3.2复数的四则运算(2)除法和乘方
高中数学中的复数运算公式总结
高中数学中的复数运算公式总结在高中数学中,复数是一个重要的概念,而掌握复数的运算公式对于解决相关问题至关重要。
复数的运算包括加、减、乘、除等,下面我们就来详细总结一下这些运算公式。
一、复数的定义形如\(a + bi\)(其中\(a\)、\(b\)均为实数,\(i\)为虚数单位,且\(i^2 =-1\))的数称为复数。
其中,\(a\)被称为实部,记作\(Re(z)\);\(b\)被称为虚部,记作\(Im(z)\)。
二、复数的四则运算1、加法运算两个复数\(z_1 = a_1 + b_1i\),\(z_2 = a_2 + b_2i\)的和为:\z_1 + z_2 =(a_1 + a_2) +(b_1 + b_2)i\例如,\(z_1 = 2 + 3i\),\(z_2 = 1 2i\),则\(z_1 + z_2=(2 + 1) +(3 2)i = 3 + i\)2、减法运算两个复数\(z_1 = a_1 + b_1i\),\(z_2 = a_2 + b_2i\)的差为:\z_1 z_2 =(a_1 a_2) +(b_1 b_2)i\例如,\(z_1 = 5 + 4i\),\(z_2 = 3 + 2i\),则\(z_1 z_2=(5 3) +(4 2)i = 2 + 2i\)3、乘法运算两个复数\(z_1 = a_1 + b_1i\),\(z_2 = a_2 + b_2i\)的积为:\\begin{align}z_1 \cdot z_2&=(a_1 + b_1i)(a_2 + b_2i)\\&=a_1a_2 + a_1b_2i + a_2b_1i + b_1b_2i^2\\&=(a_1a_2 b_1b_2) +(a_1b_2 + a_2b_1)i\end{align}\例如,\(z_1 = 2 + 3i\),\(z_2 = 1 + 2i\),则:\\begin{align}z_1 \cdot z_2&=(2 + 3i)(1 + 2i)\\&=2 + 4i + 3i + 6i^2\\&=2 + 7i 6\\&=-4 + 7i\end{align}\4、除法运算将复数\(\frac{z_1}{z_2}\)(\(z_2 \neq 0\))的运算转化为乘法运算,即分子分母同时乘以\(z_2\)的共轭复数\(\overline{z_2} = a_2 b_2i\),得到:\\begin{align}\frac{z_1}{z_2}&=\frac{z_1 \cdot \overline{z_2}}{z_2 \cdot \overline{z_2}}\\&=\frac{(a_1 + b_1i)(a_2 b_2i)}{(a_2 + b_2i)(a_2 b_2i)}\\&=\frac{(a_1a_2 + b_1b_2) +(b_1a_2 a_1b_2)i}{a_2^2 +b_2^2}\end{align}\例如,\(z_1 = 4 + 3i\),\(z_2 = 1 + 2i\),则:\\begin{align}\frac{z_1}{z_2}&=\frac{(4 + 3i)(1 2i)}{(1 + 2i)(1 2i)}\\&=\frac{4 8i + 3i 6i^2}{1 4i^2}\\&=\frac{4 5i + 6}{1 + 4}\\&=\frac{10 5i}{5}\\&=2 i\end{align}\三、复数的乘方运算1、\(i\)的幂次规律\(i^1 = i\),\(i^2 =-1\),\(i^3 = i\),\(i^4 =1\)。
3.2.2复数的四则运算(2)
3.2.2复数的四则运算(2)【要点梳理】1.复数的除法法则:=++di c bia2.特殊结论:=i 1=-+i i11 =+-i i11【典型例题】例1. 已知2222227832a ab b a b ia b abi i +++-=+++,求实数b a ,.例2.计算:(1)54)31()22(i i -+ (2)19961232132⎪⎪⎭⎫⎝⎛-+++-i i i例3.已知,682i z +=求z z z 100163--的值.★基础训练★1.复数1311⎪⎭⎫ ⎝⎛+-i i 的值等于 A.22B.2 C.i D.i -()2.31⎪⎭⎫ ⎝⎛-i i 的虚部是A.8- B.i 8- C.8 D.0 ( ) 3.当i x 2321-=时,=-x x 21 4.=++i i i 12125.如果yi x ii +=++-32111,则实数=x ,=y 6.,1111)(22nn i i i i n f ⎪⎭⎫ ⎝⎛+-+⎪⎭⎫ ⎝⎛-+=则集合{})(n f 中元素的个数是 ( ) A.1 B.2 C.3 D.无数个 7.若2121,43,2z z i z i a z 且-=+=为纯虚数,则实数a 的值为 8.方程012=++x x 在复数集中的解为9.集合{Z ︱Z =Z n i i n n ∈+-,},用列举法表示该集合,这个集合是10.设,x y 为实数,且511213x y i i i+=---,则x y += 。
11.求一个复数224,=-+z zz z 为实数,且使得12.设复数i m m m m Z )23()22lg(22+++--=,试求m 取何值时(1)Z 是纯虚数; (2)Z 对应的点位于复平面的第四象限13已知z为复数,z+2i和2zi-均为实数,其中i是虚数单位.(Ⅰ)求复数z;(Ⅱ)若复数2()z ai+在复平面上对应的点在第一象限,求实数a的取值范围.。
复数的四则运算
3.2复数的四则运算(2)教学目标:1.理解复数的代数形式的乘方运算法则2.理解复数的代数形式的除法运算法则3.会根据复数的代数形式的乘方运算法则进行复数的乘方运算4.会根据复数的代数形式的除法运算法则进行复数的除法运算教学重点:1.复数的代数形式的乘方运算2.复数代数形式的除法运算教学难点:复数的代数形式的除法运算 一、问题情境1.分别写出下列复数0,2,8,42,32--+--i i i 的共轭复数2.=-+---+)21()52()43i i i (3.[][]i b a b a i b a b a )()(()-+--++-)(=4.若复数Z 满足)23)(1(22i i i Z -+=++,则Z =5.计算)21032102()21022101()43()32()21i i i i i ---+--+--- (Ⅱ.数学建模探究一:复数的正整数指数幂运算律: (1)n m n m Z Z Z += (2)mn n m Z Z =)( (3) n n n Z Z Z Z 2121)(= 探究二:复数的乘方运算:=1i =2i =3i =4i=5i =6i =7i =8i 。
i 4n+1= , i 4n+2= , i 4n+3= , i 4n =1. (A 级)计算:(1)4)1i -( (2))31()222i i -+(2. (C 级))(32121232N n i i i i n n n n ∈+++++--的值是总结反思:i 的乘方运算的周期性规律是?探究三:有关±1的三次方根例1.设i w 2321+-= , 求证: (1)012=++w w (2)13=w (3)2w w =变式练习:(B 级)设i z 2321+=,求证: (1)z z -=2 (2)13-=z (3)012=+-z zIII.数学应用探究四:复数的除法的定义与运算法则:例2.计算)43()2i i -÷-(解法一:(待定系数法) 解法二:(除法法则)Ⅳ.反馈练习1.(A 级)若复数i Z i Z 31,221-=-=,则复数521Z Z i +的虚部等于2.(B 级)计算:(1)i i +-11 (2)200911⎪⎭⎫⎝⎛+-i i(3)199113443⎪⎭⎫ ⎝⎛+-++-i i i i (4)ii4352+- (5)2)2222(i + (6))2321)(2123(i i +-+(7)10032i i i i ++++ (8)10032ii i i ∙∙∙∙(9))2321)(2123(i i +-+ (10)()()ii i i 342432122-++++5、已知i z z i z 55,2211+-=+-=,求21z z +6. (B 级)在复数范围内分解因式:(1)44b a - (2)42+x(3)522++x x (4)ab c b a 2222+++7、在复数范围内,写出下列方程的根:(1)14=x (2)01692=+x8、已知i z 2472--=,求复数z。
复数四则运算
复数四则运算复数是一种普遍存在于数学中的特殊数据,它不但外表简单,而且具有深刻的数学内涵,可以成为数学文献研究的重要研究内容。
同时,复数的四则运算也是数学课堂中不可缺少的内容之一。
本文将论述复数的定义,并进一步阐述其四则运算的相关知识,为读者提供一份参考资料。
一、复数的定义复数,又称复数类型的数,是组合实数和虚数的组合体。
它可以以a+bi的形式表示,其中a是实数部分,b是虚数部分,i是虚数单位,值为-1.因此,复数可以认为是双重元素的组合,具有实数和虚数两部分构成。
二、复数的四则运算一、加法运算复数的加法运算规则如下:a+bi+(c+di)=(a+c)+(b+d)i,即复数的加法运算是将实数部分和虚数部分分别进行加法运算,得到新的复数结果。
例如:(2+3i)+(1+2i)=(3+5i).二、减法运算复数的减法运算规则如下:a+bi-(c+di)=(a-c)+(b-d)i,即复数的减法运算是将实数部分和虚数部分分别进行减法运算,得到新的复数结果。
例如:(2+3i)-(1+2i)=(1+1i).三、乘法运算复数的乘法运算规则如下:(a+bi)×(c+di)=(ac-bd)+(ad+bc)i,也就是说,复数的乘法运算是将实数部分和虚数部分分别进行乘法运算,然后将乘法结果相加,得到新的复数结果。
例如:(2+3i)×(1+2i)=(-4+7i).四、除法运算复数的除法运算规则如下:1/(a+bi)=(a/[a2+b2])-(b/[a2+b2])i,也就是说,复数的除法运算是将实数部分和虚数部分分别进行除法运算,然后将除法结果相加,得到新的复数结果。
例如:1/(2+3i)=(-3/13)+(2/13)i.三、复数四则运算的应用复数的四则运算广泛应用于数学研究、物理实验和工程设计等多种领域。
除了可以求解数学问题外,复数运算还可以用于物理实验,例如电流和电压的实验,也可以用于工程设计,例如电路设计等。
3.2 复数的四则运算(综合)
例3
求值:
i+i +i + +i
2 3 4
2
3
2010
解:原式=(i +i +i +i )+ (i +i +i +i )+ + (i
2005 1 5 6 7 8
+i
2
2006
+i
2007
+i
2008
)+ i
2009
+i
2010
=0+i +i =-1+i
1 3 i , 求证: 例4 设 2 2 3 2 1. ⑴ 1 0; (2)
T5、8、9、10
在复数集内因式分解:
教材P74 T7
思考1
当 a>0 时,方程 x2+a=0 的根是什么?
思考2
设x,y∈R,在复数集内,能将 x 2+y 2
分解因式吗?
1.复数加减法的运算法则. 2.复数的乘法法则.
3.共轭复数.
z1+z2=(a+b i) (c+d i)= (a+c)+(b+d )i
z1 z 2 (a bi) (c di) (a c) (b d )i
z1 z 2 (a bi) (c di) ac adi bci bdi2
(ac bd) (ad bc)i
(1)(3 2i)(3 2i)
2
a+b i a-b i
a +b
2
2
问题三 你可以发现 a+b i ,a-b i 这两个复数有什么特点? 共轭复数定义: 实部相等,虚部互为相反数的两个复数互为共轭复数. 复数 z=a+bi 的共轭复数记作
z,即 z= a- b i
说明(1)当b=0时,z=z,即实数的共轭复数是它本身. (2)共轭复数的简单性质: z+z=2a; z-z=2b i; z z=a2+b2 .
复数的四则运算——高中数学湘教版(2019)必修二
2.两个复数的积仍为复数,可推广,任意多个复数的积仍然是一个复数.
微思考
in(n∈N+)有什么规律?
提示 i4n=1,i4n+1=i,i4n+2=-1,i4n+3=-i(n∈N+),即in(n∈N+)是以4为周期的.
微练习
(1)(4-i)(3+2i)=
(2)由已知得z=(6+2i)-(1-3i)=5+5i.
