数学建模思想和方法42页PPT
合集下载
《数学建模》PPT课件
( x2
x1)
f
f (x2 ) (x2 ) f
2 1 ( x1) 22
1
f
( x1 )
f
(x2 )
3
f
( x1 ) x1
f (x2 ) x2
2 (12 f (x1)f (x2 ))1/2
如函数的导数容易求得,一般首先考虑使用三次插值
法,因为它具有较高效率。对于只需要计算函数值的方
法中,二次插值法是一个很好的方法,它的收敛速度较
优化模型
(2)多项式近似法 该法用于目标函数比较复杂的情 况。此时寻找一个与它近似的函数代替目标函数,并用 近似函数的极小点作为原函数极小点的近似。常用的近 似函数为二次和三次多项式。
二次内插涉及到形如下式的二次函数数据拟合问题:
mq() a2 b c
其中步长极值为:
b
2a
完整版课件ppt
求解单变量最优化问题的方法有很多种,根据目标函 数是否需要求导,可以分为两类,即直接法和间接法。 直接法不需要对目标函数进行求导,而间接法则需要用 到目标函数的导数。
完整版课件ppt
4
优化模型
1、直接法 常用的一维直接法主要有消去法和近似法两种: (1)消去法 该法利用单峰函数具有的消去性质进行
反复迭代,逐渐消去不包含极小点的区间,缩小搜索区 间,直到搜索区间缩小到给定允许精度为止。一种典型 的消去法为黄金分割法(Golden Section Search)。黄金 分割法的基本思想是在单峰区间内适当插入两点,将区 间分为三段,然后通过比较这两点函数值的大小来确定 是删去最左段还是最右段,或同时删去左右两段保留中 间段。重复该过程使区间无限缩小。插入点的位置放在 区间的黄金分割点及其对称点上,所以该法称为黄金分 割法。该法的优点是完整算版课法件p简pt 单,效率较高,稳定性好5 。
《数学建模思维》PPT课件教案资料
反应距离=f(反应时间,速率)
对例1分析:假设 总的停止距离=反应距离+刹车距离
反应距离:从司机意识到要停车的时刻到真正刹车的时刻期间车 辆所走过的距离。 刹车距离:从制动器开始起作用到车完全停止所滑行的距离。
反应距离=f(反应时间,速率)
反射本能
个体驾驶因素 警觉程度
反应时间
能见度……
车辆的操作系统
建模过程与科学研究方法的对比:
科学研究方法: 第1步 对现象做一些一般性的观察 第2步 形成关于现象的假设 第3步 研制检验该假设的一种方法 第4步 收集用于该检验的数据 第5步 利用数据来检验假设 第6步 肯定或拒绝该假设
两个过程的相同之处:
两个过程都包括假设、收集实际数据以及用数据来检验或验证 该假设。所以建模过程中虽然一部分是艺术,但只要可能还是 试图科学地客观地处理问题。
对例1分析:假设 总的停止距离=反应距离+刹车距离
反应距离:从司机意识到要停车的时刻到真正刹车的时刻期间车 辆所走过的距离。 刹车距离:从制动器开始起作用到车完全停止所滑行的距离。
反应距离=f(反应时间,速率)
反射本能
个体驾驶因素 警觉程度
反应时间
能见度……
车辆的操作系统
刹车距离(影响因素):车重、车速、制动器作用力、车胎的类 型和状态、道路的表面的情况、天气条件……
对例1分析:我们的最终目标是检验这条法则以及在它失灵时提出 另一条法则。但是问题陈述------该法则有多好呢?-------是含糊不 清的。我们需要更多的细节并清楚地说明问题,或者提出一个新 问题,该问题的解决和回答有助于在允许进行更为精确的数学分 析的同时实现我们的目标。考虑新的问题陈述:预测具有不同车 速的车辆刹车的总的停止距离。
对例1分析:假设 总的停止距离=反应距离+刹车距离
反应距离:从司机意识到要停车的时刻到真正刹车的时刻期间车 辆所走过的距离。 刹车距离:从制动器开始起作用到车完全停止所滑行的距离。
反应距离=f(反应时间,速率)
反射本能
个体驾驶因素 警觉程度
反应时间
能见度……
