(高校电磁场与电磁波)必须牢记的公式及定理
高中物理公式电磁学所有公式

高中物理公式电磁学所有公式
电磁学是研究电磁现象的学科,生活中我们经常会看到电磁学的相关公式,下面就为大家列举出高中物理中关于电磁学的最常用的公式:
一、直流电场的电场强度:
1. 静止电荷产生的电场强度:E = kq/r2;
2. 依据线磁定律,定义磁通量密度为:B = μo·I;
三、交变电场强度:
1. 磁通量:φ = B·S;
2. 根据分段线性变化假设,定义磁感应强度:H = B/μo;
3. 根据库仑定律:F=u·IΔL;
四、电磁辐射:
1. 光速:c = λ·f;
2. 谐波定律:E = ko·Q;
3. 波能:W = S·E·cosδ;
4. 辐射功率:P = E2·kπo/2;
五、电磁动量定理:p=E·B;
六、电位的多位势模型:V = Vt·ln(C2/C1);
七、贝瑟尔定律:j = σ·E;
八、电磁航空参数公式:
1. 磁气动力:F = k·B2·I·L/2;
2. 磁场强度:B = μo·I/2πr;
3. 电导率:σ = n·e2/m;
九、延伸公式:
1. 雷诺数:Re = ρ·v·L/μ;
2. 普朗克定律:F = kQQ/R2;
3. 麦克斯韦动量定理:F = qE + qvXB。
电磁场与电磁波公式.

一、静电学1.两种电荷、电荷守恒定律、元电荷:(e=1.60×10-19C);带电体电荷量等于元电荷的整数倍2.库仑定律:F=kQ1Q2/r2(在真空中){F:点电荷间的作用力(N),k:静电力常量k=9.0×109N•m2/C2,Q1、Q2:两点电荷的电量(C),r:两点电荷间的距离(m),方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引}3.电场强度:E=F/q(定义式、计算式){E:电场强度(N/C),是矢量(电场的叠加原理),q:检验电荷的电量(C)}4.真空点(源)电荷形成的电场E=kQ/r2 {r:源电荷到该位置的距离(m),Q:源电荷的电量}5.匀强电场的场强E=UAB/d {UAB:AB两点间的电压(V),d:AB两点在场强方向的距离(m)}6.电场力:F=qE {F:电场力(N),q:受到电场力的电荷的电量(C),E:电场强度(N/C)}7.电势与电势差:UAB=φA-φB,UAB=W AB/q=-ΔEAB/q8.电场力做功:W AB=qUAB=Eqd{W AB:带电体由A到B时电场力所做的功(J),q:带电量(C),UAB:电场中A、B两点间的电势差(V)(电场力做功与路径无关),E:匀强电场强度,d:两点沿场强方向的距离(m)}9.电势能:EA=qφA {EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)}10.电势能的变化ΔEAB=EB-EA {带电体在电场中从A位置到B位置时电势能的差值}11.电场力做功与电势能变化ΔEAB=-WAB=-qUAB (电势能的增量等于电场力做功的负值)12.电容C=Q/U(定义式,计算式) {C:电容(F),Q:电量(C),U:电压(两极板电势差)(V)}13.平行板电容器的电容C=εS/4πkd(S:两极板正对面积,d:两极板间的垂直距离,ω:介电常数)常见电容器〔见第二册P111〕14.带电粒子在电场中的加速(V o=0):W=ΔEK或qU=mVt2/2,Vt=(2qU/m)1/215.带电粒子沿垂直电场方向以速度V o进入匀强电场时的偏转(不考虑重力作用的情况下)类似平抛运动平行电场方向:初速度为零的匀加速直线运动d=at2/2,a=F/m=qE/m 垂直电场方向:匀速直线运动L=V ot(在带等量异种电荷的平行极板中:E=U/d)二、恒定电流1.电流强度:I=q/t{I:电流强度(A),q:在时间t内通过导体横载面的电量(C),t:时间(s)}2.欧姆定律:I=U/R {I:导体电流强度(A),U:导体两端电压(V),R:导体阻值(Ω)}3.