氮化镓半导体材料
氮化镓研究报告
氮化镓研究报告1. 引言氮化镓(GaN)是一种具有广泛应用前景的半导体材料。
它具有优异的电特性和物理特性,使其在电子、光电子、光学、化学和生物医学等领域有着广泛的应用。
本报告旨在对氮化镓的研究现状进行综述,并就其在不同领域的应用进行展望。
2. 氮化镓的物性特征氮化镓具有以下一些重要的物性特征:2.1 宽带隙和高饱和漂移速度氮化镓的能隙大约为3.4电子伏特,远大于传统半导体材料如硅和锗。
这使得氮化镓具有能够在可见光和紫外线范围内提供高效率的发光和吸收能力。
此外,氮化镓的高电子饱和漂移速度使其在高频电子器件中表现出优异的性能。
2.2 较高的热导率和耐高温性氮化镓具有较高的热导率和良好的耐高温性,这使得它在高功率电子器件领域具有潜在应用,如功率放大器、太阳能电池等。
2.3 较高的电子迁移率和寿命氮化镓具有较高的电子迁移率和长寿命,这使其在高速电子器件和高均匀性LED器件中具有很大优势。
3. 氮化镓的研究进展3.1 氮化镓的制备方法氮化镓的制备方法有分子束外延法、金属有机化学气相沉积法和氢气氧化镓法等。
这些方法各有优劣,其中分子束外延法是制备高质量氮化镓晶体的首选方法。
3.2 氮化镓的缺陷与改进措施氮化镓晶体中常常存在一些缺陷,如位错、堆垛层错和晶格失配等。
研究人员通过控制生长条件、改变晶体结构和表面修饰等方法,成功地降低了晶体的缺陷密度,提高了氮化镓器件的性能。
3.3 氮化镓在电子器件中的应用氮化镓在电子器件中有着广泛的应用,如高电子迁移率晶体管(HEMT)、谐振器、射频功率放大器等。
近年来,氮化镓在功率电子领域的应用也取得了巨大的进展。
3.4 氮化镓在光电子领域的应用氮化镓具有优异的发光特性,因此在光电子领域有着广泛的应用。
氮化镓LED 在照明、显示和通信等领域有着重要的地位。
此外,基于氮化镓的激光器、探测器和光伏器件等也得到了广泛研究。
4. 氮化镓的应用展望由于氮化镓的优异性能和广泛的应用领域,对其未来的应用展望非常乐观。
氮化镓最高掺杂浓度
氮化镓最高掺杂浓度氮化镓是一种重要的半导体材料,其在电子领域具有广泛的应用。
在研究和开发过程中,掺杂是一种常见的方法,可以改变材料的电子性质和导电性能。
然而,掺杂浓度的选择和控制是一个关键的问题,对于氮化镓材料的性能和应用有着重要的影响。
氮化镓是一种III-V族化合物半导体材料,由镓和氮两种元素组成。
通过将其他元素掺杂到氮化镓晶格中,可以改变材料的导电性能和光学特性。
掺杂的作用是通过引入额外的电子或空穴来改变材料的载流子浓度,从而调节材料的电导率和导电类型。
在氮化镓材料中,最高掺杂浓度是指在掺杂过程中可以达到的最大掺杂浓度。
由于氮化镓材料的晶格结构和电子能带结构的特殊性,其最高掺杂浓度相对较低。
通常情况下,最高掺杂浓度在10^18-10^20 cm^-3之间。
这一限制主要来自氮化镓材料的热稳定性和电子结构的特殊性。
氮化镓材料的最高掺杂浓度受到多种因素的影响。
首先,晶格杂质和缺陷对掺杂浓度的限制较大。
杂质和缺陷会影响材料的载流子迁移率和寿命,从而限制了最高掺杂浓度的提高。
其次,氮化镓材料的热稳定性也是一个重要的因素。
高浓度的掺杂会引入更多的缺陷和应力,导致材料的热稳定性降低。
此外,掺杂元素的选择和掺杂方法的优化也会对最高掺杂浓度产生影响。
尽管最高掺杂浓度有限,但氮化镓材料仍然具有许多重要的应用。
例如,在高功率电子器件中,氮化镓材料可以用于制作高电导率的电极和导线。
此外,氮化镓材料还广泛应用于光电子器件领域,如LED和激光二极管。
在这些应用中,虽然最高掺杂浓度有限,但仍然可以通过优化掺杂方法和结构设计来实现所需的电子性能。
氮化镓材料的最高掺杂浓度受到多种因素的限制,包括晶格杂质、缺陷、热稳定性和掺杂方法等。
尽管有限,最高掺杂浓度仍然可以满足许多重要应用的需求。
未来的研究和开发将继续探索新的掺杂方法和材料结构,以进一步提高氮化镓材料的电子性能和应用价值。
氮化镓 芯片
氮化镓芯片氮化镓芯片是一种新型的半导体材料,具有高电子迁移率、较宽的能隙等优势,因而在电子设备领域具有广泛的应用前景。
本文将从氮化镓芯片的原理、特性以及应用三个方面进行介绍,希望能对读者增加对氮化镓芯片的了解。
一、氮化镓芯片的原理氮化镓是由镓和氮两种元素组成的化合物半导体材料,其晶体具有非常高的晶格匹配度和结晶度。
这使得氮化镓芯片具有较高的电子迁移率和着色中心密度,从而实现了高速、高功率和高频率的性能。
此外,氮化镓芯片还具有较宽的能隙(3.4eV),使其在紫外光、蓝光和绿光领域有着重要的应用。
二、氮化镓芯片的特性1. 高电子迁移率:氮化镓芯片具有比传统硅芯片更高的电子迁移率,能够实现更高的集成度和更高的频率响应,从而提高芯片的性能。
2. 宽能隙:氮化镓芯片的能隙较宽,使其在紫外光和蓝光领域具有广泛的应用,如LED照明、激光器以及高速通信等。
3. 高功率密度:由于氮化镓材料具有较高的能隙和较高的饱和电子漂移速度,因此能够实现更高的功率密度,使其在功率放大器等领域中有着重要的应用。
4. 耐高温性能:氮化镓芯片具有较好的耐高温性能,能够在高温环境下稳定运行,适用于一些特殊的工作环境。
三、氮化镓芯片的应用1. LED照明:由于氮化镓芯片具有宽能隙和高饱和电流密度,因此在LED照明领域有着广泛的应用。
氮化镓芯片能够发出蓝光,并通过荧光粉转换成其他颜色的光,如红光和绿光,实现全彩LED照明。
2. 激光器:氮化镓芯片在激光器领域也有重要的应用。
由于其能隙宽,可以实现蓝光和紫外光的激光发射,被广泛应用于以太网通信、显示器、激光打印机等领域。
3. 无线通信:氮化镓芯片具有高频率响应和高功率密度的特点,因此在无线通信领域有着广泛应用。
氮化镓芯片可以实现高功率放大以及高频率的信号处理,提高通信设备的性能。
4. 太阳能电池:由于氮化镓具有较宽的能隙,能够吸收来自太阳的可见光和紫外光,因此在太阳能电池领域也有应用前景。
通过将氮化镓芯片作为光伏材料,能够实现高效率的太阳能电池。
第三代宽禁半导体材料GaN(氮化镓)研究分析
广州创亚企业管理顾问有限公司第三代宽禁半导体材料GaN (氮化镓)研究分析目录contents一、5G应用的关键材料(一)认识第三代半导体材料1、半导体材料的由来2、第一代半导体材料3、第二代半导体材料4、第三代半导体材料(二)第三代半导体材料的特点1、碳化硅(SiC)2、氮化镓(GaN)二、氮化镓(GaN)(一)GaN技术的发展历史(二)GaN的优点1、GaN 在电力电子领域:高效率、低损耗与高频率2、GaN 在微波射频领域:高效率、大带宽与高功率3、与第二代半导体材料GaAs更具优势三、GaN市场(一)市场空间1、0~900V的低压市场空间宏大2、GaN RF 市场即将大放异彩(二)射频是主战场1、GaN 是射频器件的合适材料2、5G应用的关键技术3、GaN 电力电子器件典型应用:快充电源四、GaN产业链(一)GaN工艺与流程(二)芯片制造过程1、流程2、GaN衬底3、GaN外延片4、GaN外延使用不同衬底的区别5、GaN器件设计与制造由于地球的矿藏多半是化合物,所以最早得到利用的半导体材料都是化合物,例如方铅矿(PbS)很早就用于无线电检波,氧化亚铜(Cu2O)用作固体整流器,闪锌矿(ZnS)是熟知的固体发光材料,碳化硅(SiC)的整流检波作用也较早被利用。
硒(Se)是最早发现并被利用的元素半导体,曾是固体整流器和光电池的重要材料。
元素半导体锗(Ge)放大作用的发现开辟了半导体历史新的一页,从此电子设备开始实现晶体管化。
中国的半导体研究和生产是从1957年首次制备出高纯度(99.999999%~99.9999999%)的锗开始的。
采用元素半导体硅(Si)以后,不仅使晶体管的类型和品种增加、性能提高,而且迎来了大规模和超大规模集成电路的时代。
以砷化镓(GaAs)为代表的Ⅲ-Ⅴ族化合物的发现促进了微波器件和光电器件的迅速发展。
2、第一代半导体材料第一代半导体材料主要是指硅(Si)、锗(Ge)元素半导体。
氮化镓的发展趋势
氮化镓的发展趋势
氮化镓(GaN)是一种具有广泛应用潜力的新型半导体材料。
其发展趋势主要体现在以下几个方面:
1. 增强功率半导体器件:氮化镓具有较大的能隙和较高的饱和漂移速度,使其在高功率应用中具有优势。
因此,氮化镓功率器件正在不断发展,用于实现高效率、高功率的功率放大器、开关和变频器等应用。
2. LED照明:氮化镓是制造高亮度LED的关键材料。