探究二
复数的乘法与除法运算
例 2 计算下列各题:
(1)(1-2i)(3+6i);(2)(5-2i)
6
(4)( 3-i) ;(5)
4+4i
2
(2-i)
;(6)
2-i
;(3)-4-3i ;
2
1+i 8
.
1-i
分析按照复数乘法与除法的运算法则进行计算.
母实数化”,这个过程与“分母有理化”类似.
(2)复数除法运算的结果要进行化简,通常要写成复数的代数形式,即实部
与虚部要完全分开的形式.
变式训练 2 计算下列各题:
(1)(1+i)(1-i)+(-1+i);
(2)
1
2
+
3
i
2
3
2
+
1
i
2
(1+i);
(3)(-2+3i)÷(1+2i);
3+2i
(4)
2-3i
第3章
3.2
复数的四则运算
任何两个实数都可以相加,而且实数中的加法运算还满足交换律与结合律,
人教课标版高中数学选修1-2:《复数代数形式的四则运算》教案-新版
3.2 复数代数形式的四则运算一、教学目标 1.核心素养通过学习复数代数形式的四则运算,初步形成基本的数学抽象和数学运算能力. 2.学习目标(1)掌握复数代数形式的加法、减法运算法则,能进行复数代数形式加法、减法运算,理解并掌握复数加法与减法的几何意义.(2)理解并掌握复数的代数形式的乘法与除法运算法则,熟练进行复数的乘法和除法的运算.理解复数乘法的交换律、结合律、分配律;了解共轭复数的定义及性质.(3)培养学生参透转化、数形结合的数学思想方法,提高学生分析问题、解决问题以及运算的能力. 3.学习重点复数代数形式四则运算法则. 4.学习难点复数加减法运算的几何意义,对复数除法法则的运用. 二.教学设计 (一)课前设计 1.预习任务任务1 预习教材P 56---P 60,完成P 58和P 60相应练习题 任务2 掌握复数加、减、乘、除四则运算法则 任务3 利用复平面理解复数加减法的几何意义 2.预习自测1.设z 1=2+bi ,z 2=a +i ,当z 1+z 2=0时,复数a +bi 为( ) A.1+i B.2+i C.3 D.-2-i 答案:D解析:∵z 1+z 2=(2+bi )+(a +i )=(2+a )+(b +1)i =0, ∴⎩⎨⎧ 2+a =0b +1=0,∴⎩⎨⎧a =-2b =-1,∴a +bi =-2-i .2.已知z 1=2+i ,z 2=1-2i ,则复数z =z 2-z 1对应的点位于( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 答案:C解析:z =z 2-z 1=(1-2i )-(2+i )=-1-3i .故z 对应的点为(-1,-3),在第三象限. 3.若复数z 满足z +(3-4i )=1,则z 的虚部是( ) A.-2 B.4 C.3 D.-4 答案:B解析:z =1-(3-4i )=-2+4i ,所以z 的虚部是4. (二)课堂设计 1.知识回顾1. 复数通常用小写字母z 表示,即z =a +b i(a,b ∈R ),这一表示形式叫做复数的代数形式,其中a 叫做复数z 的实部,b 叫做复数z 的虚部.2. 两个复数相等,即实部和虚部分别相等即a +b i =c +di ⇔a =c 且b =d (a ,b ,c ,d ∈R )3. 复数z =a +bi (a,b ∈R )的模为22z a b =+2.问题探究问题探究一:复数的加减法●活动一 怎样计算复数的加法与减法?设12i,i(,,,)z a b z c d a b c d R =+=+∈,是任意两个复数,那么(1)复数1z 与2z 的和的定义:12(i)(i)()()i z z a b c d a c b d +=+++=+++ (2)复数1z 与2z 的差的定义:12(i)(i)()()i z z a b c d a c b d -=+-+=-+-. ●活动二 从复数的加法和减法法则我们可以得到一个怎样的结论?事实上,两个复数相加(减)就是把实部与实部、虚部与虚部分别相加(减). ●活动三 复数的和与差还是一个复数吗? 显然,复数的和与差仍然是一个唯一确定的复数.●活动四 我们以前学过的运算律还能在复数中使用吗? 对任意123,,z z z C ∈.(1)交换律:1221z z z z +=+;(2)结合律:123123()()z z z z z z ++=++.●活动五 复数代数形式的加减运算的几何意义是什么?(1)复平面内的点(,)Z a b OZ ←−−−→uu u r 一一对应平面向量(2)复数i z a b OZ =+←−−−→uu u r一一对应平面向量 (3)复数的加减法的几何意义复数的加、减法的几何意义,即为向量的合成与分解:平行四边形法则,可简化成三角形法则,如图,OZ uu u r 表示复数12z z +所对应的向量,12Z Z uuuu r 表示复数12z z -所对应的向量,即OZuu u r表示复数()()i a c b d +++所对应的向量,12Z Z uuuu r表示复数()()i a c b d -+-所对应的向量注: 两个复数的差12z z -表示与连接两个终点12,z z 且指向被减数的向量对应. 问题探究二:复数的乘除法●活动一 复数的乘法怎么算?复数的乘法是否有似曾相识的感觉?设1z =a +b i ,2z =c +d i (a,b,c,d ∈R )是任意两个复数,则1z ·2z =(a +b i )(c +d i )=_________________.从上面可以看出,两个复数相乘,类似两个多项式相乘,在所得的结果中把实部与虚部分别合并.两个复数的积仍然是一个复数. ●活动二 复数的乘法是否也满足运算律呢? 对任意123,,z z z C ∈. (1)交换律:2121z z z z ⋅=⋅(2)结合律:123123()()z z z z z z ⋅⋅=⋅⋅ (3)分配律:1231213()z z z z z z z ⋅+=⋅+⋅1z●活动三 复数的除法又该如何计算呢?设1z =a +b i , 2z =c +d i (a,b,c,d ∈R ,且c +d i≠0),122222i i(i 0)i z a b ac bd bc ad c d z c d c d c d+++==++≠+++ 几个运算性质:①i 的幂的周期性:i 4n =1,i 4n +1=i ,i 4n +2=-1,i 4n +3=-i(n ∈N ). ②(1±i)2=±2i ,1i i 1i +=-,1i i 1i -=-+,1i i=-. ③设13i 22ω=-+,则ω2=ω,ω3=1,1+ω+ω2=0.●活动四 什么叫做共轭复数?一般地,当两个复数的实部相等,虚部互为相反数时,这两个复数叫做互为共轭复数. 通常记复数i(,)z a b a b R =+∈的共轭复数为i(,)z a b a b R =-∈.共轭复数有如下性质:①z R z z ∈⇔=;②22z z z z ⋅==;③2z z a +=,2i z z b -=;④1212z z z z +=+,1212z z z z -=-;⑤1212z z z z ⋅=⋅,1122z zz z ⎛⎫= ⎪⎝⎭(z 2≠0).例 1 计算下列各题: (1)3(2-3i)(2i)12+-++; (2)i 1i 1()()i 2332----+;(3)(5-6i)+(-2-2i)-(3+3i).(4)已知复数z 满足z +1+2i =10-3i ,求z . 【知识点:复数的四则运算】详解:33=(22)(3)i 11i 22-+-++=-(1)原式 111111=()(1)i i 322366-++--+=+(2)原式.(3)原式=(5-2-3)+[-6+(-2)-3]i =-11i. (4)z +1+2i =10-3i ,∴z =(10-3i)-(2i +1)=9-5i.点拔:复数的加减法运算就是把复数的实部与实部,虚部与虚部分别相加减.例2 设及分别与复数z 1=5+3i 及复数z 2=4+i 对应,试计算z 1+z 2,并在复平面内作出复数z 1+z 2所对应的向量.【知识点:复数的四则运算,复数加减法的几何意义】 【思路探究】利用加法法则求z 1+z 2详解:∵z 1=5+3i ,z 2=4+i ,∴z 1+z 2=(5+3i)+(4+i)=9+4i ∵15,3OZ =uuu r (),24,1OZ =uuu r (),由复数的几何意义可知,12OZ OZ +uuu r uuu r 与复数z 1+z 2对应, ∴12OZ OZ +uuu r uuu r =(5,3)+(4,1)=(9,4).作出向量12OZ OZ OZ +=uuu r uuu r uu u r如图所示.点拔:1.根据复数加减运算的几何意义可以把复数的加减运算转化为向量的坐标运算.2.利用向量进行复数的加减运算时,同样满足平行四边形法则和三角形法则.3.复数加减运算的几何意义为应用数形结合思想解决复数问题提供了可能.变式:在题设不变的情况下,计算z 1-z 2,并在复平面内作出复数z 1-z 2所对应的向量. 解:z 1-z 2=(5+3i)-(4+i)=(5-4)+(3-1)i =1+2i.复数z 1-z 2所对应的向量为21Z Z uuuu r.例3 (1)设z 1,z 2∈C ,已知|z 1|=|z 2|=1,|z 1+z 2|=2,求|z 1-z 2|. (2)已知|z +1-i|=1,求|z -3+4i|的最大值和最小值.【知识点:复数的模,复数的模的几何意义,复数加减法的几何意义;数学思想:数形结合】(1)设z 1=a +b i ,z 2=c +d i(a ,b ,c ,d ∈R ).由题意,知a 2+b 2=1,c 2+d 2=1.(a +c )2+(b +d )2=2,∴2ac +2bd =0. ∴|z 1-z 2|2=(a -c )2+(b -d )2=a 2+c 2+b 2+d 2-2ac -2bd =2.∴|z1-z2|=2.(2)【思路探究】利用复数加减法的几何意义,以及数形结合的思想解题.解法一:设w=z-3+4i,∴z=w+3-4i,∴z+1-i=w+4-5i.又|z+1-i|=1,∴|w+4-5i|=1.可知w对应的点的轨迹是以(-4,5)为圆心,1为半径的圆.如图(1)所示,∴|w|max=41+1,|w|min=41-1.(1)(2)解法二:由条件知复数z对应的点的轨迹是以(-1,1)为圆心,1为半径的圆,而|z-3+4i|=|z-(3-4i)|表示复数z对应的点到点(3,-4)的距离,在圆上与(3,-4)距离最大的点为A,距离最小的点为B,如图(2)所示,所以|z-3+4i|max=41+1,|z-3+4i|min=41-1.点拔:|z1-z2|表示复平面内z1,z2对应的两点间的距离.利用此性质,可把复数模的问题转化为复平面内两点间的距离问题,从而进行数形结合,把复数问题转化为几何图形问题求解.例4 (1)计算61i23i 1i32i ++⎛⎫+⎪--⎝⎭.(2)计算:2013 23i21i123i⎛⎫-++ ⎪⎪-+⎝⎭;(3)若复数1i1iz+=-,求1+z+z2+…+z2 013的值.【知识点:复数的四则运算】(1)分析:先计算1i1i+-再乘方,且将23i32i+-的分母实数化后再合并.详解:626(1i)23i32i62i3i6 =i1i 255⎡⎤+++++-+=+=-+⎢⎥⎣⎦()()原式又解:626(1i)23i i23i i =i1i 232i i23i⎡⎤++++=+=-+⎢⎥-+⎣⎦()()原式().(2)【思路探究】将式子进行适当的化简、变形,使之出现i n 的形式,然后再根据i n 的值的特点计算求解.详解:10062i(123i)22(2)=1i 1i 123i ⎡⎤⎛⎫⎛⎫+⎢⎥+⋅ ⎪ ⎪ ⎪ ⎪--+⎢⎥⎝⎭⎝⎭⎣⎦原式 100622(1i)=i 2i 2+⎛⎫+⋅⎪-⎝⎭10062(1i)=i i 2++⋅222=i 22--+(3)201422013111z z z zz-++++=-L , 而21i (1i)2i =i 1i (1i)(1i)2z ++===--+,所以201422201311i 11i 11iz z z zz --++++===+--L 点拔:1.