(优选)一元函数微分学ppt讲解

合集下载

一元函数微分学(二)

一元函数微分学(二)
因为 F(0)=0,F(ζ3)=0。
根据罗尔定理,在(0, ζ3)中至少存在一点 ζ,使得 F’(ζ)=0,即 f’(ζ)+2ζf’(ζ)+
ζf’’( ζ)=0,得证。
会用罗尔定理、拉格朗日中值定理
证明一些简单的等式或不等式。
1
f(x)在[1,2]上连续,
(1,2)上可导,f(1)= ,f(2)=2,证明:
(2) 在开区间 ( a , b ) 内可导,
(3) f (a) f (b) .
则 y f (x) 在开区间 ( a , b ) 内至少存在一点 ,使得 f ( ) =0
罗尔(Rolle)中值定理的几何意义
罗尔定理的几何意义
拉格朗日(Lagrange)中值定理
定理(
拉格朗日定理 ): 设函数 y f (x) 满足下列条件
f(ζ)、ζf’( ζ),可以考虑原函数为 ζekζ f(ζ),经求导比较,k 取 2。
设 F(x)=x 2 f’(x),F(0)=0。
1
因为 f(0)=0,f(1)=1,f(2)=-1,在(0,1)存在一点 ζ1,f(ζ1)= , 在(1,2)
3
1
存在一点 ζ2,f(ζ2)= 。
3
根据罗尔定理,在(ζ1, ζ2)中至少存在一点 ζ3,使得 f’(ζ3)=0,则 F(ζ3)=0。
lim
→0 ln(1 + )
ln 1 + −
→0
2
lim
洛必达(L’Hospital)法则求未定式的极

lim
→0
1 − 2
1 + 2
洛必达(L’Hospital)法则求极限
若f(x)在x=1处的某个邻域中还有连续的一阶导数,且f(1)=1,f’(1)=0,

大学微积分课件(PPT幻灯片版)pptx

大学微积分课件(PPT幻灯片版)pptx

高阶导数计算
高阶导数的计算一般采用归纳法 或莱布尼茨公式等方法进行求解。 需要注意的是,在计算过程中要 遵循求导法则和运算顺序。
应用举例
高阶导数在物理学、工程学等领 域有着广泛的应用。例如,在物 理学中,加速度是速度的一阶导 数,而速度是位移的一阶导数; 在工程学中,梁的挠度是荷载的 一阶导数等。
03 一元函数积分学
VS
几何意义
函数$y = f(x)$在点$x_0$处的导数 $f'(x_0)$在几何上表示曲线$y = f(x)$在点 $(x_0, f(x_0))$处的切线的斜率。
求导法则与技巧总结
基本求导法则
包括常数的导数、幂函数的导数、指数函数的导数、对数函数的导 数、三角函数的导数、反三角函数的导数等。
求导技巧
连续性与可微性关系
连续性
函数在某一点连续意味着函数在 该点有定义,且左右极限相等并 等于函数值。连续性是函数的基 本性质之一。
可微性
函数在某一点可微意味着函数在 该点的切线斜率存在,即函数在 该点有导数。可微性反映了函数 局部变化的快慢程度。
连续性与可微性关

连续不一定可微,但可微一定连 续。即函数的连续性是可微性的 必要条件,但不是充分条件。
历史发展
微积分起源于17世纪,由牛顿和莱布尼 茨独立发展。经过数百年的完善,已成 为现代数学的重要基础。
极限思想与运算规则
极限思想
极限是微积分的基本概念,表示函数在某一点或无穷远处的变 化趋势。通过极限思想,可以研究函数的局部和全局性质。
运算规则
极限的运算包括极限的四则运算、复合函数的极限、无穷小量 与无穷大量的比较等。这些规则为求解复杂函数的极限提供了 有效方法。

10第三章一元函数微分学(中值定理及罗必塔法则)

10第三章一元函数微分学(中值定理及罗必塔法则)

lim f ( x) lim f ( x) lim f ( x) A (或) xa() g( x) xa() g( x) xa() g( x)
5o
若函数是Βιβλιοθήκη 0,型可采用代数变形,化成
0 0

