第四章非惯性系中的质点力学

合集下载

非惯性参考系

非惯性参考系

2.平移惯性力 在S系中物体的运动满足牛顿定律:
F 和m不随参考系变化,即
F = ma
F → 真实力
但因 a ≠ a′ ,在S′系看来物体的运动不满足牛顿定律,即 F ′ ≠ m′a′ a aO ′ + a ′ = F= ma = ma ′ + maO′ ∴ F − maO′ = ma ′
如果说,潮汐是月球的万有引力吸引海水造成的,那么 (1)为什么向着和背着月亮一面的海水都升高,从而一昼夜涨两 次潮? (2)按距离平方反比计算,太阳对海水的引力比月亮大180倍, 为什么说潮汐主要是月亮引起的?
设地球没有自转,公转是圆轨道。 地球成为随球心平动的非惯性系
FC FA
A
C
f iC
回顾:
应用牛顿定律解题的基本方法
选对象 先用符号求解,后代入 数据计算结果 分析力
2 dv d r = F ma = m= m 2 dt dt
分析运动
(画受力图) 一般用分量式,用文字 符号列方程式
解方程
列方程
选坐标系
平动非惯性系内,质点运动的动力学
Feff = ma ′
太阳的引力差是其 引力的0.0017% 但仅为月亮引力的3%
农谚:“初一十五涨大潮,初八二十三到处见海滩” 海潮、地潮、气潮、生物潮
根据平衡潮理论,如果地球完全由等深海水覆盖,用万有引力计算, 月球所产生的最大引潮力可使海水面升高0.563m,太阳引潮力的作 用为0.246m,夏威夷等大洋处观测的潮差约1m,与平衡潮理论比 较接近,近海实际的潮差却比上述计算值大得多。如我国杭州湾的 最大潮差达8.93m,北美加拿大芬地湾最大潮差更达19.6m。

基础物理学 第四章(2)

基础物理学  第四章(2)

一、质点的动量定理 dv 牛顿第二定律表述为: ma m F
dt
式中F为质点所受合力,由于质量m为常量,所以有
d (mv ) F dt
d义质点的动量:
p mv
动量是矢量,方向与质点的速度同向。 定义Fdt为dt时间内力F对质点的元冲量,用dI表示,即
14
普 通 物理学
三、质点动量定理的积分形式
对动量定理表达式两边同乘 dt,积分: p2 t2 t2 p1 dp t1 Fdt t1 dI t2 p2 p1 Fdt I t1 t2 右边称合力的冲量,表示为: I Fdt t1 t 于是有: Fdt mv mv0
dI 1 dI 2 dI n
即合力对质点的元冲量等于各分力对质点元冲量的矢 量和。
13
普 通 物理学
二、质点的动量守恒定律
若在某一过程中,质点所受合力恒为零,即F=0,则在 该过程中质点的动量守恒,即P=C(常矢量)。
d pl Fl dt
ˆ 质点动量沿 el 方向的分量守恒
t0
质点动量定理:质点所受的外力冲量,等于 质点动量的增量。
15
普 通 物理学
动量定理的分量式:
I x Fx dt mvx mv0 x
t t0
I y Fy dt mvy mv0 y
t t0
t
I Z FZ dt mv Z mv 0 Z
t0
16
普 通 物理学
1

ˆ (5 N s ) ˆ (7 N s)i j
19
普 通 物理学
由动量定理
mv2 mv1 I

质点动力学

质点动力学

所以太阳系是一个惯性系。
地球有公转和自转,所以地球只能看作一 个近似的惯性系。
五、应用牛顿定律解题
例1、水平面上有一质量为51kg的小车D,其上有一 定滑轮C,通过绳在滑轮两侧分别连有质量为 m1=5kg和m2=4kg的物体A 和B。其中物体A在小车的 水平面上,物体B被绳悬挂,系统处于静止瞬间,如 图所示。各接触面和滑轮轴均光滑,求以多大力作 用在小车上,才能使物体A与小车D之间无相对滑动。 (滑轮和绳的质量均不计,绳与滑轮间无滑动)
2. F 是作用在质点上各力的矢量和。 3. 在一般情况下力F 是一个变力
常见的几中变力形式:
F = F ( x ) = - kx F = F (t ) F = F ( v ) = - kv
弹性力 打击力 阻尼力
4. 要注意定律的矢量性。 5. 牛顿第二定律的投影形式: 直角坐标系中 自然坐标系中
自然和自然规律隐藏在黑暗之中, 上帝说“让牛顿降生吧”, 一切就有了光明; 但是,光明并不久长,魔鬼又出现了, 上帝咆哮说:“让爱因斯坦降生吧”, 就恢复到现在这个样子。
三百年前,牛顿站在巨人的肩膀上,
建立了动力学三大定律和万有引力定律。
其实,没有后者,就不能充分显示前者
的光辉。海王星的发现,把牛顿力学推
第一定律Nawton first law(惯性定律)
任何物体都保持静止或匀速直线运动的状态, 直到受到力的作用迫使它改变这种状态为止。
第二定律
宏观低速运动中 视为常量 m dP d F= (mv ) ma = dt dt
注意
1. 上式是一个瞬时关系式,即等式两边的各物理量 都是同一时刻的物理量。
上荣耀的顶峰。
魔鬼的乌云并没有把牛顿力学推跨,

《理论力学 动力学》 第五讲 非惯性系中质点的动能定理

《理论力学 动力学》 第五讲  非惯性系中质点的动能定理

4、非惯性系中质点的动能定理惯性参考系中的动能定理只适用于惯性系。

在非惯性参考系中,由于质点的运动微分方程中含有惯性力,因此需要重新推导动能定理。

质点的相对运动动力学基本方程为r d d m t=++Ie IC v F F F 式中e C r2m m m =-=-=-´Ie IC F a F a ωv ,r d d tv 是对时间t 的相对导数r v 上式两端点乘相对位移d ¢r r d d d d d d m t¢¢¢¢×=×+×+×Ie IC v r F r F r F r 注意到,并且科氏惯性力垂直于相对速度,所以IC F r v d 0¢×=IC F r d d r t¢=r v 上式变为:r r d d d m ¢¢×=×+×Ie v v F r F r δW ¢Ie—表示牵连惯性力F Ie 在质点的相对位移上的元功。

δF W ¢—表示力F 在质点的相对位移上的元功。

则有:2r 1d()δδ2F mv W W ¢¢=+Ie 质点在非惯性系中相对动能的增量等于作用于质点上的力与牵连惯性力在相对运动中所作的元功之和。

——质点相对运动动能定理(微分形式)4、非惯性系中质点的动能定理积分上式得22r r01122F mv mv W W ¢¢-=+Ie ——质点相对运动动能定理(积分形式)质点在非惯性系中相对动能的变化等于作用于质点上的力与牵连惯性力在相对路程上所作功的和。