电阻、电阻定律:R=ρL/S{ρ:电阻率(Ω•m),L:导体的长度(m),S:导体横截面积(m2)}4.闭合电路欧姆定律:I=E/(r+R)或E=Ir+IR也可以是E=U内+U外{I:电路中的总电流(A),E:电源电动势(V),R:外电路电阻(Ω),r:电源内阻(Ω)}5.电功与电功率:W=UIt,P=UI{W:电功(J),U:电压(V),I:电流(A),t:时间(s),P:电功率(W)}6.焦耳定律:Q=I2Rt{Q:电热(J),I:通过导体的电流(A),R:导体的电阻值(Ω),t:通电时间(s)}7.纯电阻电路中:由于I=U/R,W=Q,因此W=Q=UIt=I2Rt=U2t/R8.电源总动率、电源输出功率、电源效率:P总=IE,P出=IU,η=P出/P总{I:电路总电流(A),E:电源电动势(V),U:路端电压(V),η:电源效率}9.电路的串/并联串联电路(P、U与R成正比) 并联电路(P、I与R成反比)电阻关系R串=R1+R2+R3+ 1/R并=1/R1+1/R2+1/R3+电流关系I总=I1=I2=I3 I并=I1+I2+I3+电压关系U总=U1+U2+U3+ U总=U1=U2=U3功率分配P总=P1+P2+P3+ P总=P1+P2+P3+三、磁场1.磁感应强度是用来表示磁场的强弱和方向的物理量,是矢量,单位T),1T=1N/A•m2.安培力F=BIL;(注:L⊥B) {B:磁感应强度(T),F:安培力(F),I:电流强度(A),L:导线长度(m)}3.洛仑兹力f=qVB(注V⊥B);质谱仪〔见第二册P155〕{f:洛仑兹力(N),q:带电粒子电量(C),V:带电粒子速度(m/s)}4.在重力忽略不计(不考虑重力)的情况下,带电粒子进入磁场的运动情况(掌握两种):(1)带电粒子沿平行磁场方向进入磁场:不受洛仑兹力的作用,做匀速直线运动V=V0(2)带电粒子沿垂直磁场方向进入磁场:做匀速圆周运动,规律如下a)F向=f洛=mV2/r=mω2r=mr(2π/T)2=qVB;r=mV/qB;T=2πm/qB;(b)运动周期与圆周运动的半径和线速度无关,洛仑兹力对带电粒子不做功(任何情况下);(c)解题关键:画轨迹、找圆心、定半径、圆心角(=二倍弦切角)。
大学物理电磁学公式

大学物理电磁学公式大学物理电磁学是物理学中的一个重要分支,研究电场和磁场以及它们之间的相互作用。
在学习和研究电磁学的过程中,我们经常会接触到一系列重要的公式。
以下是一些常见的大学物理电磁学公式的详细介绍。
1. 库仑定律(Coulomb's Law):库仑定律描述了两个点电荷之间相互作用力的大小和方向。
它的数学表达式为:F = k * |q1 * q2| / r²其中,F为两个电荷所受的力,k为库仑常数,q1和q2分别为两个电荷的大小,r为两个电荷之间的距离。
2. 电场强度(Electric Field Intensity):电场强度描述了电荷在某一点周围的电场的强弱。
对于一个点电荷,其电场强度的数学表达式为:E = k * |q| / r²其中,E为电场强度,k为库仑常数,q为电荷的大小,r为点电荷到被测点之间的距离。
3. 电势能(Electric Potential Energy):电势能描述了电荷由于存在于电场中而具有的能量。
对于一个点电荷,其电势能的数学表达式为:U = k * |q1 * q2| / r其中,U为电势能,k为库仑常数,q1和q2分别为两个电荷的大小,r为两个电荷之间的距离。
4. 电势差(Electric Potential Difference):电势差描述了电场中两个点之间的电势能的差异。
对于两个点电荷之间的电势差,其数学表达式为:ΔV = V2 - V1 = -∫(E · dl)其中,ΔV为电势差,V1和V2分别为两个点的电势,E为电场强度,dl为路径元素。
5. 电场线(Electric Field Lines):电场线用于可视化电场的分布情况。