要熟记i n 的取值的周期性,要注意根据式子的特点创造条件使之与i n 联系起来以便计算求值.2.如果涉及数列求和问题,应先利用数列方法求和后再求解.例5 已知z ∈C ,z 为z 的共轭复数,若3i 13i z z z ⋅-⋅=+,求z .【知识点:复数的四则运算,共轭复数】详解:设z =a +b i(a ,b ∈R ),则z =a -b i(a ,b ∈R ),由题意得(a +b i)(a -b i)-3i(a -b i)=1+3i ,即a 2+b 2-3b -3a i =1+3i ,则有⎩⎨⎧ a 2+b 2-3b =1-3a =3,解得⎩⎨⎧ a =-1b =0或⎩⎨⎧a =-1b =3,所以z =-1或z =-1+3i.点拔:1.22z z z z ⋅==是共轭复数的常用性质.2.实数的共轭复数是它本身,即z ∈R ⇔ z =z ,利用此性质可以证明一个复数是实数.3.若z ≠0且z +z =0,则z 为纯虚数,利用此性质可证明一个复数是纯虚数. 3.课堂总结 【知识梳理】1.两个复数相加(减)就是把实部与实部、虚部与虚部分别相加(减),即(a +b i)±(c +d i)=(a ±c )+(b ±d )i.2.复数加减法的几何意义3.复数代数形式的乘法类似于多项式乘以多项式,满足交换律、结合律以及乘法对加法的分配律.4.复数代数形式的除法运算时,通常先将除法写成分式的形式,再把分子、分母都乘以分母的共轭复数,化简后可得,类似于以前学习的分母有理化. 【重难点突破】(1)复数的加减法,可模仿多项式的加减法法则计算,实质上是合并同类项,不必死记公式.(2)复数加法的几何意义:如果复数12z z ,分别对应于向量12OP OP uuu r uuu r、,那么,以12OP OP 、为两边作平行四边形,对角线OS 表示的向量OS uu r就是12z z +的和所对应的向量.复数减法的几何意义:两个复数的差12z z -与连接这两个向量终点并指向被减数的向量对应. (3)复数的乘法,也可按照多项式的乘法法法则计算,实质上也是合并同类项,同样不必死记公式.(4)两个复数相除较简便的方法是把它们的商写成分式的形式,然后把分子与分母都乘以分母的共轭复数,再把结果化简 .(5)复数除法的核心是分母实数化,类似分母有理化. 4.随堂检测 1.21i=+( ) A.22 B.2 C.2 D.1 答案:C解析:【知识点:复数的四则运算,复数的模】 原式211i==+ 2.复数i(2-i)等于( ) A.1+2i B.1-2i C.-1+2i D.-1-2i答案:A解析:【知识点:复数的四则运算】 i(2-i)=2i -i 2=1+2i.3.已知(1-i)2z =1+i(i 为虚数单位),则复数z 等于( ) A.1+i B.1-i C.-1+i D.-1-i 答案:D解析:【知识点:复数的四则运算】由(1-i)2z =1+i ,知z =(1-i)21+i =-2i 1+i =-1-i ,故选D.(三)课后作业 ★基础型 自主突破 1.()212i1i +-等于( )A.11i 2--B.11i 2-+C.11i 2+D.11i 2-答案:B解析:【知识点:复数的四则运算】 原式12i i12i 2+==-+- 2. i 为虚数单位,i 607的共轭复数为( ) A.i B.-i C.1 D.-1 答案:A解析:【知识点:共轭复数相关概念,i 的周期性】 方法一:i 607=i 4×151+3=i 3=-i ,其共轭复数为i.故选A.方法二:i607=i 608i =i 4×152i =1i =-i ,其共轭复数为i.故选A.3.已知i 是虚数单位,则(2+i)(3+i)等于( ) A.5-5i B.7-5i C.5+5i D.7+5i 答案:C解析:【知识点:复数的四则运算】4.复数z=i·(1+i)(i 为虚数单位)在复平面上对应的点位于( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 答案:B解析:【知识点:复数的四则运算,复数的几何意义】 5.复数z 满足(i)i 2i z -=+,则z =( ) A.1i -- B.1i - C.13i -+ D.12i - 答案:B解析:【知识点:复数的四则运算】2iz i i+-=,∴1z i =- 6.复数z =-3+i2+i 的共轭复数是( ) A.2+i B.2-i C.-1+iC.-1-i答案:D解析:【知识点:复数的四则运算,共轭复数的定义】(3)(2)15i i z i -++==-+,1z i =-- 7.若复数z 满足z (2-i )=11+7i (i 为虚数单位),则z 为( )A.3+5iB.3-5iC.-3+5iD.-3-5i答案:A解析:【知识点:复数的四则运算】117(117)(2)3525i i i z i i +++===+- 8. (1+i 1-i )6+2+3i 3-2i=________. 答案:1i -+解析:【知识点:复数的四则运算】 原式6(23i)(32i)5i i 11i 325++=+=-+=-++ ★★能力型 师生共研1.已知复数z 满足z (1+i )=1+ai (其中i 是虚数单位,a ∈R ),则复数z 在复平面内对应的点不可能位于( )A.第一象限B.第二象限C.第三象限D.第四象限答案:B 解析:【知识点:复数的四则运算】由条件可知:z =1+a i 1+i =(1+a i)(1-i)(1+i)(1-i)=a +12+a -12i ;当a +12<0,且a -12>0时,a ∈∅,所以z 对应的点不可能在第二象限,故选B.2.若12+i 是关于x 的实系数方程20x bx c ++=的一个复数根,则( )A.2,3b c ==B.2,1b c ==-C.2,1b c =-=-D.2,3b c =-=答案:D解析:【知识点:复数的四则运算,复数的相等】 把12i +代入方程20x bx c ++=,利用复数的相等即可3.设,a b R ∈,i 是虚数单位,则“0ab =”是“复数ba i +为纯虚数”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件答案:B解析:【知识点:复数的四则运算,复数的概念】4.设z 是复数,则下列命题中的假命题是( )A.若2z ≥0,则z 是实数B.若2z <0,则z 是虚数C.若z 是虚数,则2z ≥0D.若z 是纯虚数,则2z <0答案:C解析:【知识点:复数的四则运算,复数的概念】5.一个实数与一个虚数的差( )A.不可能是纯虚数B.可能是实数C.不可能是实数D.无法确定是实数还是虚数答案:C解析:【知识点:复数的四则运算,复数的概念】6.设复数1z =1-i ,2z =a +2i ,若12z z 的虚部是实部的2倍,则实数a 的值为______.答案:6解析:【知识点:复数的概念,复数的四则运算】∵a ∈R ,1z =1-i ,2z =a +2i , ∴12z z =a +2i 1-i =(a +2i)(1+i)(1-i)(1+i)=a -2+(a +2)i 2=a -22+a +22i ,依题意a +22=2×a -22,解得a =6.7.若a1-i =1-b i ,其中a ,b 都是实数,i 是虚数单位,则|a +b i|=________. 答案:5解析:【知识点:复数的模,复数的四则运算】∵a ,b ∈R ,且a1-i =1-b i ,则a =(1-b i)(1-i)=(1-b )-(1+b )i ,∴⎩⎨⎧ a =1-b ,0=1+b.∴⎩⎨⎧ a =2,b =-1.∴|a +bi |=|2-i |=222(1)+-= 5.8.计算:(1-2i)+(-2+3i)+(3-4i)+(-4+5i)+…+(-2002+2003i)+(2003-2004i).答案:见解析解析:【知识点:复数的四则运算】解法一:原式=(1-2+3-4+…-2002+2003)+(-2+3-4+5+…+2003-2004i)=(2003-1001)+(1001-2004)i=1002-1003i.解法二:∵(1-2i)+(-2+3i)=-1+i ,(3-4i)+(-4+5i)=-1+i ,……(2001-2002i)+(-2002+2003)i=-1+i.相加得(共有1001个式子):原式=1001(-1+i)+(2003-2004i)=(2003-1001)+(1001-2004)i=1002-1003i★★★探究型 多维突破A.直角三角形B.等腰三角形C.锐角三角形D.钝角三角形答案:A解析:【知识点:复数的四则运算,复数的加减法的几何意义】2.已知1122,,,x y x y R ∈,定义运算“⊙”为1z ⊙2z =2121y y x x +,设非零复数21,ωω在复平面内对应的点分别为21,P P ,点O 为坐标原点,若1ω⊙2ω=0,则在21OP P ∆中,21OP P ∠的大小为________.答案:90o解析:【知识点:复数的四则运算】设 111a b i ω=+,222a b i ω=+ (12,0a a ≠)故得点),(111b a P ,),(222b a P ,且2121b b a a +=0,即12211-=⋅a b a b . 从而有1212121OP OP b b k k a a ==-g g ,故21OP OP ⊥. 3.复数z 1,z 2满足z 1=m +(4-m 2)i ,z 2=2cos θ+(λ+3sin θ)i (m ,λ,θ∈R ),且z 1=z 2,则λ的取值范围是_____________.答案:⎣⎢⎡⎦⎥⎤-916,7 解析:【知识点:复数的四则运算,三角函数的值域】由复数相等的充要条件可得⎩⎨⎧m =2cos θ,4-m 2=λ+3sin θ,化简得4-4cos 2θ=λ+3sin θ,由此可得λ=-4cos 2θ-3sin θ+4=-4(1-sin 2θ)-3sin θ+4=4sin 2θ-3sin θ=4⎝ ⎛⎭⎪⎫sin θ-382-916, 因为sin θ∈[-1,1],所以λ∈⎣⎢⎡⎦⎥⎤-916,7. 4.已知复数z =x +yi ,且|z -2|=3,则 y x 的最大值为________. 答案: 3解析:【知识点:复数的加减法的几何意义,复数的模,直线的斜率的应用】∴(x -2)2+y 2=3.由图可知⎝ ⎛⎭⎪⎫y x max =31= 3. 5.已知复平面上正方形的三个顶点是A (1,2)、B (-2,1)、C (-1,-2),求它的第四个顶点D 对应的复数.答案:见解析解析:【知识点:复数的四则运算,复数的加减法的几何意义】设D (x,y ),则OA OD AD -=对应的复数为(x +y i)-(1+2i)=(x -1)+(y -2)iOB OC BC -=对应的复数为:(-1-2i)-(-2+i)=1-3i∵BC AD = ∴(x -1)+(y -2)i=1-3i∴⎩⎨⎧-=-=-3211y x ,解得⎩⎨⎧-==12y x ∴D 点对应的复数为2-i.6.已知复数z 满足: 13i ,z z =+-求22(1i)(34i)2z ++的值.答案:见解析解析:【知识点:复数的四则运算,复数的模,复数的概念】设i(,)z a b a b =+∈R ,而13i ,z z =+-即2213i i 0a b a b +--++=,则224,10,43i.3,30a a b a z b b ⎧=-⎧⎪++-=⇒=-+⎨⎨=-=⎩⎪⎩22(1i)(34i)2i(724i)247i34i22(43i)43i z ++-++===+-+-.(四)自助餐1.若12,z z ∈C ,1212z z z z --+是( )A.纯虚数B.实数D.不能确定答案:B解析:【知识点:复数的四则运算,共轭复数,复数的概念】121212i,i(,,,),(i)(i)(i)(i)--=+=+∈+=+-+-+z a b z c d a b c d z z z z a b c d a b c d R 22ac bd =+∈R .2.