型;若是 1
,00
,0
型可采用对数或指数变形,化成
0 0

型.
例 3 求lim x 1 . x1 x 1 ln x
f (0) (x3 x2 ) x0 0
∴ f (x) 满足罗尔定理的条件。由定理可得:
f ( ) 3 2 2 0
解得: 1
2 3
,
2 0
∵2 0 不在(-1,0)内,舍去;

2 3
2.拉格朗日(Lagrange)中值定理: 如果函数 f(x)满足:
在(a, b)内至少存
10 在[a, b]上连续, 20 在(a, b)内可导;
解 这是 未定型,通过“通分”将其化为
0 未定型.
0
lim x1
x
x
1
1 ln x
lim
x1
x
ln (x
x (x 1) 1) ln x
lim
x1
x1 x ln
ln x 1 x x 1
1
x
lim x1 1
ln x 1 ln x
x
lim
x 1
1 x2
x
1 x
1 2
.
例4.求下列极限
定理: f (x) 和 g (x) 满足条件:
lim f (x) 0 (或)
xa
1o lim g(x) 0 (或); xa
2o 在点 a 的某个邻域内可导,且 g(x) 0 ;

(完整版)一元函数微分学课件

(完整版)一元函数微分学课件

(一)求曲线的切线方程与法线方程

≠0时,法线方程为
-1/
(二)函数的单调性与极值
1 函数单调性
定理
2 函数的极值
定理(极值的必要条件) 设f(x)在点x0处可导,且x0为f(x)的极值点,则f'(x0)=0.
(三)函数的最大值与最小值
设函数y=f(x)在闭区间[a,b]上有定义,x0∈[a,b],若对于任意x∈[a,b], 恒有f(x)≤f(x0)(或f(x)≥f(x0)),则f(x0)为函数y=f(x)在闭区间[a,b]上 的最大值(或最小值),称点x0为f(x)在[a,b]上的最大值点(或最 小值点)。 注 极值与最值的区别
2.右导数:
f( x0 )
lim
x x0 0
f (x) x
f (x0 ) x0
lim
x 0
f (x0
x) x
f (x0 );
★ 函数 f ( x)在点 x0处可导 左导数 f( x0 )和右导数 f( x0 )都存在且相等.
★ 如果 f ( x)在开区间a, b内可导,且 f(a)及
f(b)都存在,就说 f ( x) 在闭区间a, b上可导.
f
(x)在点 x0处的导数
记为y
,dy xx0 dx
或 df (x)
x x0
dx
x x0

y
x x0
lim
x0
y x
lim
x0
f ( x0 x) x
f ( x0 )
其它形式
f
( x0 )
lim
h0
f (x0
h) h
f (x0 ) .
f ( x0 )
lim

《大学数学课件一元函数微积分学》

《大学数学课件一元函数微积分学》

曲线长度与曲率
曲线长度公式
曲线长度的计算需要对曲线进行参数化,然 后对其微分求和。实数的曲线长度困难,函 数的曲线长度一般参数化之后再求积分。
计算曲率
曲率定义为在曲线某一点处曲线凝聚程度的 量,凡是具有确定的曲率的曲线上的点组成 的集合,成为曲线的曲率线。
微积分的实际应用举例
金融领域应用
微积分在金融等经济学领域中有广泛的应用,能 够帮助我们更好地理解时间价值、股市价格、股 息、衍生证券等。
龙虾曲线
一种分段光滑的曲线,通过迭代形成,是高阶 导数比较经典的应用之一。
复分析
复函数又叫做复变量函数,它是一个变量为一 个复数的函数。复分析是以复函数为研究对象 的数学分支。
不定积分的概念与求法
基本积分法
通过多种方法计算不定积 分:代换法、分部积分法、 三角函数积分法、有理函 数积分法、分式分解。
应用于牛顿第二定律
在物理领域中,微积分的应用非常广泛,牛顿第 二定律是牛顿—莱布尼茨公式的一个重要应用例 子。
定积分的概念与性质
定积分概念
在一定区间内,用先进(上)的近似值与落后(下)的近似值的平均数来逐 渐缩小误差范围的整个过程,那么最后这个误差的范围越来越小。
牛顿—莱布尼茨公式
定积分的本质意义就是计算曲线下对应的面积,和物理中的质量、体积密度、 功力密度有关,是牛顿—莱布尼茨公式的重要应用场景。
极限概念
当自变量趋近于某个值时,函数值趋近于一个限的极限。
高阶导数及其应用
高阶导数的定义
高阶导数指的是对导数的导数(即二阶导数、三阶导数……)
泰勒展开式
泰勒公式是一个非常重要的工具.利用泰勒公式,可以把函数转化成为一些比较简单的多项式的和的 形式,从而来研究一些不易计算的函数。