电场线从正电荷流向负电荷,并且密集的电场线表示电场强度较大,稀疏的电场线表示电场强度较小。
6. 电场的高斯定律(Gauss's Law for Electric Fields):电场的高斯定律描述了电场通过一个闭合曲面的总通量与该闭合曲面内的电荷量之间的关系。
电磁场与电磁波基础知识总结

电磁场与电磁波总结第一章一、矢量代数 A ∙B =AB cos θA B ⨯=AB e AB sin θA ∙(B ⨯C ) = B ∙(C ⨯A ) = C ∙(A ⨯B )()()()C A C C A B C B A ⋅-⋅=⨯⨯二、三种正交坐标系 1. 直角坐标系 矢量线元x y z =++le e e d x y z矢量面元=++Se e e x y z d dxdy dzdx dxdy体积元d V = dx dy dz 单位矢量的关系⨯=e e e x y z ⨯=e e e y z x ⨯=e e e z x y2. 圆柱形坐标系 矢量线元=++l e e e z d d d dz ρϕρρϕl 矢量面元=+e e z dS d dz d d ρρϕρρϕ体积元dz d d dVϕρρ=单位矢量的关系⨯=⨯⨯=e e e e e =e e e e zz z ρϕϕρρϕ3. 球坐标系 矢量线元d l = e r d r e θr d θ+e ϕr sin θd ϕ矢量面元d S = e r r 2sin θd θd ϕ体积元ϕθθd drd r dVsin 2=单位矢量的关系⨯=⨯⨯=e e e e e =e e e e r r r θϕθϕϕθ三、矢量场的散度和旋度 1. 通量与散度=⋅⎰A SSd Φ0lim∆→⋅=∇⋅=∆⎰A S A A Sv d div v2. 环流量与旋度=⋅⎰A l ld Γmaxn 0rot =lim∆→⋅∆⎰A lA e lS d S3. 计算公式∂∂∂∇=++∂∂∂⋅A y x z A A A x y z11()z A A A z ϕρρρρρϕ∂∂∂∇=++∂∂∂⋅A 22111()(sin )sin sin ∂∂∂∇=++∂∂∂⋅A r A r A A r r r r ϕθθθθθϕxy z∂∂∂∇⨯=∂∂∂e e e A x y z x y zA A A 1zzzA A A ρϕρϕρρϕρ∂∂∂∇⨯=∂∂∂e e e A 21sin sin r r zr r A r A r A ρϕθθθϕθ∂∂∂∇⨯=∂∂∂e e e A4. 矢量场的高斯定理与斯托克斯定理⋅=∇⋅⎰⎰A S A SVd dV⋅=∇⨯⋅⎰⎰A l A S lSd d四、标量场的梯度 1. 方向导数与梯度00()()lim∆→-∂=∂∆l P u M u M u ll 0cos cos cos ∂∂∂∂=++∂∂∂∂P u u u ulx y zαβγcos ∇⋅=∇e l u u θgrad ∂∂∂∂==+∂∂∂∂e e e +e n x y zu u u uu n x y z2. 计算公式∂∂∂∇=++∂∂∂e e e xy z u u u u x y z 1∂∂∂∇=++∂∂∂e e e z u u u u z ρϕρρϕ11sin ∂∂∂∇=++∂∂∂e e e r u u uu r r r zθϕθθ 五、无散场与无旋场1. 无散场()0∇⋅∇⨯=A =∇⨯F A2. 无旋场()0∇⨯∇=u -u =∇F 六、拉普拉斯运算算子 1. 直角坐标系22222222222222222222222222222222∂∂∂∇=++∇=∇+∇+∇∂∂∂∂∂∂∂∂∂∂∂∂∇=++∇=++∇=++∂∂∂∂∂∂∂∂∂A e e e x x y y z zyyyx x x z z z x y zu u uu A A A x y zA A A A A A A A A A A A x y z x y z x y z,,2. 