注意:因为在非惯性系中科式惯性力始终垂直于相对速度,因此在相对运动中科式惯性力始终不做功。

例4 已知:一平板与水平面成θ角,板上有一质量为m 的小球,如图所示,若不计摩擦等阻力。

求: (1)平板以多大加速度向右平移时,小球能保持相对静止?(2)若平板又以这个加速度的两倍向右平移时,小球应沿板向上运动。

大学物理第四章题解

大学物理第四章题解

第四章 经典质点动力学4-1.已知质量为2kg 的质点的运动学方程为22(61)(341)r t i t t j =-+++(国际制单位),求证质点所受合力为恒力.证 对运动学方程求时间导数()d 1264d r v t i t j t==++ 22d d 126d d v r a i j t t ===+ 2(126)=2412(N)F ma i j i j ==⨯++可见质点所受合力为恒力.4-2.已知质量为1kg 的质点,在合力128(N)F t i j =+作用下运动.已知1t =s 时,质点位于2x =m 、0y =处,并以速率3m s 沿y 轴正向运动.求质点运动学方程.解 由mr F =,知12x t =,8y =.可得d 12d x t t = ,d 8d y t =积分 01d 12d xt x t t =⎰⎰ ,31d 8d y ty t =⎰⎰ 求出 266x t =- ,85y t =-再根据 2d (66)d x t t =- ,d (85)d y t t =-再积分 221d (66)d xt x t t =-⎰⎰ ,01d (85)d y ty t t =-⎰⎰ 质点运动学方程为 3266x t t =-+ ,2451y t t =-+4-3.跳水运动员沿竖直方向入水,刚入水时速率为0v ,以入水点为O 点,y 轴竖直向下,运动员入水后浮力与重力抵消,受水的阻力与速度平方成正比,比例系数为k ,求入水后运动员速度随时间的变化规律.解 以运动员为质点,根据牛顿第二定律有 2d d yy v m kv t =- ,即2d d y y v k v t m =- 分离变量并积分 020d d y v t y v y v k t v m =-⎰⎰即可求出 011y k t v v m -= 也可以表示为 00y mv v m kv t=+4-4.跳水运动员由高处下落,设运动员入水后重力与浮力抵消,受水的阻力与速度平方成正比,比例系数0.4k m =(m 为运动员质量).求运动员速率减为入水速率的110时,其入水深度(均为国际制单位).解 以入水点为O 点,y 轴竖直向下,以运动员为质点,根据牛顿第二定律有2d 0.4d yy v m mv t =-做变量变换,得 2d d d 0.4d d d y y y y v v y v v y t y ==- 即 d 0.4d y y v v y=- 分离变量并积分 00100d 0.4d v y y v y v y v =-⎰⎰ 0010ln |0.4v y v v y =- 可知运动员速率减为入水速率的110时,其入水深度ln1004576(m)y ..==.4-5.质量为m 的小球系在一不可伸长的轻绳之一端,可在水平光滑桌面上滑动.绳的另一端穿过桌面上一小孔,握在一人手中使它以匀速率a 向下运动.设初始时绳是拉直的,小球与小孔的距离为R ,初速度在垂直于绳的方向上的分量为0v .试求小球运动和绳子的张力.解 小球m 视为质点,作为研究对象,受力分析如图.以桌面小孔为坐标原点O ,建立极坐标系如图,根据牛顿第二定律,有T N T ma F F mg F =++=在极坐标系中的投影方程为2()T m r r F θ-=- (1)(2)0m r r θθ+= (2)由题意可知 r a =- (3)由(3)式得0d d r tR r a t =-⎰⎰ 所以r R at =-,代入(2)式,得 ()20R at a θθ--= ,即 d ()2d R at a tθθ-= 初始时00R v θ=,即00v R θ=,把上式分离变量且积分 000d 2d d()2tt v R a t R at R at R at θθθ-==---⎰⎰⎰220ln 2ln ln ()R R at R v R R at θ-=-=- 所以 02d d ()v R t R at θθ==- 把上式分离变量且积分 0200d()d ()t v R R at a R at θθ-=--⎰⎰ 所以 0011()v R v t a R at R R atθ=-=-- 小球的运动学方程为r R at =-,0v t R atθ=-.由(1)式得 222220023()()[]()()T v R mv R F m r r mr m R at R at R at θθ=-==-=--4-6.已知质点所受合力为sin cos e tF t i t j k =++,求在0t =到2t π=时间内合力对质点的冲量.(国际制单位.)解 0t =到2t π=时间内合力对质点的冲量为 200d (sin cos e )d t t I F t t i t j k t π==++⎰⎰22000(sin d )(cos d )(d )t t t i t t j e t k πππ=++⎰⎰⎰ 222000(cos |)(sin |)(|)t t i t j e k πππ=-++2(e 1)i j k π=++-(国际制单位)4-7.用棒打击质量为0.5kg 、从西沿水平方向以速率20m 飞来的球,球落到棒的西面80m 处,球上升的最大高度为20m ,打击时间为0.05s ,打击时可略去重力,取210m s g =.求:(1)棒对球的冲量;(2)棒给予球的平均冲力.解 建立坐标系Oxy ,Ox 轴沿水平方向自东向西,Oy 轴竖直向上.先讨论球被棒打击后的运动,球仅受重力,可知2012y y v t gt =- ,0y y v v gt =- 当0y v =时球达到最大高度m 20m y =.根据0010y v t =-求出0010y t .v =,代入202050y v t .t =-得到 22200020010005005y y y .v .v .v =-=因00y v >,略去020y v =-,可求出020m s y v =.进而求出2s t =.由于球沿Ox 方向作匀速率运动,到4s t =时向西运动了80m ,所以020m x v =. 在碰撞中根据动量定理 21I mv mv =- 由于120v i =-,2002020x y v v i v j i j =+=+,所以棒对球的冲量2010(N s)I i j =+⋅平均冲力 2010400200 (N)0.05I i j F i j t +===+∆4-8.从高出枰盘 4.9m h =处,将每个质量m 均为0.02kg 的橡皮泥块,以每秒100n =个的速率注入枰盘,橡皮泥块落入枰盘后均黏附在盘上.以开始注入时为0t =,求10s t =时枰的读数.解 橡皮泥块在下落过程中只受重力,橡皮泥块落入枰盘的速率98(m v .=在橡皮泥块落入秤盘的过程中,对秤盘的平均冲力为(向上为正方向)21()100002[0(9.8)]196(N)F n mv mv ..=-=⨯⨯--=由于橡皮泥块由 4.9m h =处下落,由22119.8 4.922gt t =⨯⨯= 可知下落的时间1s t =.所以10s t =时枰盘内橡皮泥块受到的总重力g (10-1)1009002981764(N)F n mg ...==⨯⨯⨯=因此秤的读数为 g 1961764196(N)F F ..+=+=4-9.对例题4-4-2(见图),判断以下说法的正误:(1)质点对O 点角动量守恒;(2)质点对O '点角动量守恒;(3)质点对z 轴角动量守恒;(4)质点对x 轴角动量守恒.解 (1)摆锤所受合力指向O 点,摆锤所受合力对O 点力矩为零,所以质点对O 点角动量守恒.(2)合力对O'点力矩不为零,质点对O'点角动量不受恒.(3)质点所受合力的作用线过Oz 轴,对Oz 轴合力矩为零,所以质点对Oz 轴角动量守恒.(4)质点对O 点角动量守恒,所以质点对Ox 轴角动量守恒.4-10.在一直角坐标系Oxyz 中,一质点位于点(3m,4m,5m)处,并受一作用力7N 8N 9N F i i i =++,求:(1)力F 对O 点的力矩;(2)力F 对x 轴的力矩.解 345r i j k =++,所以(345)(789)484(N m)O M r F i j k i j k i j k =⨯=++⨯++=-+-⋅4N m x O M M i =⋅=-⋅4-11.在直角坐标系Oxyz 中,质点质量为2kg ,其速度1242(m s )v i j tk -=+-⋅,并已知0t =时位置矢量02(m)r i =.求:(1)质点对O 点的角动量;(2)质点对y 轴的角动量;(3)质点所受合力对O 点和y 轴的力矩.解 因为d d r v t=,d d r v t =,所以00d d r t r r v t =⎰⎰,即 00002(2d )(4d )(2d )t t tr r r i t i t j t t k -=-=+-⎰⎰⎰ 所以 2(22)4r t i tj t k =++- (1) 22[(22)4](242)O L r mv t i tj t k i j tk =⨯=⨯++-⨯+-22218(48)16(kg m s )t i t t j k -=-+++⋅⋅(2) 22148(kg m s )y O L L j t t -=⋅=+⋅⋅(3) d 16(88)(N m)d O O L M t i t j t==-++⋅ d 88(N m)d y y L M t t==+⋅4-12.设质点在Oxy 平面内运动,试判断以下论述是否正确:(1)若质点动量守恒,则对z 轴角动量守恒;(2)若质点对z 轴角动量守恒,则动量守恒;(3)若质点对z 轴角动量守恒,则动量的大小保持不变;(4)若质点对z 轴角动量守恒,则质点不可能作直线运动.解 (1)正确.质点动量守恒,则质点所受合力为零,质点所受合力对Oz 轴力矩为零,所以对Oz 轴角动量守恒.(2)不对.比如,质点在Oxy 平面内、绕O 点做匀速圆周运动,对Oz 轴角动量守恒,但是动量并不守恒.(3)不对.比如例题4-5-2,质点在Oxy 平面内做椭圆运动,它所受的合力是有心力,始终指向O 点,所以对Oz 轴的角动量守恒,但是动量的大小不断变化.(4)不对.在Oxy 平面内做匀速直线运动的质点对Oz 轴角动量守恒.4-13.质量为m 的质点在Oxy 平面内运动,其运动学方程为cos x a t ω=,sin y b t ω=,a 、b 、ω均为常量.求:(1)质点对z 轴的角动量;(2)质点所受对z 轴的合力矩.