随着LED照明市场的迅速增长,氮化镓LED的需求也在不断增加。
未来,氮化镓LED的发展趋势将主要集中在提高亮度、效率和可靠性上。
3. 光电子器件:由于氮化镓具有宽带隙和较高的电子迁移率,使其在光电子器件领域具有广泛的应用前景。
例如,氮化镓激光器、光电二极管和太阳能电池等器件,正在不断开发和改进。
4. 5G通信:随着5G通信技术的快速发展,对高频电子器件的需求也在不断增加。
氮化镓材料由于其优良的高频特性,在5G射频器件领域有望取得重要突破。
5. 汽车电子:随着电动汽车的普及和自动驾驶技术的发展,对高效、高可靠的功率电子器件的需求也在快速增长。
氮化镓功率器件在车载电子中的应用前景广阔。
总的来说,氮化镓的发展趋势将集中在高功率器件、LED照明、光电子器件、5G通信和汽车电子等领域。
随着相关技术的不断进步和市场需求的增长,氮化镓有望在未来得到更广泛的应用。
氮化镓半导体材料研究与应用现状
氮化镓半导体材料研究与应用现状一、本文概述Overview of this article随着科技的飞速发展,半导体材料作为现代电子技术的基石,其重要性日益凸显。
氮化镓,作为一种具有优异物理和化学性能的半导体材料,近年来在科研和工业界引起了广泛关注。
本文旨在全面综述氮化镓半导体材料的研究现状以及其在各领域的应用情况,以期为读者提供一个清晰、系统的认识。
With the rapid development of technology, the importance of semiconductor materials as the cornerstone of modern electronic technology is becoming increasingly prominent. Gallium nitride, as a semiconductor material with excellent physical and chemical properties, has attracted widespread attention in scientific research and industry in recent years. This article aims to comprehensively review the research status and applications of gallium nitride semiconductor materials in various fields, in order to provide readers with a clear and systematic understanding.我们将从氮化镓的基本性质出发,介绍其晶体结构、能带结构、电子迁移率等关键参数,为后续的应用研究提供理论基础。
接着,我们将回顾氮化镓材料的发展历程,包括制备技术、掺杂技术等方面的进步。
氮化镓半导体国内应用研究
氮化镓半导体国内应用研究摘要:氮化镓(GaN)材料因具有宽禁带宽度、高击穿场强等综合优势,被认为是继硅之后最重要的半导体材料之一。
本文在对氮化镓半导体现有主要应用领域进行分析的基础上,针对国内市场现状和产业布局进行讨论,并提出氮化镓(GaN)半导体国内从业企业的发展态势及突破方向。
关键词:氮化镓;GaN;半导体一、氮化镓半导体材料特性半导体材料到目前经历了3个发展阶段。
第一代是硅和锗等基础功能材料;第二代开始进入由两种以上元素组成的化合物半导体材料(以砷化镓和磷化铟等为代表);第三代则是氮化镓和碳化硅等宽频化合物半导体材料。
其中氮化镓因具有广泛的应用性,被认为是继硅之后最重要的半导体材料之一。
我国是镓的主产区之一,拥有大量镓矿储备,因此,氮化镓材料的开采和制造更加方便,从国际环境来看,我国使用氮化镓更加安全【1】。
基于 GaN 材料制备的功率器件拥有更高的功率输出密度和更高的能量转换效率,可实现系统小型化、轻量化,有效降低电力电子装置的体积和重量,将氮化镓应用在高功率和高速元件中,同时可带来更高的功率和效率【1】。
二、氮化镓半导体主要应用领域氮化镓材料自20世纪90年代以来应用于发光二极管等器件中。
到本世纪初,市场上陆续推出了多款可广泛应用于通信电源和民用供电行业的氮化镓功率器件。
因其具有更高的临界电场强度、更低的开态电阻、更快的开关频率,可以实现更高的系统效率,更适合于高温度、高电压、低电阻率、损耗小、高频率的应用场合【2】。
GaN的优势在高频领域,目前主要集中在1000V以下,例如通信基站、消费电子等;SiC的优势在高温和1200V以上的高压电力领域,包括智能电网、光伏逆变器、高铁、新能源汽车、工业电机等;在中低频中低功率领域,GaN和SiC都可以应用,与传统Si基器件进行竞争【3】。
(一)通信领域目前已经有部分通信电源厂家将氮化镓半导体材料应用于高性能电源模块中。
其中,将GaN功率放大器应用于5G大功率基站中可解决5G移动网络中面积小但数据流量请求相对集中的问题。
氮化镓晶体的结构特性
氮化镓晶体的结构特性氮化镓(Gallium Nitride,简称GaN)晶体是一种具有重要应用价值的半导体材料。
它在光电子、电力电子和微波电子等领域显示出了出色的性能。
深入了解氮化镓晶体的结构特性,有助于我们更好地理解其优异的性能和广阔的应用前景。
1. 晶体结构氮化镓晶体的结构特性对其电子特性和光学性质具有重要影响。
氮化镓晶体属于六方晶系,其晶格参数较为特殊。
晶体呈现出六方最密堆积结构,其中镓原子和氮原子交替排列,形成类似于蜂窝状的结构。
这种排列方式使得氮化镓晶体具有较好的晶体质量和良好的热稳定性。
2. 布里渊区布里渊区是描述晶体结构特性的概念。
对于氮化镓晶体来说,其布里渊区较为独特。
布里渊区是指晶体中允许的电子能级和晶格的关系,决定了晶体中电子和光子的行为。
氮化镓晶体的布里渊区相对于其他材料来说较大,这意味着它有更多的电子能级可以使用,从而使其具有更好的电子迁移率和更广的带宽。
3. 带隙带隙是指材料中能量电子能级和禁带之间能量差的范围。
对于氮化镓晶体来说,其带隙较宽,约为3.4电子伏特,这使得它具有优异的光学特性。
宽带隙意味着氮化镓晶体能够在可见光和紫外光范围内有效吸收和发射光线,因此在光电子领域具有广泛的应用前景,如LED、激光器等。
4. 晶体缺陷晶体缺陷是指晶格中存在的缺陷点或断裂面,对材料的性能和稳定性有一定影响。
对于氮化镓晶体而言,晶体缺陷的形成与其生长过程密切相关。
晶体缺陷可以通过合适的生长方法和材料处理技术进行控制和修复,以提高氮化镓晶体的质量和性能。
总结回顾:氮化镓晶体的结构特性对其性能和应用具有重要影响。
其六方最密堆积结构和布里渊区的特点使其具有良好的晶体质量和较高的热稳定性。
宽带隙使其在光电子领域具有广泛的应用前景。
然而,晶体缺陷仍然是制约其质量和性能的因素之一,需要通过适当的技术手段进行控制和修复。
个人观点和理解:作为一名文章写手,我对氮化镓晶体的结构特性感到十分着迷。
它的特殊结构使其在光电子和电力电子领域具有巨大的潜力。
半导体材料的华丽家族_氮化镓基材料简介
半导体材料的华丽家族3———氮化镓基材料简介孙 殿 照(中国科学院半导体研究所材料中心 北京 100083)摘 要 G aN 基氮化物材料已成功地用于制备蓝、绿、紫外光发光器件,日光盲紫外探测器以及高温、大功率微波电子器件.由于该材料具有大的禁带宽度、高的压电和热电系数,它们还有很强的其他应用潜力,诸如做非挥发存储器以及利用压电和热电效应的电子器件等.在20世纪80年代末和90年代初,在G aN 基氮化物材料的生长工艺上的突破引发了90年代G aN 基器件,特别是光电子和高温、大功率微波器件方面的迅猛发展.文章评述了G aN 基氮化物的材料特性、生长技术和相关器件应用.