为正实数,i 为虚数单位,i 2i a +=,则a =( ) A.2 B.3 C.2D.1答案:B解析:【知识点:复数的四则运算,复数的模】2i |1i |12,i +=-=+=a a aa >0,故3a =. 3.36(13i)2i (1i)12i -+-++++的值是( ) A.0B.1C.iD .2i答案:D解析:【知识点:复数的四则运算】33336(13i)2i 13i (2i)(12i)-1+3i 15i ()()()+(1i)12i 2i 52i 5-+-+-+-+-+=+=++=i+i =2i .4 若复数z 满足3(1)i 1z z -+=,则2z z +的值等于( )A .1D .13i 22-+答案:C解析:【知识点:复数的四则运算】13i133i 3i 10,i ,2213i z z z ω+---===-+=-221z z ωω+=+=-.5.已知33i (23i)z -=⋅-,那么复数z 在复平面内对应的点位于() A .第一象限B .第二象限C.第三象限D .第四象限答案:A解析:【知识点:复数的四则运算,复数的几何意义】33132223iz i i -==+-6.已知复数z =1+i ,z -为z 的共轭复数,则z z --z -1=( )A.-2iB.-iC.iD.2i答案:B解析:【知识点:复数的四则运算,共轭复数】解:B 依题意得z z --z -1=(1+i)(1-i)-(1+i)-1=-i.7.设456121z i i i i =++++L ,456121z i i i i =⋅⋅⋅L 则12,z z 的关系是()A .12z z =B .12z z =-C .121z z =+D .无法确定答案:A解析:【知识点:复数的四则运算,等比数列的前n 项和,等比数列的前n 项和】491(1)1111i i i z i i--===--,456127221z i i ++++===L 故选A. 8.已知2()i i (i 1,n n f n n -=-=-∈N ),集合{}()f n 的元素个数是( ) A.2B.3C.4D.无数个答案:C解析:【知识点:复数的四则运算】00-12-23-31(0)i -i 0,(1)i-i =i-=2i,(2)i -i 0,(3)i -i =-2i.i f f f f ======9.在复平面内,复数6+5i,-2+3i 对应的点分别为A ,B.若C 为线段AB 的中点,则点C 对应的复数是( )A.4+8iB.8+2iC.2+4iD.4+i答案:C解析:【知识点:复数的加减法的几何意义】A 点坐标为(6,5),B 点坐标为(-2,3),则中点C 的坐标为(2,4),∴C 点对应的复数为2+4i.10.设i 是虚数单位,z 表示复数z 的共轭复数.若z =1+i ,则z i +i ·z 等于( )A.-2B.-2iC.2D.2i解析:【知识点:复数的四则运算,共轭复数,复数的模】∵z =1+i ,∴z =1-i ,z i =1+i i =-i 2+i i =1-i ,∴ z i +i ·z =1-i +i (1-i )=(1-i )(1+i )=2.故选C.11.若复数z 满足(3-4i )z =|4+3i |,则z 的虚部为( )A.-4B.-45C.4D.45答案:D解析:【知识点:复数的四则运算,共轭复数,复数的模】设z =a +b i ,故(3-4i)(a +b i)=3a +3b i -4a i +4b =|4+3i|,所以⎩⎨⎧ 3b -4a =0,3a +4b =5,解得b =45. 故选D12.若复数z 满足z1-i =i ,其中i 为虚数单位,则z 等于( )A.1-iB.1+iC.-1-iD.-1+i答案:A解析:【知识点:复数的四则运算,共轭复数】∵z 1-i =i ,∴z =i (1-i )=i -i 2=1+i ,∴z =1-i .故选A.13.如图,在复平面内,点A 表示复数z ,则图中表示z 的共轭复数的点是()A.AB.BC.CD.D解析:【知识点:复数的概念,复平面,共轭复数】表示复数z 的点A 与表示z 的共轭复数的点关于x 轴对称,∴B 点表示z .选B.14.设z =(2-i )2(i 为虚数单位),则复数z 的模为 .答案:5解析:【知识点:复数的四则运算,共轭复数,复数的模】15. i 为虚数单位,设复数1z ,2z 在复平面内对应的点关于原点对称,若1z =2-3i,则2z = . 答案:2z = -2+3i解析:【知识点:复数的几何意义】由于z 1对应的点的坐标为(2,-3),所以z 2对应的点的坐标为(-2,3), 2z = -2+3i .16.(1) i 是虚数单位,若复数(1-2i)(a +i)是纯虚数,则实数a 的值为________.(2)已知复数z =(5+2i )2(i 为虚数单位),则z 的实部为________.答案:-2;21解析:【知识点:复数的四则运算,复数的概念】(1)(1-2i )(a +i )=a +2+(1-2a )i ,由已知,得a +2=0,1-2a ≠0,∴a =-2(2)因为z =(5+2i )2=25+20i +(2i )2=25+20i -4=21+20i ,所以z 的实部为21. 17.⎝ ⎛⎭⎪⎫1+i 1-i 2 016=________. 答案:1解析:【知识点:复数的四则运算,共轭复数】⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1+i 1-i 2 1 008=⎝ ⎛⎭⎪⎫1+2i +i 21-2i +i 2 1 008=1. 18.-23+i 1+23i +⎝ ⎛⎭⎪⎫21-i 2 016=________. 答案:1i +解析:【知识点:复数的四则运算,共轭复数】原式=i(1+23i)1+23i +⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫21-i 2 1 008=i +⎝ ⎛⎭⎪⎫2-2i 1 008=i +i 1 008=i +i 4×252=1+i . 19.已知f (x )=⎩⎨⎧ 1+x ,x ∈R ,(1+i)x ,x ∉R ,则f [f (1-i )]=________. 答案:3∵f (1-i )=(1+i )(1-i )=2,∴f [f (1-i )]=f (2)=1+2=3.20.已知复数z 满足|z |=5,且(3+ 4i )z 是纯虚数,求z .答案:见解析解析:【知识点:复数的四则运算,复数的概念,复数的相等,复数的模】设z =x +y i (x, y ∈R ),∵ |z |=5,∴ x 2+y 2=25.又(3+4i)z =(3+4i)(x +y i)=(3x -4y )+(4x +3y )i 是纯虚数,∴340,430,x y x y -=⎧⎨+≠⎩联立三个关系式解得4,3,x y =⎧⎨=⎩或4,3.=-⎧⎨=-⎩x y∴ z =4+3i 或z =-4-3i21.设1zz +是纯虚数,求复数z 对应的点的轨迹方程.答案:见解析解析:【知识点:复数的四则运算,复数的概念,复数的相等,共轭复数,复数的模】 ∵1z z + 是纯虚数,∴011z z z z ⎛⎫+= ⎪++⎝⎭,即20(z 1)(z 1)zz z z ++=++, 设(x,y R)z x yi =+∈,则222()20x y x ++=∴ 2211(y 0)24x y ⎛⎫++=≠ ⎪⎝⎭.它为复数z 对应点的轨迹方程. 22.如图所示,平行四边形OABC ,顶点O ,A ,C 分别表示0,3+2i ,-2+4i ,试求:①AO→、BC →所表示的复数; ②对角线CA →所表示的复数; ③B 点对应的复数. 答案:见解析解析:【知识点:复数的概念,复平面,复数的向量表示】①AO→=-OA →,∴AO →所表示的复数为-3-2i . ∵BC →=AO →,∴BC →所表示的复数为-3-2i . ②CA→=OA →-OC →,∴CA →所表示的复数为(3+2i )-(-2+4i )=5-2i . ③OB→=OA →+AB →=OA →+OC →,∴OB →所表示的复数为(3+2i )+(-2+4i )=1+6i , 即B 点对应的复数为1+6i .点评:因为复平面内的点、向量及向量对应的复数是一一对应的,要求某个向量对应的复数时,只要找出所求向量的始点和终点,或者用向量相等直接给出结论即可.23.已知z 是复数,z +2i 、z 2-i均为实数(i 为虚数单位),且复数(z +ai )2在复平面内对应的点在第一象限,求实数a 的取值范围.答案:见解析解析:【知识点:复数的概念,复平面,复数的向量表示】设z =x +yi (x 、y ∈R ),∴z +2i =x +(y +2)i ,由题意得y =-2.∵z 2-i =x -2i 2-i=15(x -2i )(2+i )=15(2x +2)+15(x -4)i ,由题意得x =4.∴z =4-2i . ∵(z +ai )2=(12+4a -a 2)+8(a -2)i ,根据条件,可知⎩⎨⎧12+4a -a 2>0,8(a -2)>0,解得2<a <6, ∴实数a 的取值范围是(2,6).三、数学视野以复数作为自变量和因变量的函数就叫做复变函数,而与之相关的理论就是复变函数论.解析函数是复变函数中一类具有解析性质的函数,复变函数论主要就研究复数域上的解析函数,因此通常也称复变函数论为解析函数论.复变函数论产生于十八世纪.1774年,欧拉在他的一篇论文中考虑了由复变函数的积分导出的两个方程.而比他更早时,法国数学家达朗贝尔在他的关于流体力学的论文中,就已经得到了它们.因此,后来人们提到这两个方程,把它们叫做“达朗贝尔-欧拉方程”.到了十九世纪,上述两个方程在柯西和黎曼研究流体力学时,作了更详细的研究,所以这两个方程也被叫做“柯西-黎曼条件”.复变函数论的全面发展是在十九世纪,就像微积分的直接扩展统治了十八世纪的数学那样,复变函数这个新的分支统治了十九世纪的数学.当时的数学家公认复变函数论是最丰饶的数学分支,并且称为这个世纪的数学享受,也有人称赞它是抽象科学中最和谐的理论之一. 为复变函数论的创建做了最早期工作的是欧拉、达朗贝尔,法国的拉普拉斯也随后研究过复变函数的积分,他们都是创建这门学科的先驱.后来为这门学科的发展作了大量奠基工作的要算是柯西、黎曼和德国数学家维尔斯特拉斯了.二十世纪初,复变函数论又有了很大的进展,维尔斯特拉斯的学生,瑞典数学家列夫勒、法国数学家庞加莱、阿达玛等都作了大量的研究工作,开拓了复变函数论更广阔的研究领域,为这门学科的发展做出了贡献.复变函数论在应用方面,涉及的面很广,有很多复杂的计算都是用它来解决的.比如物理学上有很多不同的稳定平面场,所谓场就是每点对应有物理量的一个区域,对它们的计算就是通过复变函数来解决的.比如俄国的茹柯夫斯基在设计飞机的时候,就用复变函数论解决了飞机机翼的结构问题,他在运用复变函数论解决流体力学和航空力学方面的问题上也做出了贡献.复变函数论不但在其他学科得到了广泛的应用,而且在数学领域的许多分支也都应用了它的理论.它已经深入到微分方程、积分方程、概率论和数论等学科,对它们的发展很有影响.。
3.2复数的四则运算ppt课件
O
x
O Z 1 + O Z 2 = (a + c,b + d).
这 说 明 两 个 向 量 O Z 1和 O Z 2的 和 就 是 复 数 (a+c)+(b+d)i对 应 的 向 量 .
3
2.复数的减法
复数的减法就是加法的逆运算. (a+bi)-(c+di)=(a-c)+(b-d)i.
复数的减法法则: 实部与实部,虚部与虚部分别相减.
2001i20022003i200450122i10021002i设o是原点向量对应的复数分别为23i32i那么向量对应的复数是在复平面内对应的点位于cdi是任意两个复数那么它们的积换成1把实部与虚部分别合并即可
3.2复数的四则运算
1
1.复数的加法
我们规定,复数的加法法则如下: 设z1=a+bi, z2=c+di 是任意两个复数,那么 (a+bi)+(c+di)=(a+c)+(b+d)i. 即:两个复数相加就是 实部与实部,虚部与虚部分别相加.
