=有实数根,则整数a 的最大值是( )A .4B .5C .6D .78.如图,二次函数2y ax bx c =++的图象与x 轴相交于(﹣2,0)和(4,0)两点,当函数值y >0时,自变量x 的取值范围是( )A .x <﹣2B .﹣2<x <4C .x >0D .x >49.如图,某中学计划靠墙围建一个面积为280m 的矩形花圃(墙长为12m ),围栏总长度为28m ,则与墙垂直的边x 为( )A .4m 或10mB .4mC .10mD .8m10.二次函数y=ax 2+bx+c (a≠0)的图象如图所示,则在下列各式子:①abc>0;②a+b+c>0;③a+c>b ;④2a+b=0;⑤∆=b 2-4ac<0中,成立的式子有( )A .②④⑤B .②③⑤C .①②④D .①③④11.已知二次函数y =ax 2+bx+c 中,y 与x 的部分对应值如下:x1.1 1.2 1.3 1.4 1.5 1.6 y ﹣1.59 ﹣1.16 ﹣0.71 ﹣0.24 0.25 0.76则一元二次方程ax 2+bx+c =0的一个解x 满足条件( )A .1.2<x <1.3B .1.3<x <1.4C .1.4<x <1.5D .1.5<x <1.612.当ab >0时,y =ax 2与y =ax +b 的图象大致是( )A .B .C .D .13.下列说法正确的是( )A .“任意画出一个等边三角形,它是轴对称图形”是随机事件B .某种彩票的中奖率为11000,说明每买1000张彩票,一定有一张中奖 C .抛掷一枚质地均匀的硬币一次,出现正面朝上的概率为13D .“概率为1的事件”是必然事件 14.二次函数2(0)y ax bx c a =++≠的图像如图所示,下列结论正确是( )A .0abc >B .20a b +<C .30a c +<D .230ax bx c ++-=有两个不相等的实数根15.如图,矩形 ABCD 中,AB=8,BC=6,将矩形 ABCD 绕点 A 逆时针旋转得到矩形 AEFG ,AE ,FG 分别交射线CD 于点 PH ,连结 AH ,若 P 是 CH 的中点,则△APH 的周长为( )A .15B .18C .20D .24二、填空题16.如图,有6张扑克牌,从中任意抽取两张,点数和是偶数的概率是_____.17.关于x 的230x ax a --=的一个根是2x =-,则它的另一个根是___.18.若⊙O 的直径是4,圆心O 到直线l 的距离为3,则直线l 与⊙O 的位置关系是_________.19.“明天的太阳从西方升起”这个事件属于________事件(用“必然”、“不可能”、“不确定”填空).20.若把一根长200cm 的铁丝分成两部分,分别围成两个正方形,则这两个正方形的面积的和最小值为_____.21.抛物线y =(x ﹣1)2﹣2与y 轴的交点坐标是_____.22.△ABC 中,∠A =90°,AB =AC ,以A 为圆心的圆切BC 于点D ,若BC =12cm ,则⊙A 的半径为_____cm .23.在一个不透明的口袋中装有5个红球和3个白球,他们除颜色外其他完全相同,任意摸出一个球是白球的概率为________.24.两块大小相同,含有30°角的三角板如图水平放置,将△CDE 绕点C 按逆时针方向旋转,当点E 的对应点E′恰好落在AB 上时,△CDE 旋转的角度是______度.25.若一元二次方程x 2+px ﹣2=0的一个根为2,则p =_____,另一个根是_____.三、解答题26.关于x 的一元二次方程x 2﹣x ﹣(m +2)=0有两个不相等的实数根.(1)求m 的取值范围;(2)若m 为符合条件的最小整数,求此方程的根.27.在“阳光体育”活动时间,小英、小丽、小敏、小洁四位同学进行一次羽毛球单打比赛,要从中选出两位同学打第一场比赛.(1)若已确定小英打第一场,再从其余三位同学中随机选取一位,求恰好选中小丽同学的概率;(2)用画树状图或列表的方法,求恰好选中小敏、小洁两位同学进行比赛的概率.28.商场某种商品平均每天可销售30件,每件盈利50元,为了尽快减少库存,商场决定采取适当的降价措施.经调査发现,每件商品每降价1元,商场平均每天可多售出2件.(1)若某天该商品每件降价3元,当天可获利多少元?(2)设每件商品降价x元,则商场日销售量增加____件,每件商品,盈利______元(用含x的代数式表示);(3)在上述销售正常情况下,每件商品降价多少元时,商场日盈利可达到2000元?29.某水果商场经销一种高档水果,原价每千克50元,连续两次降价后每千克32元,若每每次下降的百分率相同.(1)求每次下降的百分率;(2)若每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,商场决定采取适当的涨价措施,若每千克涨价1元,日销售量将减少20千克,现该商场要保证每天盈利6000元,且要尽快减少库存,那么每千克应涨价多少元?30.汽车产业的发展,有效促进我国现代建设.某汽车销售公司2007年盈利3000万元,到2009年盈利4320万元,且从2007年到2009年,每年盈利的年增长率相同,该公司2008年盈利多少万元?【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.A2.C3.A4.D5.D6.D7.B8.B9.C10.D11.C12.D13.D14.C15.C二、填空题16.【解析】【分析】列举出所有情况再找出点数和是偶数的情况根据概率公式求解即可【详解】解:从6张牌中任意抽两张可能的情况有:(410)(510)(610)(810)(910)(109)(417.6【解析】【分析】【详解】解:设方程另一根为x1把x=-2代入方程得(-2)2+2a-3a=0解得a=4∴原方程化为x2-4x-12=0∵x1+(-2)=4∴x1=6故答案为6点睛:本题考查了一元二18.相离【解析】r=2d=3则直线l与⊙O的位置关系是相离19.不可能【解析】根据所学知识可知太阳应该从东方升起所以明天的太阳从西方升起这个事件属于不可能事件故答案为:不可能20.1250cm2【解析】【分析】设将铁丝分成xcm和(200﹣x)cm两部分则两个正方形的边长分别是cmcm再列出二次函数求其最小值即可【详解】如图:设将铁丝分成xcm和(200﹣x)cm两部分列二次21.(0﹣1)【解析】【分析】将x=0代入y=(x﹣1)2﹣2计算即可求得抛物线与y轴的交点坐标【详解】解:将x=0代入y=(x﹣1)2﹣2得y=﹣1所以抛物线与y轴的交点坐标是(0﹣1)故答案为:(022.【解析】【分析】由切线性质知AD⊥BC根据AB=AC可得BD=CD=AD=BC=6【详解】解:如图连接AD则AD⊥BC∵AB=AC∴BD=CD=AD=BC=6故答案为:6【点睛】本题考查了圆的切线性23.【解析】【分析】【详解】解:∵在一个不透明的口袋中装有5个红球和3个白球∴任意从口袋中摸出一个球来P(摸到白球)==24.30【解析】【分析】根据含有30°角的直角三角形的性质可知CE′是△ACB的中线可得△E′CB是等边三角形从而得出∠ACE′的度数和CE′的长从而得出△CDE旋转的度数【详解】解:∵三角板是两块大小25.-1-1【解析】【分析】设方程的另一根为t根据根与系数的关系得到2+t=-p2t=-2然后先求出t再求出p【详解】解:设方程的另一根为t根据题意得2+t=﹣p2t=﹣2所以t =﹣1p=﹣1故答案为:三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷 参考解析【参考解析】**科目模拟测试一、选择题1.A解析:A【解析】【分析】根据同弧所对的圆周角相等可得35BAD C =∠=︒∠,再根据圆直径所对的圆周角是直角,可得90ADB ∠=︒,再根据三角形内角和定理即可求出ABD ∠的度数.【详解】∵35C ∠=︒∴35BAD C =∠=︒∠∵AB 是圆O 的直径∴90ADB ∠=︒∴18055ABD ADB BAD =︒--=︒∠∠∠故答案为:A .【点睛】本题考查了圆内接三角形的角度问题,掌握同弧所对的圆周角相等、圆直径所对的圆周角是直角、三角形内角和定理是解题的关键.2.C解析:C【解析】试题解析:∵CC′∥AB,∴∠ACC′=∠CAB=65°,∵△ABC绕点A旋转得到△AB′C′,∴AC=AC′,∴∠CAC′=180°﹣2∠ACC′=180°﹣2×65°=50°,∴∠CAC′=∠BAB′=50°.故选C.3.A解析:A【解析】【分析】设扩大后的正方形绿地边长为xm,根据“扩大后的绿地面积比原来增加300m2”建立方程即可.【详解】设扩大后的正方形绿地边长为xm,根据题意得x(x-20)=300,故选A.【点睛】本题考查了由实际问题抽象出一元二次方程,解题的关键是弄清题意,并找到等量关系.4.D解析:D【解析】【分析】连接AO、BO、CO,根据中心角度数=360°÷边数n,分别计算出∠AOC、∠BOC的度数,根据角的和差则有∠AOB=30°,根据边数n=360°÷中心角度数即可求解.【详解】连接AO、BO、CO,∵AC是⊙O内接正四边形的一边,∴∠AOC=360°÷4=90°,∵BC是⊙O内接正六边形的一边,∴∠BOC=360°÷6=60°,∴∠AOB=∠AOC﹣∠BOC=90°﹣60°=30°,∴n=360°÷30°=12;故选:D.【点睛】本题考查正多边形和圆,解题的关键是根据正方形的性质、正六边形的性质求出中心角的度数.5.D解析:D【解析】【分析】根据平移变换只改变图形的位置不改变图形的形状与大小对各选项分析判断后利用排除法求解.【详解】A选项,将y=﹣2x2+1的图象向下平移3个单位得到y=﹣2x2﹣2的图象,故A选项不符合题意;B选项,将y=﹣2(x﹣1)2的图象向左平移3个单位得到y=﹣2(x+2)2的图象,故B选项不符合题意;C选项,将y=﹣2x2的图象沿x轴翻折得到y=2x2的图象,故C选项不符合题意;D选项,将y=﹣2(x﹣1)2+1的图象沿y轴翻折得到y=﹣2(x+1)2+1的图象,故D选项符合题意.故选D.【点睛】本题主要考查了二次函数图象与几何变换,熟练掌握平移变换只改变图形的位置不改变图形的形状与大小的关键.6.D解析:D【解析】【分析】根据圆周角定理求出∠AOC,再根据等腰三角形的性质以及三角形的内角和定理即可解决问题.【详解】∵∠ADC=34°,∴∠AOC=2∠ADC=68°.∵OA=OC,∴∠OAC=∠OCA12(180°﹣68°)=56°.故选D.【点睛】本题考查了圆周角定理,等腰三角形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.7.B解析:B【解析】【分析】根据一元二次方程的定义和判别式的意义得到a-6≠0且△=(-2)2-4×(a-6)×3≥0,再求出两不等式的公共部分得到a≤193且a≠6,然后找出此范围内的最大整数即可.【详解】根据题意得a-6≠0且△=(-2)2-4×(a-6)×3≥0,解得a≤193且a≠6,所以整数a的最大值为5.故选B.【点睛】本题考查一元二次方程的定义和跟的判别式,一元二次方程的二次项系数不能为0;当一元二次方程有实数根时,△≥0.8.B解析:B【解析】【分析】【详解】当函数值y>0时,自变量x的取值范围是:﹣2<x<4.故选B.9.C解析:C【解析】【分析】设与墙相对的边长为(28-2x)m,根据题意列出方程x(28-2x)=80,求解即可.【详解】设与墙相对的边长为(28-2x)m,则0<28-2x≤12,解得8≤x<14,根据题意列出方程x(28-2x)=80,解得x1=4,x2=10因为8≤x<14∴与墙垂直的边x为10m故答案为C.【点睛】本题考查一元二次方程的应用,根据题意列出方程并求解是解题的关键,注意题中限制条件,选取适合的x值.解析:D【解析】【分析】根据二次函数的性质,利用数形结合的思想一一判断即可.【详解】解:∵抛物线的开口向上,∴a>0,∵对称轴在y轴的右侧,∴a,b异号,∴b<0,∵抛物线交y轴于负半轴,∴c<0,∴abc>0,故①正确,∵x=1时,y<0,∴a+b+c<0,故②错误,∵x=-1时,y>0,∴a-b+c>0,∴a+c>b,故③正确,∵对称轴x=1,∴-b2a=1,∴2a+b=0,故④正确,∵抛物线与x轴有两个交点,∴△=b2-4ac>0,故⑤错误,故选D.【点睛】本题考查二次函数的性质,解题的关键是熟练掌握基本知识,学会利用数形结合的思想解决问题,属于中考常考题型.11.C解析:C【解析】【分析】仔细看表,可发现y的值-0.24和0.25最接近0,再看对应的x的值即可得.【详解】解:由表可以看出,当x取1.4与1.5之间的某个数时,y=0,即这个数是ax2+bx+c=0的一个根.ax2+bx+c=0的一个解x的取值范围为1.4<x<1.5.故选C.本题考查了同学们的估算能力,对题目的正确估算是建立在对二次函数图象和一元二次方程关系正确理解的基础上的.12.D解析:D 【解析】 【分析】 【详解】∵ab >0,∴a 、b 同号.当a >0,b >0时,抛物线开口向上,顶点在原点,一次函数过一、二、三象限,没有图象符合要求;当a <0,b <0时,抛物线开口向下,顶点在原点,一次函数过二、三、四象限,B 图象符合要求. 故选B .13.D解析:D 【解析】试题解析:A 、“任意画出一个等边三角形,它是轴对称图形”是必然事件,选项错误; B. 某种彩票的中奖概率为11000,说明每买1000张,有可能中奖,也有可能不中奖,故B 错误;C. 抛掷一枚质地均匀的硬币一次,出现正面朝上的概率为12.故C 错误; D. “概率为1的事件”是必然事件,正确. 故选D.14.C解析:C 【解析】【分析】观察图象:开口向下得到a <0;对称轴在y 轴的右侧得到a 、b 异号,则b >0;抛物线与y 轴的交点在x 轴的上方得到c >0,所以abc <0;由对称轴为x=2ba-=1,可得2a+b=0;当x=-1时图象在x 轴下方得到y=a-b+c <0,结合b=-2a 可得 3a+c <0;观察图象可知抛物线的顶点为(1,3),可得方程230ax bx c ++-=有两个相等的实数根,据此对各选项进行判断即可.