解 (1)对运动学方程cos sin r a ti b tj ωω=+求时间导数,可得 d sin cos d r v a ti b t j t ωωωω==-+ 所以 (cos sin )(sin cos )O L r mv a ti b tj m a ti b t j ωωωωωω=⨯=+⨯-+22(cos sin )m ab t ab t k mab k ωωωωω=+=z O L L k abm ω=⋅=(2)因z L 为常量,由对Oz 的角动量定理,可知质点所受对Oz 轴的合力矩d 0d z z L M t==4-14.如图,刚性转动系统放在盛有液体的容器内,长为l 的细杆一端固定一质量为m 的小球,另一端垂直地固定于转轴z .小球受液体阻力与小球质量及系统转动角速度的大小成正比,即F km ω=,k 为比例常量.z 轴及细杆的质量及所受阻力均忽略不计,问:经过多长时间系统的角速度的大小变为初始值0ω的1e .解 由题意知z M lkm ω=-,2z L ml ω=,根据d d z z L M t=,得 2d d ml lkm tωω=- 分离变量并积分 d d k t lωω=-⎰⎰ ln k t C lω=-+ 由0t =时0ωω=定出积分常数,0ln C ω=,则 0e kt l ωω-=所以,当0e ωω=时l t k=.4-15.如图所示,小球m 系于不可伸长的轻绳的一端,绳经O 点穿入竖直小管.开始时小球绕管在水平面内做半径为R 的圆周运动,每分钟转120转.由绳的A 端将绳拉入小管,拉绳后小球绕管在水平面内做半径为2R 的圆周运动.求:(1)拉绳以后小球每分钟之转数;(2)拉绳过程中小球对O 点角动量是否守恒?为什么?解 (1)在拉绳过程中,因为小球所受重力与OA 轴平行、绳拉力与OA 轴相交,对OA 轴力矩均为零,所以在拉绳过程中小球对OA 轴角动量守恒02R mvmv R = 拉绳前,每秒转两转,022R v π⋅=.设拉绳后,每秒转n 转,22R n v π⋅=.把04v R π=和v n R π=代入角动量守恒方程,得 42R mn R m R R ππ=⋅ 即可求出拉绳后小球每秒转8n =转,即每分钟480转.(2)因为小球所受合力对O 点力矩不为零,所以小球对O 点角动量不守恒.4-16.试判断以下说法是否正确:(1)静摩擦力一定不做功;(2)滑动摩擦力一定做负功;(3)摩擦力总是阻碍物体运动;(4)运动质点如受摩擦力作用,则能量一定减小.答 均不正确.4-17.试证明2(3sin e )(N)x F x x i =++是保守力.质点在F 作用下由0x =运动到1m x =,试用两种方法计算力F 对质点做的功.解 由于2(3sin e )(N)x F x x i =++在位移d r 中所做元功2d (3sin )(d d d )x F r x x e i xi yj zk ⋅=++⋅++2(3sin e )d x x x x =++3d(cos e )xx x =-+可以表示为只与位置有关的标量函数3()cos e x U x x x =-+的微分,所以此力为保守力.方法一:质点沿Ox 轴由0x =运动到1x =,F 对质点所做的功为 120d (3sin e )d x W F r x x x =⋅=++⎰⎰310(cos e )|x x x =-+ 1cos1e 11=-++-1cos1e =-+ 方法二:因F 为保守力,引入势能3p (cos e )x E U C x x C =-+=--++,则p2p1()W E E =--1cos1e 11=-++-1cos1e =-+4-18.如图,一劲度系数为k 的弹簧,一端固定于A 点,另一端与质量为m 的质点相连.弹簧处于自由伸张状态时,质点位于竖直面与半径为R 的半圆柱面的交界处B .质点在力F 的作用下,由B 点从静止开始运动到光滑半圆柱面的顶点C ,到达C 点时质点速率为C v .求力F 对质点所做的功.解 在质点由B 到C 点的过程中,所受重力和弹簧弹性力为保守力,以B 点为重力势能及弹性势能零点.质点受面的支撑力不做功,设力F 做功为F A .由质点的机械能定理k p k p ()()C C B B F E E E E A +-+=可得 22111[(R)](00)222F C A mv mgR k π=++-+ 2221128C mv mgR k R π=++4-19.接题4-18,质点到达C 点后,力F 被撤除,求质点运动到AB 之间的平衡位置时的速率.解 质点平衡时mg k l =∆,mg l k ∆=,即质点的平衡位置位于B 点下方mg k处. 在质点由C 到平衡位置的过程中,由于所受重力和弹簧弹性力为保守力,受面的支撑力不做功,所以机械能守恒.以B 点为重力势能及弹性势能零点,则()2222211112822C mv mgR k R mv mg l k l π++=-∆+∆ 22222122m g m g mv k k =-+222122m g mv k=- 即可求出质点运动到AB 之间的平衡位置时的速率2222121(2)4C k R mg v v gR m kπ=+++4-20.如题4-15图之装置.设小球质量0.5g m =,初态管外绳长12m l =,绳与竖直方向夹角130θ=,速度为1v .末态绳与竖直方向夹角260θ=,速度为2v .求:(1)1v 、2v ;(2)绳对小球所做的功.解 视小球为质点,受重力W 和绳的张力T F 如图.初态小球做水平圆周运动,合力T F W F =+指向圆轨道圆心,由牛顿第二定律2211111tg sin v v m m mg R l θθ== 所以 21111sin 1298238m s cos 23v l g ..θθ==⨯⨯= 设末态2l l =,小球做水平圆周运动,有22222tg sin v m mg l θθ= ,222222sin cos v l g θθ= 可知 22111212222122sin cos 1cos sin 33v l l v l l θθθθ== (1) 在由初态到末态的过程中,小球所受合力对竖直轴AB 的力矩为零,所以小球对轴AB 的角动量守恒111222sin sin mv l mv l θθ=所以 12222111sin 3sin v l l v l l θθ== (2) (1)(2)⨯得 313213v v = 可求出 13213343m s v v .==2(1)(2)得 313293l l = 13211()080m 93l l .== 由机械能定理,以O 点为势能零点,绳对小球所做的功为k p W E E =∆+∆2221121()(cos30cos60)2m v v mg l l =-+-000805J .=4-21.质量为0.2kg 的小球B 以弹性绳在光滑水平面上与固定点A 相连.弹性绳劲度系数为8N m ,其自由伸张长度为0.6m .小球初位置和速度0v 如图所示.当小球速率变为v 时,它与A 点距离最大且等于0.8m .求初态与末态之速率0v 和v .解 小球在水平面上仅受弹性绳弹性力,弹性力作用线过A ,所以小球在运动过程中对过A 的竖直轴角动量守恒;注意到小球与A 点距离最大时其速度与弹性绳垂直;则004sin3008.mv .mv =小球在水平面内仅受弹性绳弹性力,弹性力为保守力,因此小球在运动过程中机械能守恒,以弹性绳自由伸张时为弹性势能零点;则2220111(0806)222mv mv k ..=+- 所以 04v v = ,22016v v .-=联立求解上述二式即可求出0131m s v .=,033m s v .=.4-22.如图,在升降机内有一和升降机固定的光滑斜面,斜面相对水平方向的倾角为θ.当升降机以匀加速度a 沿竖直方向上升时,质量为m 的物体沿斜面下滑,试以升降机为参考系,求:(1)物体相对升降机的加速度;(2)物体对斜面的压力;(3)物体对地面的加速度.解 以升降机为非惯性参考系,建立与斜面固连的坐标系Oxy 如图.视物体为质点,受重力mg 、支承力N F 和惯性力I F ma =-,物体在非惯性系中的动力学方程为()sin m g a mx θ+=()N cos 0F m g a θ-+=所以,物体相对升降机的加速度()sin a x i g a i θ'==+物体对斜面的压力()NN cos F F m g a j θ'=-=-+ 物体对地面的加速度sin cos ()sin sin cos a a a a i a j g a i g i a j θθθθθ'=+=-+++=+地4-23.如图,一理想定滑轮固定于升降机上,一不可伸长之轻绳跨过滑轮后,两端各悬挂一物体,物体质量为1m 和2m ,12m m ≠.升降机以加速度a 沿竖直方向下降时,试以升降机为参考系,求:两个物体相对地面的加速度及绳内张力.解 以升降机为非惯性参考系,建立与升降机固连的坐标系Ox 如图.视二物体为质点,物体受重力、绳张力和惯性力I11F m a =-、I22F m a =-,在非惯性系中的动力学方程为1T1111m g F m a m x --=2T2222m g F m a m x --=绳不可伸长 12x x =-根据牛顿第三定律 T1T2T F F F ==所以 12211212()()m m g m m a x x m m -+-=-=+ 绳内张力 12T 122()m m F g a m m =-+ 两个物体相对地面的加速度为1221122111212()()()2m m g m m a m m g m a a a x i ai i i m m m m -+--+=+=+=++ 1221211121212()()()2m m g m m a m m g m a a a x i ai i i m m m m -+--+=+=-=++ 4-24.如图所示有一绕竖直z 轴以角速度k ωω=作匀角速度定轴转动的光滑水平大转台.在距z 轴R 的A 处立一竖直杆,杆端有一长度为l 的不可伸长的轻绳,绳末端挂一质量为m 的小球.当绳与竖直杆夹角θ保持不变时,以转台为参考系,求θ与ω的关系.解 以转台为非惯性参考系,视小球为质点,小球受重力mg ,绳的拉力T F ,惯性离心力It F ,2It (sin )F m R l ωθ=+.小球在非惯性系中受三个力平衡,水平方向的平衡方程为2(sin )tan m R l mg ωθθ+=所以 12tan ()sin g R l θωθ=+ 4-25.接题4-24,有人试图从O 点以初速0v 沿台面抛出一小球,而使小球沿转台上的直线OA 运动,此人的目的能否达到?试在转台参考系中加以说明.解 以转台为非惯性参考系,小球相对于转台具有速度,所以小球除受重力、支持力和惯性离心力以外,还受科里奥利力作用.由于科里奥利力与小球运动方向垂直,所以小球不可能沿转台上的直线OA 运动.(第四章题解结束)。