关键词 氮化镓,G aN ,宽禁带半导体EX OTIC FAMI LY OF SEMICON DUCTOR MATERIA LS———BRIEF INTR ODUCTION TO G a N BASE D MATERIA LSS UN Dian 2Zhao(Material Center ,Institute o f Semiconductor s ,Chinese Academy o f Sciences ,Beijing 100083,China )Abstract G aN based nitrides have been success fully used in blue Πgreen Πviolet light 2em itting devices ,UV solar 2blind optoelectronic detectors and high 2tem perature ,high 2power m icrowave electronic devices.Due to their large bandgaps ,high pyroelectronic and piezoelectronic efficiencies ,they also have strong potential for applications in other devices such as nonv olatile mem ories and in pyroelectronic and piezoelectronic devices.The breakthroughs achieved at the time around the end of the 1980s in the grow th technique of G aN based materials have led to significant progress in the 1990s of G aN 2based devices ,in particular ,optoelectronic devices and high 2tem perature ,high 2power m icrowave devices.A review is giv 2en here of the characteristics ,grow th techniques and various devices of G aN 2based nitride materials.K ey w ords G aN ,w ide 2bandgap sem iconductors3 2000-08-30收到初稿,2000-11-23修回1 氮化镓基材料的特点及其应用氮化镓基材料,或称氮化镓及其相关氮化物材料、Ⅲ-N 材料,是指元素周期表中ⅢA 族元素铝、镓、铟和V 族元素氮形成的化合物(G aN ,InN ,AlN )以及由它们组成的多元合金材料(In x G a 1-x N ,Al x G a 1-x N 等).这些化合物的化学键主要是共价键,由于两种组分在电负性上的较大的差别,在该化合物键中有相当大的离子键成分,它决定了各结构相的稳定性.Ⅲ族氮化物AlN ,G aN 和InN 可以结晶成下列三种结构:(1)纤锌矿(α相);(2)闪锌矿(β相);(3)岩盐矿.纤锌矿结构是由两套六方密堆积结构沿c 轴方向平移5c Π8套构而成,闪锌矿结构则由两套面心立方结构沿对角线方向平移1Π4对角线长度套构而成.这两种结构基本类似,每个Ⅲ(V )族原子都与最近邻的4个V (Ⅲ)族原子成键.其区别在于堆垛顺序.纤锌矿沿c 轴〈0001〉方向的堆垛顺序为ABABAB …,闪锌矿沿〈111〉方向的堆垛顺序为ABC ABC ….在通常的条件下,热力学稳定相是纤锌矿结构,而闪锌矿结构是亚稳态,只有在衬底上异质外延材料才是稳定的.两种结构的能量差序列是:ΔE (G aN )<ΔE (InN )<ΔE (AlN ),这表明在G aN 中混相问题最为严重.镓氮基材料是宽禁带半导体材料.纤锌矿结构的Ⅲ2N 材料都是直接带隙材料,随着合金组分的改变,其禁带宽度可以从InN 的119eV连续变化到G aN 的314eV ,再到AlN 的612eV [1,2],这相应于覆盖光谱中整个可见光及远紫外光范围.实际上还没有一种其他材料体系具有如此宽的和连续可调的直接带隙(见图1).图1 氮化镓基材料和其他一些半导体材料的禁带宽度和晶格常数的关系理论计算表明,G aN 和InN 无论是纤锌矿结构还是闪锌矿结构都是直接带隙,而AlN 只在纤锌矿结构时才是直接带隙,闪锌矿结构AlN 是间接带隙[1].镓氮基材料具有很强的热电和压电效应.G aN(c 轴)热电系数估计达7×105V Πm ・K,G aN 的压电常数是G aAs 的4—5倍.用Ⅲ-N 材料可以制做从红光到紫外光的发光管或激光器,实现红、绿、蓝可见光三基色发光.发光管可做全色显示屏和指示器,高效节能的交通信号灯和可调色照明灯.紫外发光管还可以有许多其他应用,例如,做假钞识别机、可以用它激发磷来做白光照明灯等.短波长蓝光或紫光激光管在激光印刷、信息存储等方面发挥重要作用.短波意味着光可以聚焦更锐小,可以增加光盘的存储密度.使用AlG aAs 激光器(波长780nm )的C D 盘容量为650兆字节,基于AlG aInP 半导体激光器(波长650或635nm )的DVD 光盘具有大约417千兆字节的数据容量,当使用进入蓝-紫光波段的Ⅲ-V 氮化物基激光器时容量可达15千兆字节.Ⅲ-N 材料还特别适合制作紫外探测器.当在强可见光和红外辐射背景中探测紫外信号时,要尽量避免或减少紫外信号以外的背景信号干扰.如果使用硅(Si )等通常材料的探测器时,需要加滤光片,这样做会减少探测器灵敏度.而氮化物,特别是AlG aN ,可以做成日光盲紫外探测器,其截止波长从200nm 到365nm.在这个范围的探测器可用于火焰探测、燃烧诊断、光谱学和紫外监视.AlG aN 探测器还有重要的军事用途,用于导弹制导和导弹预警防御系统.在地面与臭氧层之间工作的265—280nm 波长范围探测器可以减少太阳辐射的干扰,因为这个波段的太阳辐射被臭氧层吸收.氮化镓基材料的另一重要影响是在非光电子应用方面.首先氮化镓基材料也是一种非常好的电子器件材料.它们比G aAs ,Si 等材料禁带宽、击穿电压高、电子饱和速度较高[室温值为(217—5)×107cm Πs]、在两种氮化物相接触的界面处形成二维电子气面密度也特别高(~1013cm -2).另外Ⅲ2N 材料有很强的键能,具有高的热与化学稳定性.G aN 的热导率也较高,差不多是G aAs 的3倍.G aN 的本征点缺陷形成能很大,二次缺陷难以产生,这对高温、大功率器件来说也是非常有利的.表1列出了包括G aN 的几种材料在内的优值[3].其中K eye 优值表明表1 材料优值比较S iG aAs β2S iCG aN 金刚石K eye ’s 138063090301180044400(W cm -1s-1℃)Johns on ’s 910621525331567073856(1023W Ωs 2)Baliga ’s 115174142416101(相对S i 而言)材料适合于集成电路的程度,Johns on 优值用以衡量高功率器件,Baliga 优值是做功率开关的指标.G aN 各项优值仅次于金刚石薄膜,远大于硅、砷化镓等常用半导体材料,也大于颇具竞争力的碳化硅材料.金刚石薄膜由于难以掺杂,其研究和应用都还没有突破性的进展.具体说来,我们可以指望用G aN 基材料制作如下一些电子器件:111 高温、大功率及恶劣环境下工作的电子器件高温器件一般是指能工作在Ε300℃环境温度下的器件.它有如下应用场合:核反应设备、航天航空、石油勘探、汽车引擎、电机等.高温器件对减轻设备重量或使设备小型化也非常有利,因为它们可以不用或少用制冷和散热装置.在大功率器件领域里,固态电子器件主要占据了100H z 到100G H z 的频段.在低频段里,大功率器件应用于功率传输系统和马达控制;在高频段里,则被应用于军用或民用微波传输.112 高速及微波器件G aN 体材料的电子迁移率并不高,但它适合制作高速及微波器件.这是因为:(1)两种或两种以上氮化镓基材料长在一起可以形成所谓异质结.有人估计G aN-AlN异质结两边自由电子能量差可大于1eV.这样的异质结有两个用途,其一是可当异质结双极晶体管(H BT)的发射极(用AlG aN作发射极, G aN作基极),形成从AlG aN到G aN的热电子注入.对于一般的微波器件,基区非常短,注入的电子如果形成弹道电子发射(即在传输过程中不损失能量),则电子将高速渡越基区.这样的H BT将有很高的截止频率fT.在G aNΠSiC异质结双极晶体管中,G aN在高温晶体管中作为异质结发射极使用,SiC作基极和收集极.这种结构既可利用G aNΠSiC异质结提高电子发射率,又可利用SiC优良的高热导系数来散热.一个器件能够在高温下工作也适合大功率条件下工作.