【详解】观察图象:开口向下得到a <0;对称轴在y 轴的右侧得到a 、b 异号,则b >0;抛物线与y 轴的交点在x 轴的上方得到c >0,所以abc <0,故A 选项错误; ∵对称轴x=2ba-=1,∴b=-2a ,即2a+b=0,故B 选项错误; 当x=-1时, y=a-b+c <0,又∵b=-2a ,∴ 3a+c <0,故C 选项正确; ∵抛物线的顶点为(1,3),∴230ax bx c ++-=的解为x 1=x 2=1,即方程有两个相等的实数根,故D 选项错误, 故选C.【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y=ax 2+bx+c (a≠0)的图象,当a >0,开口向上,函数有最小值,a <0,开口向下,函数有最大值;对称轴为直线x=2ba-,a 与b 同号,对称轴在y 轴的左侧,a 与b 异号,对称轴在y 轴的右侧;当c >0,抛物线与y 轴的交点在x 轴的上方;当△=b 2-4ac >0,抛物线与x 轴有两个交点.15.C解析:C 【解析】 【分析】连结AC ,先由△AGH ≌△ADH 得到∠GHA =∠AHD ,进而得到∠AHD =∠HAP ,所以△AHP 是等腰三角形,所以PH =PA =PC ,所以∠HAC 是直角,再在Rt △ABC 中由勾股定理求出AC 的长,然后由△HAC ∽△ADC ,根据=求出AH 的长,再根据△HAC ∽△HDA 求出DH 的长,进而求得HP 和AP 的长,最后得到△APH 的周长. 【详解】∵P 是CH 的中点,PH =PC ,∵AH =AH ,AG =AD ,且AGH 与ADH 都是直角,∴△AGH ≌△ADH ,∴∠GHA =∠AHD ,又∵GHA =HAP ,∴∠AHD =∠HAP ,∴△AHP 是等腰三角形,∴PH =PA =PC ,∴∠HAC 是直角,在Rt △ABC 中,AC ==10,∵△HAC ∽△ADC ,∴=,∴AH ===7.5,又∵△HAC ∽△HAD ,=,∴DH =4.5,∴HP ==6.25,AP =HP =6.25,∴△APH 的周长=AP +PH +AH =6.25+6.25+7.5=20.【点睛】本题主要考查直角三角形的性质以及相似三角形的性质,解题的关键是清楚直角三角形斜边上的中线是斜边的一半以及会运用相似三角形线段成比例求出各边长的长.二、填空题16.【解析】【分析】列举出所有情况再找出点数和是偶数的情况根据概率公式求解即可【详解】解:从6张牌中任意抽两张可能的情况有:(410)(510)(610)(810)(910)(109)(4解析:715. 【解析】 【分析】列举出所有情况,再找出点数和是偶数的情况,根据概率公式求解即可.【详解】解:从6张牌中任意抽两张可能的情况有:(4,10)(5,10)(6,10)(8,10)(9,10)(10,9) (4,9)(5,9)(6,9)(8,9)(9,8)(10,8) (4,8)(5,8)(6,8)(8,6)(9,6)(10,6) (4,6)(5,6)(6,5)(8,5)(9,5)(10,5) (4,5)(5,4)(6,4)(8,4)(9,4)(10,4)∴一共有30种情况,点数和为偶数的有14个,∴点数和是偶数的概率是147 3015=;故答案为7 15.【点睛】本题考查概率的概念和求法.解题的关键是找到所求情况数与总情况数,根据:概率=所求情况数与总情况数之比.17.6【解析】【分析】【详解】解:设方程另一根为x1把x=-2代入方程得(-2)2+2a-3a=0解得a=4∴原方程化为x2-4x-12=0∵x1+(-2)=4∴x 1=6故答案为6点睛:本题考查了一元二解析:6【解析】【分析】【详解】解:设方程另一根为x1,把x=-2代入方程得(-2)2+2a-3a=0,解得a=4,∴原方程化为x2-4x-12=0,∵x1+(-2)=4,∴x1=6.故答案为6.点睛:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根为x1,x2,则x1+ x2=ba-,x1·x2=ca.也考查了一元二次方程的解.18.相离【解析】r=2d=3则直线l与⊙O的位置关系是相离解析:相离【解析】r=2,d=3,则直线l与⊙O的位置关系是相离19.不可能【解析】根据所学知识可知太阳应该从东方升起所以明天的太阳从西方升起这个事件属于不可能事件故答案为:不可能解析:不可能 【解析】根据所学知识可知太阳应该从东方升起,所以”明天的太阳从西方升起”这个事件属于不可能事件,故答案为:不可能.20.1250cm2【解析】【分析】设将铁丝分成xcm 和(200﹣x )cm 两部分则两个正方形的边长分别是cmcm 再列出二次函数求其最小值即可【详解】如图:设将铁丝分成xcm 和(200﹣x )cm 两部分列二次解析:1250cm 2 【解析】 【分析】设将铁丝分成xcm 和(200﹣x )cm 两部分,则两个正方形的边长分别是4xcm ,2004x-cm ,再列出二次函数,求其最小值即可. 【详解】如图:设将铁丝分成xcm 和(200﹣x )cm 两部分,列二次函数得:y =(4x )2+(2004x -)2=18(x ﹣100)2+1250,由于18>0,故其最小值为1250cm 2,故答案为:1250cm 2.【点睛】本题考查二次函数的最值问题,解题的关键是根据题意正确列出二次函数.21.(0﹣1)【解析】【分析】将x =0代入y =(x ﹣1)2﹣2计算即可求得抛物线与y 轴的交点坐标【详解】解:将x =0代入y =(x ﹣1)2﹣2得y =﹣1所以抛物线与y 轴的交点坐标是(0﹣1)故答案为:(0解析:(0,﹣1) 【解析】 【分析】将x =0代入y =(x ﹣1)2﹣2,计算即可求得抛物线与y 轴的交点坐标. 【详解】解:将x =0代入y =(x ﹣1)2﹣2,得y =﹣1, 所以抛物线与y 轴的交点坐标是(0,﹣1).故答案为:(0,﹣1).【点睛】本题考查了二次函数图象上点的坐标特征,根据y轴上点的横坐标为0求出交点的纵坐标是解题的关键.22.【解析】【分析】由切线性质知AD⊥BC根据AB=AC可得BD=CD=AD=BC =6【详解】解:如图连接AD则AD⊥BC∵AB=AC∴BD=CD=AD=BC=6故答案为:6【点睛】本题考查了圆的切线性解析:【解析】【分析】由切线性质知AD⊥BC,根据AB=AC可得BD=CD=AD=12BC=6.【详解】解:如图,连接AD,则AD⊥BC,∵AB=AC,∴BD=CD=AD=12BC=6,故答案为:6.【点睛】本题考查了圆的切线性质,解题的关键在于掌握圆的切线性质.23.【解析】【分析】【详解】解:∵在一个不透明的口袋中装有5个红球和3个白球∴任意从口袋中摸出一个球来P(摸到白球)==解析:3 8【解析】【分析】【详解】解:∵在一个不透明的口袋中装有5个红球和3个白球,∴任意从口袋中摸出一个球来,P(摸到白球)=353=38.24.30【解析】【分析】根据含有30°角的直角三角形的性质可知CE′是△ACB的中线可得△E′CB是等边三角形从而得出∠ACE′的度数和CE′的长从而得出△CDE旋转的度数【详解】解:∵三角板是两块大小解析:30【解析】【分析】根据含有30°角的直角三角形的性质可知CE′是△ACB的中线,可得△E′CB是等边三角形,从而得出∠ACE′的度数和CE′的长,从而得出△CDE旋转的度数.【详解】解:∵三角板是两块大小一样且含有30°的角,∴CE′是△ACB的中线,∴CE′=BC=BE′,∴△E′CB是等边三角形,∴∠BCE′=60°,∴∠ACE′=90°﹣60°=30°,故答案为:30.【点睛】本题考查了含有30°角的直角三角形的性质,等边三角形的判定和性质,旋转的性质,本题关键是得到CE´是△ABC的中线.25.-1-1【解析】【分析】设方程的另一根为t根据根与系数的关系得到2+t=-p2t=-2然后先求出t再求出p【详解】解:设方程的另一根为t根据题意得2+t=﹣p2t=﹣2所以t=﹣1p=﹣1故答案为:解析:-1-1【解析】【分析】设方程的另一根为t,根据根与系数的关系得到2+t=-p,2t=-2,然后先求出t,再求出p.【详解】解:设方程的另一根为t,根据题意得2+t=﹣p,2t=﹣2,所以t=﹣1,p=﹣1.故答案为:﹣1,﹣1.【点睛】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=-ba,x1•x2=ca.三、解答题26.(1)m>94;(2)x1=0,x2=1.【解析】解答本题的关键是是掌握好一元二次方程的根的判别式. (1)求出△=5+4m >0即可求出m 的取值范围;(2)因为m=﹣1为符合条件的最小整数,把m=﹣1代入原方程求解即可. 【详解】解:(1)△=1+4(m +2) =9+4m >0∴94m >-. (2)∵m 为符合条件的最小整数,∴m=﹣2.∴原方程变为2=0x x - ∴x 1=0,x 2=1.考点:1.解一元二次方程;2.根的判别式.27.(1)13;(2)16. 【解析】 【分析】(1)由题意直接利用概率公式求解即可求得答案;(2)根据题意列出表格,然后由表格求得所有等可能的结果与恰好选中小敏、小洁两位同学的情况,再利用概率公式求解即可求得答案. 【详解】解:(1)若已确定小英打第一场,再从其余三位同学中随机选取一位,共有3种情况,而选中小丽的情况只有一种,所以P (恰好选中小丽)=13; (2)列表如下:所有可能出现的情况有12种,其中恰好选中小敏、小洁两位同学组合的情况有两种,所以P (小敏,小洁)=212=16. 【点睛】本题考查列表法与树状图法.(1)若某天该商品每件降价3元,当天可获利1692元;(2)2x;50﹣x.(3)每件商品降价25元时,商场日盈利可达到2000元.【解析】【分析】(1)根据“盈利=单件利润×销售数量”即可得出结论;(2)根据“每件商品每降价1元,商场平均每天可多售出2件”结合每件商品降价x元,即可找出日销售量增加的件数,再根据原来没见盈利50元,即可得出降价后的每件盈利额;(3)根据“盈利=单件利润×销售数量”即可列出关于x的一元二次方程,解之即可得出x的值,再根据尽快减少库存即可确定x的值.【详解】(1)当天盈利:(50-3)×(30+2×3)=1692(元).答:若某天该商品每件降价3元,当天可获利1692元.(2)∵每件商品每降价1元,商场平均每天可多售出2件,∴设每件商品降价x元,则商场日销售量增加2x件,每件商品,盈利(50-x)元.故答案为2x;50-x.(3)根据题意,得:(50-x)×(30+2x)=2000,整理,得:x2-35x+250=0,解得:x1=10,x2=25,∵商城要尽快减少库存,∴x=25.答:每件商品降价25元时,商场日盈利可达到2000元.【点睛】考查了一元二次方程的应用,解题的关键是根据题意找出数量关系列出一元二次方程(或算式).29.(1)每次下降的百分率为20%;(2)该商场要保证每天盈利6000元,那么每千克应涨价5元.【解析】【分析】(1)设每次降价的百分率为a,(1﹣a)2为两次降价的百分率,50降至32就是方程的平衡条件,列出方程求解即可;(2)根据题意列出一元二次方程,然后求出其解,最后根据题意确定其值.【详解】解:(1)设每次下降的百分率为a,根据题意,得:50(1﹣a)2=32,解得:a=1.8(舍)或a=0.2,答:每次下降的百分率为20%; (2)设每千克应涨价x 元,由题意,得 (10+x )(500﹣20x )=6000, 整理,得 x 2﹣15x +50=0, 解得:x 1=5,x 2=10,因为要尽快减少库存,所以x =5符合题意.答:该商场要保证每天盈利6000元,那么每千克应涨价5元. 【点睛】本题主要考查了一元二次方程应用,关键是根据题意找准等量关系列出方程是解答本题的关键.30.2008年盈利3600万元. 【解析】 【分析】设该公司从2007年到2009年,每年盈利的年增长率是x ,根据题意列出方程进行求解即可求出年增长率;然后根据2007年的盈利,即可算出2008年的盈利. 【详解】解:设每年盈利的年增长率为x ,由题意得: 3000(1+x )2=4320,解得:10.2x =,2 2.2x =-(不合题意,舍去), ∴年增长率20%, ∴3000×(1+20%)=3600,答:该公司2008年盈利3600万元. 【点睛】本题考查了一元二次方程的应用,解题的关键是求出从2007年到2009年,每年盈利的年增长率.。

中考数学选择题填空题集含答案

中考数学选择题填空题集含答案

