(高校电磁场与电磁波)必须牢记的公式及定理
高中物理公式电磁学所有公式
高中物理公式电磁学所有公式
电磁学是研究电磁现象的学科,生活中我们经常会看到电磁学的相关公式,下面就为大家列举出高中物理中关于电磁学的最常用的公式:
一、直流电场的电场强度:
1. 静止电荷产生的电场强度:E = kq/r2;
2. 依据线磁定律,定义磁通量密度为:B = μo·I;
三、交变电场强度:
1. 磁通量:φ = B·S;
2. 根据分段线性变化假设,定义磁感应强度:H = B/μo;
3. 根据库仑定律:F=u·IΔL;
四、电磁辐射:
1. 光速:c = λ·f;
2. 谐波定律:E = ko·Q;
3. 波能:W = S·E·cosδ;
4. 辐射功率:P = E2·kπo/2;
五、电磁动量定理:p=E·B;
六、电位的多位势模型:V = Vt·ln(C2/C1);
七、贝瑟尔定律:j = σ·E;
八、电磁航空参数公式:
1. 磁气动力:F = k·B2·I·L/2;
2. 磁场强度:B = μo·I/2πr;
3. 电导率:σ = n·e2/m;
九、延伸公式:
1. 雷诺数:Re = ρ·v·L/μ;
2. 普朗克定律:F = kQQ/R2;
3. 麦克斯韦动量定理:F = qE + qvXB。
电磁场与电磁波公式.
一、静电学1.两种电荷、电荷守恒定律、元电荷:(e=1.60×10-19C);带电体电荷量等于元电荷的整数倍2.库仑定律:F=kQ1Q2/r2(在真空中){F:点电荷间的作用力(N),k:静电力常量k=9.0×109N•m2/C2,Q1、Q2:两点电荷的电量(C),r:两点电荷间的距离(m),方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引}3.电场强度:E=F/q(定义式、计算式){E:电场强度(N/C),是矢量(电场的叠加原理),q:检验电荷的电量(C)}4.真空点(源)电荷形成的电场E=kQ/r2 {r:源电荷到该位置的距离(m),Q:源电荷的电量}5.匀强电场的场强E=UAB/d {UAB:AB两点间的电压(V),d:AB两点在场强方向的距离(m)}6.电场力:F=qE {F:电场力(N),q:受到电场力的电荷的电量(C),E:电场强度(N/C)}7.电势与电势差:UAB=φA-φB,UAB=W AB/q=-ΔEAB/q8.电场力做功:W AB=qUAB=Eqd{W AB:带电体由A到B时电场力所做的功(J),q:带电量(C),UAB:电场中A、B两点间的电势差(V)(电场力做功与路径无关),E:匀强电场强度,d:两点沿场强方向的距离(m)}9.电势能:EA=qφA {EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)}10.电势能的变化ΔEAB=EB-EA {带电体在电场中从A位置到B位置时电势能的差值}11.电场力做功与电势能变化ΔEAB=-WAB=-qUAB (电势能的增量等于电场力做功的负值)12.电容C=Q/U(定义式,计算式) {C:电容(F),Q:电量(C),U:电压(两极板电势差)(V)}13.平行板电容器的电容C=εS/4πkd(S:两极板正对面积,d:两极板间的垂直距离,ω:介电常数)常见电容器〔见第二册P111〕14.带电粒子在电场中的加速(V o=0):W=ΔEK或qU=mVt2/2,Vt=(2qU/m)1/215.带电粒子沿垂直电场方向以速度V o进入匀强电场时的偏转(不考虑重力作用的情况下)类似平抛运动平行电场方向:初速度为零的匀加速直线运动d=at2/2,a=F/m=qE/m 垂直电场方向:匀速直线运动L=V ot(在带等量异种电荷的平行极板中:E=U/d)二、恒定电流1.电流强度:I=q/t{I:电流强度(A),q:在时间t内通过导体横载面的电量(C),t:时间(s)}2.欧姆定律:I=U/R {I:导体电流强度(A),U:导体两端电压(V),R:导体阻值(Ω)}3.电阻、电阻定律:R=ρL/S{ρ:电阻率(Ω•m),L:导体的长度(m),S:导体横截面积(m2)}4.闭合电路欧姆定律:I=E/(r+R)或E=Ir+IR也可以是E=U内+U外{I:电路中的总电流(A),E:电源电动势(V),R:外电路电阻(Ω),r:电源内阻(Ω)}5.电功与电功率:W=UIt,P=UI{W:电功(J),U:电压(V),I:电流(A),t:时间(s),P:电功率(W)}6.