一元函数积分学及其应用(课件)

一元函数积分学及其应用(课件)
注意:利用MATLAB的int函数求不定积分时,只是求出被积函数的一个原函数,不 会自动补充常数项 C 。
18
第、。 二节 不定积分的运算

【例 5】求 sin2 x d x 。 2

sin2 x d x 1 cos x d x
2
2
1 d x 1 cos x d x
2
2
1 x 1 sin x C 22
1 3
x3
x2

所以
1 3
x3

x
2
的一个原函数
因此
x2 d x 1 x3 C 。 3
8
第一节 不定积分的概念与性质
【例2】求 1 d x , x (∞,0)∪(0,∞) 。 x
解 当 x > 0 时,由于 (ln x) 1 ,所以 ln x 是 1 在 (0,∞) 内的一个原函数。因此,在 (0,∞)
该性质可推广到被积函数是有限多个函数代数和(差)的情况,即
[ f1(x) f2 (x) fn (x)]d x f1(x) d x f2 (x) d x fn (x) d x 。
法则 2 被积函数中的常数因子可以提到积分号外面,即
kf (x)d x k f (x)d x ( k 是常数, k 0 )。
第、 一节不定积分的概念与性质

三、不定积分的性质 求不定积分和求导数(微分)互为逆运算,即当微分号与积分号放在一起时会“抵 消”掉,显然有以下两条基本性质:
性质 4.1 [ f (x)d x] f (x) 或 d f (x)d x f (x)d x ; 性质 4.2 F(x)d x F(x) C 或 d F(x) F(x) C 。
间 I 内的不定积分,记为 f (x)d x ,即

专升本-高数一-PPT课件

专升本-高数一-PPT课件

例 2.下列各函数中,互为反函数的是(
n t, x o t cy (1 ) . y a x

1 x , 1 y ( ) 1 - x (2) .y2 2
知识点:反函数 求反函数的步骤是:先从函数 y f ( x ) 中解出 x f 1 ( y ) ,再置换 x 与
y ,就得反函数 y f 1 ( x ) 。
故函数的定义域为:{( x , y ) | x 0 且 x y 0} (2)要使函数有意义必须满足

x2 x 2 0 x 1 或 x 2 ,即 , x 2 x20 D ( 2, 1) (2, ) .
二、 极限
1.概念回顾
2、 极限的求法
利用极限四则运算、 连续函数、重要极限、无穷小代换、洛比达法则等 例 5: 求 lim
x
x5 . x2 9
1 5 1 5 2 lim( 2 ) x5 x x x 0 0. 解: lim 2 lim x x x x 9 x 9 9 1 1 2 lim(1 2 ) x x x 知识点:设 a0 0, b0 0, m, n N ,
数。
: D g ( D ) D f: D f( D ) g 1 1 1
f g : D f [ g ( D ) ]
例 1.下列函数中,函数的图象关于原点对称的是( (1) y 2 x 2 1 ; (3) y x 1 . 知识点: 函数的奇偶性 (2) y x 3 2sin x ;
则 lim
am x x b x n n
m
m a bn a1 x a0 0 b1 x b0
mn mn mn

微积分学 P.P.t 标准课件29-第29讲一元微积分应用(二)

微积分学 P.P.t 标准课件29-第29讲一元微积分应用(二)