人数第一套一、选择题〔每题有且只有一个正确答案,此题共8小题,每题3分,共24分〕 1.4-的绝对值是 A .4- B .14-C .14D . 42.假设分式25x -有意义...,那么x 的取值范围是 A .5x ≠B .5x ≠-C .5x >D .5x >-3.一组数据2,2,4,5,6的中位数是 A .2B .4C .5D .64.如图1是一个几何体的实物图,那么其主视图是5.一个一元一次不等式组的解集在数轴上的表示如以下图,那么该不等式组的解集是A .13x -≤<B .13x -<≤C .1x ≥-D .3x <6.2010年6月5日XX 世博园入园参观人数约为470000人,将这个数用科学记数法表示为4.710n ⨯,那么n 的值为 A .3B .4C .5D .67.某次考试中,某班级的数学成绩统计图如下.以下说法错误的选项是...... A .得分在70~80分之间的人数最多B .该班的总人数为40C .得分在90~100分之间的人数最少D .及格〔≥60分〕人数是26-2 -1 0 1 2 3 4 5图1DCB A· O yx18.如下图的正方形网格中,网格线的交点称为格点.A 、B 是两格点,如果C 也是图中的格点,且使得ABC ∆为等腰三角形.....,那么点C 的个数是 A .6B .7C .8D .9二、填空题〔此题共8小题,每题3分,共24分〕 9.在3-,0,2,1四个数中最大的数是. 10.当1a =,2b =时,代数式2a ab -的值是. 11.一个n 边形的内角和是1080︒,那么n =.12.从1,2,3,…,19,20这二十个整数中任意取一个数,这个数是3的倍数的概率是.13.二次函数23y x mx =-+的图象与x 轴的交点如下图,根据图XX 息可得到m 的值是.B AO DCBA第14题图第13题图第8题图14.如图,四边形ABCD 是菱形,对角线AC 和BD 相交于点O ,4AC cm =,8BD cm =,那么这个菱形的面积是2cm .15.两圆的圆心距5d =,它们的半径分别是一元二次方程2540x x -+=的两个根,这两圆的位置关系是.16.二次函数()()221y x a a =-+-〔a 为常数〕,当a 取不同的值时,其图象构成一个“抛物线系〞.以下图分别是当1a =-,0a =,1a =,2a =时二次函数的图象.它们的顶点在一条直线上,这条直线的解析式是y =.第二套一、填空题〔本大题共8小题,每题3分,总分值24分〕 1.|-2010|=.2.2010年5月1日,XX 世博会如约而至,全球瞩目.据XX 世博会协调局消息,5月1日XX 世博会开馆当天接待游客就达204 000人次,开馆情况很好.请将204 000用科学记数法表示为.3.如图,在△ABC 中,DE ∥BC ,∠A =35º,∠ABC =65º,那么∠AED =度.ABCD E 35º 65º ADCBAB COABOxy 4.永州市江永县的上江圩是世界上独一无二的“女书〞文字的发源地.千百年来,女书只在女性之间以“母女相授〞的方式流传.一位不识女书文字的游客慕名来到江永县的上江圩参观,当地女书传人给出一个女书文字“〞,并告诉游客这是汉字“开、心、快、乐〞中的一个字,让他猜这是其中的哪个字.那么这位游客能猜中的概率是.5.如图,要使△ADB ∽△ABC ,还需增添的条件是(写一个即可). 6.方程x 2=x 的解是.7.如图,在半径为6的⊙O 中,∠ACB =30º,那么图中阴影局部的面积是(结果保存三个有效数字).8.如下图是一个坐标方格盘.你可操纵一只遥控机器蛙在方格盘上进展跳步游戏,机器蛙每次跳步只能按以下两种方式(第一种:向上、下、左、右可任意跳动1格或3格;第二种:跳到关于原点的对称点上)中的一种进展.假设机器蛙在点A (-5,4),现欲操纵它跳到点B (2,-3),那么机器蛙至少要跳次.二、选择题〔本大题共8小题,每题3分,总分值24分〕 9.不等式-x >2的解集在数轴上表示为〔 〕10.以下计算正确的选项是〔 〕A .a 6÷a 2=a 3B .a 2+a 3=a 5C .(a 2)3=a 6D .(a +b )2=a 2+b 2 11.如图,这是一个正面为黑、反面为白的未拼完的拼木盘,给出如下四块正面为黑、反面为白的拼木,现欲拼满拼木盘使其颜色一致.那么应该选择的拼木是〔 〕12.以下命题是真命题的是〔 〕A .三点确定一个圆B .平行四边形既是轴对称图形又是中心对称图形C .对角线相等且互相平分是四边形是矩形D .有两边和一角对应相等的两个三角形全等13.“五·一〞节,爸爸开车带李明回老家看望爷爷、奶奶.一路上,李明发现在经过A 、B 、C 、D 每一个村庄前的500米处均立有右图所示的交通告示牌.现给出这四个路段爸爸开车的速度与离开告示牌的距离之间的函数关系图象,那么其中表示爸爸违章的路段的图象是〔 〕14.以下说法正确的选项是〔 〕A .方差反映了一组数据的分散或波动的程度B .数据1、5、3、7、10的中位数是3A B C D) ) ) )ABCD ABCDC .任何一组数据的平均数和众数都不相等D .明天我市一定下雨是必然事件 15.由二次函数y =-x 2+2x 可知〔 〕A .其图象的开口向上B .其图象的对称轴为x =1C .其最大值为-1D .其图象的顶点坐标为(-1,1)16.将一个正整数n 输入一台机器内产生出 n (n +1)2的个位数字.假设给该机器输入初始数a ,将所产生的第一个数字记为a 1;再输入a 1,将所产生的第二个数字记为a 2;…;依此类推.现输入a =2,那么a 2010=〔 〕A .2B .3C .6D .1第三套一、选择题:本大题共8小题,每题4分,共32分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的.1.数轴上的点A 到原点的距离是6,那么点A 表示的数为A.6或6-B. 6C. 6-D. 3或3- 2.某班体育委员记录了第一小组七位同学定点投篮〔每人投10个〕的情况,投进篮框的个数为6,10,5,3,4,8,4,这组数据的中位数和极差分别是 A .4,7B .7,5C .5,7D .3,73.以下计算正确的选项是 A.030= B.33-=--C.331-=- D.39±=4.小军将一个直角三角板〔如图1〕绕它的一条直角边所在的直线旋转一周形成一个几何体,将这个几何体的侧面展开得到的大致图形是A. B . C . D .5.如图2,火车匀速通过隧道〔隧道长大于火车长〕时,火车进入隧道的时间x 与火车在隧道内的长度y 之间的关系用图象描述大致是A. B . C . D .6.一元二次方程)0(02≠=++a c bx ax 有两个不相等...的实数根,那么ac b 42-满足的条件是A.ac b 42-=0 B.ac b 42->0 C.ac b 42-<0 D.ac b 42-≥07. 货车行驶25千米与小车行驶35千米所用时间一样,小车每小时比货车多行驶20千米,求两车的速度各为多少"设货车的速度为x 千米/小时,依题意列方程正确的选项是1图2图AB CDA.203525-=x x B.x x 352025=- C.203525+=x x D.xx 352025=+ 8.如图3,△ABC ,求作一点P ,使P 到∠A 的两边的距离相等,且PA =PB .以下确定P A.P 为∠A 、∠B 两角平分线的交点B.P 为∠A 的角平分线与AB 的垂直平分线的交点 C.P 为AC 、AB 两边上的高的交点 D.P 为AC 、AB 两边的垂直平分线的交点二、填空题:本大题共5小题,每题4分,共20分.把答案填在答题卡...中对应题号后的横线上.9.假设622=-n m ,且3=-n m ,那么=+n m .10. 有三X 大小、形状完全一样的卡片,卡片上分别写有数字1、2、3,从这三X 卡片中随机同时抽取两X ,用抽出的卡片上的数字组成两位数,这个两位数是偶数的概率是.11.如图4,在△ABC 中,AB =AC =8,AD 是底边上的高,E 为AC 中点,那么DE =.AB D ECy1o x2A4图5图6图ABCP3图12.如图5,分别以A 、B 为圆心,线段AB 的长为半径的两个圆相交于C 、D 两点,那么∠CAD 的度数为. 13.如图6,反比例函数xky =的图象位于第一、三象限,其中第一象限内的图象经过点A 〔1,2〕,请在第三象限内的图象上找一个你喜欢的点P ,你选择的P 点坐标为.第四套一、选择题〔此题共8个小题,每题有且只有一个正确答案,请将正确答案的选项代号涂在答题卡相应的位置上,每题3分,总分值24分〕 1.以下判断中,你认为正确的选项是A .0的绝对值是0B .31是无理数C .4的平方根是2D .1的倒数是1- 2.以下计算正确的选项是A.3232=+B.32a a a =+C.a a a 6)3()2(=⋅D.2121=- 3.函数x y -=1中自变量的取值范围是A.1≥xB. 1≤xC.1<xD.1>x 4.一组数据1,2,3,4,5,5,5的中位数和众数分别是 A .4,3 B .3,5 C .5,5 D .4,55.在△ABC 中,D 、E 分别是AB 、AC 的中点,假设DE =2cm ,那么BC 的长是 A .2cm B .3cm C .4cm D .5cm1 26题图6.不等式组的解集在数轴上表示如下图,那么该不等式组可能为A.{12x x>-≤B.{12x x≥-<C.{12x x≥-≤D.{12x x<-≥7.以下说法中,你认为正确的选项是A.四边形具有稳定性B.等边三角形是中心对称图形C.任意多边形的外角和是360o D.矩形的对角线一定互相垂直xy=与反比例函数y2=的图象大致是二、填空题〔本小题共8个小题,请将答案写在答题卡相应的位置上,每题3分,总分值24分〕9.2-的相反数是.10.分解因式:=+-122xx.11.如图,AB∥CD,o180∠=,那么=∠2o.5题图12.XX 省第十一届运动会将在我市举行,新建的市体育公园总建筑面积达28000平方米,用科学计数法表示总建筑面积为平方米. 13.如图所给的三视图表示的几何体是.14.长方形的周长为12cm ,长是宽的2倍,那么长为cm . 15.△ABC 中,假设∠A =80o , ∠B =50o ,AC =5,那么AB =.16.有四X 不透明的卡片,正面写有不同命题〔见以下图〕,反面完全一样.将这四X 卡片反面朝上洗匀后,随机抽取一X,得到正面上命题是真命题的概率为.第五套一、选择题:本大题共8小题,每题4分,共32分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的. 1.21-的绝对值是A. 2-B. 2C. 21- D.212.以下计算正确的选项是 A .326222=÷B .6232)2(=C .020=D .221-=-3.XX 市某年6月上旬日最高气温如下表所示:直角三角形中30o的角所对的边是斜边的一半垂直于弦的直径平分这条弦平移改变图形的位置和大小到线段两端距离相等的点在线段的垂直平分线上主视图左视图 俯视图·13题图那么这10天的日最高气温的平均数和众数分别是 A.32,30B.31,30 C.32,32 D.30,304.一个物体由多个完全一样的小正方体组成,它的三视图如图1所示,那么组成这个物体的小正方体的个数为A. 2B. 3C. 4D. 55.某天小明骑自行车上学,途中因自行车发生故障,修车耽误了一段时间后继续骑行,按时赶到了学校. 图2描述了他上学的情景,以下说法中错误的选项是...... A .修车时间为15分钟B .学校离家的距离为2000米C .到达学校时共用时间20分钟D .自行车发生故障时离家距离为1000米6.在电路中,一个电阻的阻值R 和它消耗的电功率P.由电功率计算公式RU P 2=可得它两端的电压U 为 A.PRU =B.RPU = C.PR U = D.PR U ±= 7.⊙O 1和⊙O 2的半径分别为1和4,如果两圆的位置关系为相交,那么圆心距O 1O 2(分钟)图2主视图左视图俯视图 图1的取值范围在数轴上表示正确的选项是8.如图3,先锋村准备在坡角为α的山坡上栽树,要求相邻两树之间的水平距离为5米,那么这两树在坡面上的距离AB 为A. αcos 5B. αcos 5C. αsin 5D. αsin 5二、填空题:本大题共6小题,每题4分,共24分.把答案填在答题卡...中对应题号后的横线上.9.据统计,XX 市现有人口总数约为460万人,将4600000用科学记数法表示为 . 10. 如图4,反比例函数xky =)0(<k 的图象与经过原点的直线l 相交于A 、B 两点,A 点坐标为)1,2(-,那么B 点的坐标为 .xy 图41A B O 1 lOAB DC 图560α5米A B图3 B . D .A . C .11.如图5, AB 与⊙O 相切于点B ,线段OA 与弦BC 垂直于点D ,∠AOB =60°,B C=4cm ,那么切线AB = cm.12.图6是一组有规律的图案,第1个 图案由4个根底图形组成,第2个图案由7个根底图形组成,……,第n (n 是正整数)个图案中由() 个根底图形组成. -13.如图7,将以A 为直角顶点的等腰直角三角形ABC 沿直线BC 平移得到△C B A ''',使点B '与C 重合,连结B A ',那么C B A ''∠tan 的值为 .14.今年“五·一〞节,XX 市某超市开展“有奖促销〞活动,凡购物不少于30元的顾客均有一次转动转盘的时机(如图8,转盘被分为8个全等的小扇形),当指针最终指向数字8时,该顾客获一等奖;当指针最终指向2或5时,该顾客获二等奖(假设指针指向分界限那么重转). 经统计,当天发放一、二等奖奖品共600份,那么AC (B ′) BA′图7C ′图6(1)(2)(3)……据此估计参与此次活动的顾客为______人次.第六套一、选择题〔每题有且只有一个正确答案,此题共8小题,每题3分,共24分〕 1.2-的相反数是A .0B .2C .12-D .122.假设使二次根式2x -在实数范围内有意义...,那么x 的取值范围是A .2x ≥B .2x >C .2x <D .2x ≤3.以下四个图形中,不是..轴对称图形的是A .B .C .D .4.一次函数2y x =+的图象不.经过 A .第一象限 B .第二象限C .第三象限D .第四象限5.估计1832⨯+的运算结果应在 A .1到2之间 B .2到3之间C .3到4之间D .4到5之间6.从分别写有数字4-、3-、2-、1-、0、1、2、3、4的九X 一样的卡片中,任意抽取一X 卡片,那么所抽卡片上数字的绝对值小于2的概率是OC BAA .19B .13C .12D .237.如图是“北大西洋公约组织〞标志的主体局部〔平面图〕,它是由四个完全一样的四边形OABC 拼成的.测得AB BC =,OA OC =,OA OC ⊥,36ABC ∠=︒,那么OAB ∠的度数是A .116︒B .117︒C .118︒D .119︒8.定义:如果一元二次方程20(0)ax bx c a ++=≠满足0a b c ++=,那么我们称这个方程为“凤凰〞方程. 20(0)ax bx c a ++=≠ 是“凤凰〞方程,且有两个相等的实数根,那么以下结论正确的选项是 A .a c = B .a b = C .b c = D . a b c ==二、填空题〔此题共8小题,每题3分,共24分〕9.分解因式:3+2x x=.10.孔明同学买铅笔m 支,每支0.4元,买练习本n 本,每本2元.那么他买铅笔和练习本一共花了 元.11.如图,AB//CD ,AD AC ⊥,32ADC ∠=︒,那么CAB ∠的度数是. 12.反比例函数图象如下图,那么这个反比例函数的解析式是y =.13.在一次体检中,测得某小组5名同学的身高分别是170、162、155、160、168〔单位:厘米〕,那么这组数据的极差是厘米.第12题图第11题图DC BA14.如图,AC BD ⊥于点P ,AP CP =,请增加一个..条件,使ABP ∆≌CDP ∆ (不能添加辅助线),你增加的条件是.15.如图,AC 是O 的直径,CB 与O 相切于点C ,AB 交O 于点D . 51B ∠=︒,那么DOC ∠等于度.16.孔明同学在解方程组2y kx b y x =+⎧⎨=-⎩的过程中,错把b 看成了6,他其余的解题过程没有出错,解得此方程组的解为12=-⎧⎨=⎩x y ,又直线=+y kx b 过点〔3,1〕,那么b 的正确值应是.第14题图PDCBA 第15题图CA第一套答案一、选择题:题 1 2 3 4 5 6 7 8答 D A B C A C D C 二、填空题:9.210.1-11.812.31013.4 14.1615.外切16.112x-第二套答案:第三套答案:一.选择题:本大题共8小题,每题4分,共32分.题号 1 2 3 4 5 6 7 8 答案ACBDABCB二.填空题:本大题共5小题,每题4分,共20分.9.2 10.3111.4 12. 12013.答案不唯一,x 、y 满足2=xy 且0,0<<y x 即可第四套答案:一、选择题〔每题3分,总分值24分〕 题号 12 3 4 5 6 7 8答案 AD B D C A C B二、填空题〔每题3分,总分值24分〕9.2 ; 10.2)1(-x ; 11.100 ; 12.4108.2⨯; 13.圆锥; 14.4 ; 15.5 ; 16.43第五套答案:一、选择题:本大题共8小题,每题4分,共32分.二、填空题:本大题共6小题,每题4分,共24分.9.4.6×106 ,10.)1,2(-,11.4 ,12.3n +1,13.31,14.1600.第六套答案: 一、选择题:9.(3)x x +10.0.42m n +11.122︒12.2x13.15 14.BP DP =或AB CD =或A C ∠=∠或B D ∠=∠或//AB CD 15.78︒16.11-。