质点力学4

质点力学4

例1、一炮弹发射后在其运行轨道上的最高点
h=19.6 m处炸裂成质量相等的两块。其中一
块在爆炸后1秒钟落到爆炸点正下方的地面上,
设此处与发射点的距离S1=1000 m,问另一 块落地点与发射点的距离是多少?(空气阻
力不计,g=9.8 m/s2)
y
解:知第一块方向竖直向下
v2
y
h
v1t1
1 2
gt12
1、质点角动量定理 L r p
dL d (r p) dr p r d p
dt dt
dt
dt
p mv
dr v dt
dp F dt
dL v mv r F dt
dL r F dt
令: M r F 为合外力对同一固定点的力矩
大小:M=rFsin (为矢径与力之间的夹角)
I x mv2x mv1x I y mv2 y mv1y I z mv2z mv1z
平均力
F
t2 Fdt
t1
=
I
P
t2 t1 t t
例1、质量为2.5g的乒乓球以 10m/s的速率飞来,被板推 挡后,又以20m/s的速率飞 出。设两速度在垂直于板面 的同一平面内,且它们与板 面法线的夹角分别为45o和 30o,求:(1)乒乓球得到 的冲量;(2)若撞击时间 为0.01s,求板施于球的平均 冲力的大小和方向。
作业: 1.35、1.36、1.38
三、质心、 质心运动定律
1、质心:质点系的质量中心 质点系 N个质点 质量:m1 m2 m3 … mi … mN
位矢:r1, r2 , r3 , , ri , , rN
质心的位矢:
mi ri
(m为总质量)
rc i m

非惯性系内质点的动力学方程

非惯性系内质点的动力学方程
y Ae t Be t
t0 时 y a, y 0
y a et et ach t 2
A B a/2
0 FRx 2my
FRx 2my 2m 2ash t
0 FRz mg
FRz mg
§5-2 非惯性系内质点的动力学方程
FR 2m 2ash ti mgk
例题4 解法一
§5-2 非惯性系内质点的动力学方程
ma F
ma ma mat mac F
F
m
m a F mat mac
d2R dt 2
m
r
m
r
2m
v
牵连惯性力 Ft mat
科里奥利惯性力 Fc mac
惯性力合力 FI Ft Fc
ma F FI
§5-2 非惯性系内质点的动力学方程
FN FNnen
受惯性力
md2R / dt 2 0(R 0)
m r 0( 0)
m
r
2ma
2
2m
v
2ma
en
coFsc2(veraFtet
)
§5-2 非惯性系内质点的动力学方程
沿圆圈切向的运动微分方程为
mat
ma
2ma
2
cos
2
sin
2
2 sin 0
可见,与大幅角单摆运动的微分方程完全相同.
§5-2 非惯性系内质点的动力学方程
例题3
m
受惯性力
r m 2
yj
m
d2R dt 2
0
2m
v
2my
i
m r 0
mx 0 FRx 2my my m 2 y
mz 0 FRz mg
§5-2 非惯性系内质点的动力学方程