第六章 一元微积分的应用
第三节 曲线的凹凸性, 函数图形的描绘
一,曲线的凹凸性,拐点 二,曲线的渐近线 三,函数图形的描绘
一,曲线的凹凸性,拐点
我们说一个函数单调增加, 你能画出函数 所对应的曲线的图形吗? y
?!
.
A
B
.
x
O
f ( x) ↑ ( a , b ) 时 , 它的图形的形式不尽相同. 一般说来, 对于一个区间上单调的函数的 图形都存在一个需要判别弧段位于相应的弦线 的"上方"或"下方"的问题 .
在 (∞, 0) 上 ,
x1 + x2 1 f( ) < ( f ( x1 ) + f ( x2 ) ) , 2 2
y = x 3 是凸的 .
在 (0, + ∞ ) 上 ,
f(
x1 + x2 1 ) > ( f ( x1 ) + f ( x2 ) ) , 2 2
y = x 3 是凹的 .
y
在 (∞, 0) 上 ,
f ′′(ξ ) ( x x0 ) 2 2!
f ( x1 ) = f ( x0 ) + f ′( x0 )( x1 x0 ) +
f ′′(ξ1 ) ( x1 x0 ) 2 2!
f ′′(ξ 2 ) f ( x2 ) = f ( x0 ) + f ′( x0 )( x2 x0 ) + ( x2 x0 ) 2 2!
其中 , ξ1 在 x0 与 x1 之间, ξ 2 在 x0 与 x2 之间.
于是 f ( x1 ) + f ( x2 ) = 2 f ( x0 ) + ( f ′′(ξ1 ) + f ′′(ξ 2 ))( x1 x0 ) 2

电子教案-高等数学(工科类)(魏寒柏 骈俊生)ppt-第三章一元函数微分学及其应用-电子课件

电子教案-高等数学(工科类)(魏寒柏 骈俊生)ppt-第三章一元函数微分学及其应用-电子课件

分析:运动员跳水过程可以视为自由落体
运动,该案例实际上一个求变速直线运动

的瞬时速度问题。


运动跳下的距离和时间的关系为:s 1 gt 2 4.9t 2
2
导 数 的
如果运动员起跳时间记为 t 0 ,则入水时间为t 28 2.4(s)
4.9

我们用一些持续缩短的时间间隔 [2.4,2.4 t]上的平均速度

特别地,若
lim
x0
y x
,
也称函数
y
f
(x) 在
数 的 概
点 x0 的导数为无穷大,其属于导数不存在 的情形。

导数定义的 等价形式
前面两个案例中的导数:

v(t0
)
s(t0
)
lim
t 0
s(t0
t) t
s(t0
)

节 导
k
f (x0 )
lim
x0
f
( x0
x) x
f
(x0 )




y
y 1 3(x 1) , 3x y 2 0
法线方程:
y 1 1 (x 1) , 3
x 3y 4 0
可导与连续的关系 可导必定连续,反之则不成立。

一 节
例如函数 f (x) x 在点 x 0处连续但不可导,

因为
数 的 概
f
(0)
lim
x0
f (0 x) f (0)
x
lim x0

增量的比值的极限,即平均变化率的极限。



类似问题还有:

一元函数微分学及其应用(课件)

一元函数微分学及其应用(课件)
程序运行结果为: value = 34
从而可知物体在 t 3s 时刻的瞬时速度为34 m/s。
22
第二节 导数的运算 三、复合函数求导法则
引例3 已知 y sin 2x,求 y
解 这里不能直接用公式求导,但可用求导法则求:
y (sin 2x) (2sin x cos x) 2[(sin x)cos x sin x(cos x)] 2(cos2 x sin2 x) 2 cos 2x
0.000001
0.0000001 0.00000001

事实上,利用极限思想, 物体在t0 时刻的瞬时速度 可以表示为
v
20.0005
20.00005
20.000005 20.0000005 20.00000005

v(t0 )
lim
t 0
s t
ltim0(10t0
5t)
10t0
5
第一节 导数的概念
定义3.1 设函数 y f (x)在点 x0 的某个邻域内有定义,且极限
lim y lim f (x0 x) f (x0 )
x0 x x0
x
存在,则称此极限值为函数 f (x) 在点 x0 处的导数,记作
f (x0 ) 或
y |xx0

dy dx

x x0
df (x) dx
x x0
也称函数 f (x) 在点 x0 处可导。
x0
x0
在点 x 0 处的连续性。
又 y f (0 x) f (0) x ,从而
x
x
x
lim
y
lim
x 1
x0 x x0 x
y
x
lim lim 1