焦耳定律:Q=I2Rt{Q:电热(J),I:通过导体的电流(A),R:导体的电阻值(Ω),t:通电时间(s)}7.纯电阻电路中:由于I=U/R,W=Q,因此W=Q=UIt=I2Rt=U2t/R8.电源总动率、电源输出功率、电源效率:P总=IE,P出=IU,η=P出/P总{I:电路总电流(A),E:电源电动势(V),U:路端电压(V),η:电源效率}9.电路的串/并联串联电路(P、U与R成正比) 并联电路(P、I与R成反比)电阻关系R串=R1+R2+R3+ 1/R并=1/R1+1/R2+1/R3+电流关系I总=I1=I2=I3 I并=I1+I2+I3+电压关系U总=U1+U2+U3+ U总=U1=U2=U3功率分配P总=P1+P2+P3+ P总=P1+P2+P3+三、磁场1.磁感应强度是用来表示磁场的强弱和方向的物理量,是矢量,单位T),1T=1N/A•m2.安培力F=BIL;(注:L⊥B) {B:磁感应强度(T),F:安培力(F),I:电流强度(A),L:导线长度(m)}3.洛仑兹力f=qVB(注V⊥B);质谱仪〔见第二册P155〕{f:洛仑兹力(N),q:带电粒子电量(C),V:带电粒子速度(m/s)}4.在重力忽略不计(不考虑重力)的情况下,带电粒子进入磁场的运动情况(掌握两种):(1)带电粒子沿平行磁场方向进入磁场:不受洛仑兹力的作用,做匀速直线运动V=V0(2)带电粒子沿垂直磁场方向进入磁场:做匀速圆周运动,规律如下a)F向=f洛=mV2/r=mω2r=mr(2π/T)2=qVB;r=mV/qB;T=2πm/qB;(b)运动周期与圆周运动的半径和线速度无关,洛仑兹力对带电粒子不做功(任何情况下);(c)解题关键:画轨迹、找圆心、定半径、圆心角(=二倍弦切角)。
大学物理电磁学公式
大学物理电磁学公式大学物理电磁学是物理学中的一个重要分支,研究电场和磁场以及它们之间的相互作用。
在学习和研究电磁学的过程中,我们经常会接触到一系列重要的公式。
以下是一些常见的大学物理电磁学公式的详细介绍。
1. 库仑定律(Coulomb's Law):库仑定律描述了两个点电荷之间相互作用力的大小和方向。
它的数学表达式为:F = k * |q1 * q2| / r²其中,F为两个电荷所受的力,k为库仑常数,q1和q2分别为两个电荷的大小,r为两个电荷之间的距离。
2. 电场强度(Electric Field Intensity):电场强度描述了电荷在某一点周围的电场的强弱。
对于一个点电荷,其电场强度的数学表达式为:E = k * |q| / r²其中,E为电场强度,k为库仑常数,q为电荷的大小,r为点电荷到被测点之间的距离。
3. 电势能(Electric Potential Energy):电势能描述了电荷由于存在于电场中而具有的能量。
对于一个点电荷,其电势能的数学表达式为:U = k * |q1 * q2| / r其中,U为电势能,k为库仑常数,q1和q2分别为两个电荷的大小,r为两个电荷之间的距离。
4. 电势差(Electric Potential Difference):电势差描述了电场中两个点之间的电势能的差异。
对于两个点电荷之间的电势差,其数学表达式为:ΔV = V2 - V1 = -∫(E · dl)其中,ΔV为电势差,V1和V2分别为两个点的电势,E为电场强度,dl为路径元素。
5. 电场线(Electric Field Lines):电场线用于可视化电场的分布情况。
电场线从正电荷流向负电荷,并且密集的电场线表示电场强度较大,稀疏的电场线表示电场强度较小。
6. 电场的高斯定律(Gauss's Law for Electric Fields):电场的高斯定律描述了电场通过一个闭合曲面的总通量与该闭合曲面内的电荷量之间的关系。
电磁场与电磁波基础知识总结