陈世民理论力学简明教程(第二版)课后答案

陈世民理论力学简明教程(第二版)课后答案

第零章 数学准备一 泰勒展开式 1 二项式的展开()()()()()m23m m-1m m-1m-2f x 1x 1mx+x x 23=+=+++!!2 一般函数的展开()()()()()()()()230000000f x f x f x f x f x x-x x-x x-x 123!''''''=++++!!特别:00x =时, ()()()()()23f 0f 0f 0f x f 0123!x x x ''''''=++++!!3 二元函数的展开(x=y=0处)()()00f f f x y f 0x+y x y ⎛⎫∂∂=++ ⎪∂∂⎝⎭,22222000221f f f x 2xy+y 2x x y y ⎛⎫∂∂∂++ ⎪ ⎪∂∂∂∂⎝⎭!评注:以上方法多用于近似处理与平衡态处的非线性问题向线>性问题的转化。

在理论力问题的简单处理中,一般只需近似到三阶以内。

二 常微分方程1 一阶非齐次常微分方程: ()()x x y+P y=Q通解:()()()P x dx P x dx y e c Q x e dx -⎛⎫⎰⎰=+ ⎪⎝⎭⎰注:()()(),P x dxP x dx Q x e dx ⎰±⎰⎰积分时不带任意常数,()x Q 可为常数。

2 一个特殊二阶微分方程2y A y B =-+ 通解:()02B y=K cos Ax+Aθ+注:0,K θ为由初始条件决定的常量 3 ,4 二阶非齐次常微分方程 ()x y ay by f ++=通解:*y y y =+;y 为对应齐次方程的特解,*y 为非齐次方程的一个特解。

非齐次方程的一个特解 (1) 对应齐次方程0y ay by ++=设x y e λ=得特征方程2a b 0λλ++=。

解出特解为1λ,2λ。

*若12R λλ≠∈则1x 1y e λ=,2x 2y e λ=;12x x 12y c e c e λλ=+*若12R λλ=∈则1x 1y e λ=,1x 2y xe λ=; 1x 12y e (c xc )λ=+*若12i λαβ=±则x 1y e cos x αβ=,x 2y e sin x αβ=;x 12y e (c cos x c sin x)αββ=+(2) "(3) 若()2000x f a x b x c =++为二次多项式*b 0≠时,可设*2y Ax Bx C =++ *b 0≠时,可设*32y Ax Bx Cx D =+++注:以上1c ,2c ,A,B,C,D 均为常数,由初始条件决定。

力学习题-第4章质点组动量定理(含答案)

力学习题-第4章质点组动量定理(含答案)

已知 B 的质量是 A 的两倍,而 C 的质量是 A 的三倍,此时由此三质点组成的体
系的质心的位置为
1 28 A. ( 3 , - 3 , 3) ; B. (1, -1, 2) ; C. (1, - 2, 8) ; D. (1, 2, 3)
答案:B
解:根据题中给定的坐标系,由质心计算公式可知:
rc


M月l 81M 月 M 月

l 82

4.68 106
m.
2. 已知质点质量 m = 5kg,运动方程 r = 2ti + t2j . 则质点在 0~2 秒内受的冲量大 小为 N·s. 答案:20 解:F = ma = 10j ;
I = FΔt = 20j; 所以冲量大小为 20Ns.
3. 沿 x 方向的力 F = 12t (SI)作用在质量 m = 2kg 的物体上,使物体从静止开始 运动,则它在 3 秒末的动量大小为 kg·m/s. 答案:54 解:力 F 的冲量大小为
2. 无论质心系是否是惯性系,质心系下质点组的总动量始终为零. 答案:对 解释:对质心系下的观测者而言,质点组所受的合外力与总的惯性力相等,即, 质点组所受合外力为零,动量守恒. 其守恒值为质点组的总质量与质心速度的 乘积。而对质心系下的观测者而言,观测的质点组的质心速度始终为零. 因此, 出现质心系下质点组总动量为零的结果. 这也是质心系的特点之一.
第四章 质点组动量定理与守恒定律 单元测验题
一、选择题
1. 作用在质点上的力对时间的累积称为力的 ,其效果等于质点

改变.
A. 冲量、动量;B. 功、动量;C. 功、动能;D. 冲量、动能
答案:A
2. 某一时刻 A、B、C 三质点的位置坐标分别为:(-3, 4, 3)、(3, -8, 6)、(1, 2, -1),

非惯性系中的

非惯性系中的

非惯性系中的“弹簧双振子模型”浙江省海盐元济高级中学(314300) 王建峰 魏俊枭一、“弹簧双振子模型”的含义如图一所示,质量分别为m A 和m B 的两物块A 和B ,A 、B 可视为质点,用一根劲度系数为k 的轻质弹簧连接起来,放在光滑水平面上,弹簧原长为0l 。

可以将A 、B 和弹簧组成的系统装置称为“弹簧双振子模型”。

该模型在近几年的全国中学生物理竞赛中屡屡出现,从反馈情况来看失分是相当严重的。

究其原因它不但涉及力与运动、动量与能量等物理知识,而且物理过程复杂、运动情景难以想象,对学生分析、解决问题的能力提出了较高的要求。

因此,帮助学生认清该模型的特点,掌握分析该模型的一般方法,并能够适当地变式处理此类问题,无疑对参加全国中学物理竞赛有很大的帮助。

二、非惯性系中的“弹簧双振子模型”牛顿运动定律不成立的参照系称为非惯性系。

非惯性系相对惯性系必然做加速运动或旋转运动。

为了使牛顿运动定律在非惯性中也能使用,可人为地引入一个惯性力。

如果非惯性系相对惯性系有平动加速度a ,那么只要认为非惯性系中的所有物体都受到一个大小为ma 、方向与a 的方向相反的惯性力,牛顿运动定律即可成立。

如果非惯性系相对惯性系有转动加速度,也可引进惯性离心力和科里奥利力,这两个力不仅与非惯性系的转动角速度有关,还与研究对象的位置和运动速度有关,在此对转动情况不作讨论。

下面就“弹簧双振子模型”在非惯性系(只有平动加速度)中的运动规律作一些简单探讨。

[情景]:如图二所示,在一个劲度系数为 k 的轻质弹簧(两端绝缘)分别拴着荷质比为AA mq 与荷质比为BBm q 的两个带正电的小球,且AAmq =BBm q ,系统置于光滑水平面,处在水平的匀强电场中,电场强度为E ,A 端用细线拴住,系统处于静止状态,此时弹簧长度为l ,弹簧原长0l 。

现将细线烧断,试确定A 、B 在任意时刻的所处位置。

(A 、B 两球的相互作用力忽略不计)[解析]:①以质心为参考系(质心系),则质心C 是静止的,连接A 、B 的弹簧仍可以看成两断,左边一段原长为01l m m m lBA B AO+=,劲度系数为kmm m BAB+;右边一段原长为01l m m m lBA A BO+=,劲度系数为kmm mAAB +;振动周期都是)(2BABA mmk m m T+=π。