圆柱坐标系22222222222222111212⎛⎫∂∂∂∂∇=++ ⎪∂∂∂∂⎝⎭∂∂⎛⎫⎛⎫∇=∇--+∇-++∇ ⎪ ⎪∂∂⎝⎭⎝⎭A e e e z z u u uu zA A A A A A A ϕρρρρϕϕϕρρρρρϕρρϕρρϕ3. 球坐标系22222222111sin sin sin ⎛⎫∂∂∂∂∂⎛⎫∇=++ ⎪ ⎪∂∂∂∂∂⎝⎭⎝⎭u u uu r r r r r r θθθϕθϕ ⎪⎪⎭⎫⎝⎛∂∂+-∂∂+∇+⎪⎪⎭⎫⎝⎛∂∂--∂∂+∇+⎪⎪⎭⎫ ⎝⎛∂∂-∂∂---∇=∇ϕθθθϕθϕθθθθϕθθθθϕϕϕϕθθθϕθθA r A r A r A A r A r A r A A r A r A r A r A r r r r r 222222222222222222sin cos 2sin 1sin 2sin cos 2sin 12sin 22cot 22e e e A 七、亥姆霍兹定理如果矢量场F 在无限区域中处处是单值的,且其导数连续有界,则当矢量场的散度、旋度和边界条件(即矢量场在有限区域V’边界上的分布)给定后,该矢量场F 唯一确定为()()()=-∇+∇⨯F r r A r φ其中1()()4''∇⋅'='-⎰F r r r r V dV φπ1()()4''∇⨯'='-⎰F r A r r r V dV π第二章一、麦克斯韦方程组 1. 静电场 真空中:001d ==VqdV ρεε⋅⎰⎰SE S (高斯定理) d 0⋅=⎰l E l 0∇⋅=E ρε0∇⨯=E 场与位:3'1'()(')'4'V dV ρπε-=-⎰r r E r r r r ϕ=-∇E 01()()d 4πV V ρϕε''='-⎰r r |r r |介质中:d ⋅=⎰D S Sqd 0⋅=⎰lE l ∇⋅=D ρ0∇⨯=E极化:0=+D E P εe 00(1)=+==D E E E r χεεεε==⋅P e PS n n P ρ=-∇⋅P P ρ2. 恒定电场 电荷守恒定律:⎰⎰-=-=⋅Vsdv dtd dt dq ds J ρ0∂∇⋅+=∂J tρ传导电流与运流电流:=J E σρ=J v恒定电场方程:d 0⋅=⎰J S Sd 0⋅=⎰J l l 0∇⋅=J 0∇⨯J =3. 恒定磁场 真空中:0 d ⋅=⎰B l lI μ(安培环路定理) d 0⋅=⎰SB S 0∇⨯=B J μ0∇⋅=B场与位:03()( )()d 4π ''⨯-'='-⎰J r r r B r r r VV μ=∇⨯B A 0 ()()d 4π'''='-⎰J r A r r r V V μ 介质中:d ⋅=⎰H l lId 0⋅=⎰SB S ∇⨯=H J 0∇⋅=B磁化:0=-BH M μm 00(1)=+B H =H =H r χμμμμm =∇⨯J M ms n =⨯J M e4. 电磁感应定律() d d in lC dv B dl dt ⋅=-⋅⨯⋅⎰⎰⎰SE l B S +)(法拉第电磁感应定律∂∇⨯=-∂B E t5. 全电流定律和位移电流全电流定律: d ()d ∂⋅=+⋅∂⎰⎰D H l J S lSt∂∇⨯=+∂DH J t 位移电流:d=DJ d dt6. Maxwell Equationsd ()d d d d d 0∂⎧⋅=+⋅⎪∂⎪∂⎪⋅=-⋅⎪∂⎨⎪⋅=⎪⎪⋅=⎪⎩⎰⎰⎰⎰⎰⎰⎰D H J S B E S D S B S lS l SS V Sl tl t V d ρ 0∂⎧∇⨯=+⎪∂⎪∂⎪∇⨯=-⎨∂⎪∇⋅=⎪⎪∇⋅=⎩D H J BE D B t t ρ()()()()0∂⎧∇⨯=+⎪∂⎪∂⎪∇⨯=-⎨∂⎪∇⋅=⎪⎪∇⋅=⎩E H E H E E H t t εσμερμ 二、电与磁的对偶性e m e m eme e m m e e m mm e 00∂∂⎫⎧∇⨯=-∇⨯=⎪⎪∂∂⎪⎪∂∂⎪⎪∇⨯=+∇⨯=--⎬⎨∂∂⎪⎪∇=∇=⎪⎪⎪⎪∇=∇=⎩⎭⋅⋅⋅⋅B D E H DB H J E J D B D B t t&tt ρρm e e m ∂⎧∇⨯=--⎪∂⎪∂⎪∇⨯=+⇒⎨∂⎪∇=⎪⎪∇=⎩⋅⋅B E J D H J D B t t ρρ 三、边界条件1. 