功率器件的一般限制是来自各种内耗产生的热.Si功率晶体管要加散热片、水冷或温差电冷却等.G aNΠSiC异质结晶体管(H BT)可以工作在高温而无须冷却,因此这种新H BT是高功率应用的好候选者;氮化镓基异质结的第二个用途是用来实现二维电子气.这里的二维电子气是指那些聚集在异质结界面处的薄层电子.AlG aNΠG aN二维电子气的迁移率比G aN单层的电子迁移率高得多.由于AlG aN和G aN之间的电子势能差较大,因而可以形成较高密度的二维电子气,有利于提高诸如场效应晶体管这类器件的性能.(2)当场效应晶体管的栅长缩短到亚微米级时将形成所谓的短沟器件,短沟中的电场非常大,沟道电子一般以饱和漂移速度从源极漂移到漏极.G aN的电子饱和漂移速度很大(217×107cmΠs),因此适合制作高速、微波器件.另外,G aN 的介电常数比Si,G aAs等常用材料都小,这将导致更小的器件寄生电容,从而使得它更适合于制作高速、微波器件.113 电荷耦合器件(CCD)及动态随机存取器(DRAM)由于G aN的禁带宽,其热激发漏电流是常规半导体材料的10-10—10-14,具有制作非挥发随机存储器(NVRAM)的潜能.这就意味着数据可以百年不必刷新.经过适当设计,这些存储器在断电情况下也能保留数据.114 其他电子器件AlN表面具有负电子亲和势,因而可能有负电子亲和势器件的应用.如做单色冷阴极,改善电子显微镜的分辨率和许多真空电子器件的性能.主要的困难在于降低AlN的串联电阻或者说是在于它的n 型掺杂.AlN材料因其具有较强压电效应和非常高的表面波速度,故还可做表面声波器件.如同多数宽禁带半导体一样,Ⅲ-V氮化物预计具有比G aAs和Si优异的抗辐照性能,因而更适合于空间应用;Ⅲ-N材料体系可以形成多种如G aNΠAlG aN,InG aNΠG aN量子阱超晶格(不同材料周期交替地长在一起的结构材料)、双异质结等异质结构,这有利于改善器件质量和进行新器件设计.G aN,AlN和InN的键能较高,分别为8192eVΠ原子、11152eVΠ原子和7172eVΠ原子,很难用半导体现有的湿法工艺刻蚀.至今基本上所有的氮化镓基器件图形都是用干法工艺(如Cl2基反应离子刻蚀)实现的.2 氮化镓基材料的制备G aN的研究始于20世纪30年代.Johns on等人首次得到了G aN材料.他们采用金属镓和氨气反应,得到了G aN小晶粒和粉末.1969年,Maruska和T ietjen利用气相外延方法在蓝宝石上生长了大面积G aN膜,并测得室温下G aN的带隙宽度.现在流行的金属有机物气相外延G aN的工作始于1971年,而分子束外延G aN工作则始于1975年.在80年代中期以前,用各种方法生长的G aN材料质量都不令人满意.里程碑的工作是由Akasaki小组奠基的,1986年该小组Amano等人首次发现采用低温生长的AlN 缓冲层,可大大提高G aN外延膜的质量.继而在1991年Nakamura等人发现采用低温生长的G aN缓冲层也具有同样的功效.低温缓冲层的作用在于,它解决了大失配外延体系中外延层与衬底互不浸润的问题,为高温下的外延生长提供了成核中心.另外,低温缓冲层也是应力释放中心.如今,采用低温缓冲层的两步生长工艺几乎成了G aN外延的标准工艺. p型掺杂是另一个长期困扰G aN器件应用的问题. Amano等人无意间发现掺Mg半绝缘G aN经过电子束照射后的G aN发光增强.他们对于该现象进一步研究,发现Mg受主被低能电子束激活.这一发现的意义与使用低温缓冲层的意义同样重大.很快,Na2 kamura等人发现700—800℃左右在氮气中热退火也可以活化受主Mg,并阐明了在原生掺Mg的G aN 中,Mg受主是被H原子所钝化,低能电子束辐照或中温退火可破坏Mg-H络合体,激活受主,实现高浓度p型掺杂.至此,通往G aN器件应用的道路基本已被疏通.目前,金属有机物气相外延和分子束外延是外延氮化镓基材料的主要方法.211 金属有机物气相外延(MOVPE)MOVPE(有时也称为MOC VD)的外延过程是以物质从气相向固相转移为主的过程.含外延膜成分的气体被气相输运到加热的衬底或外延表面上,通过气体分子热分解、扩散以及在衬底或外延表面上的化学反应,构成外延膜的原子沉积在衬底或外延面上,并按一定晶体结构排列形成外延膜.含ⅢA族元素的气体是金属有机物的蒸汽,这些蒸汽通常是用高纯氢气或氮气携带到衬底附近.这些金属有机物现在通常使用三甲基镓(T MG)或三乙基镓(TEG)、三甲基铝(T MA)以及三甲基铟(T MI).而含氮的气体通常使用氨气(NH3).n型和p型掺杂剂则分别使用氢化物(SiH4或Si2H6)和金属有机物(C p2Mg或DEZn).外延氮化镓(G aN)时,在衬底和外延面上的化学反应如下:G a(CH3)3(v)+NH3(v)→G aN(s)+3CH4(v)其中v表示气相,s表示固相.MOVPE G aN最好的材料参数是Nakamura于1992年报道的,室温下本底电子浓度为4×1016cm-3,迁移率达900cm2ΠV・s.212 分子束外延(MBE)M BE技术是真空外延技术.在真空中,构成外延膜的一种或多种原子,以原子束或分子束形式像流星雨般地落到衬底或外延面上,其中的一部分经过物理-化学过程,在该面上按一定结构有序排列,形成晶体薄膜.镓、铝或铟分子束是通过在真空中加热和蒸发这些ⅢA族元素形成的.而V族氮分子束则有不同的形成方式.直接采用氨气作氮源的分子束外延,被称为G S M BE或RM BE(气源分子束外延);采用N2等离子体作氮源的,有RF-M BE(射频等离子体辅助分子束外延)和ECR-M BE(电子回旋共振等离子体辅助分子束外延)两种.用M BE技术外延的最好的G aN材料参数如下:室温电子迁移率:560cm2ΠV・s(在c面蓝宝石上外延),580cm2ΠV・s (在6H-SiC上外延).MOVPE技术与M BE技术相比较,MOVPE外延的氮化镓基光电子器件材料方面具有明显的优势;在外延的微电子器件材料性能,特别是高电子迁移率晶体管性能方面两者相差不多. M BE技术的特点是:生长反应过程简单;可以实时表征或监控生长表面的结构、成分以及生长条件;生长温度较低;没有气相外延中与气流有关的材料不均匀性问题.需要指出的是另外两个重要的适合M BE生长的材料:其一是立方G aN(β-G aN).在G aAs(001)上外延的立方G aN可以解理,有利于制作激光器.M BE 的生长温度比MOVPE和氢化物气相外延(H VPE)都低得多,这有利于亚稳态立方相的生长.第二个是(In)G aAsN材料,它近年来受到越来越多的关注.理论上预计该种材料的禁带宽度可以包括从零到相关二元材料(如G aAs)禁带宽度之间的所有禁带能量[4].适当调整(In)G aAsN材料组分,可以使该材料的晶格常数和带隙同时满足设计要求.例如,可以使用在G aAs衬底上外延晶格匹配的G aInNAs材料,并能用它做113μm波长的激光器.由于在热平衡条件下氮在G aAs中或砷在G aN中的几乎不互溶.因此,这种材料多数是用远离热平衡的M BE技术做的,其氮的掺入量达15%也没有出现相分离.用等离子体辅助M BE已经获得113μm室温连续波工作的激光器,它使用了赝晶G aInNAs量子阱,其In组分为30%,氮含量为1%.已有这些激光器具有低阈值电流密度和高特征温度T0的报道[5].213 氢化物气相外延(HVPE)除了上述两项重要外延技术之外,H VPE目前也很流行.该技术的命名源于20世纪60年代末气相外延技术的发展过程.现在如果把它和MOVPE技术比较,称为卤化物气相外延(halide VPE)倒更贴切些.该外延技术是早期研究Ⅲ-V氮化物用的最成功的外延技术,是Maruska和T ietjen首先用来外延大面积G aN膜的一种方法.该方法是在金属G a上流过HCl,形成G aCl蒸气,当它流到下游,在衬底或外延面上与NH3反应,淀积形成G aN.该方法的生长速率相当高(可达100μmΠh),可生长很厚的膜,从而减少来自衬底的热失配和晶格失配对材料性质的影响.Maruska等随后表明可以在HCl气流中同时蒸发掺杂剂Zn或Mg实现p型杂质掺杂.该项外延技术目前主要有两项应用:其一用来制作氮化镓基材料和同质外延用的衬底材料,例如用H VPE技术在100μm厚的SiC衬底外延200μm厚的G aN,然后用反应离子刻蚀技术除去SiC衬底,形成自由状态的G aN衬底;另一项应用是做所谓E LOG(epitaxially laterally overgrown G aN)衬底.