惯性力与非惯性系

惯性力与非惯性系

惯性力与非惯性系摘要惯性力是非惯性系中的非真实力,本文证明了在非惯性系中将惯性力视为真实力计入后,惯性系下的所有力学规律在非惯性系下都能成立。

当惯性力做功与路径无关时,可以引入惯性力势能,引入惯性力势能并计入系统总机械能后,机械能守恒体系中的条件与结论也仍然成立。

关键字:非惯性系; 惯性力; 惯性力势能ABSTRACTInertia force is unreal power in non-inertia system. It proves in this article that when inertia force is added as real power in non-inertia system, all the mechanical laws which apply in inertia system also do in non-inertial system. When inertia force’s doing work has nothing to do with path, potential energy can be brought in. The conditions and conclusions still apply in the system of conservation of mechanical energy when it adds potential energy to the total mechanical energy.Keywords:Non-inertial; Inertia; Inertial force potential energy1非惯性系与惯性力我们在描绘物体的运动状态时,称选作参照场的物体或物体群,为参照系。

又因为牛顿第一定律又称为惯性定律。

所以凡适用用牛顿定律的参照系都可以称作惯性参照系。

从伽俐若相对性原理中还得到:相对于惯性参照系作匀速直线运动的参照系来说,其力学过程是完全等价的。

2024年中科大理论力学课后习题答案

2024年中科大理论力学课后习题答案

注意事项
在使用课后习题答案时,学生需要注意以下几点:一是不要完全依赖答案,要 注重自己的思考和总结;二是要注意答案的适用范围和条件,避免盲目套用; 三是要及时反馈和纠正答案中的错误或不足之处。
2024/2/29
6
02 质点与刚体运动 学
2024/2/29
7
质点运动学基本概念
质点的定义
质点是一个理想化的物理模型,忽略 物体的形状和大小,只考虑其质量。
2024/2/29
02
答案
根据牛顿第二定律,合外力$F_{ 合}=ma$,则合外力做的功 $W_{合}=F_{合}l=mal$,其中 $l=v_{0}t+frac{1}{2}at^{2}$为 物体在t时间内的位移。功率 $P_{合}=F_{合}v=mav$,其中 v为物体在t时刻的瞬时速度, $v=v_{0}+at$。
15
实际应用举例及拓展
2024/2/29
01
应用一
汽车行驶过程中的动力学分析。汽车行驶时受到发动机的动力、地面的
摩擦力和空气阻力等作用,通过动力学分析可以优化汽车的设计和行驶
性能。
02
应用二
航空航天领域的动力学问题。航空航天领域涉及大量的动力学问题,如
火箭发射、卫星轨道计算等,需要运用动力学原理进行精确分析和计算
03 题目2
一轻绳跨过定滑轮,两端分别系 有质量为m1和m2的物体,且 m1>m2,开始时两物体均静止 ,当剪断轻绳后,求两物体的加 速度和速度变化。
25
04
答案
剪断轻绳后,两物体均做自由落 体运动,加速度均为g。由于两 物体初始时刻均静止,因此速度 变化量相同,即$Delta v=gt$, 其中t为物体下落的时间。

非惯性系中质点的动能定理及机械能守恒条件

非惯性系中质点的动能定理及机械能守恒条件

非惯性系中质点的动能定理及机械能守恒条件
《非惯性系中质点的动能定理及机械能守恒条件》
一、定义非惯性系
非惯性系,它是一个概念,是一种由外力,而不是任何物理量引起的系统。

它比惯性系精确地描述了物体运动轨迹和其改变的规律,以及它们在时间和空间上之间的关系。

只有当外力作用在小质点上时,才能说它处于非惯性系中。

二、质点动能定理
质点动能定理是物理学中的一条重要定理,它指出在某个特定的非惯性系中,质点的动能大小只与物体的速度而不取决于它的质量。

即:质点的动能可以表达为:E=ΔTμv ,其中E表示动能,ΔT表示时间周期,μ表示质量,v表示速度。

由此可知,在非惯性系中,质点的动能仅与质点的速度有关,与质点质量无关。

三、机械能守恒条件
机械能守恒条件是经典力学中的一条重要定理。

它指出,在非惯性系中,机械能是非常重要的物理概念,当物体进行匀变运动时,机械能的变化率是等于从外力中定义的功多少,这是机械能守恒条件的定义。

它可以表达为:W=ΔE,其中W表示功,ΔE表示机械能的变化量。

由此可见,在特定的非惯性系中,机械能始终保持守恒。

四、结论
非惯性系中,质点的动能定理和机械能守恒条件表明,物体运动轨迹和其改变的规律取决于外力,其中只有一些力使物体的动能和机械能保持守恒。

这对描述和解释物理学中的物理现象有着巨大的重要作用,也为后续的研究提出了重要的理论参考。

非惯性系中动力学问题的讨论讲解

非惯性系中动力学问题的讨论讲解

包头师范学院本科毕业论文论文题目:非惯性系中动力学问题的讨论院系:物理科学与技术学院专业:物理学姓名:王文隆学号: 0809320007指导教师:鲁毅二〇一二年三月摘要综述了近几十年来国内外学者对非惯性系动力学方面的研究情况 ,以及对非惯性系动力学的实际应用情况。

介绍了在非惯性系中建立动力学方程的方法 ,惯性系中拉格朗日方程在非惯性系中的转换形式 ,以及非惯性系中的能量定理和能量守恒定律的应用等研究成果。

最后 ,概述了一些运用非惯性系动力学的方法来解决非惯性系中的理论和实际工程应用两方面的文献 ,并且对非惯性系的研究和应用进行了展望。

关键词:非惯性系;惯性力;动力学方程;拉格朗日方程;动量定理; 动能定律;守恒定律AbstractAnd under classical mechanics frame, the conservation law, leads into the inertial force concept according to kinetic energy theorem , moment of momenum theorem , mechanical energy in inertia department, equation having infered out now that the sort having translation , having rotating is not that inertia is to be hit by dynamics, priority explains a few representative Mechanics phenomenon in being not an inertia department.Key words:Non- inertia Inertial force Kinetic energy theorem Mechanical energy conserves Apply目录引言 (5)1非惯性系概述 (6)1.1非惯性系 (6)1.2 惯性力 (6)2 动力学方程 (7)2.1 质点动力学方程 (7)2.2 拉格朗日方程 (8)3 能量问题 (9)4 应用研究举例 (9)5 研究展望 (10)参考文献 (11)致谢 (12)非惯性系中动力学问题的讨论引言实际工程中有许多系统处于非惯性系内工作 ,如航空航天、天文和外星空探索等领域的许多转子系统。