一般形式12121212()0()()()0n n S n Sn σρ⨯-=⨯-=→∞⋅-=⋅-=()e E E e H H J e D D e B B2. 理想导体界面和理想介质界面111100⨯=⎧⎪⨯=⎪⎨⋅=⎪⎪⋅=⎩e E e H J e D e B n n S n S n ρ12121212()0()0()0()0⨯-=⎧⎪⨯-=⎪⎨⋅-=⎪⎪⋅-=⎩e E E e H H e D D e B B n n n n 第三章一、静电场分析 1. 位函数方程与边界条件 位函数方程:220∇=-∇=ρφφε电位的边界条件:121212=⎧⎪⎨∂∂-=-⎪∂∂⎩s nn φφφφεερ111=⎧⎪⎨∂=-⎪∂⎩s const nφφερ(媒质2为导体) 2. 电容定义:=qCφ两导体间的电容:=C q /U 任意双导体系统电容求解方法:3. 静电场的能量N 个导体:112ne i i i W q φ==∑连续分布:12e VW dV φρ=⎰电场能量密度:12ω=⋅D E e二、恒定电场分析1.位函数微分方程与边界条件位函数微分方程:20∇=φ边界条件:121212=⎧⎪⎨∂∂=⎪∂∂⎩nn φφφφεε12()0⋅-=e J J n 1212[]0⨯-=J J e n σσ 2. 欧姆定律与焦耳定律欧姆定律的微分形式: =J E σ 焦耳定律的微分形式: =⋅⎰E J VP dV3. 任意电阻的计算2211d d 1⋅⋅====⋅⋅⎰⎰⎰⎰E lE l J S E SSSU R G I d d σ(L R =σS ) 4.静电比拟法:G C —,σε—2211⋅⋅===⋅⋅⎰⎰⎰⎰D S E S E lE lS S d d qC Ud d ε2211d d d ⋅⋅===⋅⋅⎰⎰⎰⎰J S E SE lE lS S d I G Uσ三、恒定磁场分析 2211⋅⋅===⋅⋅⎰⎰⎰⎰D S E S E lE lS S d d qC Ud d ε1. 位函数微分方程与边界条件矢量位:2∇=-A J μ12121211⨯⨯⨯A A e A A J n s μμ()=∇-∇=标量位:20m φ∇=211221∂∂==∂∂m m m m n nφφφφμμ 2. 电感定义:d d ⋅⋅===⎰⎰B S A lSlL IIIψ0=+i L L L3. 恒定磁场的能量N 个线圈:112==∑Nmj j j W I ψ连续分布:m 1d 2=⋅⎰A J V W V 磁场能量密度:m 12ω=⋅H B第四章一、边值问题的类型(1)狄利克利问题:给定整个场域边界上的位函数值()=f s φ (2)纽曼问题:给定待求位函数在边界上的法向导数值()∂=∂f s nφ(3)混合问题:给定边界上的位函数及其向导数的线性组合:2112()()∂==∂f s f s nφφ (4)自然边界:lim r r φ→∞=有限值二、唯一性定理静电场的惟一性定理:在给定边界条件(边界上的电位或边界上的法向导数或导体表面电荷分布)下,空间静电场被唯一确定。
电磁场与电磁波公式总结

电磁场与电磁波公式总结电磁场与电磁波是物质与能量在空间中相互作用的重要现象,而它们的本质则由一系列理论和数学公式所描述和解释。
本文将综述电磁场与电磁波的一些重要公式,总结它们的基本特征和应用。
首先,我们来介绍电磁场的公式。
电磁场是由电荷或电流产生的一种力场,它可以用麦克斯韦方程组来描述。
麦克斯韦方程组包括以下四个方程:1. 麦克斯韦第一方程:高斯定律∇·E = ρ/ε₀这个方程描述了电场强度E与电荷密度ρ之间的关系,其中ε₀是真空电介质常数。
2. 麦克斯韦第二方程:法拉第电磁感应定律∇×E = -∂B/∂t这个方程表明变化的磁场会产生电场强度的旋转,从而引发感应电流。
3. 麦克斯韦第三方程:高斯磁定律∇·B = 0这个方程说明磁场强度B是无源场,即它没有直接与任何电荷或电流相关。