电磁场与电磁波总结第一章一、矢量代数 A ∙B =AB cos θA B ⨯=AB e AB sin θA ∙(B ⨯C ) = B ∙(C ⨯A ) = C ∙(A ⨯B )()()()C A C C A B C B A ⋅-⋅=⨯⨯二、三种正交坐标系 1. 直角坐标系 矢量线元x y z =++le e e d x y z矢量面元=++Se e e x y z d dxdy dzdx dxdy体积元d V = dx dy dz 单位矢量的关系⨯=e e e x y z ⨯=e e e y z x ⨯=e e e z x y2. 圆柱形坐标系 矢量线元=++l e e e z d d d dz ρϕρρϕl 矢量面元=+e e z dS d dz d d ρρϕρρϕ体积元dz d d dVϕρρ=单位矢量的关系⨯=⨯⨯=e e e e e =e e e e zz z ρϕϕρρϕ3. 球坐标系 矢量线元d l = e r d r e θr d θ+e ϕr sin θd ϕ矢量面元d S = e r r 2sin θd θd ϕ体积元ϕθθd drd r dVsin 2=单位矢量的关系⨯=⨯⨯=e e e e e =e e e e r r r θϕθϕϕθ三、矢量场的散度和旋度 1. 通量与散度=⋅⎰A SSd Φ0lim∆→⋅=∇⋅=∆⎰A S A A Sv d div v2. 环流量与旋度=⋅⎰A l ld Γmaxn 0rot =lim∆→⋅∆⎰A lA e lS d S3. 计算公式∂∂∂∇=++∂∂∂⋅A y x z A A A x y z11()z A A A z ϕρρρρρϕ∂∂∂∇=++∂∂∂⋅A 22111()(sin )sin sin ∂∂∂∇=++∂∂∂⋅A r A r A A r r r r ϕθθθθθϕxy z∂∂∂∇⨯=∂∂∂e e e A x y z x y zA A A 1zzzA A A ρϕρϕρρϕρ∂∂∂∇⨯=∂∂∂e e e A 21sin sin r r zr r A r A r A ρϕθθθϕθ∂∂∂∇⨯=∂∂∂e e e A4. 矢量场的高斯定理与斯托克斯定理⋅=∇⋅⎰⎰A S A SVd dV⋅=∇⨯⋅⎰⎰A l A S lSd d四、标量场的梯度 1. 方向导数与梯度00()()lim∆→-∂=∂∆l P u M u M u ll 0cos cos cos ∂∂∂∂=++∂∂∂∂P u u u ulx y zαβγcos ∇⋅=∇e l u u θgrad ∂∂∂∂==+∂∂∂∂e e e +e n x y zu u u uu n x y z2. 计算公式∂∂∂∇=++∂∂∂e e e xy z u u u u x y z 1∂∂∂∇=++∂∂∂e e e z u u u u z ρϕρρϕ11sin ∂∂∂∇=++∂∂∂e e e r u u uu r r r zθϕθθ 五、无散场与无旋场1. 无散场()0∇⋅∇⨯=A =∇⨯F A2. 无旋场()0∇⨯∇=u -u =∇F 六、拉普拉斯运算算子 1. 直角坐标系22222222222222222222222222222222∂∂∂∇=++∇=∇+∇+∇∂∂∂∂∂∂∂∂∂∂∂∂∇=++∇=++∇=++∂∂∂∂∂∂∂∂∂A e e e x x y y z zyyyx x x z z z x y zu u uu A A A x y zA A A A A A A A A A A A x y z x y z x y z,,2. 圆柱坐标系22222222222222111212⎛⎫∂∂∂∂∇=++ ⎪∂∂∂∂⎝⎭∂∂⎛⎫⎛⎫∇=∇--+∇-++∇ ⎪ ⎪∂∂⎝⎭⎝⎭A e e e z z u u uu zA A A A A A A ϕρρρρϕϕϕρρρρρϕρρϕρρϕ3. 球坐标系22222222111sin sin sin ⎛⎫∂∂∂∂∂⎛⎫∇=++ ⎪ ⎪∂∂∂∂∂⎝⎭⎝⎭u u uu r r r r r r θθθϕθϕ ⎪⎪⎭⎫⎝⎛∂∂+-∂∂+∇+⎪⎪⎭⎫⎝⎛∂∂--∂∂+∇+⎪⎪⎭⎫ ⎝⎛∂∂-∂∂---∇=∇ϕθθθϕθϕθθθθϕθθθθϕϕϕϕθθθϕθθA r A r A r A A r A r A r A A r A r A r A r A r r r r r 222222222222222222sin cos 2sin 1sin 2sin cos 2sin 12sin 22cot 22e e e A 七、亥姆霍兹定理如果矢量场F 在无限区域中处处是单值的,且其导数连续有界,则当矢量场的散度、旋度和边界条件(即矢量场在有限区域V’边界上的分布)给定后,该矢量场F 唯一确定为()()()=-∇+∇⨯F r r A r φ其中1()()4''∇⋅'='-⎰F r r r r V dV φπ1()()4''∇⨯'='-⎰F r A r r r V dV π第二章一、麦克斯韦方程组 1. 