这种衬底的一个典型做法是用MOVPE技术在c面蓝宝石上外延一层2μm的G aN,再在上面沉积一层非晶SiO2,然后刻出一排沿〈1100〉方向的长条窗口,在上面用H VPE技术外延一层相当厚(几十微米)的G aN,窗口区G aN成为子晶,在非晶SiO2上不发生外延,但当外延G aN的厚度足够厚时,窗口区G aN的横向外延将覆盖SiO2.在SiO2掩膜区上方的G aN的位错密度可以降低几个数量级.国际上长寿命G aN基激光器就是用这种衬底制作的[6].与此横向蔓延G aN(E LOG)相似并有同样减少位错密度的功效的衬底还有所谓悬挂外延G aN(pendeo2epitaxy G aN,PE-G aN).后者也是利用G aN的横向外延减少位错,只是不使用二氧化硅掩膜,取而代之的是分开G aN条的深槽.214 G a N体材料的合成也得到了关注波兰科学家在高温(1600℃)高压(15—20kbar)下采用金属镓与氮气直接合成了G aN体材料.采用热氨和金属镓合成G aN颇有前景.这一技术的关键是添加了某类矿化剂如LiNH2或K NH2,在适合的比例下镓可溶解于热氨和矿化剂的溶液,因此可采用温度梯度法液相外延G aN.目前G aN体材料尺寸仅有十几毫米.215 衬底材料阻碍G aN研究的主要困难之一是缺乏晶格及热胀系数匹配的衬底材料.蓝宝石是氮化镓基材料外延中普遍采用的一种衬底材料,因为其价格便宜、耐热、透明、可大面积获得,并具有与G aN相似的晶体结构.一般都选用c面-(0001)作为衬底.此外,Ⅲ-V氮化物在如下衬底上也长过:Si,G aAs,NaCl, G aP,InP,SiC,W,ZnO,MgAl2O4,T iO2和MgO.G aN外延层的晶体结构受衬底及其取向的强烈影响[1,2].3 氮化镓基器件如前所述,氮化镓基器件应用主要有两大类:电子器件和光电子器件.311 电子器件主要介绍用氮化镓基材料制作的异质结双极晶体管(H BT)和异质结场效应晶体管(HFET)H BT:Pankove等人在1994年报道了第一个G aNΠ6H-SiC H BT[7].理论计算表明,G aNΠ6H-SiC 价带偏移约为012—0125eV,实验测试达0138eV.无论怎样,这么大的价带偏移对H BT都非常有利(提高注入比).另外,SiC可以进行高浓度的p型掺杂(降低基区电阻)又是间接带隙材料(减少基区辐射复合),因此,可望G aNΠ6H-SiC H BT有好的器件性能.实际上,在VC B=2V,I E=100mA下,获得的电流增益达105.该器件工作温度可达535℃.AlG aNΠG aN npn H BT也已做出.做全氮化物npn H BT的困难在于p型基区电阻及其接触电阻太高.HFET:它有时也称调制掺杂FET(MODFET)或高电子迁移率晶体管(HE MT).目前,在蓝宝石上外延的AlG aNΠG aN的二维电子气(2DEG)材料的室温电子迁移率已达1500cm2ΠV・s,在碳化硅衬底上外延的这种结构的室温电子迁移率达2000cm2ΠV・s.二维电子气的面密度在1×1013cm-2左右.由于AlG aN材料具有较大的压电效应,即使AlG aN层是非有意掺杂,在AlG aN与G aN界面也可能因极化引起高浓度的2DEG.利用外延的G aNΠAlG aN异质结材料制备的HFET晶体管具有突出的DC和RF特性:最大源漏电流密度1143AΠmm;击穿电压分别为340V(栅漏间)和100V(源漏间,栅长1μm);室温跨导270mSΠmm;截止频率50G H z[8];最高振荡频率97G H z[8];输出功率密度911WΠmm(8G H z)[9];输出功率918W(812G H z,2mm栅宽)[9];G aNΠAlG aN HE MT的工作温度高达750℃[10].312 光电器件主要介绍氮化镓基材料做的发光管(LE D)、激光器(LD)以及光电探测器.31211 发光管(LE D)第一个基于G aN的LE D是20世纪70年代由Pankove等人研制的,其结构为金属-半导体接触型器件.在提高了G aN外延层质量和获得了高浓度p 型G aN之后,Amano等首先实现了G aN pn结蓝色发光管.其后Nakamura等在进一步提高材料质量,特别是大大提高了p型G aN的空穴浓度后,报告了性能更佳的G aN pn结蓝色发光管,其外量子效率达0118%,至少是当时商业SiC LE D的6倍.1994年, Nakamura开发出第一个蓝色InG aNΠAlG aN双异质结(DH)LE D.1995年及其后两三年,Nakamura等人又实现了蓝色、绿色、琥珀色、紫色以及紫外光InG aN 量子阱LE D[11,12],把蓝绿光氮化镓基发光管的发光效率提高到10%左右,亮度超过10个烛光,寿命超过105h.这些LE D的电荧光谱是在室温、20mA直流偏置电流条件下测量的.对于发射峰值波长分别为370nm、450nm和520nm的紫外、蓝色和绿色InG aN S QW LE D,典型外量子效率分别是715%(紫外光)、1112%(蓝光),1116%(绿光).发射最短波长的LE D 是用AlG aN作有源区的LE D,其发射波长为350nm.亮度超过10烛光的高亮度蓝光、绿光、黄光(600nm)发光管早已商品化.蓝色和绿色LE D的发光效率分别为5lmΠW和30lmΠW.与之相对照,红色AlInG aP LE D的发光效率为20—30lmΠW.常规的白炽灯的发光效率约为20lmΠW.组合蓝色、绿色和红色LE D,可以制备发光效率为30lmΠW的白光LE D,它差不多与常规的白炽灯的发光效率相同.这种LE D的寿命长过105h,这比灯泡寿命长得多.因此用氮化物的蓝色和绿色LE D以及AlG aInP基红色LE D取代常规白炽灯泡能节省能量和资源.有人计算一个轿车约需1000个发光管用于照明和指示灯.实际上已有用蓝色、绿色InG aN S QW发光管和G aAlAs或AlG aInP红色发光管做成的户外大屏幕彩色显示屏和用InG aN单量子阱绿色发光管做成的交通信号灯.据说一大公司不再做大的阴极射线管而改用发光管系统.31212 激光二极管(LD)第一个氮化镓基材料激光二极管是1995年12月研制成的电脉冲G aN-InG aN多量子阱(MQW)激光二极管(LD).发光区是由215nm厚的In012G a018N层和5nm厚的G a0105In0185N层交替重叠26次而成.类似结构就是所谓多量子阱(MQW)结构.G aN和Al0115G a0185N分别作为波导层和夹层.电脉冲的占空比是011%.阈值电流密度为410kAΠcm2.在阈值时的电压高达34V,这主要是p型电极的高阻所致.该发光管发射波长是417nm.该激光器的谐振腔镜面是用反应离子刻蚀形成的,因为难以解理蓝宝石衬底.刻蚀的镜面比较粗糙(约为500A).一年后,第一个氮化镓基电注入室温连续波(CW)激射器又由Nakamura等使用脊形波导结构成功地实现了.这个CW-LD的寿命很短,随后很快加长了.仅用一年时间,到1997年底时,Nakamura等报道了寿命估计达10,000h的激光器[6].发射390—430nm波长的相干光,蓝光激光器的阈值电压为4—5V.该激光器长在E LOG衬底上.做在SiO2掩膜区没有位错的G aN上的LD的阈值电流为48mA,相当于电流密度217kAΠcm2.而做在有高密度T D的窗口区,它的阈值电流密度是415—9kAcm-2,比做在SiO2掩膜区上的高得多.该LD的夹层使用调制掺杂超晶格结构(MS-S LS),MS-S LS结构是由215nm非掺杂的Al0114G a0186N层和215nm厚n型或p型G aN层交替重叠120次而成.使用这样的结构的目的是为了避免使用厚的AlG aN夹层,因为厚的AlG aN外延层会发生龟裂.其中G aN层的导电类型与MS-S LS所替代的夹层导电类型一致.所有这些发光器件有源区都使用InG aN而不是用G aN,这是因为使用G aN做有源区难以实现高效发光器件.在有源区含少量In 的UV LE D(发射波长370nm)的输出功率比那些有源区不含In的LE D(发射波长367nm)的输出功率高约十倍.因此高功率的LE D使用InG aN而不是使用G aN做有源区.这些LE D和LD有源区含有大量穿透位错(T D),从1×108cm-2到1×1012cm-2.这些位错来自于G aN和蓝宝石衬底之间的界面,是由大到16%的晶格失配造成的.