4. 麦克斯韦第四方程:安培定律∇×B = μ₀J + μ₀ε₀∂E/∂t这个方程描述磁场强度B与电流密度J和电场强度E之间的关系,其中μ₀是真空磁导率。
这些方程共同描述了电场和磁场的产生、相互作用和传播的规律。
通过求解这些方程,我们可以获得电场和磁场的分布情况,从而进一步研究它们对物质和能量的影响。
接下来,我们将讨论电磁波的公式。
电磁波是由电场和磁场相互耦合并传播而成的波动现象,其具体表达式可以由麦克斯韦方程组推导出来。
麦克斯韦方程组的解是电场和磁场的波动方程,可以写成如下形式:E = E₀sin(kx - ωt)B = B₀sin(kx - ωt)其中E₀和B₀分别是电场和磁场的振幅,k是波数,ω是角频率,x是位置,t是时间。
根据这些波动方程我们可以得到电场和磁场的一些重要特征:1. 波长λ 和频率 f 的关系:λ = c/f其中c是光速,它等于电磁波的传播速度。
2. 光速与真空介电常数ε₀和真空磁导率μ₀的关系:c = 1/√(ε₀μ₀)这个公式说明光速与真空电磁特性有密切的关系。
电磁场与电磁波公式总结

电磁场与电磁波公式总结电磁场与电磁波是电磁学中的两个重要概念。
电磁场是描述电荷体系在空间中产生的电磁现象的物理场,而电磁波是由电磁场振荡而产生的能量传播过程。
在电磁学中,有一些重要的公式用来描述电磁场和电磁波的性质和行为。
本文将对这些公式进行总结。
1.库仑定律:库仑定律描述了两个电荷之间的相互作用力。
对于两个电荷之间的相互作用力F,它与两个电荷之间的距离r的平方成反比,与两个电荷的电量的乘积成正比。
库仑定律的公式如下:F=k*,q1*q2,/r^2其中F为两个电荷之间的相互作用力,k为库仑常数,q1和q2为两个电荷的电量大小,r为两个电荷之间的距离。
2.电场强度公式:电场是描述电荷体系对电荷施加的力的物理量。
电场强度E可以通过电荷q对其施加的力F来定义。
电场强度的公式如下:E=F/q其中F为电荷所受的力,q为电荷的大小。
3.高斯定律:高斯定律描述了电场的产生和分布与电荷的关系。
高斯定律可以用来计算电荷在闭合曲面上的总电通量。
高斯定律的公式如下:Φ=∮E·dA=Q/ε0其中Φ为电场在曲面上的电通量,E为电场强度矢量,dA为曲面的面积矢量,Q为曲面内的总电荷,ε0为真空介电常数。
4.法拉第电磁感应定律:法拉第电磁感应定律描述了磁场变化引起的感应电动势。
法拉第电磁感应定律的公式如下:ε = -dΦ / dt其中ε为感应电动势,Φ为磁通量,t为时间。
5.毕奥—萨伐尔定律:毕奥—萨伐尔定律描述了电流元产生的磁场。
根据毕奥—萨伐尔定律,磁场强度B可以通过电流元i对其产生的磁场来定义。
毕奥—萨伐尔定律的公式如下:B = μ0 / 4π * ∮(i * dl × r) / r^3其中B为磁场强度,μ0为真空磁导率,i为电流强度,l为电流元的长度,r为电流元到观察点的距离。
6.安培环路定理:安培环路定理描述了围绕导线路径的磁场和沿路径的电流之间的关系。
安培环路定理的公式如下:∮B·dl = μ0 * I其中B为磁场强度矢量,dl为路径元素矢量,I为路径中的总电流,μ0为真空磁导率。
电磁场与电磁波公式总结

电磁场与电磁波公式总结电磁场与电磁波复习第一部分知识点归纳第一章矢量分析1、三种常用的坐标系(1)直角坐标系微分线元:dz a dy a dx a R d z y x →→→→++= 面积元:===dxdy dS dxdz dS dydzdS zyx,体积元:dxdydz d =τ(2)柱坐标系长度元:===dz dl rd dl drdl z r ??,面积元======rdrdzdl dl dS drdz dl dl dS dz rd dl dl dS z zz r z r ,体积元:dz rdrd d ?τ=(3)球坐标系长度元:===?θθ?θd r dl rd dl drdl r sin ,面积元:======θθ?