【精品PPT】微分学课件

【精品PPT】微分学课件

解 y eu,u x3,
dy dy du dx du dx
eu 3x2 ex3 3x2.
例2 求函数 y ln sin x 的导数.
解 y ln u, u sin x.
dy dy du 1 cos x cos x cot x
y
y f (x)
T
M

o
x0
x
在(x0, f (x0 ))处的
切线方程为 y y0 f ( x0 )( x x0 ). 每年都考、重点掌握!
法线方程为
y y0
f
1 ( x0
)
(
x

x0
)
(f (x0 ) 0).
例1、曲线 y 2x2在点(1,2)处的切线方程为:.


x
2
1

1 2

2x x2
1

y


x
2
1

1 2

2x x2
1

(
x 1)2 x2 1
说明:
对幂指函数 y uv 可用对数求导法求导 :
ln y v lnu
1 y vln u uv
y
u
y uv ( vln u uv ) u
解: y' 4 x
y' |x1 4
根据导数的几何意义, 得切线斜率为 k y x1 4 故曲线 y 2x2在点(1,2)处的切线方程为
y 2 4(x 1)
即 y 4x 2
4、 函数的可导性与连续性的关系
可导的函数一定是连续的.

《高等数学》一元函数微分学.ppt

《高等数学》一元函数微分学.ppt

恒有 f (x) A .
A的邻域,
A
A
x0的空心 邻域A,
该邻域内所有点 x 的纵坐标 f(x)落在
A的 邻域 内,
即相应的点(x,f(x)) 落在绿色区域内.
的几何解释
0
x0 x0 xx00 x 0 x0 x0 x0 x0
f (x)
x
.
1. 函数的极限 lim f ( x) A x x
0, 0, 当 0 | x x0 | δ 时 ,
恒有 f (x) A .
lim f ( x) A 的几何解释
x x
y
A的邻域,
A A
A
x0的空心 邻域,
该邻域内所有点 x
的纵坐标 f(x)落在
A的 邻域 内,
即相应的点(x,f(x))
落在绿色区域内.
0
x0 x0 x0
§1 一元函数微分学
主 目 录(1 – 18)
1 函数极限的几何解释
3 x 时的极限
5 数列的极限 7 函数的连续性 9 微分的几何意义
2 函数的左极限
4 x+ 时的极限
6 无穷大 8 导数的几何意义
对函数进行全面讨论并画图:
10 y xex
11 y x
x
13
y
arccos
x x
16 y cos2x
落在绿色区域内.
y
f (x)
A+
A
A–
–N
0
N
x
3. x 趋于无穷大时的极限 lim f (x) A 的几何解释 x A的邻域, N > 0, 对满足 |x| > N 的一切点 x, 其相应的曲线上的点
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

x0 x
1
(二)导数的运算 • 基本初等函数的导数公式
导数的四则运算法则
设u=u(x),v=v(x)都可导,则
反函数的求导法则
复合函数的求导法则
隐函数求导法则
设y=f(x)由方程F(x,y)=0确定,求y′,只需直接由方 程F(x,y)=0关于x求导,将y当做中间变量,依复 合函数链式法则求之。
★ f (x)在开区间(a,b)内的导函数为f '(x)
f '(a ) lim f '(x) xa
f '(b ) lim f '(x) xb
称为导函数的右极限 称为导函数的左极限
★ 设f (x)在闭区间[a,b]连续, 开区间(a,b)内的可导,记导函数为f '(x) 若f '(a 0)存在,则f (x)在a点右可导, 若f '(b 0)存在,则f (x)在b点左可导
记为y
,dy xx0 dx
或 df (x)
x x0
Hale Waihona Puke dxx x0关于导数的说明:
★ 导数是因变量在点x0处的变化率,它反映了 因变量随自变量的变化而变化的快慢程度. ★ 如果函数 y f (x)在开区间I内的每点
处都可导,就称函数f (x)在开区间I内可导.
★ 对于任一x I ,都对应着f (x)的一个确定的
2.右导数:
f( x0 )
lim
x x0 0
f (x) x
f (x0 ) x0
lim
x 0
f (x0
x) x
f (x0 );
★ 函数 f ( x)在点 x0处可导 左导数 f( x0 )和右导数 f( x0 )都存在且相等.
★ 如果 f ( x)在开区间a, b内可导,且 f(a)及
f(b)都存在,就说 f ( x) 在闭区间a, b上可导.
且f '(a) f '(a 0),f '(b) f '(b 0)
几何意义
f (x0 )表示曲线 y f (x)
y
在点M (x0 , f (x0 ))处的
切线的斜率,即
f (x0 ) tan , (为切线与x轴正向的夹角) o
y f (x)
T
M
x0
x
切线方程为:
y
y y0 f ( x0 )( x x0 ).
法线方程为:
o
y
y0
f
1 ( x0
)
(
x
x0
)
y f (x)
T
M
x0
x
可导与连续的关系
定理:可导→连续
(逆否命题)不连续→不可导
(逆命题)连续→可导?不一定
例:y=|x|在x=0处连续,但在x=0处 不可导。
y (0)
lim
x0
y(x) y(0) x0
x0 x
1
y (0)
lim
x0
y(x) y(0) x0
(一)求曲线的切线方程与法线方程