尽管有这么多的位错,In2 G aN基LE D和LD的发光效率却比通常的Ⅲ-V化合物(AlG aAs,AlG aInP)高得多.实验结果表明,发光几乎不受T D多少的影响.T D只是被认为是减少了发光区的体积.似乎InG aN层的In组分起伏或相分离对InG aN基LE D或LD的发光起关键作用.在In2 G aN膜生长过程中,由于InG aN的相分离造成局域能态[13].当电子和空穴被注入到该LE D的InG aN阱中时,在它们被大量穿透位错(T D)引发的非辐射复合中心俘获之前,被局限在这些局域能态中.这些局域态等效于受三维空间限制的所谓量子点.如果InG aN层中由InG aN相分离造成的势能起伏确定的载流子的扩散长度小于缺陷间隔,那么器件的发光效率就不受T D的影响[14].31213 探测器氮化镓基UV探测器有单层光电导型和光伏型器件.光导型探测器比较简单,只使用一个单层外延材料.光伏型探测器工作无须偏压(低功耗),阻抗高,暗电流低,响应快.光导探测器是由表面带有指状电极的一个未掺杂或轻掺杂的外延层构成.在半导体中的光吸收产生电子空穴对,电子空穴被偏压电场扫出来,形成正比于光子流量的电流.氮化镓基光伏器件比光导型探测器响应快得多,可用G aN或AlG aN材料的肖特基结或p-n结形成.在过去几年中,G aN基UV探测器有了很大的进展[20].UV探测器的需求主要来自导弹探测和跟踪系统上的应用.为此,研究指向截止波长较短(280nm)的探测器,并且从研制单个元件到研制二维聚焦平面.向短波移动将要求高Al组分AlG aN的p型掺杂.由于导弹跟踪的低信号的要求,必须发展雪崩二极管(APD)以产生大的增益.关键是减少漏电流(特别是在高电压时).探测器结果显示,主要的影响因素是G aN外延层中很高的位错密度.发展晶格比较匹配的衬底可能会明显改善探测器性能.。
氮化镓的现状及未来五至十年发展前景
氮化镓的现状及未来五至十年发展前景引言:在当今高科技领域中,半导体材料的研究一直是焦点之一。
而氮化镓(Gallium Nitride,简称GaN)作为一种新兴的半导体材料,因其优异的电学特性和广泛的应用前景而备受关注。
本文将详细讨论氮化镓的现状,并展望未来五至十年的发展前景。
一、氮化镓的特点和应用氮化镓拥有较高的电子饱和迁移速度、较大的能带隙和较高的电子饱和漂移率等优异电学特性。
这些优点使得氮化镓在高频电子设备、光电子器件、能源转化和照明等领域有广泛的应用。
例如,氮化镓发光二极管(LED)具有高效、长寿命和节能等特点,已成为替代传统照明的主要选择;氮化镓高电子迁移率晶体管(HEMT)在射频应用中表现出优异的性能,被广泛应用于无线通信设备和雷达系统。
二、氮化镓的现状目前,氮化镓半导体技术已经成熟,并在各个领域得到广泛应用。
尤其是在照明领域,氮化镓LED已逐渐取代传统照明产品,成为主流。
此外,氮化镓的电子迁移率和功率饱和特性使其在高频电子设备和无线通信领域中具有巨大的潜力。
但同时,氮化镓材料的制备成本相对较高,限制了其在一些大规模应用中的普及。
三、氮化镓未来五至十年的发展前景1. 降低制造成本:随着氮化镓材料制备技术的不断进步,制造成本将逐渐降低。
特别是通过提高晶体生长技术和材料制备工艺的稳定性和效率,将大幅减少半导体器件的制造成本,促进氮化镓在各个领域的广泛应用。
2. 提高性能:随着研究的深入,氮化镓材料的性能将进一步提高。
例如,通过控制材料的表面电荷分布、制备高质量的氮化镓薄膜和提高器件的热稳定性等手段,可以进一步提高氮化镓器件的效率和可靠性。
3. 拓宽应用领域:随着氮化镓材料制备技术的进步,其在光电子器件、能源转化和电力电子等领域的应用将进一步推广。
例如,氮化镓在太阳能电池中的应用已经初步展示出巨大的潜力,预计未来将有更多创新应用出现。
4. 加强国际合作:氮化镓的研究和应用需要跨学科的合作与交流。
氮化镓表面态
氮化镓表面态
氮化镓(GaN)是一种重要的半导体材料,具有许多应用,特别是在光电子器件和功率电子器件中。
在氮化镓表面,常见的表面态包括:1.GaN表面的Ga空位:由于表面的Ga原子缺陷,形成Ga空位,具有不同的表面能级,可能影响材料的电学性质和表面反应。
2.GaN表面的N空位:类似于Ga空位,N空位也是表面的缺陷之一,可能对表面的化学反应和能级结构产生影响。
3.GaN表面的吸附氢原子:氢原子可吸附在氮化镓表面,改变表面的化学性质和能级结构,对器件性能有一定影响。
4.GaN表面的氧化物:在氮化镓表面可能存在氧化物,如氧化镓或氮化镓的氧化物,这些氧化物层可能影响材料的表面态和稳定性。
这些表面态的存在会影响氮化镓材料的表面性质、电学性质以及器件性能,因此对氮化镓表面态的研究具有重要意义。
在实际应用中,科学家们会通过表面分析技术如X射线光电子能谱(XPS)、扫描隧道显微镜(STM)等来研究氮化镓表面的态及其影响。
氮化镓半导体
氮化镓半导体
氮化镓半导体(GalliumNitride,简称GaN)是一种新兴半导体材料,可以用于构建电子器件。
它是近十年来材料科学界发展最迅速的新型半导体材料。
它具有优越的电子性能,包括低功耗、高功率密度、高热导率、低色散和高频特性,在电子元器件的应用中表现出卓越的性能。
氮化镓属于无机半导体材料,属于III-V族元素,其衍生物如氮化镓镓锗(GaN/GaN)、金属氮化物氮化镓(AlGaN / GaN)和金属氮
化物钙化镓(AlN/GaN)等也被广泛的应用于电子元器件的制造。
氮化镓具有优越的物理性能。
这种材料的绝缘介质常数是玻璃的两倍,热导率与铝的相近,而其压电常数是石英的两倍。
此外,氮化镓具有低功耗消耗、高功率密度、高热导率和低色散性能,同时其导电性能远远高于其他传统半导体材料。
由于氮化镓半导体特有的优越性能,其在电子器件制造方面也有着广泛的应用,常见的氮化镓器件有发射极和接收极双极器件(DTR)、发射极阵列(EPD)、场效应晶体管(FETs)、振荡器(OSC)、高频发
射(HFE)和脉冲转换器(PC)等。
氮化镓半导体作为一种新型半导体材料,具有突出的特性和表现,可以使电子器件具有较高的效率和可靠性。
氮化镓半导体在电子电器、汽车、航空、智能家居和电力器件等方面的应用越来越广泛,其使用会带来更低的成本、更高的效率和更可靠的性能。
随着电子技术的发展,氮化镓半导体的应用也将越来越多,它将
成为电子元器件制造的重要材料,为未来的电子设备提供更精细、更高效、更可靠的器件。
氮化镓半导体材料
氮化镓半导体材料氮化镓半导体材料是一种新兴的宽禁带半导体材料,具有绝缘性和半导体性能。
它的主要成分是氮化镓,化学式是GaN。
氮化镓材料具有优异的热、电、光性能,广泛应用于电子、光电子、光伏、蓝光发光二极管等领域。
本文将详细介绍氮化镓半导体材料的性质、制备方法以及应用领域。
氮化镓材料是一种III族五价化合物,具有非常宽的直接禁带宽度(3.4eV),比传统的硅材料的1.1eV和砷化镓材料的1.42eV要宽得多。
这使得氮化镓材料能够有效地抵抗高温和高电子注入导致的热电子效应,从而有了极高的热稳定性。
另外,氮化镓材料的结晶性能也非常好,可以通过分子束外延、金属有机化学气相沉积等方法制备出高质量的材料。
氮化镓材料的制备方法主要有两种:气相沉积和热解法。
气相沉积是通过将金属有机化合物和氮气在高温下分解反应得到氮化镓材料。
热解法是通过将金属镓和氨气在高温下反应得到氮化镓材料。
这两种方法都需要高温条件和特殊实验装置,制备过程较为复杂。
氮化镓材料具有很多优异的性能。
首先,它具有很高的热导率和热扩散系数,能够有效散热。
其次,它具有优异的电子迁移率和载流子迁移率,可以实现高速高频的电子器件。
另外,氮化镓材料的一些晶面比较平坦,有利于制备高质量的器件。
最重要的是,氮化镓材料具有宽发光谱范围和较高的太阳能转换效率,被广泛应用于蓝光发光二极管和太阳能电池等领域。
氮化镓半导体材料在电子器件领域具有广泛的应用。
首先,它被用作高电子迁移率晶体管(HEMT)的基底材料,用于制备高性能的功率放大器和射频开关。
其次,氮化镓材料被用于制备高功率和低噪声的微波器件,可以应用于通信和雷达系统。
另外,氮化镓材料在LED领域有广泛的应用,可以制备出高亮度、高稳定性的蓝光发光二极管。
此外,氮化镓材料还可以用于制备高效率的太阳能电池和光电探测器。
总结起来,氮化镓半导体材料具有很多优异的性能,包括宽禁带宽度、优异的热、电、光性能等。
它可以通过气相沉积和热解法制备,广泛应用于电子、光电子、光伏、蓝光发光二极管等领域,具有很大的市场潜力。