很明显,两个复数的和仍然是一个确定的复数. 复数的加法满足交换律、结合律
2
如图所示:
y Z
Z2(c,d)
设
O
Z
1,O
Z
分
2
别
与
复 数 a + b i,c + d i对 应 ,
则 O Z 1 = (a,b),O Z 2 = (c,d). 由平面向量的坐标运算,
Z1(a,b)
得 OZ = OZ1+OZ2
10
例题1
计算 (1-2i)(3+4i)(-2+i)
复数与复数运算详细解析与归纳
复数与复数运算详细解析与归纳复数是数学中一种重要的概念,它包含了实数范围之外的数。
在本文中,我们将详细解析复数的定义、运算规则以及复数的归纳方法,旨在帮助读者更好地理解和应用复数。
一、复数的定义复数是由实数和虚数单位构成的数,通常表示为a+bi的形式,其中a和b都是实数,i是虚数单位,满足i²=-1。
复数由实部和虚部两部分组成,实部是实数部分,虚部是虚数部分。
二、复数的四则运算1. 加法:对应位置的实部和虚部分别相加。
2. 减法:对应位置的实部和虚部分别相减。
3. 乘法:按照分配律展开并合并同类项,同时注意i²的取值。
4. 除法:将除数乘以共轭复数的分子和分母,然后进行简化。
三、复数的性质与归纳1. 共轭复数:将复数的虚部取负数得到的数为共轭复数,记作z'。
共轭复数具有以下性质:a. 共轭复数的实部相等,虚部的符号相反。
b. 复数与它的共轭复数的乘积等于它的模的平方。
c. 对于实数,它的共轭复数等于它本身。
2. 复数的模和辐角:复数的模是复数到原点的距离,通常用|r|表示;辐角是复数与实轴正半轴之间的夹角,通常用θ表示。
复数的性质与归纳如下:a. 复数的模等于它与共轭复数的乘积的平方根。
b. 复数的辐角等于它在坐标平面上与实轴正半轴的夹角。
c. 两个复数相等,当且仅当它们的实部和虚部分别相等。
3. 欧拉公式:欧拉公式将复数的辐角表示为指数形式,可以用于简化复数的运算。
欧拉公式的表达式为e^(iθ) = cosθ + isinθ,其中e为自然对数的底数。
利用欧拉公式可以更方便地进行复数的乘方运算和三角函数的运算。
四、应用举例复数在物理学、工程学以及信号处理等领域有广泛的应用。
下面是一些常见的应用举例:1. 交流电路中的复数阻抗:复数可以用来表示交流电路中的电阻、电感和电容,进而分析电路中的电流和电压。
2. 复数频域分析:利用复数的欧拉公式,可以将信号在频域上进行分析和处理,例如傅里叶变换。
3.2 复数的四则运算(2)
教学内容3.2 复数的四则运算(2) 教学目标要求 1.掌握复数的除法及乘方运算法则及意义.2.理解并掌握复数进行四则运算的规律教学重点 复数乘方运算教学难点 复数运算法则在计算中的熟练应用教学方法和教具 类比探究法 教师主导活动 学生主体活动一、 复习回顾1.复数的加法,减法和乘法.2.共轭复数:共轭复数:i z a b =+与i z a b =-互为共轭复数;实数的共轭复数是它本身;共轭复数的简单性质:2z z a -+=;2i z z b --=;22z z a b -⋅=+. 二、建构数学乘方运算法则:z ,z 1,z 2∈C 及m ,n ∈N *.(1)m n m n z z z += (2) ()m n mn z z = (3) 1212()n n n z z z z =.除法运算:z 2=c +d i ≠0,2222i (i)(i)i i (i)(i)a b a b c d ac bd bc ad c d c d c d c d c d ++-+-==+++-++. 三、数学应用例1 计算2i 34i--. 解 解法一 设2i 34i --=x +y i ,即(3-4i)( x +y i)=2-i ; 所以342341x y y x ⎧⎨⎩+=-=- 所以2515x y ⎧⎪⎪⎨⎪⎪⎩== 所以2i 34i --=25+15i 解法二 2i 34i --=(2i)(34i)(34i)(34i)-+-+=105i 25+=25+15i例2 计算.2(1i)_______+=;2(1i)_______-=;1i _______1i+=-;1i _______1i -=+; 20111i _______1i ⎛⎫ ⎪⎝⎭-=+.例3 求值i +i 2+i 3+…+i 2010.例4 设13i 22ω=-+,求证:(1)210ωω++=(2)31ω=. 证明 (1)221313(i)i 2222ω=-+=-- 所以2131311i i 02222ωω++=-+--= (2)221313(i)i 2222ω=-+=-- 所以321313(i)(i)12222ωωω==-+--= 思考 写出13=x 在复数范围内的三个根?结论4 23213i 22101ωωωωωω=-+++=== , 23213i 22101ωωωωωω=--++===四、巩固练习课本P117练习第2,3题.五、要点归纳与方法小结本节课学习了以下内容:1.复数的乘方法则和运算律.2.复数的除法法则和运算律.3.几个常用的结论.板书设计教后札记。
高中数学复数运算步骤解释
高中数学复数运算步骤解释复数运算是高中数学中的一个重要内容,也是学生们常常感到困惑的一个知识点。
在这篇文章中,我将详细解释复数运算的步骤,并通过具体的题目举例,帮助读者理解复数运算的考点和解题技巧。
一、复数的基本概念首先,我们需要了解复数的基本概念。
复数是由实部和虚部组成的数,一般形式为a+bi,其中a为实部,bi为虚部,i为虚数单位,满足i²=-1。
复数可以表示在复平面上的点,实部对应x轴坐标,虚部对应y轴坐标。
二、复数的四则运算接下来,我们将详细介绍复数的四则运算步骤。
1. 复数的加法和减法复数的加法和减法可以通过实部和虚部的分别相加或相减得到。
例如,给定两个复数z₁=a₁+b₁i和z₂=a₂+b₂i,它们的和为z₁+z₂=(a₁+a₂)+(b₁+b₂)i,差为z₁-z₂=(a₁-a₂)+(b₁-b₂)i。
举例:计算复数(3+2i)+(1-4i)的结果。
解析:将实部和虚部分别相加,得到(3+1)+(2-4)i=4-2i。
2. 复数的乘法复数的乘法可以通过使用分配律和虚数单位的性质来计算。
例如,给定两个复数z₁=a₁+b₁i和z₂=a₂+b₂i,它们的乘积为z₁×z₂=(a₁a₂-b₁b₂)+(a₁b₂+a₂b₁)i。
举例:计算复数(2+3i)×(4-5i)的结果。
解析:根据乘法公式,展开计算得到(2×4-3×(-5))+(2×(-5)+3×4)i=23+2i。
3. 复数的除法复数的除法可以通过乘以共轭复数的方式来计算。
共轭复数是将原复数的虚部取相反数得到的复数。
例如,给定两个复数z₁=a₁+b₁i和z₂=a₂+b₂i,它们的商为z₁÷z₂=(a₁a₂+b₁b₂)/(a₂²+b₂²)+((b₁a₂-a₁b₂)/(a₂²+b₂²))i。
举例:计算复数(3+2i)÷(1-4i)的结果。
高中数学 复数的四则运算
复数的四则运算•复数的运算:1、复数z1与z2的和的定义:z1+z2=(a+bi)+(c+di)=(a+c)+(b+d)i;2、复数z1与z2的差的定义:z1-z2=(a+bi)-(c+di)=(a-c)+(b-d)i;3、复数的乘法运算规则:设z1=a+bi,z2=c+di(a、b、c、d∈R)是任意两个复数,那么它们的积(a+bi)(c+di)=(ac-bd)+(bc+ad)i,其实就是把两个复数相乘,类似两个多项式相乘,在所得的结果中把i2换成-1,并且把实部与虚部分别合并,两个复数的积仍然是一个复数。
4、复数的除法运算规则:。
复数加法的几何意义:设为邻边画平行四边形就是复数对应的向量。
复数减法的几何意义:复数减法是加法的逆运算,设,则这两个复数的差对应,这就是复数减法的几何意义。
共轭复数:当两个复数的实部相等,虚部互为相反数时,这两个复数叫做互为共轭复数。
虚部不等于0的两个共轭复数也叫做共轭虚数。
复数z=a+bi和=a-bi(a、b∈R)互为共轭复数。
•复数的运算律:1、复数的加法运算满足交换律:z1+z2=z2+z1;结合律:(z1+z2)+z3=z1+(z2+z3);2、减法同加法一样满足交换律、结合律。
3、乘法运算律:(1)z1(z2z3)=(z1z2)z3;(2)z1(z2+z3)=z1z2+z1z3;(3)z1(z2+z3)=z1z2+z1z3•共轭复数的性质:我们把形如a+bi(a,b均为实数)的数称为复数,其中a称为实部,b称为虚部,i称为虚数单位。
当虚部等于零时,这个复数可以视为实数;当z的虚部不等于零时,实部等于零时,常称z 为纯虚数。
复数域是实数域的代数闭包,也即任何复系数多项式在复数域中总有根。
复数的定义数集拓展到实数范围内,仍有些运算无法进行(比如对负数开偶数次方),为了使方程有解,我们将数集再次扩充。
在实数域上定义二元有序对z=(a,b),并规定有序对之间有运算"+"、"×" (记z1=(a,b),z2=(c,d)):z1 + z2=(a+c,b+d)z1 ×z2=(ac-bd,bc+ad)容易验证,这样定义的有序对全体在有序对的加法和乘法下成一个域,并且对任何复数z,我们有z=(a,b)=(a,0)+(0,1) ×(b,0)令f是从实数域到复数域的映射,f(a)=(a,0),则这个映射保持了实数域上的加法和乘法,因此实数域可以嵌入复数域中,可以视为复数域的子域。
复数的四则运算(2)
zm zn (z
m
z m n
mn
)
n
z
n
(z1 z 2 )
2
n n z1 z 2
易知:
i 1, i 1, i i, i 1.
1
3
4
一般地,如果
n N ,有
i 4 n 1, i 4 n1 i , i 4 n2 1, i 4 n3 i
由于
c di 0, 所以c d 0,
2 2
可见,两个复数的商仍是一个复数.
分层训练:
必做题:P110 练习 2
3
选做题P111习题7
走进高考
4 3i 1.复数 的实部是( 1 2i
)
A. 2
B.2
C.3
D.4
2.若复数 (1 bi )(2 i) 是纯虚数(b是实数), 则b等于( )
§3.2复数的四则运算
学习目标:
掌握复数的乘方和除法运算.
自习指导:
1.实数范围内正整数指数幂的运算律在复数 范围内成立吗?如何表达? 2.关于虚数i的正整数指数幂有什么规律吗?你 发现的规律是什么? 3.复数的除法是怎样定义的?求两个复数的商 有几种方法?
自主检测:P110练习1
复数的乘方
复数的乘方运算是指几个相同复数相乘. 对任意复数z, z1 ,z2 以及正整数m,n有
A.2
作业:P111 习题 3
1 B. 2
1 C. 2
D. 2
例4 设
(1)
1 3 i ,求证: 2 2
2
1 0;
(2)
1.