质点力学2

质点力学2

度多大?
ω m1
m1 N1
fμ1
T
m2
N2
T m1
fμ2
f惯
m1g
m2g
m1惯性系中, m2非惯性系 m1: 水平: T-m1gμ=0 ;
m2: 水平: m2ω2l –T- m2gμ =0 ;
(m1 m2 )g
m2l
m1 N1
fμ1
T
m1g
N2
T m1
fμ2
f惯
m2g
(3) 科里奥利力
圆盘光滑,质点质量为m,绳长
为r,质点速率v,绳中张力F
v r v
v
O
F m v2 m (r v)2 m2r 2mv m v2
r
r
r
F m2r 2mv m v2
r
2mv 为科里奥利力
一般来说, 科里奥利力Fc
FC 2m v
北半球运动物体受科里奥利力方向指 向运动方向的右侧,因此,北半球 河流右岸冲刷严重。
力 f = -kx,方向总是与形变的方向相反。
摩擦力:物体运动时,由于接触面粗糙而受到的
阻碍运动的力。分滑动摩擦力和静摩擦力。大小
分别为 fk= kN 及 fsmax=sN。
长期以来,人们有一种朴素的愿望,世界是统一的, 各种基本相互作用应该有统一的起源。
基本的自然力
万有引力:
f
Gm1m2 r2
G=6.6710-11Nm2/kgF

M: a1, m:a2
F Mg
f
a2
Y’
mg O’ X’
方法1 惯性系中 M: 水平方向: -a1;
竖直方向: 0
NY
a1
O
X

非惯性系中变质量质点的运动微分方程与应用

非惯性系中变质量质点的运动微分方程与应用
在非惯性系中,变质量质点的运动微分方程需要考虑非惯性力的影响。本文以转动参照系为例,详细推导了非惯性系中变质量质点的运动微分方程,并深入探讨了非惯性力的概念、产生原因及其作用方式。非惯性力是一种为了在非惯性系中保持牛顿第二定律形式不变而引入的假想力,它反映了非惯性系相对于惯性系的加出现,与质点的质量、速度以及非惯性系的加速度等因素密切相关。此外,本文还通过具体例子(如雨滴运动)展示了非惯性系中变质量质点运动微分方程的应用,进一步揭示了非惯性力在实际问题中的重要性和研究价值。这些研究不仅有助于深化对非惯性系中变质量质点运动规律的理解,还为相关领域(如火箭发射、地球物理学等)的研究提供了有力的理论支持。

大学物理-质点动力学学

大学物理-质点动力学学

质量为10千克的物体静止于地面上,受x轴方向水平拉力F的作用 ,沿x轴方向作直线运动,力F与时间的关系如图所示,设物体与 地面的摩擦系数为0.2。在t = 4秒时的速度大小___________,在t = 7秒时的速度大小_______________。
F(N)
30
t (s) 0 4 图 2-29 7
A F dr
0
2R
F0 x d x
0
F0 y d y 2 F0 R
0
2
注意:
① 功是标量(代数量) A> 0 力对物体做正功
A<0
A=0
力对物体做负功
力作用点无位移或者力与位移相互垂直
② 当质点受几个力作用时,其合力的功为
A


b
a
F合 d r
b
例2-1. 质量为m的物体被竖直上抛,初 速度为v0 ,物体受到的空气阻力数值与 解题步骤: 其速率成正比,即f = kv,k为常数,求 (1) 确定研究对象。隔离 物体升到最高点所需的时间及上升的最 体法。 大高度。 (2) 受力分析,画示力图。 解:建立如图所示的坐标系 x (3) 建立坐标系。 物体上升过程中受力分析如下: (4) 对各隔离体建立牛顿 重力: m g 阻力: f 运动方程(矢量式——分 m g 物体所受的合外力为 量式) 。 o f F mg f mg kv (5) 解方程。进行文字运 算,然后代入数据求解。 (1) 根据牛顿第二定律可得
2、非惯性系
t t
S系 x, y , z , t
2. 伽利略速度变换 正变换:
u u x v x u u y y u u z z
a a x x a a y y a a z z

《理论力学 动力学》 第五讲 非惯性系中质点动力学的应用

《理论力学 动力学》 第五讲  非惯性系中质点动力学的应用

求:套筒运动到端点A所需的时间
z'
及此时对杆的水平压力。
y'
2、非惯性系中质点动力学的应 用
解:研究套筒B相对于OA的运动.
O
选取和杆OA一起转动的坐标
系O x’y’z’为动参考系.
分析套筒受力, 其中
FIe = mw2 x¢ FIC = 2mw x&¢
套筒的相对运动动力学方程为:
m
d2r¢ dt 2
2、非惯性系中质点动力学的应 用
(1)傅科摆
在北半球,球铰链悬挂一支摆,摆锤摆动时,与 地球表面有相对速度,由于地球自转的影响,会 产生向左的科氏加速度,对应的科式惯性力向 右,因此它不会像单摆一样在一个固定平面内运 动,而会向右偏斜,轨迹如右图所示。这种现象 是傅科1851年发现的,称之为傅科摆。它证明了 地球的自转。摆绳摆动的平面在缓慢地顺时针旋 转,旋转一周的周期为:
2、非惯性系中质点动力学的应 用
例 1 如图所示单摆,摆长为l,小球质量为m。其悬挂点O以加速度a0向上运动。
求:此时单摆作微振动的周期。
a0
解:在悬挂点固结一个平移坐标系O x’y’。
O
x'
小球相对于此动参考系的运动相当于悬挂点固定的单摆振动。
分析小球受力, 其中 FIe = ma0
φ
因动参考系作平移运动,所以科氏惯性力 FIC = 0
2
3) = 0.209s
m
d2r¢ dt 2
=
ห้องสมุดไป่ตู้mg
+
F1
+
F2
+
FIe
+
FIC
将相对运动动力学方程投影到y’轴上,得: F2 = FIC = 2mw x&¢

力学竞赛资料惯性参考系与非惯性参考系

力学竞赛资料惯性参考系与非惯性参考系

惯性参考系与非惯性参考系目的•正确理解惯性参考系的定义•正确识别惯性参考系与非惯性参考系•正确理解惯性力的概念•知道惯性力不是物体间的相互作用•会正确运用惯性力计算有关问题思考问题1:牛顿第一定律的内容是什么?(答:一切物体总保持静止或匀速直线运动状态,直到有外力迫使它改变这种状态为止。

)说明:这条定律正确地说明了力与运动的关系:物体的运动不需要力去维持:力是改变物体运动状态(产生加速度)的原因。

问题2:当你和同伴同时从平台跳下,如各自以自身为参考系,对方做什么运动?(答:对方是静止的。

)问题3:在平直轨道上运动的火车中有一张水平的桌子,桌上有一个小球,如果火车向前加速运动,以火车为参考系,小球做什么运动?(答:小球加速向后运动。

)疑问:问题 2 中,既然对方是静止的,按照牛顿第一定律,他不应受到力的作用,然而每个人都的确受到重力的作用。

这怎么解释呢?问题 3 中,小球加速向后运动,按照牛顿第一定律,小球应受到力的作用,然而小球并没有受到向后的力。

这又怎么解释呢?对这个问题暂时还不能解释,但我们至少能说明一点:并非对一切参考系,牛顿第一定律都成立。

惯性参考系与非惯性参考系我们以牛顿运动定律能否成立来将参考系划分为两类:惯性参考系和非惯性参考系。

•两种参考系•惯性参考系:牛顿运动定律成立的参考系,简称惯性系。

中间空出两行。

•非惯性参考系:牛顿运动定律不能成立的参考系。

要判断一个参考系是否为惯性参考系,最根本的方法是根据观察和实验;判断牛顿运动定律在参考系中是否成立。

分析问题 2 :当你和同伴同时从平台跳下,以地面为参考系,做匀加速运动。

由于人受重力作用,所以人做匀加速运动,这是符合牛顿运动定律的。

我们生活在地球上,通常是相对地面参考系来研究物体运动的。

伽利略的理想实验以及我们前面做过的研究运动和力的关系的实验,都是以地面作参考系的。

在地面上作的许多观察和实验表明:牛顿运动定律对地面参考系是成立的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