中考数学填空题专项练习经典题(含答案解析)(2)

中考数学填空题专项练习经典题(含答案解析)(2)

一、选择题1.如图,ABC ∆是O 的内接三角形,119A ∠=︒,过点C 的圆的切线交BO 于点P ,则P ∠的度数为( )A .32°B .31°C .29°D .61°2.下列智能手机的功能图标中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .3.如图,Rt △ABC 中,∠ABC =90°,AB =8cm ,BC =6cm ,分别以A 、C 为圆心,以2AC的长为半径作圆,将Rt △ABC 截去两个扇形,则剩余(阴影)部分面积为( )A .(24−254π)cm 2 B .254πcm 2 C .(24−54π)cm 2 D .(24−256π)cm 2 4.二次函数236yx x =-+变形为()2y a x m n =++的形式,正确的是( )A .()2313y x =--+B .()2313y x =---C .()2313y x =-++D .()2313y x =-+-5.受益于电子商务发展和法治环境改善等多重因素,“快递业”成为我国经济的一匹“黑马”,2016年我国快递业务量为300亿件,2018年快递量将达到450亿件,若设快递量平均每年增长率为x ,则下列方程中,正确的是( ) A .()3001x 450+= B .()30012x 450+= C .2300(1x)450+=D .2450(1x)300-=6.如图,AC 是⊙O 的内接正四边形的一边,点B 在弧AC 上,且BC 是⊙O 的内接正六边形的一边.若AB 是⊙O 的内接正n 边形的一边,则n 的值为( )A .6B .8C .10D .12 7.若a 是方程22x x 30--=的一个解,则26a 3a -的值为( )A .3B .3-C .9D .9-8.二次函数2y (x 3)2=-++图象的开口方向、对称轴和顶点坐标分别为( )A .向下,直线x 3=,()3,2B .向下,直线x 3=-,()3,2C .向上,直线x 3=-,()3,2D .向下,直线x 3=-,()3,2-9.如图,二次函数2y ax bx c =++的图象与x 轴相交于(﹣2,0)和(4,0)两点,当函数值y >0时,自变量x 的取值范围是( )A .x <﹣2B .﹣2<x <4C .x >0D .x >410.如图,某中学计划靠墙围建一个面积为280m 的矩形花圃(墙长为12m ),围栏总长度为28m ,则与墙垂直的边x 为( )A .4m 或10mB .4mC .10mD .8m 11.方程x 2=4x 的解是( )A .x =0B .x 1=4,x 2=0C .x =4D .x =212.二次函数y=ax 2+bx+c (a≠0)的图象如图所示,则在下列各式子:①abc>0;②a+b+c>0;③a+c>b ;④2a+b=0;⑤∆=b 2-4ac<0中,成立的式子有( )A .②④⑤B .②③⑤C .①②④D .①③④13.天虹商场一月份鞋帽专柜的营业额为100万元,三月份鞋帽专柜的营业额为150万元.设一到三月每月平均增长率为x ,则下列方程正确的是( ) A .100(1+2x )=150B .100(1+x )2=150C .100(1+x )+100(1+x )2=150D .100+100(1+x )+100(1+x )2=15014.已知关于x 的一元二次方程2(2)0a x c -+=的两根为12x =-,26x =,则一元二次方程220ax ax a c -++=的根为( ) A .0,4 B .-3,5 C .-2,4 D .-3,1 15.若关于x 的方程x 2﹣2x +m =0的一个根为﹣1,则另一个根为( )A .﹣3B .﹣1C .1D .3二、填空题16.有一人患了流感,经过两轮传染后共有169人患了流感,每轮传染中平均一个人传染了__人.17.如图,在Rt △ABC 中,∠ABC=90°,AB=BC=2,将△ABC 绕点C 逆时针旋转60°,得到△MNC ,连接BM ,则BM 的长是__.18.△ABC 中,∠A =90°,AB =AC ,以A 为圆心的圆切BC 于点D ,若BC =12cm ,则⊙A 的半径为_____cm .19.一元二次方程250x x c -+=有两个不相等的实数根且两根之积为正数,若c 是整数,则c=_____.(只需填一个).20.已知x=2是关于x 的一元二次方程kx 2+(k 2﹣2)x+2k+4=0的一个根,则k 的值为_____.21.若一元二次方程x 2+px ﹣2=0的一个根为2,则p =_____,另一个根是_____. 22.如图,如果一只蚂蚁从圆锥底面上的点B 出发,沿表面爬到母线AC 的中点D 处,则最短路线长为_____.23.某校组织“优质课大赛”活动,经过评比有两名男教师和两名女教师获得一等奖,学校将从这四名教师中随机挑选两位教师参加市教育局组织的决赛,挑选的两位教师恰好是一男一女的概率为____.24.已知二次函数y=kx2﹣6x﹣9的图象与x轴有两个不同的交点,求k的取值范围_____.25.廊桥是我国古老的文化遗产.如图,是某座抛物线型的廊桥示意图,已知抛物线的函数x2+10,为保护廊桥的安全,在该抛物线上距水面AB高为8米的点表达式为y=−140E,F处要安装两盏警示灯,则这两盏灯的水平距离EF是______米.(精确到1米)三、解答题26.如图,在⊙O中,点C为AB的中点,∠ACB=120°,OC的延长线与AD交于点D,且∠D=∠B.(1)求证:AD与⊙O相切;(2)若CE=4,求弦AB的长.27.某商场要经营一种新上市的文具,进价为20元,试营销阶段发现:当销售单价是25元时,每天的销售量为250件,销售单价每上涨1元,每天的销售量就减少10件(1)写出商场销售这种文具,每天所得的销售利润(元)与销售单价(元)之间的函数关系式;(2)求销售单价为多少元时,该文具每天的销售利润最大;(3)商场的营销部结合上述情况,提出了A、B两种营销方案方案A:该文具的销售单价高于进价且不超过30元;方案B:每天销售量不少于10件,且每件文具的利润至少为25元请比较哪种方案的最大利润更高,并说明理由28.某同学报名参加校运动会,有以下5个项目可供选择:径赛项目:100m,200m,400m(分别用1A 、2A 、3A 表示);田赛项目:跳远,跳高(分别用1B 、2B 表示).()1该同学从5个项目中任选一个,恰好是田赛项目的概率为______;()2该同学从5个项目中任选两个,利用树状图或表格列举出所有可能出现的结果,并求恰好是一个田赛项目和一个径赛项目的概率.29.如图,Rt △ABC 中,∠ABC=90°,以AB 为直径作⊙O ,点D 为⊙O 上一点,且CD=CB 、连接DO 并延长交CB 的延长线于点E (1)判断直线CD 与⊙O 的位置关系,并说明理由; (2)若BE=4,DE=8,求AC 的长.30.在平面直角坐标系xOy 中,抛物线y =a 2x -4ax 与x 轴交于A ,B 两点(A 在B 的左侧). (1)求点A ,B 的坐标; (2)已知点C (2,1),P (1,-32a ),点Q 在直线PC 上,且Q 点的横坐标为4. ①求Q 点的纵坐标(用含a 的式子表示);②若抛物线与线段PQ 恰有一个公共点,结合函数图象,求a 的取值范围.【参考答案】2016-2017年度第*次考试试卷 参考答案**科目模拟测试一、选择题 1.A 2.C3.A4.A5.C6.D7.C8.D9.B10.C11.B12.D13.B14.B15.D二、填空题16.12【解析】【分析】【详解】解:设平均一人传染了x人x+1+(x+1)x=169x=12或x=-14(舍去)平均一人传染12人故答案为1217.1+【解析】【分析】试题分析:首先考虑到BM所在的三角形并不是特殊三角形所以猜想到要求BM可能需要构造直角三角形由旋转的性质可知AC=AM∠CAM=60°故△ACM是等边三角形可证明△ABM与△CB18.【解析】【分析】由切线性质知AD⊥BC根据AB=AC可得BD=CD=AD=BC=6【详解】解:如图连接AD则AD⊥BC∵AB=AC∴BD=CD=AD=BC=6故答案为:6【点睛】本题考查了圆的切线性19.123456中的任何一个数【解析】【分析】【详解】解:∵一元二次方程有两个不相等的实数根∴△=解得∵c是整数∴c=123456故答案为123456中的任何一个数【点睛】本题考查根的判别式;根与系数的20.﹣3【解析】【分析】把x=2代入kx2+(k2﹣2)x+2k+4=0得4k+2k2﹣4+2k+4=0再解关于k的方程然后根据一元二次方程的定义确定k的值即可【详解】把x=2代入kx2+(k2﹣2)x21.-1-1【解析】【分析】设方程的另一根为t根据根与系数的关系得到2+t=-p2t=-2然后先求出t再求出p【详解】解:设方程的另一根为t根据题意得2+t=﹣p2t=﹣2所以t =﹣1p=﹣1故答案为:22.【解析】【分析】将圆锥侧面展开根据两点之间线段最短和勾股定理即可求得蚂蚁的最短路线长【详解】如图将圆锥侧面展开得到扇形ABB′则线段BF为所求的最短路线设∠BAB′=n°∵∴n=120即∠BAB′=23.【解析】【分析】根据列表法求出所有可能及可得出挑选的两位教师恰好是一男一女的结果数而利用概率公式计算可得【详解】解:所有可能的结果如下表:男1男2女1女2男1(男1男2)(男1女124.k>﹣1且k≠0【解析】【分析】根据函数与方程的关系求出根的判别式的符号根据△>0建立关于的不等式通过解不等式即可求得的取值范围【详解】令y=0则kx2﹣6x﹣9=0∵二次函数y=kx2﹣6x﹣9的25.85【解析】由于两盏EF距离水面都是8m因而两盏景观灯之间的水平距离就是直线y=8与抛物线两交点的横坐标差的绝对值故有-140x2+10=8即x2=80x1=45x2=-45所以两盏警示灯之间的水平三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题 1.A 解析:A 【解析】 【分析】根据题意连接OC ,COP ∆为直角三角形,再根据BC 的优弧所对的圆心角等于圆周角的2倍,可计算的COP ∠的度,再根据直角三角形可得P ∠的度数. 【详解】根据题意连接OC.因为119A ∠=︒所以可得BC 所对的大圆心角为2119238BOC ︒︒∠=⨯= 因为BD 为直径,所以可得23818058COD ︒︒︒∠=-= 由于COP ∆为直角三角形 所以可得905832P ︒︒︒∠=-= 故选A. 【点睛】本题主要考查圆心角的计算,关键在于圆心角等于同弧所对圆周角的2倍.2.C解析:C 【解析】 【分析】根据轴对称图形与中心对称图形的概念求解. 【详解】A 、图形既不是轴对称图形是中心对称图形,B 、图形是轴对称图形,C 、图形是轴对称图形,也是中心对称轴图形,D 、图形是轴对称图形. 故选C . 【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.A解析:A 【解析】 【分析】利用勾股定理得出AC 的长,再利用图中阴影部分的面积=S △ABC −S 扇形面积求出即可. 【详解】解:在Rt △ABC 中,∠ABC =90°,AB =8cm ,BC =6cm ,∴10AC ===cm ,则2AC=5 cm , ∴S 阴影部分=S △ABC −S 扇形面积=2190525862423604ππ⨯⨯⨯-=-(cm 2), 故选:A . 【点睛】本题考查了扇形的面积公式,阴影部分的面积可以看作是Rt △ABC 的面积减去两个扇形的面积.求不规则的图形的面积,可以转化为几个规则图形的面积的和或差来求.4.A解析:A 【解析】 【分析】根据配方法,先提取二次项的系数-3,得到()232y x x =--,再将括号里的配成完全平方式即可得出结果. 【详解】解:()()()222236=323211313y x x x x x x x =-+--=--+-=--+,故选:A . 【点睛】本题主要考查的是配方法,正确的掌握配方的步骤是解题的关键.5.C解析:C 【解析】 【分析】快递量平均每年增长率为x ,根据我国2016年及2018年的快递业务量,即可得出关于x 的一元二次方程,此题得解. 【详解】快递量平均每年增长率为x , 依题意,得:2300(1x)450+=, 故选C . 