3
思考:如果把例4中的 换 , 那么,欲证的两个等式 成 x 3 1 的三个根吗? 还成立吗?在复数范围内,你能写出方程 复数除法的运算法则: 把满足(c +di)(x +yi) = a +bi (c+di≠0) 的复数 x +yi 叫做复数 a+bi 除以复数c +di的商
高中数学 3.2复数的四则运算习题课(含解析)苏教版高二选修1-2数学试题
2015年高中数学全套备课精选 3.2复数的四则运算习题课(含解析)苏教版选修1-2 课时目标 1.进一步理解复数的四则运算.2.了解解复数问题的基本思想.1.复数乘方的性质:对任何z ,z 1,即z ∈C 及m 、n ∈N *,有z m ·z n =________(z m )n =z mn(z 1z 2)n =z n 1z n 22.n ∈N *时,i 4n =1,i 4n +1=i ,i 4n +2=-1,i 4n +3=-i.一、填空题 1.以3i -2的虚部为实部,以3i 2+2i 的实部为虚部的复数是____________.2.设z 的共轭复数是z ,若z +z =4,z ·z =8,则zz =______.3.设C ,R ,I 分别表示复数集、实数集、纯虚数集,取C 为全集,下列命题正确的是____________(请填写相应的序号).①R ∪I =C ;②R ∩I ={0};③C ∩I =∁I R ;④R∩I =∅.4.1+i 1-i表示为a +b i(a ,b ∈R ),则a +b =________. 5.设复数z 1=1+i ,z 2=x +2i (x ∈R ),若z 1·z 2为实数,则x =________.6.已知复数z 满足z +(1+2i)=10-3i ,则z =________.7.复数z 满足(1+2i)z =4+3i ,则z =________.8.若x 是实数,y 是纯虚数且满足2x -1+2i =y ,则x =________,y =________.二、解答题9.已知z ∈C ,z 为z 的共轭复数,若z ·z -3i z =1+3i ,求z .10.解方程x 2-(2+3i)x +5+3i =0.能力提升11.已知z 是虚数,且z +1z 是实数,求证:z -1z +1是纯虚数.12.满足z +5z是实数,且z +3的实部与虚部互为相反数的虚数z 是否存在,若存在,求出虚数z ;若不存在,请说明理由.1.对于复数运算中的分式,要先进行分母实数化.2.充分利用复数相等的条件解方程问题.习题课答案知识梳理1.z m +n作业设计1.3-3i解析 3i -2的虚部为3,3i 2+2i 的实部为-3,故所求复数为3-3i.2.±i解析 设z =x +y i (x ,y ∈R ),则z =x -y i ,依题意2x =4且x 2+y 2=8,解之得x =2,y =±2. ∴zz =z 2z ·z =2±2i28=±i.3.④解析 复数的概念,纯虚数集和实数集都是复数集的真子集,但其并集不是复数集,当ab ≠0时,a +b i 不是实数也不是纯虚数,利用韦恩图可得出结果.4.1解析 ∵1+i 1-i =1+i 22=i ,∴a =0,b =1, 因此a +b =1.5.-2 6.9+5i7.2+i解析 z =4+3i 1+2i =4+3i 1-2i 5=10-5i 5=2-i. ∴z =2+i.8.122i 解析 设y =b i (b ≠0),∴⎩⎪⎨⎪⎧ 2x -1=0b =2,∴x =12. 9.解 设z =a +b i (a ,b ∈R ), 则z =a -b i (a ,b ∈R ),由题意得(a +b i)(a -b i)-3i(a -b i)=1+3i ,即a 2+b 2-3b -3a i =1+3i ,则⎩⎪⎨⎪⎧ a 2+b 2-3b =1,-3a =3,解得⎩⎪⎨⎪⎧ a =-1,b =0或⎩⎪⎨⎪⎧ a =-1,b =3.所以z =-1或z =-1+3i.10.解 设x =a +b i (a ,b ∈R ),则有a 2-b 2+2ab i -[(2a -3b )+(3a +2b )i]+5+3i =0,根据复数相等的充要条件得 ⎩⎪⎨⎪⎧ a 2-b 2-2a -3b +5=0,2ab -3a +2b +3=0, 解得⎩⎪⎨⎪⎧a =1,b =4,或⎩⎪⎨⎪⎧ a =1,b =-1. 故方程的解为x =1+4i 或x =1-i. 11.证明 设z =a +b i (a 、b ∈R ),于是 z +1z =a +b i +1a +b i =a +b i +a -b i a 2+b 2 =a +a a 2+b 2+⎝ ⎛⎭⎪⎫b -b a 2+b 2i. ∵z +1z ∈R ,∴b -b a 2+b 2=0. ∵z 是虚数,∴b ≠0,∴a 2+b 2=1且a ≠±1.∴z -1z +1=a -1+b i a +1+b i=[a -1+b i][a +1-b i]a +12+b 2=a 2-1+b 2+[a +1b -a -1b ]i a 2+b 2+2a +1=0+2b i 1+2a +1=b a +1i.∵b ≠0,a ≠-1,a 、b ∈R , ∴b a +1i 是纯虚数,即z -1z +1是纯虚数. 12.解 设存在虚数z =x +y i (x 、y ∈R 且y ≠0). 因为z +5z =x +y i +5x +y i=x +5x x 2+y 2+⎝ ⎛⎭⎪⎫y -5y x 2+y 2i.由已知得⎩⎪⎨⎪⎧ y -5y x 2+y 2=0,x +3=-y .因为y ≠0,所以⎩⎪⎨⎪⎧ x 2+y 2=5,x +y =-3. 解得⎩⎪⎨⎪⎧ x =-1,y =-2,或⎩⎪⎨⎪⎧ x =-2,y =-1.所以存在虚数z =-1-2i 或z =-2-i 满足以上条件.。
3.2复数的四则运算
_ _
原式 (1 1 i ) (1 i ) ( 2 i ) (1 i )
2 2i i i 2 2 i 1 3i
2009浙江(理)
2 2 例4.设z 1 i (i是虚数单位),则 z z A. 1 i B. 1 i C.1 i D.1 i
巩固练习:
3.计算:(1) (-2-i)(3-2i)(-1+3i) (2) (1+2i)(2-3i)(1-2i)
(3) (a+bi)(a-bi)
共轭复数:实部相等而虚部互为相反数 的两个数. 复数z的共轭复数用
z
表示.
若z=a+bi,则z =a-bi (a,b∈R)
注:(1)当b不为0时,共轭复数称为共轭虚数;
巩固练习:
1.计算:(1) (4+3i)+(2-i)
(2) (3i-2)+(3+2i)
四则运算
二、复数的减法:(加法的逆运算) 复数a+bi减去复数c+di的差是指满 足 (c+di)+(x+yi)=a+bi 的复数x+yi,记作(a+bi)-(c+di)
复数的差仍然是一个复数,其实部为两个 复数实部的差,虚部为两个复数虚部的差。
例3 计算: (1+2i)(3-4i)
1+2i 解:(1+2i)(3-4i)= 3-4i
= (1+2i)(3+4i) (3-4i)(3+4i)
= -5+10i 25
1 2 =- + i . 5 5
2011浙江(理)
例3.把复数z的共轭复数记作z, i为虚数单位, 若z 1 i则( 1 z) z A A.3 i B.3 i C.1 3i D.3
高中数学 第3章 数系的扩充与复数的引入 3.2 复数的四则运算(二)学案 苏教版选修2-2-苏教版
3.2 复数的四则运算(二)1.了解复数乘方的运算性质和复数除法的分母实数化方法.2.理解i 幂性质,能熟练进行复数的乘方和除法运算. 3.掌握综合运用复数概念、共轭复数及复数的四则运算解决问题.1.复数的乘方在复数范围内,实数范围内的正整数指数幂的运算律仍然成立,即对任意的复数z ,z 1,z 2和正整数m ,n 有z m z n =z m +n ,(z m )n =z mn =(z n )m ,(z 1z 2)n =z n 1z n2.2.i 幂性质一般地,如果n ∈N *,我们有①i 4n=1;②i 4n +1=i ;③i4n +2=-1;④i4n +3=-i .3.复数的除法法则(1)我们把满足(c +d i)(x +y i)=a +b i(c +d i ≠0)的复数x +y i(x ,y ∈R )叫做复数a +b i 除以复数c +d i 的商,记作a +b ic +d i或(a +b i )÷(c +d i). (2)一般地,我们有a +b ic +d i =(a +b i)(c -d i)(c +d i)(c -d i)=ac +bd c 2+d 2+bc -adc 2+d 2i. (3)两个复数的商仍是一个复数.1.判断(正确的打“√”,错误的打“×”) (1)两个复数的积与商一定是虚数.( ) (2)两个共轭复数的和与积是实数.( )(3)复数加减乘除的混合运算法则是先乘除,后加减.( ) 答案:(1)× (2)√ (3)√ 2.1+3i1-i=( ) A .1+2i B .-1+2i C .1-2i D .-1-2i答案:B3.复数3+ii2(i 为虚数单位)的实部等于________.答案:-34.已知z 是纯虚数,z +21-i是实数,那么z 等于________.解析:因为z 为纯虚数,所以设z =b i(b ∈R 且b ≠0),则z +21-i =b i +21-i =(b i +2)(1+i)(1-i)(1+i)=b i +b i 2+2+2i 1-i2=-b +2+(b +2)i 2=-b +22+12(b +2)i ,又z +21-i 为实数,所以12(b +2)=0,即b =-2.所以z =-2i.答案:-2i复数的乘方运算(1)⎝ ⎛⎭⎪⎫1+i 1-i 2 017等于________.(2)化简i +2i 2+3i 3+…+100i 100.【解】 (1)⎝ ⎛⎭⎪⎫1+i 1-i 2 017=⎣⎢⎡⎦⎥⎤(1+i)(1+i)(1-i)(1+i)2 017=⎝ ⎛⎭⎪⎫2i 2 2 017=i 2 017=(i 4)504·i =1504·i =i.故填i.(2)设S =i +2i 2+3i 3+…+100i 100,① 所以i S =i 2+2i 3+…+99i 100+100i 101,② ①-②得(1-i)S =i +i 2+i 3+…+i 100-100i 101=i(1-i 100)1-i-100i 101=0-100i =-100i.所以S =-100i 1-i =-100i(1+i)(1-i)(1+i)=-100(-1+i)2=50-50i.所以i +2i 2+3i 3+…+100i 100=50-50i.(1)等差、等比数列的求和公式在复数集C 中仍适用,i 的周期性要记熟,即i n+i n +1+in +2+in +3=0(n ∈N *).(2)记住以下结果,可提高运算速度. ①(1+i)2=2i ,(1-i)2=-2i.②1-i 1+i =-i ,1+i1-i=i. ③1i=-i. 1.计算:(1)2+2i (1-i)2+⎝ ⎛⎭⎪⎫21+i 2 016; (2)i +i 2+…+i2 017.解:(1)原式=2(1+i)-2i +⎝ ⎛⎭⎪⎫22i 1 008=i(1+i)+(-i)1 008=i +i 2+(-1)1 008·i 1 008=i -1+i4×252=i -1+1 =i.(2)法一:原式=i(1-i 2 017)1-i =i -i2 0181-i=i -(i 4)504·i 21-i =i +11-i =(1+i)(1+i)(1-i)(1+i)=2i2=i.法二:因为i n+in +1+in +2+in +3=i n (1+i +i 2+i 3)=0(n ∈N *),所以原式=(i +i 2+i 3+i 4)+(i 5+i 6+i 7+i 8)+…+(i 2 013+i2 014+i2 015+i2 016)+i2 017=i2 017=(i 4)504·i =1504·i =i.复数的除法运算计算下列各题. (1)3+2i 2-3i -3-2i 2+3i; (2)1i (2+2i)5+⎝ ⎛⎭⎪⎫11+i 4+⎝ ⎛⎭⎪⎫1+i 1-i 7; (3)⎝ ⎛⎭⎪⎫-32-12i 12+⎝ ⎛⎭⎪⎫2+2i 1-3i 8. 