≠0时,法线方程为
-1/
(二)函数的单调性与极值
1 函数单调性
定理
2 函数的极值
定理(极值的必要条件) 设f(x)在点x0处可导,且x0为f(x)的极值点,则f'(x0)=0.
(三)函数的最大值与最小值
设函数y=f(x)在闭区间[a,b]上有定义,x0∈[a,b],若对于任意x∈[a,b], 恒有f(x)≤f(x0)(或f(x)≥f(x0)),则f(x0)为函数y=f(x)在闭区间[a,b]上 的最大值(或最小值),称点x0为f(x)在[a,b]上的最大值点(或最 小值点)。 注 极值与最值的区别
极值是一个局部概念 ,只是某个点的函数值与它附近点的函数值 比较最大或最小,并不意味着它在函数整个定义域内最大或最小。 而最值是对整个定义域而言,是一个整体性的概念。
函数最值求法步骤:
(1)求出 ) (xf的所有极值点(驻点和导数不存在 的点); (2)计算并比较f(x)在所有极值点及两个端点处的值,其中最大者就 是最大值,最小者就是最小值。
由参数方程确定的函数求导法则
对数求导法
练习
• p28 • 例1 例5 例8 例16 例23 例24 例25 例31 例36
第二节 微分
先看个例子:
微分的运算法则
复合函数的微分
这个性质称为一阶微分形式不变性。 练习 p36 例37 例40 例44
第三节 微分中值定理
推论 若函数f(x)在区间I上导数恒为零,则f(x)在区间I上是一个常数。
导数值。构成一个函数关系。
称函数f (x)的导函数,记作y, f (x), dy 或 df (x) . dx dx
明显:
f (x0 )
f (x)

x x0
★ 单侧导数
1.左导数:
f( x0 )
lim
x x0 0
f (x) x
f (x0 ) x0
lim
x 0
f (x0
x) x
f (x0 );
(优选)一元函数微分学ppt讲解
第一节 导数
(一) 导数的概念与性质
定义 设函数 y f (x)在点 x0的某邻域有定义,
当自变量 x在 x0处取得增量x时,
函数 y的增量y f (x0 x) f (x0); 如果 y 当x 0时的极限存在,
x
称函数y f (x)在点x0处可导,
称这个极限 lim x0
若在区间(a,b)内,恒有f′(x)=g′(x),则在(a,b)内必有f(x)=g(x)+C, 其中C为某个常数。
练习
p39 例47 例48
第四节 洛必达法则
可转化为洛必达的形式




例 例
练习 p43 例51 例57
第五节 导数的应用
• (一)求曲线的切线方程与法线方程 • (二)函数的单调性与极值 • (三)函数的最值 • (四)曲线的凸凹性
y 为函数 y x
f
(x)在点 x0处的导数
记为y
,dy xx0 dx
或 df (x)
x x0
dx
x x0

y
x x0
lim
x0
y x
lim
x0
f ( x0 x) x
f ( x0 )
其它形式
f
( x0 )
lim
h0
f (x0
h) h
f (x0 ) .
f ( x0 )
lim
x x0
f (x) f (x0 ) . x x0
(四)曲线的凸凹性


定理1
曲线的拐点
相关文档
最新文档