【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.6.D解析:D【解析】【分析】连接AO、BO、CO,根据中心角度数=360°÷边数n,分别计算出∠AOC、∠BOC的度数,根据角的和差则有∠AOB=30°,根据边数n=360°÷中心角度数即可求解.【详解】连接AO、BO、CO,∵AC是⊙O内接正四边形的一边,∴∠AOC=360°÷4=90°,∵BC是⊙O内接正六边形的一边,∴∠BOC=360°÷6=60°,∴∠AOB=∠AOC﹣∠BOC=90°﹣60°=30°,∴n=360°÷30°=12;故选:D.【点睛】本题考查正多边形和圆,解题的关键是根据正方形的性质、正六边形的性质求出中心角的度数.7.C解析:C【解析】由题意得:2a2-a-3=0,所以2a2-a=3,所以6a2-3a=3(2a2-a)=3×3=9,故选C.8.D解析:D【解析】【分析】已知抛物线解析式为顶点式,根据二次项系数可判断开口方向,根据解析式可知顶点坐标及对称轴.【详解】解:由二次函数y=-(x+3)2+2,可知a=-1<0,故抛物线开口向下;顶点坐标为(-3,2),对称轴为x=-3.故选:D.顶点式可判断抛物线的开口方向,对称轴,顶点坐标,最大(小)值,函数的增减性.9.B解析:B【解析】【分析】【详解】当函数值y>0时,自变量x的取值范围是:﹣2<x<4.故选B.10.C解析:C【解析】【分析】设与墙相对的边长为(28-2x)m,根据题意列出方程x(28-2x)=80,求解即可.【详解】设与墙相对的边长为(28-2x)m,则0<28-2x≤12,解得8≤x<14,根据题意列出方程x(28-2x)=80,解得x1=4,x2=10因为8≤x<14∴与墙垂直的边x为10m故答案为C.【点睛】本题考查一元二次方程的应用,根据题意列出方程并求解是解题的关键,注意题中限制条件,选取适合的x值.11.B解析:B【解析】【分析】移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.【详解】x2=4x,x2﹣4x=0,x(x﹣4)=0,x﹣4=0,x=0,x1=4,x2=0,故选B.【点睛】本题考查了解一元二次方程,能把一元二次方程转化成一元一次方程是解此题的关键.12.D【解析】【分析】根据二次函数的性质,利用数形结合的思想一一判断即可.【详解】解:∵抛物线的开口向上,∴a>0,∵对称轴在y轴的右侧,∴a,b异号,∴b<0,∵抛物线交y轴于负半轴,∴c<0,∴abc>0,故①正确,∵x=1时,y<0,∴a+b+c<0,故②错误,∵x=-1时,y>0,∴a-b+c>0,∴a+c>b,故③正确,∵对称轴x=1,∴-b2a=1,∴2a+b=0,故④正确,∵抛物线与x轴有两个交点,∴△=b2-4ac>0,故⑤错误,故选D.【点睛】本题考查二次函数的性质,解题的关键是熟练掌握基本知识,学会利用数形结合的思想解决问题,属于中考常考题型.13.B解析:B【解析】【分析】可设每月营业额平均增长率为x,则二月份的营业额是100(1+x),三月份的营业额是100(1+x)(1+x),则可以得到方程即可.【详解】设二、三两个月每月的平均增长率是x.根据题意得:100(1+x)2=150,故选:B.【点睛】本题考查数量平均变化率问题.原来的数量为a ,平均每次增长或降低的百分率为x 的话,经过第一次调整,就调整到a×(1±x ),再经过第二次调整就是a (1±x )(1±x )=a (1±x )2.增长用“+”,下降用“-”. 14.B解析:B 【解析】 【分析】先将12x =-,26x =代入一元二次方程2(2)0a x c -+=得出a 与c 的关系,再将c 用含a 的式子表示并代入一元二次方程220ax ax a c -++=求解即得.【详解】∵关于x 的一元二次方程2(2)0a x c -+=的两根为12x =-,26x =∴()2620a c -+=或()2220a c --+= ∴整理方程即得:160a c += ∴16c a =-将16c a =-代入220ax ax a c -++=化简即得:22150x x --= 解得:13x =-,25x = 故选:B . 【点睛】本题考查了含参数的一元二次方程求解,解题关键是根据已知条件找出参数关系,并代入要求的方程化简为不含参数的一元二次方程.15.D解析:D 【解析】 【分析】设方程另一个根为x 1,根据一元二次方程根与系数的关系得到x 1+(-1)=2,解此方程即可. 【详解】解:设方程另一个根为x 1, ∴x 1+(﹣1)=2, 解得x 1=3. 故选:D . 【点睛】本题考查一元二次方程ax 2+bx+c=0(a≠0)的根与系数的关系:若方程的两根分别为x 1,x 2,则x 1+x 2=-b a ,x 1•x 2=c a.二、填空题16.12【解析】【分析】【详解】解:设平均一人传染了x人x+1+(x+1)x=169x=12或x=-14(舍去)平均一人传染12人故答案为12解析:12【解析】【分析】【详解】解:设平均一人传染了x人,x+1+(x+1)x=169x=12或x=-14(舍去).平均一人传染12人.故答案为12.17.1+【解析】【分析】试题分析:首先考虑到BM所在的三角形并不是特殊三角形所以猜想到要求BM可能需要构造直角三角形由旋转的性质可知AC=AM∠CA M=60°故△ACM是等边三角形可证明△ABM与△CB解析:【解析】【分析】试题分析:首先考虑到BM所在的三角形并不是特殊三角形,所以猜想到要求BM,可能需要构造直角三角形.由旋转的性质可知,AC=AM,∠CAM=60°,故△ACM是等边三角形,可证明△ABM与△CBM全等,可得到∠ABM=45°,∠AMB=30°,再证△AFB和△AFM是直角三角形,然后在根据勾股定理求解【详解】解:连结CM,设BM与AC相交于点F,如下图所示,∵Rt△ABC中,AB=BC,∠ABC=90°∴∠BCA=∠BAC=45°∵Rt△ABC绕点A逆时针旋转60°与Rt△ANM重合,∴∠BAC=∠NAM=45°,AC=AM又∵旋转角为60°∴∠BAN=∠CAM=60°,∴△ACM是等边三角形∴AC=CM=AM=4在△ABM与△CBM中,BA BC AM CM BM BM=⎧⎪=⎨⎪=⎩∴△ABM≌△CBM (SSS)∴∠ABM=∠CBM=45°,∠CMB=∠AMB=30°∴在△ABF中,∠BFA=180°﹣45°﹣45°=90°∴∠AFB=∠AFM=90°在Rt△ABF中,由勾股定理得,BF=AF=2212AB BC+=又在Rt△AFM中,∠AMF=30°,∠AFM=90°FM=3AF=3∴BM=BF+FM=1+3故本题的答案是:1+3点评:此题是旋转性质题,解决此题,关键是思路要明确:“构造”直角三角形.在熟练掌握旋转的性质的基础上,还要应用全等的判定及性质,直角三角形的判定及勾股定理的应用18.【解析】【分析】由切线性质知AD⊥BC根据AB=AC可得BD=CD=AD=BC =6【详解】解:如图连接AD则AD⊥BC∵AB=AC∴BD=CD=AD=BC=6故答案为:6【点睛】本题考查了圆的切线性解析:【解析】【分析】由切线性质知AD⊥BC,根据AB=AC可得BD=CD=AD=12BC=6.【详解】解:如图,连接AD,则AD⊥BC,∵AB=AC,∴BD=CD=AD=12BC=6,故答案为:6.【点睛】本题考查了圆的切线性质,解题的关键在于掌握圆的切线性质.19.123456中的任何一个数【解析】【分析】【详解】解:∵一元二次方程有两个不相等的实数根∴△=解得∵c 是整数∴c=123456故答案为123456中的任何一个数【点睛】本题考查根的判别式;根与系数的解析:1,2,3,4,5,6中的任何一个数. 【解析】 【分析】 【详解】解:∵一元二次方程250x x c -+=有两个不相等的实数根,∴△=2(5)40c -->,解得254c <, ∵125x x +=,120x x c =>,c 是整数, ∴c=1,2,3,4,5,6.故答案为1,2,3,4,5,6中的任何一个数. 【点睛】本题考查根的判别式;根与系数的关系;开放型.20.﹣3【解析】【分析】把x=2代入kx2+(k2﹣2)x+2k+4=0得4k+2k2﹣4+2k+4=0再解关于k 的方程然后根据一元二次方程的定义确定k 的值即可【详解】把x=2代入kx2+(k2﹣2)x解析:﹣3【解析】【分析】把x=2代入kx 2+(k 2﹣2)x+2k+4=0得4k+2k 2﹣4+2k+4=0,再解关于k 的方程,然后根据一元二次方程的定义确定k 的值即可.【详解】把x=2代入kx 2+(k 2﹣2)x+2k+4=0得4k+2k 2﹣4+2k+4=0, 整理得k 2+3k=0,解得k 1=0,k 2=﹣3, 因为k≠0, 所以k 的值为﹣3. 故答案为:﹣3.【点睛】本题考查了一元二次方程的定义以及一元二次方程的解,能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.21.-1-1【解析】【分析】设方程的另一根为t 根据根与系数的关系得到2+t=-p2t=-2然后先求出t 再求出p 【详解】解:设方程的另一根为t 根据题意得2+t =﹣p2t =﹣2所以t =﹣1p =﹣1故答案为:解析:-1 -1 【解析】 【分析】设方程的另一根为t ,根据根与系数的关系得到2+t=-p ,2t=-2,然后先求出t ,再求出p . 【详解】解:设方程的另一根为t ,根据题意得2+t=﹣p,2t=﹣2,所以t=﹣1,p=﹣1.故答案为:﹣1,﹣1.【点睛】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=-ba,x1•x2=ca.22.【解析】【分析】将圆锥侧面展开根据两点之间线段最短和勾股定理即可求得蚂蚁的最短路线长【详解】如图将圆锥侧面展开得到扇形ABB′则线段BF 为所求的最短路线设∠BAB′=n°∵∴n=120即∠BAB′=解析:3【解析】【分析】将圆锥侧面展开,根据“两点之间线段最短”和勾股定理,即可求得蚂蚁的最短路线长.【详解】如图将圆锥侧面展开,得到扇形ABB′,则线段BF为所求的最短路线.设∠BAB′=n°.∵64 180nππ⋅=,∴n=120,即∠BAB′=120°.∵E为弧BB′中点,∴∠AFB=90°,∠BAF=60°,Rt△AFB中,∠ABF=30°,AB=6∴AF=3,BF2263-=3,∴最短路线长为3.故答案为:3【点睛】本题考查“化曲面为平面”求最短路径问题,属中档题.23.【解析】【分析】根据列表法求出所有可能及可得出挑选的两位教师恰好是一男一女的结果数而利用概率公式计算可得【详解】解:所有可能的结果如下表:男1男2女1女2男1(男1男2)(男1女1解析:2 3【解析】【分析】根据列表法求出所有可能及可得出挑选的两位教师恰好是一男一女的结果数而利用概率公式计算可得.【详解】解:所有可能的结果如下表:的结果有8种,所以其概率为挑选的两位教师恰好是一男一女的概率为812=23,故答案为23.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.24.k>﹣1且k≠0【解析】【分析】根据函数与方程的关系求出根的判别式的符号根据△>0建立关于的不等式通过解不等式即可求得的取值范围【详解】令y=0则kx2﹣6x﹣9=0∵二次函数y=kx2﹣6x﹣9的解析:k>﹣1且k≠0.【解析】【分析】根据函数与方程的关系,求出根的判别式的符号,根据△>0建立关于k的不等式,通过解不等式即可求得k的取值范围.【详解】令y=0,则kx2﹣6x﹣9=0.∵二次函数y=kx2﹣6x﹣9的图象与x轴有两个不同的交点,∴一元二次方程kx 2﹣6x ﹣9=0有两个不相等的解,()()206490k k ≠⎧⎪∴⎨=--⨯->⎪⎩, 解得:k >﹣1且k ≠0. 故答案是:k >﹣1且k ≠0. 【点睛】本题考查了一元二次方程与函数的关系,函数与x 轴的交点的横坐标就是方程的根,若函数与x 轴有交点说明方程有根,两者互相转化,要充分运用这一点来解题. .25.85【解析】由于两盏EF 距离水面都是8m 因而两盏景观灯之间的水平距离就是直线y=8与抛物线两交点的横坐标差的绝对值故有-140x2+10=8即x2=80x1=45x2=-45所以两盏警示灯之间的水平解析:8√5 【解析】由于两盏E 、F 距离水面都是8m ,因而两盏景观灯之间的水平距离就 是直线y=8与抛物线两交点的横坐标差的绝对值. 故有−140x 2+10=8,即x 2=80,x 1=4√5,x 2=−4√5.所以两盏警示灯之间的水平距离为:|x 1−x 2|=|4√5−(−4√5)|=8√5≈18(m )三、解答题 26.(1)见解析;(2)83 【解析】 【分析】(1)连接OA ,由=CA CB ,得CA=CB ,根据题意可得出∠O=60°,从而得出∠OAD=90°,则AD 与⊙O 相切;(2)由题意得OC ⊥AB ,Rt △BCE 中,由三角函数得BE=43,即可得出AB 的长. 【详解】(1)证明:如图,连接OA ,∵=CA CB ,∴CA=CB,又∵∠ACB=120°,∴∠B=30°,∴∠O=2∠B=60°,∵∠D=∠B=30°,∴∠OAD=180°﹣(∠O+∠D)=90°,∴AD与⊙O相切;(2)∵∠O=60°,OA=OC,∴△OAC是等边三角形,∴∠ACO=60°,∵∠ACB=120°,∴∠ACB=2∠ACO,AC=BC,∴OC⊥AB,AB=2BE,∵CE=4,∠B=30°,∴BC=2CE=8,∴BE2CE∴AB=2BE=∴弦AB的长为.【点睛】本题考查了切线的判定和性质,垂径定理,解直角三角形,熟练掌握切线的判定和性质是解题的关键.27.(1) w=-10x2+700x-10000;(2) 即销售单价为35元时,该文具每天的销售利润最大; (3) A方案利润更高.【解析】【分析】试题分析:(1)根据利润=(单价-进价)×销售量,列出函数关系式即可.(2)根据(1)式列出的函数关系式,运用配方法求最大值.(3)分别求出方案A、B中x的取值范围,然后分别求出A、B方案的最大利润,然后进行比较.【详解】解:(1)w=(x-20)(250-10x+250)=-10x2+700x-10000.(2)∵w=-10x2+700x-10000=-10(x-35)2+2250∴当x=35时,w有最大值2250,即销售单价为35元时,该文具每天的销售利润最大.