车辆的操作系统
建模过程与科学研究方法的对比:
科学研究方法: 第1步 对现象做一些一般性的观察 第2步 形成关于现象的假设 第3步 研制检验该假设的一种方法 第4步 收集用于该检验的数据 第5步 利用数据来检验假设 第6步 肯定或拒绝该假设
两个过程的相同之处:
两个过程都包括假设、收集实际数据以及用数据来检验或验证 该假设。所以建模过程中虽然一部分是艺术,但只要可能还是 试图科学地客观地处理问题。
对例1分析:假设 总的停止距离=反应距离+刹车距离
反应距离:从司机意识到要停车的时刻到真正刹车的时刻期间车 辆所走过的距离。 刹车距离:从制动器开始起作用到车完全停止所滑行的距离。
反应距离=f(反应时间,速率)
反射本能
个体驾驶因素 警觉程度
反应时间
能见度……
车辆的操作系统
刹车距离(影响因素):车重、车速、制动器作用力、车胎的类 型和状态、道路的表面的情况、天气条件……
对例1分析:我们的最终目标是检验这条法则以及在它失灵时提出 另一条法则。但是问题陈述------该法则有多好呢?-------是含糊不 清的。我们需要更多的细节并清楚地说明问题,或者提出一个新 问题,该问题的解决和回答有助于在允许进行更为精确的数学分 析的同时实现我们的目标。考虑新的问题陈述:预测具有不同车 速的车辆刹车的总的停止距离。
数学建模教学ppt
在概率模型中,我们需要确定随机变量的概率分布和参 数,并使用最大似然估计等方法来估计参数。
概率模型可以分为离散概率模型和连续概率模型,常见 的概率分布有二项分布、泊松分布、正态分布等。
概率模型的应用非常广泛,例如在统计学、保险精算、 可靠性工程等领域都有广泛应用。
优化模型
优化模型是一种寻找最优解的 数学模型,通过找到满足一定 约束条件下目标函数的最优值
教学目标和内容
教学目标
通过数学建模教学,学生应掌握数学 建模的基本概念、方法和技能,能够 运用数学建模解决实际问题,并培养 创新思维和合作精神。
教学内容
包括数学建模的基本概念、建模方法 、常用数学软件和工具、案例分析等 ,以及实践环节和项目式学习等内容 。
02 数学建模基础知识
数学建模的基本概念
股票价格预测模型。通过分析股 票价格的历史数据,建立股票价 格预测模型,预测未来股票价格
的走势。
案例三
最优路径问题。给定起点和终点 以及一些中间节点,寻找一条最 优路径,使得路径总长度最短或
花费时间最少。
05 数学建模教学反思与展望
教学反思
教学内容的反思
总结了数学建模教学中涉及的主要知识点,包括数学建模的基本概念、建模过程、 常用数学方法和模型等。
数学建模的定义
数学建模的步骤ຫໍສະໝຸດ 数学建模是指通过数学语言和工具, 对现实世界的问题进行抽象、简化, 并建立数学模型的过程。
数学建模通常包括问题分析、建立模 型、求解模型和模型验证等步骤。
数学建模的意义
数学建模是解决实际问题的重要手段, 能够帮助学生理解数学在实际生活中 的应用,提高解决问题的能力。
数学建模的基本步骤
关系和变化规律。
概率模型可以分为离散概率模型和连续概率模型,常见 的概率分布有二项分布、泊松分布、正态分布等。
概率模型的应用非常广泛,例如在统计学、保险精算、 可靠性工程等领域都有广泛应用。
优化模型
优化模型是一种寻找最优解的 数学模型,通过找到满足一定 约束条件下目标函数的最优值
教学目标和内容
教学目标
通过数学建模教学,学生应掌握数学 建模的基本概念、方法和技能,能够 运用数学建模解决实际问题,并培养 创新思维和合作精神。
教学内容
包括数学建模的基本概念、建模方法 、常用数学软件和工具、案例分析等 ,以及实践环节和项目式学习等内容 。
02 数学建模基础知识
数学建模的基本概念
股票价格预测模型。通过分析股 票价格的历史数据,建立股票价 格预测模型,预测未来股票价格
的走势。
案例三