小结:选用不同的 s 系,其 加速度变换公式的具体分 析结果不同。
§4.3 非惯性系内质点动力学
当计入惯性力,就可在非惯性系中得到形式上和惯性 系一样的动力学规律(如三个定理,三个守恒定律).
(x 0为势能零点 s系中 2. 当非惯性系以匀角速度 绕固定轴转动时, 2 1 2 2 F m ( r ) m e ( m ) Ic 2
牵连惯性 力 非惯性系中的 质点的动力学 方程
m a F
§4.2 非惯性系内质点的动力学方程
科氏 力
对惯性力作几点说明:
1.惯性力不是相互作用力,不遵从牛顿第三定律,它不 存在反作用力。 2.惯性力仅存在于非惯性系之中。 3.在非惯性系中惯性力真实存在,不是假想的力。 4.惯性离心力
m ( r )
三.落体偏东
以自由落体运动为例,研究科氏力对质点竖直运动的影响
在地面参照系oxyz中,其单位 矢量为i、j 、k.,且 i 水平向 南, j 水平向东, k 竖直向上. 质 点在z轴上 z h 处自由下落, 不计空气阻力,且不受其它物 体的作用, F 0


这里惯性离心力是保守力, 1 对应的势能为 V m 2r2 2
1 2 1 22 1 22 m m v r 0 m r 0 2 2 2
§4.4 地球自转的动力学效应
本节应用非惯性系内动力学理论解决实际问题的范例.
一. 质点相对地球的运动微分方程
1.有关地球运动的几个量. 2.地球为非惯性系时质点在地球表面附近运动微分方程. 地球既有自转又有公转,是非惯性参照系,以日心系为S系.
3. 通过前面分析,我们可利用运动系把质点的复杂运动 分解成为几个比较简单的运动的合成.
分析例题4.1 0 , a 0 , a 0 0 v u r , r b i b ut j a r 2 u
第四章 非惯性系中的质点力学
本章重点:绝对加速度、相对加速度、牵连 加速度之间的变换关系,和在非惯性系中建立 质点力学方程及应用. 本章难点:科氏加速度产生的原因

主要内容: • 两参考系间速度和加速度的变换关系
• 非惯性系内质点的动力学方程 • 非惯性系内质点的动力学 • 地球自转的动力学效应
1. 当非惯性系以ai 作匀加速平动时. F m a ma i (m x ) a t


保守力
V
例题4.3
处在与圆盘固连的 s 系中,在水平面方向上,质点受到的 科氏力与相对速度垂直不做功,只有惯性离心力做功. 一解: 由动能定理得 12 2 d ( m v ) [ m ( r )] d r m r d r 2 二解:用“机械能守恒定律”
例题4.2
分别以不同的转动非惯性系和平动非惯性系作为 s 系 解法一:
a , m r 0 0 o 2 m (r)2 ma cos e r F t 2 2 m v 2 m a e n F c
表观重力 : m g m g m ( R ) 0

弹簧秤拉力为 F m g [ m g m ( R )] T 0 2 [ m g m R cos ] 0 同学自行分析 g 与g 0 间的 差别随纬度的增大而减小, 即在赤道处两者相差最大, 在两极两者相等。
引起质点在 v
d d r R v v v r t dt dt 2 d d v R d a r ( r ) 2 v 2 dd t t dt


( v , v , a , a , a ) 2. 在 s 系中看不到相对运动 与牵连运动 t t c v ,a ) ;同样,在 s系中只看到相对运动, 只看到绝对运动 ( 而看不到绝对运动与牵连运动 ( . v , v , a , a , a ) t t c
v相对速度
d d r R v v v r t dt dt

vt牵连速度
v o 基点速度
s 五. 系与 s 系间加速度变换公式
d v d d R a v r dt dt dt 2 d v d R d d r 2 r dt dt dt dt 2 d v d R d d r v 2 r r dt dt dt dt
§4.1 两参考系间速度和加速度的变换关系
一. 静止系和运动系
静止系记为 s,运动系记为 s .用描述刚体的一般运 动的方法来描述 s 系相对 s 系的运动,即 s 系随基点 o 的平动与绕 o 点的转动合成.
二.绝对运动、相对运动和牵连 运动
力学体系相对 s系的运动为 绝对运动,相对 s 系的运动 为相对运动,牵连运动则为 由于 s 系的运动而引起的力 学体系相对 s 系的运动。

A A i A j A k x y z
矢量 A 的相对变率:
d A d i d j d k A i A A A A k A j x x y y z z dt dt dt dt A i A j A k A i A j A k x y z x y z
a a R ( R ) o D
略去



P

m a F m [ a ( R )] D m ( r ) 2 m v
m a F ( F m a ) { mg m [ ( R r )] s D 0 2 m v m g m ( R ) 0 m g表 观 重 力


ac
科氏加速 度
a相对加速

at 牵连加速

a a a a t c
分析柯氏加速度产生的原因:
柯氏加速度产生的原因:a)由于相对运动 ,使得速度大小发生变化,产生了加 s 系上位置发生变化 速度. b)由于转动 引起相对速度方向的变化,从而产 生了加速度. 总之,科氏加速度是相对运动和牵连运动 相互作用的结果.
2 d d v R d a r ( r ) 2 v 2 dd t t dt


2 d d v R d a r ( r ) 2 v 2 dd t t dt
三. 任意矢量 A 的绝对变率、相对变率和牵连变率
d A i j k 矢量 A 的绝对变率: A A A x y z dt A A i A j A k x y z
d A A i A A k j x y z dt

r ( r ) a o

P71. 4.2 若以与圆盘固连的
d a a r ( r ) 是否还成立 ? 等式右三项 o dt 又各是什么速度 ?
则 O为 xyz系,s
m a m a m a m a F t c F m a m a m a t c 2 d R F m 2 m r m r 2 m v dt F F F t c
分析:
d v v 0 , a 0 dt


2 d v d R d a 2 r(r)2 v dt dt dt 2 dR d 2 r(r) dt dt d a r(r) o dt
六.三点说明
1. 系与 s 系间速度和加速度变换公式如上,是根据 s 2. 系相对 系的运动进行分析得到的,如果采用不同的 3. 运动系,分解的具体结果则不同.
s
s
请思考 P71 4.1,4.2
P71. 4.1 一竖直圆盘沿水平直线轨道做无滑滚动,其 盘心O点的加速度为 ao ,以地面为S系,以O为原点建立平 系.则轮边上一点P的绝对加速度为 动oxyz 为s


若质点位于地心, F ;若质点不在地心 , 则因 m a 0 s D 其到地心的距离远小于 R SE ,故认为 F m a 0 s D
质点在地球表面附近 运动的微分方程:
m a F m g 2 m v

二. 表观重力
通常认为物体在地球表面受到的重力为地球对它的引 力,是没考虑到地球的自转效应.
d a a r ( r ), 问 o dt 1) 是绝对变率还是相对变率?2)等式右方三项各是什么加速度? 2 d d v R d a r ( r ) 2 v 2 dd t t dt d ( r) ao dt d r r ao dt
解法二:
v 2 m a m e v m e m a e o o t n R a 2 2 m a cos e m a sin e F n t t,
2 o
v a e t
d A dA A dt dt
相关文档
最新文档