θθθ??θθ?rdrd dl dl dS drd r dl dl dS d d r dl dl dS r r r sin sin2,体积元:?θθτd drd r d sin 2=2、三种坐标系的坐标变量之间的关系(1)直角坐标系与柱坐标系的关系==+====z z x y yx r z z r y r x arctan,sin cos 22 (2)直角坐标系与球坐标系的关系=++=++====z yz y x z z y x r r z r y r x arctan arccos ,cos sin sin cos sin 222 222?θθ?θ?θ (3)柱坐标系与球坐标系的关系=+=+====??θθ??θ22'22''arccos ,cos sin z r z zr r r z r r 3、梯度(1)直角坐标系中:za y a x a grad z y x ??+??+??=?=→→→μμμμμ(2)柱坐标系中:za r a r a grad z r ??+??+??=?=→→→μμμμμ?1(3)球坐标系中:μθθμμμμ?θ??+??+??=?=→→→sin 11r a r a r a grad r4.散度(1)直角坐标系中:zA y A x A A div zy X ??+??+??=→(2)柱坐标系中:zA A r rA r r A div zr ??+??+??=→1)(1 (3)球坐标系中:θθθθ?θ+??+??=→A r A r A r rr A div r sin 1)(sin sin 1)(122 5、高斯散度定理:→→→→=??=?ττττd A div d A S d A S ,意义为:任意矢量场→A 的散度在场中任意体积内的体积分等于矢量场→A 在限定该体积的闭合面上的通量。
南京邮电大学电磁场与电磁波考试必背公式

南京邮电⼤学电磁场与电磁波考试必背公式电磁场与电磁波复习第⼀部分知识点归纳第⼀章⽮量分析1、三种常⽤的坐标系(1)直⾓坐标系微分线元:dz a dy a dx a R d z y x →→→→++= ⾯积元:===dxdy dS dxdz dS dydzdS zyx ,体积元:dxdydz d =τ(2)柱坐标系长度元:===dz dl rd dl drdl z r ??,⾯积元======rdrdz dl dl dS drdz dl dl dS dz rd dl dl dS z zz r z r ,体积元:dz rdrd d ?τ=(3)球坐标系长度元:===?θθ?θd r dl rd dl dr dl r sin ,⾯积元:======θθ?θθθ??θθ?rdrd dl dl dS drd r dl dl dS d d r dl dl dS r r r sin sin 2,体积元:?θθτd drd r d sin 2= 2、三种坐标系的坐标变量之间的关系(1)直⾓坐标系与柱坐标系的关系==+====z z x y yx r z z r y r x arctan,sin cos 22 (2)直⾓坐标系与球坐标系的关系=++=++====z yz y x z z y x r r z r y r x arctan arccos ,cos sin sin cos sin 2 22222?θθ?θ?θ(3)柱坐标系与球坐标系的关系=+=+=??===??θθ??θ22'22''arccos ,cos sin z r z zr r r z r r 3、梯度(1)直⾓坐标系中:za y a x a grad z y x ??+??+??=?=→→→µµµµµ(2)柱坐标系中:za r a r a grad z r ??+??+??=?=→→→µµµµµ1(3)球坐标系中:µθθµµµµ?θ??+??+??=?=→→→sin 11r a r a r a grad r4.散度(1)直⾓坐标系中:zA y A x A A div zA A r rA r r A div zr ??