最优路径问题。给定起点和终点 以及一些中间节点,寻找一条最 优路径,使得路径总长度最短或
花费时间最少。
05 数学建模教学反思与展望
教学反思
教学内容的反思
总结了数学建模教学中涉及的主要知识点,包括数学建模的基本概念、建模过程、 常用数学方法和模型等。
数学建模的定义
数学建模的步骤ຫໍສະໝຸດ 数学建模是指通过数学语言和工具, 对现实世界的问题进行抽象、简化, 并建立数学模型的过程。
数学建模通常包括问题分析、建立模 型、求解模型和模型验证等步骤。
数学建模的意义
数学建模是解决实际问题的重要手段, 能够帮助学生理解数学在实际生活中 的应用,提高解决问题的能力。
数学建模的基本步骤
关系和变化规律。
数学建模培训精品课件ppt
MATLAB在数学建模中的应用
MATLAB概述
01
MATLAB是一种用于算法开发、数据可视化、数据分析和数值
计算的编程语言和开发环境。
MATLAB在数学建模中的优势
02
MATLAB提供了丰富的数学函数库和工具箱,支持矩阵运算、
符号计算和数值分析,适用于各种数学建模场景。
MATLAB在数学建模中的应用案例
数学建模在金融领域的应用
金融行业对数学建模的需求日益增长,涉及风险管理、投资组合优化、市场预测等领域 。
数学建模在物理科学和工程中的应用
物理科学和工程领域中的复杂问题需要借助数学建模进行深入研究,如流体动力学、材 料科学等。
提高数学建模能力的建议
01
掌握数学基础知识
数学建模需要扎实的数学基础, 如概率论、统计学、线性代数和 微积分等。
深度学习中的数学建模
探讨深度学习领域中常用的数学方法和模型,如卷积神经网络、循 环神经网络等。
数据科学中的数学建模
数据清洗与预处理
数据可视化的数学基础
介绍数据科学中数据预处理的基本方 法和数学原理。
介绍数据可视化中涉及的数学原理和 可视化技术。
统计分析方法
阐述统计分析中常用的方法和模型, 如回归分析、聚类分析等。
02
实践经验积累
03
学习优秀案例
通过参与数学建模竞赛、科研项 目等方式,积累实践经验,提高 解决实际问题的能力。
学习经典数学建模案例,了解不 同领域中数学建模的应用方法和 技巧。
对未来数学建模的展望
跨学科交叉融合
未来数学建模将更加注重与其他学科的交叉融合,如生物 学、环境科学、社会科学等。
人工智能与数学建模结合
数学建模常用方法介绍ppt课件
遗传算法一般步骤
1. 完成了预先给定的进 化代数 2. 种群中的最优个体在 连续若干代后没有改进 3. 平均适应度在连续若 干代后基本没有改进
竞赛中的群体思维方法
✓平等地位、相互尊重、充分交流 ✓杜绝武断评价 ✓不要回避责任 ✓不要对交流失去信心
竞赛中的发散性思维方法
➢ 借助于一系列问题来展开思路
与模糊数学相关的问题(二)
模糊聚类分析—根据研究对象本身的属性构造 模糊矩阵,在此基础上根据一定的隶属度来 确定其分类关系
模糊层次分析法—两两比较指标的确定
模糊综合评判—综合评判就是对受到多个因素 制约的事物或对象作出一个总的评价,如产 品质量评定、科技成果鉴定、某种作物种植 适应性的评价等,都属于综合评判问题。由 于从多方面对事物进行评价难免带有模糊性 和主观性,采用模糊数学的方法进行综合评 判将使结果尽量客观从而取得更好的实际效 果
3. 合并距离最近的两类为一个新类 4. 计算新类与当前各类的距离(新类与当
前类的距离等于当前类与组合类中包含 的类的距离最小值),若类的个数等于 1,转5,否则转3 5. 画聚类图 6. 决定类的个数和类。
统计方法(判别分析)
➢ 判别分析—在已知研究对象分成若干类型,并已取 得各种类型的一批已知样品的观测数据,在此基础 上根据某些准则建立判别式,然后对未知类型的样 品进行判别分类。
这个问题与什么问题相似? 如果将问题分解成两个或几个部分会怎样? 极限情形(或理想状态)如何? 综合问题的条件可得到什么结果? 要实现问题的目标需要什么条件?