氮化镓半导体材料
氮化镓半导体研究一.物理背景自20世纪60年代,发光二极管(Light Emitting Diode,LED)的发展非常迅速,它具有体积小、耐冲击、寿命长、可靠度高与低电压低电流操作等优良的特性,适用于在各种环境的使用,而且符合未来环保节能的社会发展趋势。
初期的以砷化镓(GaAs)、铝铟磷镓(AIGalnP)材料为基础之发光二极管,实现了红光至黄绿光波段的电激发光。
近年来,以氮化镓(GaN)为代表的新一代半导体材料技术上氮化镓半导体材料具有禁带宽度大、击穿电场高、电子饱和漂移速度高、介电常数小、抗辐射能力强和良好的化学稳定性等独特的特性,在光显示、光存储、光探测等光电子器件和高温、高频大功率电子等微电子器件领域有广阔的应用前景,其中最引人瞩目的是作为发光材料的应用,由于氮化镓能与氮化铟(INN)和氮化铝(AIN)形成三元或四元化合物,如此借着改变IlI族元素的比例,便能使发光波长涵盖红外光到紫外光的范围,另外将发蓝光的氮化镓基发光二极管配以可激发出黄绿光的荧光粉,从而混合发出白光,应用前景非常广泛,除了应用于指示灯、灯饰、手电筒等普通市场,氮化镓基发光二极管还应用于手机及手提电脑背光源、交通灯、户外全彩显示屏等市场,但氮化镓基发光二极管最有前景的应用还是在普通照明市场。
二.GaN的应用高效节能、长寿命的半导体照明产品正在引领照明业的绿色变革。
随着第三代半导体材料氮化镓的突破和蓝、绿发光二极管的问世,世界各国纷纷投入巨资推出国家级半导体照明计划。
GaN属宽禁带半导体,直接带隙3.4eV,在长寿命、低能耗、短长半导体发光二极管(LED)、激光二极管(LD)、紫外探测器以及高温微电子器件等方面有广阔的应用前景,GaN器件的广泛应用将预示着光电信息乃至光子信息时代的来临,因此,以GaN为代表的第三代半导体材料被誉为信息产业新的发动机。
GaN基半导体材料,包括GaN、A1N和InN,都是直隙半导体材料,因而有很高的量子效率。
氮化镓(GaN)基半导体材料及器件
氮化镓(GaN)基半导体材料及器件一、项目背景资料介绍1、第三代半导体氮化镓(GaN)晶体当今世界,被誉为IT产业发动机的半导体产业已诞生了以氮化镓(GaN)及其合金材料为代表的第三代材料,第一代和第二代半导体分别以硅和砷化镓为代表,而第三代半导体则以氮化镓(GaN)及其合金材料为代表。
国内外都对该领域投入了大量的研究,美国和日本现已掌握生产纯蓝和纯绿光的氮化镓(GaN)基材料的生长工艺。
我国已在实验室生产出氮化镓(GaN)基蓝色发光材料,目前正在进行产业化生产方面的研究。
2、氮化镓(GaN)基材料特点以氮化镓(GaN)基材料为代表的III-V族宽带隙化合物半导体材料,内、外量子效率高,具有高发光效率,高热导率,耐高温,抗辐射,耐酸碱,高强度和高硬度等特性,是目前世界上最先进的半导体材料。
氮化镓(GaN)基材料可制成高效蓝、绿光发光二极管和激光二极管LD(又称激光器),并可延伸到白光,将替代人类沿用至今的照明系统。
氮化镓(GaN)基材料还将带来IT行业存储技术的革命。
3、蓝色发光二极管(LED)发光二极管是一种将电能转化为光能的发光器件,是在半导体P-N结、双异质结或多量子阱结构上通以正向电流时发出红外光、蓝光或紫外光等可见光的器件。
目前红、普绿、黄、橙黄等发光二极管的技术已经成熟而且已经产业化,构成全彩色的三原色光分别为RGB(Red、Green、Blue),即纯红光、纯绿光、纯蓝光,而纯绿、纯蓝发光二极管是长期困扰该行业的难题。
蓝色发光二极管制作工艺上可分为三步:(1)发光晶体(上游产品)--氮化镓(GaN)基材料制作;(2)管芯(中游产品)制作;(3)管芯的封装。
而从上游产品--氮化镓(GaN)基材料到中游产品--蓝、绿发光二极管LED和激光二极管LD(又称激光器)之间存在着很高的技术壁垒。
4、国外对蓝色发光二极管的研究和生产九十年代中期以来,氮化镓(GaN)基材料及其合金在材料制备和发光器件制作等方面取得重大技术突破,成了全球半导体研究领域的前沿和热点。
氮化镓和砷化镓工作方式-概述说明以及解释
氮化镓和砷化镓工作方式-概述说明以及解释1.引言1.1 概述概述部分内容如下:概述是介绍文章主题的一部分,本文将详细探讨氮化镓和砷化镓的工作方式。
氮化镓(GaN)和砷化镓(GaAs)是两种重要的半导体材料,在电子工程和光电子学领域有着广泛的应用。
氮化镓是一种宽禁带半导体,其能带结构和电子传输特性使其成为高电子迁移率晶体管(HEMT)和发光二极管(LED)等器件的理想材料。
砷化镓则是一种窄禁带半导体,具有优异的高频特性和高效的光电转换效率,广泛应用于射频电子学和光纤通信等领域。
本文将首先介绍氮化镓的工作方式,包括其能带结构和电子传输特性。
随后,将详细探讨砷化镓的工作方式,包括其能带结构和电子传输特性。
通过比较氮化镓和砷化镓的工作方式,我们可以了解它们在不同应用领域中的差异和优势。
最后,我们展望了氮化镓和砷化镓在未来的应用前景。
通过深入了解氮化镓和砷化镓的工作方式,我们可以更好地理解这两种材料的特性和应用,为相关领域的研究和开发提供指导和启示。
对于电子工程师和光电子学研究人员来说,这些知识将非常有价值。
1.2 文章结构文章结构部分的内容可以包括以下内容:在本文中,将对氮化镓和砷化镓的工作方式进行详细讨论。
为了更好地理解这两种材料的工作方式,本文将按照如下结构进行叙述。
首先,在引言部分将对本文的主题进行概述,介绍氮化镓和砷化镓的基本概念和重要性。
此外,还会介绍本文的结构,以帮助读者了解文中内容的安排。
接下来,在正文部分,将分为两个章节进行讨论。
第一个章节将详细介绍氮化镓的工作方式。
具体来说,将讨论氮化镓的能带结构以及其对电子传输特性的影响。
通过对氮化镓的工作方式的深入探讨,读者将能够更好地理解该材料在实际应用中的作用和性能。
第二个章节将探讨砷化镓的工作方式。
同样地,将首先介绍砷化镓的能带结构,并进一步分析其对电子传输特性的影响。
通过对砷化镓工作方式的详细讨论,将帮助读者进一步理解该材料的特性和潜力。
最后,在结论部分,将对氮化镓和砷化镓的工作方式进行比较和总结。
氮化镓 生产 工艺
氮化镓生产工艺
一、氮化镓制作工艺的基本原理
氮化镓是一种半导体材料,其制作过程基于化学气相沉积技术(CVD)和分子束外延技术(MBE)。
这两种方法均采用高温高真空环境下的化学反应,将气态前体物质(GaN、NH3)输送到衬底表面上,沉积成薄膜结构。
二、氮化镓制作的基本步骤
1. 衬底制备:选择合适的衬底材料(如蓝宝石、石墨)、进行打磨、洗涤、热处理等预处理。
2. 前驱体输送:将前驱体气体以恒定流量、压力输送到反应室中。
常见的前驱体是用于制备n型的SiH4或气态的镓、氮化镓。
3. 反应:在表面均匀沉积薄膜。
4. 离子刻蚀工艺(ICP): 通过离子刻蚀,制作出所需的结构。
5. 各种金属电极沉积和光刻工艺:为芯片进行进一步的处理。
氮化镓材料存在的问题
氮化镓材料存在的问题
氮化镓是一种重要的半导体材料,具有很高的电子迁移率和热导率,被广泛应用于电子、光电、能源等领域。
但是,氮化镓材料在应用中仍然存在着一些问题,主要包括以下几点:
1. 成本高:氮化镓材料的生产成本较高,主要是由于高纯度的原材料和复杂的生产工艺所导致的。
2. 生长技术不成熟:氮化镓材料的生长技术还不够成熟,导致生长过程中会出现杂质、缺陷等问题,影响了材料的性能。
3. 稳定性差:氮化镓材料的稳定性较差,容易受到湿度、温度等环境因素的影响,导致性能下降。
4. 晶格不匹配:氮化镓材料和其他材料的晶格存在较大的不匹配问题,导致在材料组装时会出现晶体缺陷和性能下降等问题。
5. 大面积制备难度大:氮化镓材料的大面积制备难度较大,限制了其在大规模产业应用中的推广。
针对以上问题,需要进一步加强相关技术的研究和开发,提高氮化镓材料的制备工艺和性能稳定性,为其广泛应用提供更好的条件。
- 1 -。
氮化镓晶体类型
氮化镓晶体类型
氮化镓是一种化合物半导体材料,它的晶体类型主要有两种:六方晶系氮化镓和立方晶系氮化镓。
六方晶系氮化镓,也称为β-GaN晶体,是氮化镓的一种多晶形态,它是由六方紧密堆积的镓原子和氮原子组成的晶体结构。
六方晶系氮化镓的晶格常数为a=3.189 Å,c=5.185 Å,其中c轴比a轴长约1.63倍。
由于六方晶系氮化镓的晶格结构比较复杂,因此制备过程比较困难。
立方晶系氮化镓,也称为α-GaN晶体,是氮化镓的另一种多晶形态,它是由立方紧密堆积的镓原子和氮原子组成的晶体结构。