+??+??=→1)(1 (3)球坐标系中:θθθθ?θ??+??+??=→A r A r A r rr A div r sin 1)(sin sin 1)(1225、⾼斯散度定理:→→→→=??=?ττττd A div d A S d A S,意义为:任意⽮量场→A 的散度在场中任意体积的体积分等于⽮量场→A 在限定该体积的闭合⾯上的通量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.复数形式 D E, B H, J E
三、复电容率或复介电常数
若定义
c
j
则对于导电媒质的无源区域, 麦克斯韦第一方程简化为
H jc E
四、边值关系
1.一般形式
en (H1 H2 ) JS en (E1 E2 ) 0 en (B1 B2 ) 0
真空无色散,群速度和相速度都不是频率的函数,且都等
于真空光速c。
八、均匀平面波的反射与折射
ex
Ex
ey
E
y
e
jkz
式中 E x与 E y 幅角不等(否则仍属线极化)
3.沿任意方向传播的线极化均匀平面波
E E 0 e jk r
但要求复矢量
E0
k,其中k
kek
七、无限大均匀各向同性媒质中的均匀平面波
4.均匀平面电磁波的磁场表达式
H
1
ek
E
H 的表达式也可由麦克斯韦第二方程导出,而且这是 一种普适的方法。
穿透深度: 1 1 f
电导率σ越大,穿透深度δ越小,但未必说明媒质对 电磁波的吸收越严重。理想导体( σ=∞)的穿透深度 δ=0,然而它恰恰是一种特殊的无耗媒质。
8.相速度与群速度: 相速
群速度(已调制波包络的速度) vg
d d
色散越严重,群速度具有物理意义的频率范围就越窄。
dS
d dt
V
(
1 2
Ε
D 1H 2
B) dV
V Ε
J dV
流入封闭面的电磁功率=体积V内总能量的增加率+体积V
内的焦耳损耗功率
六、谐变场量的复数表示法
1.由复数形式导出瞬时表达式
E(r, t) Re[E(r )e jt ]
E r ex Ex ey Ey ez Ez
2
y1
七、无限大均匀各向同性媒质中的均匀平面波
1.关于相位常数k和波阻抗η
k 2 ,
2.理想媒质中的均匀平面波
1)线极化: E ex E x e jkz
2)圆极化: E ex jey E 0 e jkz
3)椭圆极化:E
两种媒质为理想介质
五、坡印亭矢量与坡印亭定理
电能密度
we
=
1E 2
D
磁能密度
wm
1H 2
B
体积V内的总电磁能 W (1 E D 1 B H)dV
V2
2
能流密度(坡印亭矢量) S = Ε H
焦耳损耗功率密度 P J E E2
坡印亭定理
S (Ε H)
电磁场与电磁波
——必须牢记的若干公 式和定理
一、麦克斯韦方程组
1.微分形式 H J D , E B , B 0, D =
t
t
2.复数形式
H J j E, E j H, H 0, E
二、本构关系式
1.一般形式 D E, B H, J E
ex Ex (r )e jx (r ) ey E y (r )e jy (r ) ez Ez (r )e jz (r )
2.由瞬时形式导出复数形式
E r,t exE0 cost eyE1 sint
E
r
ex E0e j
e E e j
5.导电媒质中的线极化均匀平面波
E ex E x eze j z 其中α、β分别为衰减常数和相移常数,其表达式冗
长,不必记忆。
6.媒质的分类: 若 100,则为良导电媒质;
若 0.01,则为低损耗媒质;
七、无限大均匀各向同性媒质中的均匀平面波
7.良导电媒质中的趋肤效应
en (D1 D2 ) S
注意:分界面法向单位矢量由媒质2指向媒质1。
2.特殊形式
en D S
en B 0 en E 0 en H JS
媒质2为理想导体
en (D1 D2 ) 0 en (B1 B2 ) 0 en (E1 E2 ) 0 en (H1 H2 ) 0