➢ 借助于下意识的联想(灵感)来展开思路
抓住问题的个别条件或关键词展开联想或猜想 综合所得到的联想和猜想,得到一些结论 进一步思考找出新思路和方法
数学建模思想及案例分析PPT课件
16
如何准备
三个人都需要 –学习-交流-再学习 –以往年论文为线索,逐篇学习交流 –不要浅谈辙止,要深入 –有问题要追根问底 –把自己当成一个科研工作者
17
如何准备
程序员 –了解Matlab的各种功能 –熟悉m文件结构 –读文章时认认真真编写每个程序 –注意提高编程效率
18
学习总结
经常不断地学习,你就什么都知道。你知道得越多,你就越有力量 Study Constantly, And You Will Know Everything. The More
到生活中去
3
什么是数学模型(二)
问题
问题
新问题
提炼归纳得 到数学结论
延伸,推导
数学方法
解决问题 解决问题
解决问题
4
怎样建立一个数学模型
数学建模所需具备的能力
细心观察 平时积累 扎实基础 高效编程 流畅文笔
在身边寻找问题,勤于思考 学习他人如何数学建模 扎实,娴熟的数学基础 高效,可靠的程序保障求解过程 条理清晰,点到为止
20
好的科技论文具备的要素
行文流畅
简明扼要
条理清晰
结构明朗
切忌拖沓
注意对象
10
什么样的模型是一个好模型(一)
正确性 简要性 创新性 稳定性
11
正确性
模型的正确性是模型存在的基础
建模的目的在于正确的解决实际问题
宁可牺牲创新性,也要保证正确性。 正确性的标准
能够较好的解决或合理的解释实际问题
本质的正确性
简要性包含两层意思:
对实际问题进行简化,是实际问题的一个近似。 抓住主要矛盾,去掉次要矛盾,抓本质
物理定律的提出是模型简要性的典范例子
如何准备
三个人都需要 –学习-交流-再学习 –以往年论文为线索,逐篇学习交流 –不要浅谈辙止,要深入 –有问题要追根问底 –把自己当成一个科研工作者
17
如何准备
程序员 –了解Matlab的各种功能 –熟悉m文件结构 –读文章时认认真真编写每个程序 –注意提高编程效率
18
学习总结
经常不断地学习,你就什么都知道。你知道得越多,你就越有力量 Study Constantly, And You Will Know Everything. The More
到生活中去
3
什么是数学模型(二)
问题
问题
新问题
提炼归纳得 到数学结论
延伸,推导
数学方法
解决问题 解决问题
解决问题
4
怎样建立一个数学模型
数学建模所需具备的能力
细心观察 平时积累 扎实基础 高效编程 流畅文笔
在身边寻找问题,勤于思考 学习他人如何数学建模 扎实,娴熟的数学基础 高效,可靠的程序保障求解过程 条理清晰,点到为止
20
好的科技论文具备的要素
行文流畅
简明扼要
条理清晰
结构明朗
切忌拖沓
注意对象
10
什么样的模型是一个好模型(一)
正确性 简要性 创新性 稳定性
11
正确性
模型的正确性是模型存在的基础
建模的目的在于正确的解决实际问题
宁可牺牲创新性,也要保证正确性。 正确性的标准
能够较好的解决或合理的解释实际问题
本质的正确性
简要性包含两层意思:
对实际问题进行简化,是实际问题的一个近似。 抓住主要矛盾,去掉次要矛盾,抓本质
物理定律的提出是模型简要性的典范例子
数学建模课程教学ppt
2 •• • •
以行星为坐标原点建立活动架标, 以行星为坐标原点建立活动架标,其两个正交的单位向 量分别是
er = cosθ i + sinθ j , eθ = − sinθ • i + cosθ j • 由于2r w+ r w = 0 •• 因此得出
a = ( r − rw )er
2
再将椭圆方程 两边微分两次, 两边微分两次,得
p = r(1− e cosθ )
p 1 2 2 ( r − rw ) + 3 ( r w ) = 0 r r
2 ••
b2 2πab 2 和焦参数 p = 将前面得到的结果 r w = a T •• 4π 2a3 1 2 代入, • 2 代入,即得 r − rw = − 2 T r
也就是说行星的加速度为
研究课题的实际 人口模型、生 态系统模型 、交通 人口模型、 范畴 流模型、经 济模型、 基因模型等 流模型、 济模型、
§1.4 数学建模与能力的培养 仅最近几年里, 仅最近几年里,我校