(3)A方案利润高,理由如下:A方案中:20<x≤30,函数w=-10(x-35)2+2250随x的增大而增大,∴当x=30时,w有最大值,此时,最大值为2000元.B 方案中:{−10x +500≥10x −20≥25,解得x 的取值范围为:45≤x≤49. ∵45≤x≤49时,函数w =-10(x -35)2+2250随x 的增大而减小,∴当x=45时,w 有最大值,此时,最大值为1250元.∵2000>1250,∴A 方案利润更高28. (1)25;(2)35. 【解析】【分析】 (1)由5个项目中田赛项目有2个,直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好是一个田赛项目和一个径赛项目的情况,再利用概率公式即可求得答案.【详解】(1)∵5个项目中田赛项目有2个,∴该同学从5个项目中任选一个,恰好是田赛项目的概率为:25. 故答案为25; (2)画树状图得:∵共有20种等可能的结果,恰好是一个田赛项目和一个径赛项目的有12种情况,∴恰好是一个田赛项目和一个径赛项目的概率为:123205. 【点睛】本题考查了用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比. 29.(1)相切,证明见解析;(2)2.【解析】【分析】(1)欲证明CD 是切线,只要证明OD ⊥CD ,利用全等三角形的性质即可证明;(2)设⊙O 的半径为r .在Rt △OBE 中,根据OE 2=EB 2+OB 2,可得(8﹣r )2=r 2+42,推出r=3,由tan ∠E=OB CD EB DE=,推出348CD =,可得CD=BC=6,再利用勾股定理即可解决问题.【详解】 解:(1)相切,理由如下,如图,连接OC ,∵CB=CD ,CO=CO ,OB=OD ,∴△OCB ≌△OCD ,∴∠ODC=∠OBC=90°,∴OD ⊥DC ,∴DC 是⊙O 的切线;(2)设⊙O 的半径为r ,在Rt △OBE 中,∵OE 2=EB 2+OB 2,∴(8﹣r )2=r 2+42,∴r=3,AB=2r=6,∵tan ∠E=OB CD EB DE =, ∴348CD =, ∴CD=BC=6,在Rt △ABC 中,22226662AB BC ++=【点睛】本题考查直线与圆的位置关系、圆周角定理、勾股定理、锐角三角函数等知识,正确添加辅助线,熟练掌握和灵活应用相关知识解决问题是关键. 30.(1)A (0,0),B (4,0);(2)①Q 点的纵坐标为3+3a ,②符合题意的a 的取值范围是 -1≤a <0. 【解析】【分析】(1)令y =0,则a 2x -4ax =0,可求得A 、B 点坐标;(2)①设直线PC 的解析式为,将点P (1,-32a ),C (2,1)代入可解得31,13.2k a b a =+=--()3113.2y x a =+-- 由于Q 点的横坐标为4,可求得Q 点的纵坐标为3+3a ②当a >0时,如图1,不合题意;当a <0时,由图2,图3可知,3+3a≥0,可求出a 的取值范围.【详解】(1)令y =0,则a 2x -4ax =0.解得 120, 4.x x ==∴ A (0,0),B (4,0)(2)①设直线PC 的解析式为.y kx b =+将点P (1,-32a ),C (2,1)代入上式, 解得31,13.2k ab a =+=-- ∴y=(1+32a)x-1-3a. ∵点Q 在直线PC 上,且Q 点的横坐标为4,∴Q 点的纵坐标为3+3a②当a >0时,如图1,不合题意;当a <0时,由图2,图3可知,3+3a≥0.∴a≥-1.∴符合题意的a 的取值范围是 -1≤a <0.图1 图2 图3【点睛】本题考查二次函数的图象及性质;熟练掌握二次函数图象上点的特征,数形结合讨论交点是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学填空题精选1.如图,已知△ABC 中,AB=5,AC=3,则BC 边上的中线AD 的取值范围是________________. 2.如图,已知抛物线y =x 2+bx+c 经过点(0,-3),请你确定一个b 的值,使该抛物线与x 轴的一个交点在(1,0)和(3,0)之间,你所确定的b 的值是_________.3.如图,△ABC 中,∠C=900,点O 在边BC 上,以O 为圆心,OC 为半径的圆交边AB 于点D 、E ,交边BC于点F ,若D 、E 三等分AB ,AC=2,则⊙O 的半径为__________.4.半径分别为10和17的两圆相交,公共弦长为16,则两圆的圆心距为__________.5.已知方程( 2013x )2-2012·2014x-1=0的较大根为a ,方程x 2+2013x-2014=0的较小根为b ,则a-b=______.6.从甲地到乙地有A 1、A 2两条路线,从乙地到丙地有B 1、B 2、B 3三条路线,从丙地到丁地有C 1、C 2两条路线.一个人任意选了一条从甲地到丁地的路线,他恰好选到B 2路线的概率是_________.7.如图,在半径为4,圆心角为90°的扇形OAB 的AB ︵ 上有一动点P ,过P 作PH ⊥OA 于H .设△OPH 的内心为I ,当点P 在AB ︵ 上从点A 运动到点B 时,内心I 所经过的路径长为___________.8.在平面直角坐标系中,已知点P 1的坐标为(1,0),将其绕原点按逆时针方向旋转30°得到点P 2,延长OP 2到点P 3,使OP 3=2OP 2,再将点P 3绕原点按逆时针方向旋转30°得到P 4,延长OP 4到点P 5,使OP 5=2OP 4,如此继续下去,则点P 2014的坐标是_____________.9.木工师傅可以用角尺测量并计算出圆的半径r .如图,用角尺的较短边紧靠⊙O ,并使较长边与⊙O 相切于点C .假设角尺的较长边足够长,角尺的顶点为B ,较短边AB=8cm .若读得BC 长为acm ,则用含a的代数式表示r 为_____________.10.已知A (-3,0),B (0,-4),P 为反比例函数y= 12 x(x >0)图象上的动点,PC ⊥x 轴于C ,PD ⊥y轴于D ,则四边形ABCD 面积的最小值为___________.11.一袋装有四个分别标有数字1、2、3、4,除数字外其它完全相同的小球,摇匀后,甲从中任意抽取1个,记下数字后放回摇匀,乙再从中任意抽取一个,记下数字,然后把这两个数相加,当两数之和为3时,甲胜,反之乙胜.若甲胜一次得7分,那么乙胜一次得__________分,这个游戏对双方才公平.12.在平面直角坐标系中,已知点A(2,4),B(4,2),C(1,1),点P在x轴上,且四边形ABOP的面积是△ABC的面积的2倍,则点P的坐标为___________13.如图,点A(0,4),B(4,0),C(10,0),点P在直线AB上,且∠OPC=90º,则点P的坐标为__________.14.如图,在平面直角坐标系中,点A的坐标是(-2,4),AB⊥y轴于B,抛物线y=-x2-2x+c经过点A,将抛物线向下平移m个单位,使平移后得到的抛物线顶点落在△AOB的内部(不包括△AOB的边界),则m 的取值范围是______________.15.某校社会实践小组开展调查快餐营养情况活动,他们从食品安全监督部门获取了一份快餐的信息(如图).若这份快餐中蛋白质和碳水化合物所占百分比的和不高于85%,则其中所含碳水化合物质量的最大值为__________克.16.如图,正方形A1B1P1P2的顶点P1、P2在反比例函数y=2x(x>0)的图象上,顶点A1、B1分别在x轴、y轴的正半轴上,在其右侧作正方形P2P3A2B2,顶点P3在反比例函数y=2x(x>0)的图象上,顶点A2在x轴的正半轴上,则点P3的坐标为______________.17.如图,在平面直角坐标系中,点A 在第二象限,点B 在x 轴的负半轴上,△AOB 的外接圆与y 轴交于点C (0,2),∠AOB=45°,∠BAO=60°,则点A 的坐标为______________.18.已知抛物线1)1(2----=m x m x y 与x 轴交于A 、B 两点,顶点为为C,则△ABC 的面积的最小值为______.19.在平面直角坐标系中,A 、B 两点的坐标分别为(-1,1)、(2,2),直线y =kx-1与线段AB 的延长线相交(交点不包括B ),则实数k 的取值范围是______________.20.如图,图①中的圆与正方形各边都相切,设这个圆的周长为C 1;图②中的四个圆的半径相等,并依次外切,且与正方形的边相切,设这四个圆的周长之和为C 2;图③中的九个圆的半径相等,并依次外切,且与正方形的边相切,设这九个圆的周长之和为C 3;…,依此规律,当正方形边长为2时,则C 1+C 2+C 3+…+C 99+C 100=______.21.如图,在平行四边形ABCD 中,AB=3,BC=4,∠B=600,E 是BC 的中点,EF ⊥AB 于点,则△DEF 的面积为______.22.如图,正方形ABCD 的面积为12,点E 在正方形ABCD 内,△ABE 是等边三角形,点P 在对角线AC 上,则PD+PE 的最小值为___________.23.如图,AB 是⊙O 的直径,弦CD ⊥AB 于E ,分别以AE 、BE 为直径作两个大小不同的⊙O 1和⊙O 2,若CD=16,则图中阴影部分的面积为___________(结果保留π).24.如图,在平面直角坐标系中,等边三角形ABC 的顶点B ,C 的坐标分别为(1,0),(3,0),过坐标原点O 的一条直线分别与边AB ,AC 交于点M ,N ,若OM=MN ,则点M 的坐标为____________.25.如图,已知一次函数y =-x+8与反比例函数y= k x 的图象在第一象限内交于A 、B 两点,且△AOB 的面积为24,则k=_________. 26.有三个含30°角的直角三角形,它们的大小互不相同,但均有一条长为a 的边,那么,这三个三角形按照从小到大的顺序,它们的面积比为______________.27.有四张正面分别标有数学-3,0,1,5的不透明卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中任取一张,将该卡片上的数学记为a ,则使关于x 的分式方程xx ax -=+--21221 错误!未找到引用源。

有正整数解的概率为_________.28.关于x 的方程012)1(22=-+-ax x a 的两个根一个小于0,另一个大于1,则a 的取值范围是________.29.已知二次函数y =ax 2+bx+c 的图象与x 轴交于(-2,0)、(x 1,0)两点,且1<x 1<2,与y 轴正半轴的交点在(0,2)的下方,下列结论:①a<b<0;②2a +c>0;③4a +c<0;④2a-b+1>0.其中正确结论的序号是__________.30.如图,直线x x y 22+-= 交x 轴、y 轴于点B 、A ,点C 的坐标为(4 2,0),P 是直线AB 上一点,且∠OPC=45º,则点P 的坐标为_____________.31.如图,在△ABC 中,AB=AC=5,以AB 为直径的⊙O 分别交AC 、BC 于点D 、E ,点F 在AC 的延长线上,且55sin ,21=∠∠=∠CBF A CBF ,则BF 的长为_________. 32.如图,Rt △ABC 中,已知∠C=90°,∠B=50°,点D 在边BC 上,BD=2CD .将△ABC 绕点D 按顺时针旋转角α(0<α<180°)后,点B 恰好落在初始Rt △ABC 的边上,那么α=____________°.33.如图,直线y =kx-2(k >0)与双曲线y= k x在第一象限内交于点A ,与x 轴、y 轴分别交于点B 、C .AD ⊥x 轴于点D ,且△ABD 与△OBC 的面积相等,则k 的值等于_________.34.如图,在△ABC 中,∠ACB=900,∠A=200.将△ABC 绕点C 按逆时针方向旋转角α后得△A /B /C ,此时点B 在A /B /上,CA /交AB 于点D .则∠BDC 的度数为__________.35.如图,等边△ABC 的边长为8,E 是中线AD 上一点,以CE 为一边在CE 下方作等边△CEF ,连接BF并延长至点N ,M 为BN 上一点,且CM =CN =5,则MN 的长为__________.36.标有1,1,2,3,3,5六个数字的立方体的表面展开图如图所示,掷这个立方体一次,记朝上一面的数为x ,朝下一面的数为y ,得到平面直角坐标系中的一个点(x ,y ).已知小华前二次掷得的两个点所确定的直线经过点P (4,7),那么他第三次掷得的点也在这条直线上的概率为_________.37.方程11212-=--+-+x x x x x 的解为x=__________.38.如图,矩形ABCD 边AB 在x 轴上,AB 的中点与原点O 重合,AB=2,AD=1,点E 的坐标为(0,2).点F (a,0)在边AB 上运动,若过点E 、F 的直线将矩形ABCD 的周长分成2 :1两部分,则a 的值为__________.39.如图,DB 为半圆的直径,A 为BD 延长线上一点,AC 切半圆于点E ,BC ⊥AC 于点C,交半圆于点F.已知BD=4,设AD=x ,CF=y ,则y 关于x 的函数关系式为_______________.40.如图,在正方形ABCD 内有一折线段,其中AE ⊥EF,EF ⊥FC ,并且AE=6,EF=8,FC=10,则正方形与其外接圆之间形成的阴影部分的面积为___________.41.如图,点A 、B 在反比例函数y=k x的图象上,且点A 、B 的横坐标分别为a 、2a (a <0),若S △AOB =3,则k 的值为_________.42.如图,在平面直角坐标系中,△ABC 是直角三角形,∠ACB=90°,∠ABC=30°,直角边BC 在x 轴上,其内切圆的圆心坐标为I (0,1),抛物线122++=ax ax y 的顶点为A ,则a=________.43.如图,在△ABC 中,∠ABC 和∠ACB 的平分线相交于O ,过O 作EF ∥BC 交AB 于E ,交AC 于F ,过O作OD ⊥AC 于D .