立方晶系氮化镓的晶格常数为a=4.52 Å,是六方晶系氮化镓的晶格常数的1.4倍左右。
相比之下,立方晶系氮化镓的晶格结构比较简单,制备过程相对容易。
除了这两种晶体类型以外,氮化镓还有其他一些晶体结构,如锌蓝晶等,但它们的应用较为有限,不常见于实际生产中。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
氮化镓半导体研究
一.物理背景
自20世纪60年代,发光二极管(Light Emitting Diode,LED)的发展非常迅速,它具有体积小、耐冲击、寿命长、可靠度高与低电压低电流操作等优良的特性,适用于在各种环境的使用,而且符合未来环保节能的社会发展趋势。
初期的以砷化镓(GaAs)、铝铟磷镓(AIGalnP)材料为基础之发光二极管,实现了红光至黄绿光波段的电激发光。
近年来,以氮化镓(GaN)为代表的新一代半导体材料技术上氮化镓半导体材料具有禁带宽度大、击穿电场高、电子饱和漂移速度高、介电常数小、抗辐射能力强和良好的化学稳定性等独特的特性,在光显示、光存储、光探测等光电子器件和高温、高频大功率电子等微电子器件领域有广阔的应用前景,其中最引人瞩目的是作为发光材料的应用,由于氮化镓能与氮化铟(INN)和氮化铝(AIN)形成三元或四元化合物,如此借着改变IlI族元素的比例,便能使发光波长涵盖红外光到紫外光的范围,另外将发蓝光的氮化镓基发光二极管配以可激发出黄绿光的荧光粉,从而混合发出白光,应用前景非常广泛,除了应用于指示灯、灯饰、手电筒等普通市场,氮化镓基发光二极管还应用于手机及手提电脑背光源、交通灯、户外全彩显示屏等市场,但氮化镓基发光二极管最有前景的应用还是在普通照明市场。
二.GaN的应用
高效节能、长寿命的半导体照明产品正在引领照明业的绿色变革。
随着第三代半导体材料氮化镓的突破和蓝、绿发光二极管的问世,世界各国纷纷投入巨资推出国家级半导体照明计划。
GaN属宽禁带半导体,直接带隙3.4eV,在长寿命、低能耗、短长半导体发光二极管(LED)、激光二极管(LD)、紫外探测器以及高温微电子器件等方面有广阔的应用前景,GaN器件的广泛应用将预示着光电信息乃至光子信息时代的来临,因此,以GaN为代表的第三代半导体材料被誉为信息产业新的发动机。
GaN基半导体材料,包括GaN、A1N和InN,都是直隙半导体材料,因而有很高的量子效率。
用GaN、A1N和InN这三种材料按不同组份生成的固溶体,其禁带宽度可在O.7eV到6.2eV之间变化。
这样,用这些固溶体制造发光器件,是光电集成材料和器件发展的方向,其主要应用领域包括:
(1)当前在国内外非常受人瞩目的半导体照明是一种新型的高效、节能和环保光源,将取代目前使用的大部分传统光源,被称为21世纪照明光源的革命,而GaN基高效率、高亮度发光二极管(LED)的研制是实现半导体照明的核心技术和基础。
以LED为代表的半导体光源,
具有节能、长寿命、免维护、环保等优点,目前己被广泛的应用于大屏幕平板显示和交通信号灯以及显示指示灯,并逐渐向通用照明领域发展,目前实验室水平的白光LED发光强度已经达到131 lm/w。
(2)CD、DVD的光存储密度与作为读写器件的半导体激光器的波长的平方成反比,目前流行的CD、DVD的激光读写头分别采用波长为
780nm、650nm的AIGaAs/AIGalnP材料,存储容量分别为700MB,4.7GB。
若用波长为410rim的InGaN/GaN蓝光激光器代替,光盘的存储容量将高达27GB,将会成为光存储和处理的主流技术。
(3)适合制作紫外探测器件。
当在强可见光和红外辐射背景中探测紫外信号时,要尽量避免或减少紫外信号以外的背景信号干扰。
以GaN做成的紫外探测器,克服了Si探测器在紫外波段探测效率低、需要复杂的滤光系统等弱点。
而氮化物特别是AIGaN,可以制成日光盲紫外探测器,其截止波长为200.356nm。
在这个范围的探测器可以用于火焰探测、燃烧诊断、光谱学和紫外监视,AIGaN探测器还有重要的军事用途,可用于导弹制导和导弹预警防御系统。
(4)由于GaN基材料有禁带宽度大、击穿电压高、电子饱和速率高、热稳定性好、抗腐蚀性强等优点,被广泛用于制作高电子迁移率晶体管、双极晶体管、场效应晶体管等微电子器件,适合在高温、大功率及恶劣环境下工作⋯11。
高温、高频、高功率微波器件是无线通信、国防等领域急需的电子器件,如果目前使用的微波功率管的输出功率密度提高一个数量级,微波器件的工作温度提高到300℃,将解决航天航空用电子装备和民用移动通信系统的一系列难题。
三.GaN的制备方法
3.1
由于GaN体单晶非常难以获得,即便是已有一些研究报道对GaN体单晶生长取得了一定进展,但它们的质量还无法达到作衬底的要求。
因此现今对GaN的研究都集中在以异质材料(如A1203、SiC、Si等)为衬底的外延生长薄膜上。
随着异质外延技术的进步,现在已经可以在特定的衬底材料上外延生长获得质量优良的GaN外延层,这也使得GaN材料体系的应用得到了迅速发展,异质外延技术成为了制备GaN薄膜的主要方法。
3.1生长工艺
GaN的外延生长一般有以下几种工艺:金属有机化学气相沉积(Metal OrganicChemical Vapor Deposition),分子束外延(Molecular Beam Epitaxy),卤化物气相外延(Hydride Vapor Phase Epitaxy),此外还有比较新颖的横向外延过生长(LateralEpitaxially Overgrown)以及悬空外延(PE)等工艺。
其中MOCVD和MBE是制各GaN及其相关多层结构薄膜的两大主流技术,它们各有独自的特点。
然而从实用商品化技术方
面考虑,MOCVD方法由于其设备相对简单、造价相对较低、生长速度快等特点成为了外延生长GaN最主流的方法。
本文所研究的GaN均采用MOCVD方法制备,因此这里只以其为例作简要介绍。
3.2金属有机化学气相沉积法(MOCVD)
MOCVD又称MOVPE(金属有机气相外延)。
MOCVD法用III族元素的有机
化合物和V族元素的氢化物作为原材料,通过氢气或氮气等载运气体带入反应室在高温加热的衬底上外延成化合物单晶薄膜。
反应时的关键是避免有机分子中的C沉积下来污染样品。
MOCVD生长的优点是:(1)金属有机分子一般为液体,可以通过精确控制流过金属有机分子液体的气体流量来控制金属有机分子的量,控制形成的化合物的组分,易于通过精确控制多种气体流量来制备多组元化合物:(2)易于掺杂,MOCVD从气相可实现原位掺杂;(3)易于通过改变气体制备界面陡峭的异质结或多层不同组分的化合物;(4)可以通过改变III族源气体流量在O.05~1.0um/min的大范围内控制化合物的生长速度。
此外,MOCVD 方法具有产量大、生长周期短的特点,到目前为止,它是唯一实现产业化生产GaN基器件的制备方法。
3.2
ZnO和GaN具有相近的晶格结构,二者都具有六方纤锌矿结构,口轴和c 轴晶向的失配率分别仅为1.9%和O.4%,所以ZnO的一个重要应用就是作为GaN薄膜生长的缓冲层.同时ZnO纳米材料也是研究的热点之但当用氨气作为GaN生长的反应气体时,高温下ZnO会在氨气气氛中挥发,所以应用ZnO作缓冲层时一般在较低温度下生长GaN薄膜.实验中在900℃下通过氨化ZnO/GaO。
薄膜合成出六方纤锌矿结构的GaN纳米线,以此来制作合成GaN纳米线。
.反应的过程可由方程式(1)~
(3)给出:
NH3一N2+H2 (1)
Ga203+H2一Ga20(g)+H20(g) (2)
Ga20+NH3一GaN+H20(g) (3)
结论:利用射频磁控溅射和高温氨化法在Si衬底上生长出GaN纳米线,生长过程中ZnO层的挥发起到了辅助的作用.XRD测量结果显示所制备的纳米线为六方纤锌矿结构,扫描电镜观测和能谱测试表明ZnO已全部挥发,借助ZnO的挥发作用而生成的汽相Ga。
O与NH。
反应生成了GaN 纳米线,附着在未反应的Ga。
O。
层的上面.利用透射电镜和选区电子衍射分析了所生成的GaN纳米线的形貌和结构,初步分析了利用此种方法合成GaN纳米线的生长机制.
四.总结
本文简单介绍了半导体行业GaN材料的物理背景,简单的制作方法,和应用前景,通过这些资料的收集,这对我们来说也是课外学习的收
获。
我们也相信通过这学期《半导体物理材料》课程的学习,能丰富我们的专业知识,让我们对自己将来的科研研究有个新的认识。