学生都在只参加了半 年左右的学习和实践 锻炼, ①数学建模实践的 每一步中都 蕴含着能力上的 锻炼,在 后,就在国际性的竞 调查研究阶段,需 要用到观察能力、分析能力和数据处理 调查研究阶段, 要用到观察能力、分析能力和 观察能力 赛(美国大学生数学 能力等 能力等。在提出假设 时,又需要用到 想象力和归纳 简化 开设数学建模课的主要目的为了提高学 建模竞赛) 建模竞赛)中交出了 能力。 能力。 综合素质, 生的综合素质 生的综合素质,增强 应用数学知识 解决实际问 非常出色的研究论文, 非常出色的研究论文, 题的本领。 题的本领。 在真正开始自己的研究之前, ②在真正开始自己的研究之前,还应当尽可能先了解一下 夺得了特等奖兼 前人或别人的工作, 前人或别人的工作,使自己的工 作成为别人研究工作 的 INFORMS奖 INFORMS奖2项(1999 继续而不是别人工作的重复, 继续而不是别人工作的重复,你可以把某些已知的研究结 2003年各一项 年各一项)、 年、2003年各一项)、 果用作你的假设,去探索新的奥秘。 果用作你的假设,去探索新的奥秘。因此我们还应当学会 22项一等奖 18项二 项一等奖、 22项一等奖、18项二 在尽可能短的时间 内查到并学会我想应用的知识的本领。 查到并学会我想应用的知识的本领。 我想应用的知识的本领 等奖的好成绩。 等奖的好成绩。 创新的能力。 ③还需要你多少要有点 创新的能力。这种能力不是生来就 有的,建模实践就为你提供了一个培养创新能力的机会。 有的,建模实践就为你提供了一个培养创新能力的机会。
以行星为坐标原点建立活动架标, 以行星为坐标原点建立活动架标,其两个正交的单位向 量分别是
er = cosθ i + sinθ j , eθ = − sinθ • i + cosθ j • 由于2r w+ r w = 0 •• 因此得出
a = ( r − rw )er
2
再将椭圆方程 两边微分两次, 两边微分两次,得
p = r(1− e cosθ )
p 1 2 2 ( r − rw ) + 3 ( r w ) = 0 r r
2 ••
b2 2πab 2 和焦参数 p = 将前面得到的结果 r w = a T •• 4π 2a3 1 2 代入, • 2 代入,即得 r − rw = − 2 T r
也就是说行星的加速度为
研究课题的实际 人口模型、生 态系统模型 、交通 人口模型、 范畴 流模型、经 济模型、 基因模型等 流模型、 济模型、
§1.4 数学建模与能力的培养 仅最近几年里, 仅最近几年里,我校
学生都在只参加了半 年左右的学习和实践 锻炼, ①数学建模实践的 每一步中都 蕴含着能力上的 锻炼,在 后,就在国际性的竞 调查研究阶段,需 要用到观察能力、分析能力和数据处理 调查研究阶段, 要用到观察能力、分析能力和 观察能力 赛(美国大学生数学 能力等 能力等。在提出假设 时,又需要用到 想象力和归纳 简化 开设数学建模课的主要目的为了提高学 建模竞赛) 建模竞赛)中交出了 能力。 能力。 综合素质, 生的综合素质 生的综合素质,增强 应用数学知识 解决实际问 非常出色的研究论文, 非常出色的研究论文, 题的本领。 题的本领。 在真正开始自己的研究之前, ②在真正开始自己的研究之前,还应当尽可能先了解一下 夺得了特等奖兼 前人或别人的工作, 前人或别人的工作,使自己的工 作成为别人研究工作 的 INFORMS奖 INFORMS奖2项(1999 继续而不是别人工作的重复, 继续而不是别人工作的重复,你可以把某些已知的研究结 2003年各一项 年各一项)、 年、2003年各一项)、 果用作你的假设,去探索新的奥秘。 果用作你的假设,去探索新的奥秘。因此我们还应当学会 22项一等奖 18项二 项一等奖、 22项一等奖、18项二 在尽可能短的时间 内查到并学会我想应用的知识的本领。 查到并学会我想应用的知识的本领。 我想应用的知识的本领 等奖的好成绩。 等奖的好成绩。 创新的能力。 ③还需要你多少要有点 创新的能力。这种能力不是生来就 有的,建模实践就为你提供了一个培养创新能力的机会。 有的,建模实践就为你提供了一个培养创新能力的机会。
数学建模的思想和方法
已知:f(),g()是连续函数 ;对任意,
f()•g()=0;且g(0)=0,f(0)>0. 证明:存在0,使f(0)=g(0)=0.