【解】 (1)3+2i 2-3i -3-2i 2+3i=(3+2i)(2+3i)-(3-2i)(2-3i)(2-3i)(2+3i)=13i +13i13=2i.(2)原式=-i ·(2)5·[(1+i)2]2·(1+i)+⎣⎢⎡⎦⎥⎤1(1+i)22+i 7=162(-1+i)-14-i =-⎝⎛⎭⎪⎫162+14+(162-1)i. (3)原式=(-i)12·⎝ ⎛⎭⎪⎫-32-12i 12+⎝ ⎛⎭⎪⎪⎫1+i 12-32i 8 =⎝ ⎛⎭⎪⎫-12+32i 12+[(1+i)2]4·⎝ ⎛⎭⎪⎫12-32i ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫12-32i 33=⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫-12+32i 34+(-8+83i)=1-8+83i =-7+83i.(1)复数的除法运算中,要牢记“分母实数化”(类比实数运算的分母有理化),即分子、分母同乘以分母的共轭复数,不必死记除法法则.(2)复数的运算顺序与实数运算顺序相同,都是先进行高级运算(乘方、开方),再进行次级运算(乘、除),最后进行低级运算(加、减).如i 的幂运算,先利用i 的幂的周期性,将其次数降低,然后再进行四则运算.(3)要记住下列结果,使运算起点高. ①1i =-i ;②1+i 1-i =i ;③1-i 1+i =-i ; ④⎝ ⎛⎭⎪⎫-12±32i 3=1;⑤⎝ ⎛⎭⎪⎫12±32i 3=-1. 2.计算下列各题:(1)-1+3i 1+i ;(2)3-4i 4+3i +1+i 1-i ;(3)(2+2i)4(1-3i)5. 解:(1)原式=(-1+3i)(1-i)(1+i)(1-i)=-1+3+(1+3)i 2=3-12+3+12i.(2)原式=(3-4i)(4-3i)(4+3i)(4-3i)+(1+i)2(1-i)(1+i)=(12-12)-(16+9)i 25+2i2=-i +i =0.(3)(2+2i)4(1-3i)5=24(1+i)4(1-3i)5=24·(2i)2(1-3i)5=-2⎝ ⎛⎭⎪⎫12-32i 5 =2⎝ ⎛⎭⎪⎫-12+32i 5=2⎝ ⎛⎭⎪⎫-12+32i 6⎝ ⎛⎭⎪⎫-12+32i 5=-1+3i.复数范围内解方程、因式分解问题在复数范围内解方程: (1)x 2-2x +3=0; (2)x 3-1=0.【解】 (1)法一:因为x 2-2x +3=(x -1)2+2 =(x -1)2-(2i)2=(x -1-2i)(x -1+2i)=0, 所以x =1+2i 或x =1-2i.所以方程x 2-2x +3=0的两根为1+2i 和1-2i. 法二:设x =a +b i(a ,b ∈R )为方程x 2-2x +3=0的根, 则(a +b i)2-2(a +b i)+3=0, 整理得a 2-b 2-2a +3+2b (a -1)i =0.由复数相等的充要条件,得⎩⎪⎨⎪⎧a 2-b 2-2a +3=0,2b (a -1)=0.解得⎩⎨⎧a =1,b =2,或⎩⎨⎧a =1,b =- 2.所以方程x 2-2x +3=0的两根为1+2i 和1-2i. 法三:因为x 2-2x +3=(x -1)2+2, 又因为x 2-2x +3=0,所以(x -1)2+2=0. 所以(x -1)2=-2.所以x -1=2i 或x -1=-2i , 即x =1+2i 或x =1-2i.所以方程x 2-2x +3=0的两根为1+2i 和1-2i. (2)因为x 3-1=(x -1)(x 2+x +1)=(x -1)⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫x +122+34=(x -1)⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫x +122-⎝ ⎛⎭⎪⎫32i 2=(x -1)⎝ ⎛⎭⎪⎫x +12-32i ⎝ ⎛⎭⎪⎫x +12+32i =0,所以x =1或x =-12+32i 或x =-12-32i.复数范围内解方程的一般思路:一是因式分解,二是对次数较低的方程依据题意设出方程的根,代入方程,利用复数相等的充要条件求解.对于一元二次方程,也可以利用求根公式求解,要注意在复数范围内负数是能开方的,此外,根与系数的关系也是成立的.注意求方程中参数的取值时,不能利用判别式求解.3.在复数范围内分解因式:(1)x 2+x +1;(2)x 2-x +1;(3)x 6-1.解:(1)x 2+x +1=⎝ ⎛⎭⎪⎫x +122+34=⎝ ⎛⎭⎪⎫x +122-34i 2=⎝ ⎛⎭⎪⎫x +122-⎝ ⎛⎭⎪⎫32i 2 =⎝ ⎛⎭⎪⎫x +12-32i ⎝ ⎛⎭⎪⎫x +12+32i . (2)x 2-x +1=⎝ ⎛⎭⎪⎫x -122+34=⎝ ⎛⎭⎪⎫x -122-34i 2=⎝ ⎛⎭⎪⎫x -122-⎝ ⎛⎭⎪⎫32i 2=⎝ ⎛⎭⎪⎫x -12-32i ⎝ ⎛⎭⎪⎫x -12+32i . (3)x 6-1=(x 3+1)(x 3-1)=(x +1)(x 2-x +1)(x -1)(x 2+x +1)=(x +1)(x -1)⎝ ⎛⎭⎪⎫x -12-32i ⎝ ⎛⎭⎪⎫x -12+32i ·⎝ ⎛⎭⎪⎫x +12-32i ⎝ ⎛⎭⎪⎫x +12+32i .1.复数除法的认识复数除法的法则形式复杂,难于记忆.所以有关复数的除法运算,只要记住利用分母的共轭复数对分母进行“实数化”,然后结果再写成一个复数a +b i(a ,b ∈R )的形式即可.2.复数范围内因式分解由于实数范围内的乘法公式在复数范围内仍然成立,因此可以据此在复数范围内进行因式分解,而原来在实数范围内不能进行的因式分解,在复数范围内则可以进行,比如a 2+b 2=a 2-(b i)2=(a +b i)(a -b i).3.1的三次虚根ω的性质由方程x 3-1=0得x 1=1,x 2=-1+3i 2,x 3=-1-3i 2.若取ω1=-1+3i 2,ω2=-1-3i2,有如下性质: (1)ω31=ω32=1; (2)1+ω1+ω2=0; (3)ω21=ω2; (4)ω1·ω2=1,ω1=1ω2,ω2=1ω1;(5)ω1=ω2;(6)1+ω1+ω21=0,1+ω2+ω22=0.下列命题中错误的序号是________. ①若z ∈C ,则z 2≥0;②若z 1,z 2∈C ,且z 1-z 2>0,则z 1>z 2. 【解析】 ①错,反例设z =i 则z 2=i 2=-1<0.②错,反例设z 1=2+i ,z 2=1+i ,满足z 1-z 2=1>0,但z 1、z 2不能比较大小. 【答案】 ①②(1)认为任何一个实数的平方大于零可推广到复数中,易误认为命题①正确. (2)认为两实数之差大于零等价于前一个大于后一个实数,也可推到复数中来.认为两复数差为实数则这两个复数也为实数.而误认为命题②是正确的.(3)把不等式性质错误的推广到复数中,忽略不等式是在实数中成立的前提条件.1.复数z =1-i 1+i ,则ω=z 2+z 4+z 6+z 8+z 10的值为( )A .1B .-1C .iD .-i解析:选B .z 2=⎝ ⎛⎭⎪⎫1-i 1+i 2=-1,所以ω=-1+1-1+1-1=-1. 2.i -21+2i=________. 解析:法一:原式=(-2+i)(1-2i)(1+2i)(1-2i)=(-2+2)+(1+4)i5=i.法二:原式=i +2i 21+2i =i(1+2i)1+2i =i.答案:i3.若z 是复数,且(3+z )i =1(i 为虚数单位),则z 为________. 解析:由(3+z )i =1,得3+z =1i =-i ,所以z =-3-i.答案:-3-i[A 基础达标]1.设复数z =3+2i2-3i ,则z 的共轭复数为( )A .1B .-1C .iD .-i解析:选D .z =3+2i 2-3i =2-3i2-3i ·i =i ,于是z 的共轭复数为-i.2.若a 为实数,且2+a i1+i =3+i ,则a =( )A .-4B .-3C .3D .4解析:选D .因为2+a i1+i =3+i ,所以2+a i =(3+i)(1+i)=2+4i ,又a ∈R ,所以a=4.3.已知复数z =1-i ,则z 2-2zz -1=( )A .2iB .-2iC .2D .-2解析:选B .法一:因为z =1-i ,所以z 2-2z z -1=(1-i)2-2(1-i)1-i -1=-2-i=-2i.法二:由已知得z -1=-i ,从而z 2-2z z -1=(z -1)2-1z -1=(-i)2-1-i =2i=-2i.4.若复数z 满足z-1-i =i ,其中i 为虚数单位,则z =( )A .1-iB .1+iC .-1-iD .-1+i解析:选A .由题意z -=i(1-i)=1+i ,所以z =1-i ,故选A . 5.若ω=-12+32i ,则ω+1ω=________.解析:ω+1ω=-12+32i +1-12+32i =-12+32i -12-32i =-1.答案:-16.设a ,b ∈R ,a +b i =11-7i1-2i (i 为虚数单位),则a +b 的值为________.解析:因为11-7i 1-2i =(11-7i)(1+2i)(1-2i)(1+2i)=15(25+15i)=5+3i ,所以a =5,b =3. 所以a +b =5+3=8. 答案:87.已知复数z =1+a i(a ∈R ,i 是虚数单位),z -z =-35+45i ,则a =________.解析:由题意可知1-a i 1+a i =(1-a i)2(1+a i)(1-a i)=1-a 21+a 2-2a 1+a 2i =-35+45i , 因此1-a 21+a 2=-35. 化简得5a 2-5=3a 2+3,所以a 2=4,则a =±2. 由-2a 1+a 2=45可知a <0,所以a =-2.答案:-28.若复数z =1+2i ,其中i 是虚数单位,则⎝⎛⎭⎪⎫z +1z -·z -=________.解析:因为z =1+2i ,所以z -=1-2i.所以⎝⎛⎭⎪⎫z +1z -·z -=z ·z -+1=5+1=6.答案:69.计算:-23+i 1+23i +⎝ ⎛⎭⎪⎫21+i 2 018+(4-8i)2-(-4+8i)24+3i . 解:原式=i(23i +1)1+23i+⎝ ⎛⎭⎪⎫22i 1 009+(4-8i)2-(4-8i)24+3i=i +(-i)1 009+04+3i=i -i +0=0. 10.已知复数z 1=a +2i(a ∈R ),z 2=3-4i ,且z 1z 2为纯虚数,求复数z 1.解:z 1z 2=a +2i 3-4i =(a +2i)(3+4i)25=(3a -8)+(6+4a )i25,因为z 1z 2为纯虚数,所以3a -8=0,a =83,z 1=83+2i.[B 能力提升]1.若一个复数的实部与虚部互为相反数,则称此复数为“理想复数”.已知z =a1-2i +b i(a ,b ∈R )为“理想复数”,则( )A .a -5b =0B .3a -5b =0C .a +5b =0D .3a +5b =0解析:选D .因为z =a 1-2i +b i =a (1+2i)(1-2i)(1+2i)+b i =a 5+(2a 5+b )i.由题意知,a 5=-2a 5-b ,则3a +5b =0. 2.对任意复数ω1,ω2,定义ω1*ω2=ω1ω2,其中ω2是ω2的共轭复数,对任意复数z 1,z 2,z 3,有如下四个命题:①(z 1+z 2)*z 3=(z 1*z 3)+(z 2*z 3);②z 1*(z 2+z 3)=(z 1*z 2)+(z 1*z 3);③(z 1*z 2)*z 3=z 1*(z 2*z 3);④z 1*z 2=z 2*z 1.则真命题的个数是________.解析:由于ω1*ω2=ω1ω2—,对于①,(z 1+z 2)*z 3=(z 1+z 2)z -3=z 1z -3+z 2z -3=(z 1*z 3)+(z 2*z 3),显然成立;对于②,z 1*(z 2+z 3)=z 1(z 2+z 3)=z 1z -2+z 1z -3=(z 1*z 2)+(z 1*z 3),显然成立;对于③,(z 1*z 2)*z 3=(z 1z -2)z -3=z 1z -2z -3,而z 1*(z 2*z 3)=z 1*(z 2z -3)=z 1z -2z 3,显然不成立;对于④,由于z 1*z 2=z 1z -2,而z 2*z 1=z 2z -1,显然不一定成立.答案:23.已知x 是实数,y 是纯虚数,且满足(2x -1)+i =y -(3-y )i ,求x 与y 的值. 解:根据已知条件x 是实数,y 是纯虚数,可设y =b i(b ∈R ,b ≠0),代入关系式(2x -1)+i =y -(3-y )i ,整理得:(2x -1)+i =-b +(b -3)i ,根据复数相等的充要条件,可得⎩⎪⎨⎪⎧2x -1=-b ,1=b -3,解得⎩⎪⎨⎪⎧x =-32,b =4,则有⎩⎪⎨⎪⎧x =-32,y =4i.4.(选做题)求同时满足下列两个条件的所有复数:(1)z +10z 是实数且1<z +10z≤6; (2)z 的实部和虚部都是整数.解:设z =x +y i(x ,y ∈Z ),则z +10z =x +y i +10x +y i =x +y i +10(x -y i)x 2+y 2∈R ,得y -10y x 2+y 2=0, 所以y =0或x 2+y 2=10.若y =0,1<x +10x≤6无解,所以x 2+y 2=10. 从而z +10z=2x ∈(1,6].又x ,y ∈Z ,所以x =1或x =3. 若x =1,则y =±3;若x =3,则y =±1.所以z =1±3i 或z =3±i.。