下列四个结论:①EF 是△ABC 的中位线;②以E 为圆心、BE 为半径的圆与以F 为圆心、CF 为半径的圆外切;③设OD=m ,AE +AF=2n ,则S △AEF =mn ;④∠BOC=90º+1 2 ∠A ;其中正确的结论是_________.44.方程 1 x 2+3x +2 + 1 x 2+5x +6 + 1 x 2+7x +12 + 1 x 2+9x +20 =1 8 的解是x=___________. 45.已知△ABC 的一条边长为5,另两条边长恰好是一元二次方程01222=+-m x x 的两个根,则实数m的取值范围是________________.46.已知点P (a+1,a-1)关于x 轴的对称点在反比例函数y=-8 x(x>0)的图像上,y 关于x 的函数1)12(22++-=x k x k y 的图像与坐标轴只有两个不同的交点A,B ,则△PAB 的面积为___________.47.如图,在等腰直角三角形ABC 中,∠C=900,D 为BC 的中点,将△ABC 折叠,使点A 与点D 重合,EF为折痕,则DFDE的值为__________.48.如图,AB 是⊙O 的直径,AC 是弦,将△ABC 沿AC 翻折,点B 落在点D 处,AD 交⊙O 于点E ,连接EC .若EC ∥AB ,则∠BAC=_________°.49.如图,矩形OABC 的顶点O 在坐标原点,顶点A 、C 分别在x 轴、y 轴的正半轴上,OA=3,OC=4,D 为边OC的中点,E 、F 为边OA 上的两个动点,且EF=2,当四边形BDEF 的周长最小时,点E 的坐标为___________.50.如图1,直线l 1∥l 2,l 1、l 2之间的距离为6,圆心为O 、半径为4的半圆形纸片的直径AB 在l 1上,点P 为半圆上一点,设∠AOP=α.将扇形纸片BOP 剪掉,使扇形纸片AOP 绕点A 按逆时针方向旋转(如图2).要使点P 能落在直线l 2上,则α的取值范围是______________.(参考数据:sin49°= 3 4,tan37°= 3 4 )51.如图,将直线y =x 向下平移b 个单位长度后得到直线l,l 与反比例函数)0(3>=x xy 的图象相交于点A ,与x 轴相交于点B ,则22OB OA -=__________. 52.如图,矩形ABCD 的周长为32cm ,E 是AD 上一点,DE=4cm ,F 是AB 上一点,EF ⊥EC ,且EF=EC ,则矩形ABCD 的面积为__________cm 2.53.如图,矩形纸片ABCD,BC=10,点E 是AB 上一点,把△BCE 沿EC 向上翻折,使点B 落在AD 边上点F 处,若⊙O 内切于以B 、C 、F 、E 为顶点的四边形,且AE:EB=3: 5,则⊙O 的半径为_________.54.如图,在边长为1的正方形ABCD 中,以BC 为边在正方形内作等边△BCE ,并与正方形的对角线交于点F 、G ,则图中阴影图形AFEGD 的面积为______________.55.如图,等腰Rt △ABC 的直角边长为4,以A 为圆心,直角边AB 为半径作弧BC 1,交斜边AC 于点C 1,C 1B 1⊥AB 于点B 1,设弧BC 1与线段C 1B 1、B 1B 围成的阴影部分的面积为S 1,再以A 为圆心,AB 1为半径作弧B 1C 2,交斜边AC 于点C 2,C 2B 2⊥AB 于点B 2,设弧B 1C 2与线段C 2B 2,B 2B 1围成的阴影部分的面积为S 2,按此规律继续作下去,则S 1+S 2+S 3+…+S n =________________.(用含有n 的代数式表示)56.如图,边长为4的正方形AOBC 的顶点O 在坐标原点,顶点A 、B 分别在y 轴正半轴和x 轴正半轴上,P 为OB 边上一动点(不与O 、B 重合),DP ⊥OB 交AB 于D .将正方形AOBC 折叠,使点C 与点D 重合,折痕EF 与PD 的延长线交于点Q ,设点Q 的坐标为(x ,y ),则y 关于x 的函数关系式为_______________.57.已知点A 、B 的坐标分别为(1,0),(2,0),若二次函数3)3(2+-+=x a x y 的图象与线段AB 恰有一个交点,则a 的取值范围是______________.58.已知一个半圆形工件,未搬动前如图所示,直径平行于地面放置,搬动时为了保护圆弧部分不受损伤,先将半圆如图所示的无滑动翻转,使它的直径紧贴地面,再将它沿地面平移50m ,半圆的直径为4m ,则圆心O 所经过的路线长是____________m .(结果用π表示)59.已知点P 是一次函数4+-=x y 的图象在第一、四象限上的动点,点Q 是反比例函数)0(3>=x xy 图象上的动点,PP 1⊥x 轴于P 1,PP 2⊥y 轴于P 2,QQ 1⊥x 轴于Q 1,QQ 2⊥y 轴于Q 2,设点P 的横坐标为x ,矩形PP 1OP 2的面积为S 1,矩形QQ 1OQ 2的面积为S 2,则当S 1<S 2时,x 的取值范围是________________________.60.如图,在5×5的正方形网格中,△ABC 的三个顶点都在格点上,若△A 1B 1C 1的三个顶点也在格点上,且与△ABC 相似,面积最大,则△A 1B 1C 1的面积为__________.61.在一条直线上依次有A 、B 、C 三个港口,甲、乙两船同时分别从A 、B 港口出发,沿直线匀速驶向C 港,最终达到C 港.设甲、乙两船行驶t (h )后,与B 港的距离分别为S 1,S 2(km ),S 1,S 2与t 的函数关系如图所示.若甲、乙两船的距离不超过10 km 时可以相互看见,则两船可以相互看见时t 的取值范围是_________.62.如图所示,在梯形ABCD 中,AD ∥BC ,CE 是∠BCD 的平分线,且CE ⊥AB ,E 为垂足,BE =2AE ,若四边形AECD 的面积为1,则梯形ABCD 的面积为___________.63.如图,AC 为⊙O 的直径,PA ⊥AC 于点A ,BC 是⊙O 的一条弦,直线PB 交直线AC 于点D ,且32==DO DC DP DB ,则cos ∠BCA 的值等于_________.64.已知反比例函数y= k x图象经过点A (-1,-3),点P 是反比例函数图象在第一象限上的动点,以OA 、OP 为邻边作平行四边形OABP,则平行四边形OABP 周长的最小值为_____________.65.在平面直角坐标系中,反比例函数)0(2≠=k xk y 满足:当x<0时,y 随x 的增大而减小.若该反比例函数的图象与直线k x y 3+-=都经过点P ,且7=OP ,则k=__________.66.如图所示,在矩形ABCD 中,AB=nBC ,E 为BC 中点,DE ⊥AC ,则n=__________.67.如图,平行四边形DEFG 的四个顶点在△ABC 的三边上,若△ADG 、△DBE 、△GFC 的面积分别为2、5、3,则△ABC 的面积为__________.68.在直角坐标系中,把横坐标、纵坐标都是整数的点称为格点.如图,⊙O 的半径是 5,圆心与坐标原点重合,l 为经过⊙O 上任意两个格点的直线,则直线l 同时经过第一、二、四象限的概率为________.69.已知:22,122≤+≤-=+b a b a ,记ab b a t ++=,则t 的取值范围是_______________.70.已知抛物线c bx x y ++-=2过点A (4,0)、B (1,3),对称轴为直线l,点P 是抛物线上第四象限的一点,点P 关于直线l 的对称点为C,点C 关于y 轴的对称点为D,若四边形OAPD 的面积为20,则点P 的坐标为____________.71.已知二次函数1222+-+=b ax x y 和1)3(22-+-+-=b x a x y 的图象都经过x 轴上两个不同的点M ,N ,则a=________,b=________.72.如图,已知正方形纸片ABCD 的边长是⊙O 半径的4倍,圆心O 是正方形ABCD 的中心,将纸片按图示方式折叠,使EA 1恰好与⊙O 相切于点A 1,则tan ∠A 1EF 的值为_________.73.如图,将边长为2的正方形ABCD 沿直线l 向右无滑动地连续翻滚2014次,则正方形ABCD 的中心经过的路线长为_______________,顶点A 经过的路线长为_______________.74.如图,半圆O 的直径AB=8,C 为AO 的中点,CD ⊥AB 交半圆于点D ,以C 为圆心,CD 为半径画弧DE 交AB 于E 点,则图中阴影部分的面积为_____________.75.在平行四边形ABCD 中,AE ⊥BC ,AF ⊥CD ,E 、F 为垂足,连接EF .若AB=13,BE=5,EC=9,则EF 的长为____________.76.正方形ABCD 内接于半径为2 的⊙O ,E 为DC 的中点,连接BE ,则点O 到BE 的距离等于_________.77.如图,在△ABC 中,∠BAC=45°,AD 是BC 边上的高,BD=3,DC=2,则AD 的长为_________.78.已知抛物线)2)(3(a x x y ++-=)与x 轴交于A 、B 两点,与y 轴交于点C ,且△ABC 为直角三角形,则a 的值为___________.79.从-2,-1,0,1这四个数中任取两个不同的数作为一次函数y=kx+b 的一次项系数k 和常数项b .那么一次函数y=kx +b 图象不经过第三象限的概率为___________.80.已知正方形ABCD 的边长为4,以AB 为直径在正方形内作半圆,E 是半圆上一点,且CE=CB,延长CE 交BA 延长线于点F ,则EF 的长为___________.81.如图,在平面直角坐标系中,直线643+-=x y 分别与x 轴交于点A,与y 轴交于点B,点C 在线段AB 上,以CA 为直径的⊙D 交x 轴于另一点E ,连接BE.当⊙D 与直线BE 相切时,点D 的坐标为___________.82.如图,⊙O 的半径为3,PA 切⊙O 于点A ,PA=4,PO 的延长线交⊙O 于点B ,则弦AB 的长为________.83.如图,直线b x y +-=33与y 轴交于点A ,与双曲线xk y = 在第一象限交于B 、C 两点,且AB ·AC=4,则k=_______. 84.在直角梯形ABCD 中,AD ∥BC ,∠BAD=900,AD=4,BC=9,以AB 为直径的⊙O 与CD 相切于点E ,则弦AE 的长为___________.85.在平面直角坐标系中,将点A (a ,b )沿水平方向平移m 个单位到点A 1,再将点A 1绕坐标原点顺时针旋转90︒到点A 2,则点A 2的坐标为_______________.86.已知AB 是半径为2的⊙O 的一条弦,AB=23,点P 是⊙O 上任意一点(与A 、B 不重合).(1)如图1,若点P 在⊙O 优弧AB 上,AP 、BP 分别与以AB 为直径的圆交于点C 、D ,则CD 的长为________;(2)如图2,若点P 是⊙O 劣弧AB 上一点,AP 、BP 的延长线分别与以AB 为直径的圆交于点C 、D ,则CD 的长为__________.87.已知Rt △ABC 中,∠BAC=90°,AB=6,AC=8,AD 是BC 边上的中线,将△ABC 沿过点C 的直线折叠,折痕分别交AB 、AD 于点E 、F .(1)当点A 恰好落在BC 边上时,点E 到BC 的距离为_____________;(2)当△CDF 与△AEF 面积相等时,点F 到BC 的距离为_____________.88.已知函数y =ax 2+2x +1.(1)若函数图象与x 轴只有一个交点,则a =___________;(2)若方程ax 2+2x+1=0至少有一正根,则a 的取值范围是___________.89.从甲、乙2名医生和丙、丁2名护士中任意抽取2人参加医疗队,那么抽取的2人恰好是一名医生和一名护士的概率为___________.90.已知点P (a,b )是双曲线x c y 12+=(c 为常数)和直线141+-=x y 的一个交点,则222c b a ++的值是___________.91.如图,Rt △AOB 中,O 为坐标原点,∠AOB=900,∠B=300,如果点A 在反比例函数y=1 x(x>0)的图象上运动,那么点B 在函数_____________(填函数解析式)的图象上运动.92.如图,直线y =kx+b 过点A (0,2),且与直线y =ax 交于点P (1,a ),则不等式组ax>kx +b>ax-2的解集是_____________.93.如图,在矩形ABCD 中,E 是BC 边上的点,连接AE 、DE ,将△DEC 沿线段DE 翻折,点C 恰好落在线段AE 上的点F 处.若AB=6,BE : EC=4 : 1,则线段DE 的长为___________.94.如图,将边长为33+ 的等边△ABC 折叠,折痕为DE ,点B 与点F 重合,EF 和DF 分别交AC 于点M 、N ,DF ⊥AB 于D ,AD=1,则重叠部分(即四边形DEMN )的面积为____________.95.图1是一个八角星形纸板,图中有八个直角,八个相等的钝角,每条边都相等;如图2将纸板沿虚线进行切割,无缝隙无重叠地拼成图3所示的大正方形,其面积为248+,则图3中线段AB 的长为_________.96.如图,在Rt △ABC 中,∠C=900,AC=4,BC=3,⊙O 为△ABC 的内切圆,点D 是斜边AB 的中点,则tan ∠ODB=_________.97.如图,Rt △ABC 中,∠C=900,AC=3,BC=8,顶点B 、C 分别在x 轴、y 轴的正半轴上滑动,则点A 到原点O 的最大距离为__________,此时点A 的坐标为____________.98.如图,直线121+-=x y 与y 轴交于点A ,与双曲线y=k x 在第一象限交于B 、C 两点,设B 、C 两点的纵坐标分别为y 1,y 2,则y 1+ y 2的值为___________.99.已知关于x 的方程x 2+bx+1=0的两实根为α,β,且α>β,以αββαβα,33,22-+为三边的三角形是等腰三角形,则b=_______.100.