模型求解
给出一种简单、粗糙的证明方法
数 学 建 模 的 思 想 和 方 法
将椅子旋转900,对角线AC和BD互换。由g(0)=0,
f(0)>0,知f(/2)=0, g(/2)>0.令h()=f()– g(),则h(0)>0和h(/2)<0.由f,g的连续性知h 为连续函数,据连续函数的基本性质,必存在0, 使h(0)=0,即f(0)=g(0). 因为f()•g()=0,所以f(0)=g(0)=0.
数 学 建 模 的 思 想 和 方 法
数学建模的思想和方法
主讲人:杨树国
1.数学建模的思想和方法
数 学 建 模 的 思 想 和 方 法
1.1 1.2 1.3 1.4 1.5 1.6
从现实对象到数学模型 数学建模的重要意义 数学建模示例 数学建模的方法和步骤 数学模型的特点和分类 怎样学习数学建模
2.数学建模竞赛的的思想和方法
yk--第k次渡河前此岸的随从数 sk=(xk , yk)--过程的状态
S={(x , y) x=0, y=0,1,2,3; x=3, y=0,1,2,3; x=y=1,2}
uk--第k次渡船上的商人数
vk--第k次渡船上的随从数
dk=(uk , vk)~决策 sk+1=sk +(-1)k dk
uk, vk=0,1,2;
数学建模无时不在,无处不在!
数 学 建 模 的 思 想 和 方 法
启示:
很多同学,尤其是非数学专业的同学,把数学 建模看得很神秘,总以为它高深莫测,其实并非 如此。实际上,数学建模就是发生在我们身边的事 情,可能你不经意间就在进行着数学建模和求解, 只不过你不知道罢了。 可以毫不夸张地说: 数学建模无时不在,无处不在!
数学建模方法ppt课件
微
了很大作用。
分
方
应用实例:
程 模
单种群模型(Malthus Logistic )
型
两种群模型
传染病模型(SI SIS SIR)
作战模型
商品销售模型
回归分析是研究变量间统计规律的方法,属于”黑 箱“建模中常用的方法,根据自变量的数值和变化, 估计和预测因变量的相应数值和变化。有线性回归和 非线性回归。
点击添加文本
)点b2击添加文本
ax1m,1x点x21 ,击添a,m加x2nx文2本0 amnxn (, )bn
点击添加文本
建模步骤:
1.建立模型:找出目标函数及相应的限定条件
2.模型的求解:可利用Lin点go击软添件加进文行本求解模型。
3.结果分析
4.灵敏度分析:改变个别相关系数观察最优解是否会
min{D( p, k), D(q, k)}
点击添加文本
点击添加文本
步骤4:重复步骤2和步骤3,直至满足聚类为止。
对于不确定性问题,又可分为随机不确定性与模 糊不确定性两类。模糊数学就是研究属于不确定性, 而又具有模糊性量的变化规律的一种数学方法。
模
点击添加文本
糊
数 学
原理关键词: 模糊集 隶属函数 模糊关系 模糊矩阵
yi 0 1xi1 2 xi2 p xip , i 1,2,, n
其中, i 是随机误差,相互独立且满足E(i ) 0, var(i ) 2
一般非线性模型的形式: 其中, f 是一般的非线性函数, 是 p维参数向量, 是一随机 误差变量,E( ) 0, var( ) 2
,把 Gp 和 Gq 合并
步骤3:计算新类与其他类的距离 点击添加文本
D(r, k) min{d (r, k) r Gr , k Gk , k r} min{d ( j, k) j Gp Gq , k Gk , k j}
相关主题