3.2复数的乘方与除法运算
3.2复数的四则运算三维目标1.知识与技能掌握复数代数形式的四则运算法则,能进行复数代数形式的加法、减法、乘法、除法运算,理解共轭复数的有关概念.2.过程与方法经历数系的扩充过程,模仿实数的乘、除运算,给出复数代数形式的乘法、除法的运算法则及运算律,解决复数的运算问题.3.情感、态度与价值观在学习过程中,体会实际需要是推动数系不断扩充的根本原因,感受运算法则的合理性,感受事物是不断变化和发展的,逐步树立辩证唯物主义的观点.重点:复数的四则运算法则难点:复数代数形式的除法的运算法则的导出第二课时复数的乘方与除法教学过程复习回顾1.复数的加、减、乘运算法则设z1=a+bi,z2=c+di(a,b,c,d∈R)是任意两个复数,则加法法则:(a+bi)+(c+di)=(a+c)+(b+d)i减法法则:(a+bi)-(c+di)=(a―c)+(b―d)i乘法法则:(a+bi)(c+di)=(ac-bd)+(ad+bc)i容易看出:两个复数a+bi, c+di(a,b,c,d∈R)的加、减、乘运算,可以先看作以i为字母的实系数多项式的运算来进行,再将i2=-1代入,将实部与虚部分别合并,就得到最后的结果.2.共轭复数的概念定义:我们把实部相等,虚部互为相反数的两个复数叫做共轭复数.复数z=a+bi(a,b∈R)的共轭复数记为bi.即=a,z-z性质:⑴复数z为实数的充要条件是;z=z⑵复数z为纯虚数的充要条件是0.z≠-=且z,z学生活动学而时习之P110练习1●实数范围内正整数指数幂的运算律在复数集内是否仍然成立?建构数学1.复数的乘方是相同复数的积,根据复数乘法的运算律,实数范围内正整数指数幂的运算律在复数集内仍然成立,即对任何z 1,z 2,z ∈C,及m,n ∈N *,有z m z n =z m+n ,(z m )n =z mn ,(z 1z 2)n =z 1n z 2n在计算乘方时,要用到虚数单位i 的乘方,对于i 的正整数指数幂,i=I,i 2=-1,i 3=-I,i 4=1,一般地,如果n ∈N *,那么i 4n =1,i 4n+1=I,i 4n+2=-1,i 4n+3=-i●如果n ∈Z,那么i 4n =1,i 4n+1=I,i 4n+2=-1,i 4n+3=-i 是否成立?i 4n =1,i 4n+1=I,i 4n+2=-1,i 4n+3=-i (n ∈z )2.复数的除法我们把满足(c+di)(x+yi)=a+bi(c+di ≠0)的复数x+yi(x,y ∈R)叫做复数a+bi 除以c+di 的商,记作di).(c bi)(a di c bi a +÷+++或 ●如何求a+bi 除以c+di 的商x+yi(x,y ∈R)?特殊化:计算(2―i)÷(3―4i)⑴待定系数法 设R)y yi(x,x 4i 3i 2∈+=--,则(3-4i)(x+yi)=2-i 即(3x+4y)+(3y -4x)i =2-i由复数相等的充要条件得⎩⎨⎧==⇒⎩⎨⎧==+1/5y 2/5x 14x 3y 24y 3x -- 所以i 51524i 3i 2+=-- ⑵分母“实数化”(利用(a+bi)(a -bi)=a 2+b 2) i 5152253)i (8464i)4i)(3(34i)i)(324i 3i 2+=++=++=---(-- 两个复数的除法法则22ba ad)i (bc bd ac di c bi a +++=++- 数学运用学而时习之P 110练习1,2,3例1设i,2321z +=求证: ⑴;-z z 2=⑵z 3=-1; ⑶z 2-z+1=0.例2已知z 2=―7―24i ,求复数z.解:设z=x+yi(x,y ∈R),则(x+yi)2=―7―24i,即x 2-y 2+2xyi=―7―24i由复数相等的充要条件得⎩⎨⎧==⎩⎨⎧==⇒⎪⎩⎪⎨⎧==4y 3x 4y 3x 242xy 7y x 22-或---- 所以z=3-4i 或z=-3+4i小结:根据复数相等的条件,应用待定系数法求复数,是常用的方法之一. 例3已知z 1,z 2∈C ,z 1z 2=0,求证:z 1,z 2中至少有一个为零.证明(反证法)假设z 1,z 2都不为零,设z 1=a+bi,z 2=c+di(a,b,c,d ∈R),则a 与b 、c、与d 不可能同时为零,因为z 1z 2=(a+bi)(c+di)=ac -bd+(ad+bc)i =0,所以⎩⎨⎧=+=0bc ad 0bd ac -,不妨设a ≠0,则,abd c =代入ad+bc=0得0,a bd b ad =+即d(a 2+b 2)=0,因为a 2+b 2≠0,所以d=0,从而c=0,因此z 2=0这与z 2≠0矛盾,故假设不成立。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
共轭复数的简单性质:
z+z=_2_a_;z-z=_2_b_i_;z z=_a__2+__b_2_
【类比推广】在实数中,除法运算是乘法的逆运算,
类似地,可以定义复数的除法运算:
复数除法定义: 把满足(c+di)(x+yi) =a+bi (c+di≠0)
位,则 z 等于 ( A )
A.-i B.i C.-1 D.1
解析 z=1i =-i.
练习 2.复数1i+-22i等于
( A)
A.i
B.-i
C.-45-35i
D.-45+35i
【复数的乘方】
复数的乘方是相同复数的积。实数集R中正
整数指数幂的运算律,在复数集C中仍然成
立.即对任意的z,z1,z2∈C及m,n∈N*,
故选 A.
2.
复数
i2+i3+i4 1-i
等于
A.-12-12i B.-12+12 i
【当堂检测】
C.12-12i
( C) D.12+12i
i2+i3+i4 -1-i+1 -i
解析
=
=
1-i
1-i 1-i
=1--ii1+1+ii=-i2+1=12-12i.
【当堂检测】
3.计算:(1)(1-i)(-12+ 23i)(1+i); (2)-1+2 23+3ii+(1-2i)2 006.
i4n + i4n1+ i4n2 + i4n3 =0,(n∈N*).
例4 设 1 3 i, 求证:
22
⑴ 1 2 0;
(2) 3 1.
证明:
(1) 2 ( 1
2
3 i)2 1
2
4
3 i 3 1 242
3i 2
1 2 1 ( 1 3 i) ( 1 3 i) 0
=-1-2i.
小结 复数的运算可以看作多项式的化简, 加减看作多项式加减,合并同类项,乘法和 除法可看作多项式的乘法.
22
22
(2)由(1)可知, 2 1 0
3 1
【思考】
如果把例4中的 换成 ,那么欲证的 两个等式还成立吗?在复数范围内,你能
写出方程 x3=1 的3个根吗?
答:成立,
方程的3个根分别是:1,,
常用结论
练习:计算 (1-i)10 (1+i)10
解 法一:用结论2得
(1-i)10 (1+i)10
【当堂检测】
4.计算:2+1i-12-i i2+1-i-i51+i2-1-1-i2 i011.
2+i1-i2 1-i-1+i2 1-i2 011
解
+
1-2i
i5
- 1-i
2+i·-2i 1-i-2i 1+i
=
+
1-2i
i
- 1-i
2-4i 1-3i 1+i2
=+ 1-2i
i
-
2
=2-(i+3)-i
i) = ac+bd i) c2+d 2
bc-ad c2+d 2
i
由于 c+d i ≠0, 所以 c2+d 2 ≠0 ,可见,两个复数
的商仍是一个复数.(其中a,b,c,d都是实数)
----------分子分母同乘以分母的共轭复数, 即把“分母 实数化”.
例1
计算
2-i 3-4i
练习 1:设复数 z 满足 iz=1,其中 i 为虚数单
i4n=1 ,
i4n1= i ,
i4n2 =-1 , i4n3 = -i.
i4n + i4n1+ i4n2 + i4n3 =0,(n∈N*).
例2 计算
(1+i)2= _2_i_; (1-i)2= -__2_i;
1+i 1-i
=__i__
;11- +ii
=_-__i_
;
(11- +ii )2011=____i __ .
高二 数学 选修2-2
3.2 复数的四则运算(2)
学习目标:
1.掌握复数的除法及乘方运算法则及意义. 2.理解并掌握复数进行四则运算的规律.
【温故知新】
1.复数的加减法运算法则.
(a+bi)± (c+d i)=(a± c)+(b± d)i
2.复数乘法的法则.
a+bic+d i=ac+bci+ad i+bd i2=ac bd +bc+ad i
例3 求值:i+i2 +i3 +L +i2010
解:原式=(i+i2 +i3 +i4 )+
(i5 +i6 +i7 +i8 )+L +
(i2005 +i2006 +i2007 +i2008 )+i2009 +i2010
=0+i1+i2 =-1+i
i4n=1 ,
i4n1= i ,
i4n2 =-1 , i4n3 = -i.
解:(1)(1-i)(-12+
23i)(1+i)=(1-i)(1+i)(-12+
3 2 i)
=(1-i2)(-12+ 23i)=2(-12+ 23i)=-1+ 3i.
-2 3+i
(2)
+(
2 )2
1+2 3i 1-i
006=-1+2 23+3iiii+-221i0013003
=-i-2 23+3ii-i11003=i--1 i=i-i=0.
有:
z m z n=z mn,
(zm )n=zmn,
(z1z2 )n=z1n z2n.
【温故知新】 【探究】 虚数单位 i 的指数变化规律
i1 i , i2 -1, i3 -i , i4 1 ,
i5 =_i_ ,i6 =-__1 ,i7 =-__i ,i8 =_1_
你能发现规律吗?有怎样的规律?
=
(-2 i)5 (2 i)5
=-1
法二:用结论3得
(1-i)10 (1+i)10
=(-i)10=-1
【当堂检测】
1.i 是虚数单位,复数-1+1+2i3i等于 ( A )
A.1+i
B.5+5i
C.-5-5i
D.-1-i
-1+3i -1+3i1-2i 5+5i
解析
=
=
1+2i 1+2i1-2i
5
=1+i.
的复 数 x+yi 叫做复数 a+bi 除以复数 c+di 的商, (其
中a,b,c,d,x,y都是实数)
记为
(a+b i)÷
(c+d
i)或
a+b c+d
i i
.
分母为虚数?
z z=__a_2+__b_2_
复数的除法法则
一般地,我们有:
a+b i = (a+b i)(c-d c+d i (c+d i)(c-d