如图所示,直线y =-x+6与x 轴交于点A ,与y 轴交于点B ,点P 为x 轴上的动点,且点P 在点A 的左侧,PQ ⊥x 轴,交直线AB 于点Q ,动圆C 与x 轴、y 轴、直线AB 和直线PQ 都相切,且⊙C 在x 轴的上方,则点P 的坐标为______________________.101.如图,△AOB 为等边三角形,点B 的坐标为(-2,0),过点C (2,0)的直线交AO 于D ,交AB 于E ,且△ADE 的面积与△DCO 的面积相等.若点E 在某反比例函数图象上,那么该反比例函数的解析式为____________.102.已知反比例函数y= k x的图象经过A (m ,m+1)、B (m+3,m-1)两点,C 为x 轴上一点,D 为y 轴上一点,以点A 、B 、C 、D 为顶点的四边形是平行四边形,则直线CD 的解析式为________________.103.已知直线y = 1 4 x 与双曲线y= k x 相交于A 、B 两点,点P (a,b )是双曲线y= k x 在第一象限图象上的一点,且在A 点左侧.过B 作BD ∥y 轴交x 轴于点D ,过Q (0,-b )作QC ∥x 轴交双曲线y=kx 于点E ,交BD 于点C .若B 是CD 的中点,四边形OBCE 的面积为4,则直线PC 的解析式为______________.104.已知抛物线62)5(222+++-=m x m x y 与x 轴交于A 、B 两点(A 在B 的左侧),且AB=4,点P 是抛物线上一点,且△ABP 为直角三角形,则点P 的坐标为______________.105.如图,正方形ABCD 的边BC 在x 轴上,E 是对角线AC 、BD 的交点,反比例函数y=2 x (x >0)的图象经过A 、E 两点,则点D 的坐标为____________.106.小刚每天骑自行车上学都要经过三个安装有红灯和绿灯的路口,假如每个路口红灯和绿灯亮的时间相同,那么,小刚从家随时出发去学校,他至少遇到一次红灯的概率是______,不遇红灯的概率是_______.107.如图,在△ABC 中,AB=AC ,以AB 为直径的⊙O 分别交BC 、AC 于点D 、E ,OD 与BE 交于点F .若AB=25 ,DE=25 ,则AE 的长为___________.108.已知抛物线y =ax 2+bx+c 经过A (-1,0)、B (3,0)、C (0,3)三点,顶点为D ,点P 是抛物线的对称轴上一点,以点P 为圆心的圆经过A 、B 两点,且与直线CD 相切,则点P 的坐标为_______________.109.已知抛物线562-+-=x x y 与x 轴交于点A 、B (A 在B 的左侧),顶点为C ,CD ⊥y 轴于D ,P 是x轴上方抛物线对称轴上一点,且S △PAD =2S △PBC ,则点P 的坐标为________________.110.在平面直角坐标系中,半径为52的⊙C 与x 轴交于A (-1,0)、B (3,0)两点,且点C 在x 轴的上方.一条抛物线经过A 、B 、C 三点,点P 是该抛物线上一点,点Q 是y 轴上一点,如果以点P 、Q 、A 、B 为顶点的四边形是平行四边形,则点P 的坐标为____________________.111.如图,∠MON=30°,A 在OM 上,OA=2,D 在ON 上,OD=4,C 是OM 上任意一点,B 是ON 上任意一点,则折线ABCD 的最短长度为___________.112.已知函数1222-++=a ax x y 在0≤x ≤3范围内有最大值24最小值3,则实数a 的值为_________.113.如图,将半径为2,圆心角为60°的扇形纸片AOB ,在直线l 上向右作无滑动的滚动至扇形A /O /B/处,则顶点O 经过的路径长为__________.114.如图,在矩形ABCD 中,AD=6,AB=4,点E 、G 、H 、F 分别在AB 、BC 、CD 、AD 上,且AF=CG=2,BE=DH=1,点P 是直线EF 、GH 之间任意一点,连接PE 、PF 、PG 、PH ,则△PEF 和△PGH 的面积和等于__________.115.如图,在抛物线c x y +-=258的内部有正方形ABCD 、正方形EFGH 和正方形MNPQ ,其中每个正方形都有两个顶点在抛物线上,已知正方形ABCD 的边长为3,则正方形MNPQ 的边长为_____________.116.在△ABC 中,∠A=600,AB=24cm ,AC=16cm .动点E 从点B 出发,以4cm/秒的速度沿射线BA 方向运动,同时动点F 从点C 出发,以2cm/秒的速度沿射线CA 方向运动,当△AEF 的面积是△ABC 面积的一半时,E 、F 两点间的距离为___________cm .117.如图,在△ABC 中,AB=BC=5,∠B=900,点D 、E 分别在AB 、BC 上,且BD=BE=3,则图中阴影部分的面积=__________,AF :FE=__________.118.如图,把斜边长为5,一直角边长为1的两全等直角三角形纸片如图摆在桌面上,使直角重合,则两纸片覆盖桌面的面积是____________.119.已知直线133+-=x y 与x 轴,y 轴分别交于点A 、B,以线段AB 为直角边在第一象限内作等腰Rt △ABC,∠BAC=900.点P 是直线x=1上的一个动点,当△ABP 的面积与△ABC 的面积相等时,点P 的坐标为________.120.如图,矩形纸片ABCD 中,AB =5,BC =4,将纸片折叠,使点A 落在边CD 上的A ′ 处,折痕为BE .在折痕BE 上存在一点P 到边CD 的距离与到点A 的距离相等,则此相等距离为___________.121.把一副三角板如图放置,E 是AB 的中点,连接CE 、DE 、CD ,F 是CD 的中点,连接EF.若AB=4,则S △CEF=_____.122.如图,直角梯形ABCD中,AD∥BC,∠A=900,AD=1,BC=4.以CD为直径的⊙O与AB切于点E.若⊙M与⊙O相切,且与边AB、BC也相切,则⊙M的半径为_______________.123.如图,边长为1的正方形ABCD内接于⊙O,E为边CD的中点,连接AE并延长交⊙O于点F.则DF 的长为___________.124.如图,矩形ABCD中,AB=3,BC=m(m>3).动点E、F同时从C点出发,分别沿C→B,C→D运动,速度都是每秒1个单位长度.当点F到达终点C时,整个运动结束.过点E作BC的垂线,分别交BF、AD于点P、Q.设运动时间为t秒.(1)若在运动过程中,存在某时刻使梯形PECF与梯形PQAB的面积相等,则m的取值范围是__________;(2)若在运动过程中,存在某时刻使梯形PECF,梯形PQAB,梯形PQDF的面积都相等,则m=_____,t=______.125.有一张矩形纸片ABCD,按下面步骤进行折叠:第一步:如图①,将矩形纸片ABCD折叠,使点B、D重合,点C落在点C/处,得折痕EF;第二步:如图②,将五边形AEFC/D折叠,使AE、C/F重合,得折痕DG,再打开;第三步:如图③,进一步折叠,使AE、C/F均落在DG上,点A、C/落在点A/ 处,点E、F落在点E/ 处,得折痕MN、QP.这样,就可以折出一个五边形DMNPQ.若折出的五边形恰好是一个正五边形,当AB=a,AD=b,DM=m时,有下列结论:①ab=1+sin18°cos18°;②a2-b2=2abtan180;③m=a2+b2·tan180;④b=m+atan18°;⑤b=12m+mtan180.其中,正确结论的序号是________________(把你认为正确结论的序号都填上).126.如图,△ABC 中,∠ACB=90º,AC=BC=1,将△ABC 绕点C 逆时针旋转角60º得到△A 1B 1C ,B 1C 交AB 于点D ,A l B 1分别交AB 、AC 于点E 、F ,则DE 的长为_____________. 127.已知抛物线c bx ax y ++=2(a >0)的顶点坐标为(0,1),直线y =-ax+3与x 轴、y 轴分别交于点A 、B.与该抛物线交于C 、D 两点,若AC :BC=3 :1,则该抛物线的解析式为______________________.128.如图,正△ABC 的边长为3,正△PQR 的边长为1,顶点Q 与B 重合,顶点P 、Q 分别在边AB 、BC 上,将△PQR 沿着边BC 、CA 、AB 顺时针连续翻转,直至顶点P 第一次回到原来的位置,则顶点P 运动路径的长为___________.129.如图,正方形ABCD 的边长为2,⊙O 的直径为AD ,将正方形沿EC 折叠,点B 落在⊙O 上的F 点,则BE 的长为___________.130.如图,在平面直角坐标系中,四边形OABC 是矩形,OA=4,AB=2,直线23+-=x y 与x 轴、y 轴分别交于点D,E,M 是AB 的中点,P 是线段DE 上的动点.若以PM 为直径的圆与BC 边相切,则点P 的坐标为___________.131.如图,在△ABC中,DE∥AC,直线DE将△ABC分成面积相等的两部分,将△BDE沿直线DE翻折,点B落在点F处,连接AF,若AF∥EC,则AF:EC=_________.132.如图,DE是△ABC的中位线,M是DE的中点,CM的延长线交AB于N,那么S△DMN :S四边形ANME =_______.133.如图,在等边△ABC中,P是BC边上一点,D为AC上一点,且∠APD=600,BP=3,CD=2,则△CPD、△BAP、△APD的面积比为_______________.134.在平面直角坐标系中,△ABC的顶点分别是A(-1,0)、B(3,0)、C(0,2).动直线y=m(0<m<2)与线段AC、BC分别交于D、E两点,若在x轴上存在点P,使得△DEP为等腰直角三角形,则m的值等于________.135.如图,E为矩形ABCD的边CD上的一点(CE>DE),AE⊥BE.以AE为直径作⊙O,交AB于F,点G 为BE的中点,连接FG.若AB=25,BC=12,则FG的长为___________.136.已知⊙O的半径为4,P为⊙O内一点,OP=3,EF为过P点的弦,连结OE、OF,则△EOF的最大面积为___________.137.在平面直角坐标系中,半径为3的⊙P与y轴相切,且圆心P在第一象限,⊙P截x轴和直线y=34x+b所得弦AB、CD的长都为52,则b的值为_______________.138.如图,四边形ABCD和DEFG都是正方形,顶点F在边AD上,若AD=4,DG=2,则顶点C到AG的距离为___________.139.如图,⊙O 的半径OA ⊥弦BC 于D ,连接AC ,过点B 作弦BE ∥AC ,延长AO 交BE 于点F .若AC=5,BC=8,则OF=___________.140.如图,点A 是函数)0(2>=x x y 图象上任意一点,过A 点分别作x 轴、y 轴的平行线交函数)0(1>=x xy 图象于点B 、C ,过C 点作x 轴的平行线交函数)0(2>=x x y 图象于点D . (1)四边形ABCD 的面积为___________;(2)若△ABC 与△ACD 相似,A 点坐标为___________.141.如图,点A 、B 、C 在同一直线上,且BC =2AB ,点D 、E 分别是AB 、BC 的中点,分别以AB 、DE 、BC 为边,在A 、C 同侧作三个正方形,得到三个平行四边形(阴影部分)的面积分别记作S 1、S 2、S 3,若S 1+S 3=5,则S 2=___________.142.如图①,在Rt △ABC 的边AB 的同侧,分别以三边为直径作三个半圆,大半圆以外的两部分面积分别为S 1、S 3,△ABC 的面积为S 2;如图②,是反比例函数y=2 x 和y= 1 x 在第一象限内的图象,点P 是y= 2 x 图象上的任意一点,PC ⊥x 轴于C,PD ⊥y 轴于D,交y=1 x的图象分别于点A 、B,△BOD,四边形OAPB ,△AOC 的面积分别为S 1、S 2、S 3; 如图③,梯形ABCD ,AD ∥BC ,E 为CD 的中点,△ADE 、△ABE 、△BCE 的面积分别为S 1、S 2、S 3;如图④,梯形ABCD 中,AB ∥DC,∠DAB +∠ABC=900,AB=2CD ,以AD 、CD 、BC 为边的三个正方形的面积分别为S 1、S 2、S 3.则满足S 1+S 3=S 2有_______________(填序号)143.如图,在△ABC中,△ABD、△DEF和△FGH都是等边三角形,且点D、F、H在边BC上,点E、G在边AC上,若S△ABD =9,S△FGH =1,则S△DEF =__________.144.在三角形纸片ABC中,∠ABC=900,AB=6,BC=8.过点A作直线l∥BC,折叠纸片,使直角顶点B落在直线l上的T处,折痕为MN.当点T在直线l上移动时,折痕的端点M、N也随之移动.若限定端点M、N分别在AB、BC边上移动,则线段AT长度的最大值与最小值之和为____________(计算结果不取近似值).145.如图,边长为2的等边△ABC的顶点A在x轴的正半轴上移动,顶点B在射线OD上移动,∠AOD=450,则顶点C到原点O的最大距离为_____________.146.如图,△ABC中,∠A=300,AB=2,P、Q分别是AC、AB上的动点,则PB+PQ的最小值为________.147.在一个工件上有一梯形块ABCD,其中AD∥BC,∠BCD=900,面积为21cm2,周长为20cm.若工人师傅要在其上加工一个以CD为直径的半圆槽,且圆槽刚好和AB边相切(如图所示),则此圆槽的半径为____________cm.148.如图,矩形纸片ABCD中,AB=3,BC=4.动圆⊙O1和⊙O2在矩形ABCD内部,且互相外切,圆心均在对角线BD上,⊙O1和⊙O2分别与BC、AD相切,记⊙O1与⊙O2面积之和为S,则S的取值范围是______________.149.如图,矩形ABCD中,BC=25,半径为4的⊙O1分别与边AB、AD相切,⊙O2与⊙O1外切,且分别与边BC、CD、AD相切,则AB=____________cm.。

相关文档
最新文档