静电场 真空中:001d ==VqdV ρεε⋅⎰⎰SE S (高斯定理) d 0⋅=⎰l E l 0∇⋅=E ρε0∇⨯=E 场与位:3'1'()(')'4'V dV ρπε-=-⎰r r E r r r r ϕ=-∇E 01()()d 4πV V ρϕε''='-⎰r r |r r |介质中:d ⋅=⎰D S Sqd 0⋅=⎰lE l ∇⋅=D ρ0∇⨯=E极化:0=+D E P εe 00(1)=+==D E E E r χεεεε==⋅P e PS n n P ρ=-∇⋅P P ρ2. 恒定电场 电荷守恒定律:⎰⎰-=-=⋅Vsdv dtd dt dq ds J ρ0∂∇⋅+=∂J tρ传导电流与运流电流:=J E σρ=J v恒定电场方程:d 0⋅=⎰J S Sd 0⋅=⎰J l l 0∇⋅=J 0∇⨯J =3. 恒定磁场 真空中:0 d ⋅=⎰B l lI μ(安培环路定理) d 0⋅=⎰SB S 0∇⨯=B J μ0∇⋅=B场与位:03()( )()d 4π ''⨯-'='-⎰J r r r B r r r VV μ=∇⨯B A 0 ()()d 4π'''='-⎰J r A r r r V V μ 介质中:d ⋅=⎰H l lId 0⋅=⎰SB S ∇⨯=H J 0∇⋅=B磁化:0=-BH M μm 00(1)=+B H =H =H r χμμμμm =∇⨯J M ms n =⨯J M e4. 电磁感应定律() d d in lC dv B dl dt ⋅=-⋅⨯⋅⎰⎰⎰SE l B S +)(法拉第电磁感应定律∂∇⨯=-∂B E t5. 全电流定律和位移电流全电流定律: d ()d ∂⋅=+⋅∂⎰⎰D H l J S lSt∂∇⨯=+∂DH J t 位移电流:d=DJ d dt6. Maxwell Equationsd ()d d d d d 0∂⎧⋅=+⋅⎪∂⎪∂⎪⋅=-⋅⎪∂⎨⎪⋅=⎪⎪⋅=⎪⎩⎰⎰⎰⎰⎰⎰⎰D H J S B E S D S B S lS l SS V Sl tl t V d ρ 0∂⎧∇⨯=+⎪∂⎪∂⎪∇⨯=-⎨∂⎪∇⋅=⎪⎪∇⋅=⎩D H J BE D B t t ρ()()()()0∂⎧∇⨯=+⎪∂⎪∂⎪∇⨯=-⎨∂⎪∇⋅=⎪⎪∇⋅=⎩E H E H E E H t t εσμερμ 二、电与磁的对偶性e m e m eme e m m e e m mm e 00∂∂⎫⎧∇⨯=-∇⨯=⎪⎪∂∂⎪⎪∂∂⎪⎪∇⨯=+∇⨯=--⎬⎨∂∂⎪⎪∇=∇=⎪⎪⎪⎪∇=∇=⎩⎭⋅⋅⋅⋅B D E H DB H J E J D B D B t t&tt ρρm e e m ∂⎧∇⨯=--⎪∂⎪∂⎪∇⨯=+⇒⎨∂⎪∇=⎪⎪∇=⎩⋅⋅B E J D H J D B t t ρρ 三、边界条件1. 一般形式12121212()0()()()0n n S n Sn σρ⨯-=⨯-=→∞⋅-=⋅-=()e E E e H H J e D D e B B2. 理想导体界面和理想介质界面111100⨯=⎧⎪⨯=⎪⎨⋅=⎪⎪⋅=⎩e E e H J e D e B n n S n S n ρ12121212()0()0()0()0⨯-=⎧⎪⨯-=⎪⎨⋅-=⎪⎪⋅-=⎩e E E e H H e D D e B B n n n n 第三章一、静电场分析 1. 位函数方程与边界条件 位函数方程:220∇=-∇=ρφφε电位的边界条件:121212=⎧⎪⎨∂∂-=-⎪∂∂⎩s nn φφφφεερ111=⎧⎪⎨∂=-⎪∂⎩s const nφφερ(媒质2为导体) 2. 电容定义:=qCφ两导体间的电容:=C q /U 任意双导体系统电容求解方法:3. 静电场的能量N 个导体:112ne i i i W q φ==∑连续分布:12e VW dV φρ=⎰电场能量密度:12ω=⋅D E e二、恒定电场分析1.位函数微分方程与边界条件位函数微分方程:20∇=φ边界条件:121212=⎧⎪⎨∂∂=⎪∂∂⎩nn φφφφεε12()0⋅-=e J J n 1212[]0⨯-=J J e n σσ 2. 欧姆定律与焦耳定律欧姆定律的微分形式: =J E σ 焦耳定律的微分形式: =⋅⎰E J VP dV3. 任意电阻的计算2211d d 1⋅⋅====⋅⋅⎰⎰⎰⎰E lE l J S E SSSU R G I d d σ(L R =σS ) 4.静电比拟法:G C —,σε—2211⋅⋅===⋅⋅⎰⎰⎰⎰D S E S E lE lS S d d qC Ud d ε2211d d d ⋅⋅===⋅⋅⎰⎰⎰⎰J S E SE lE lS S d I G Uσ三、恒定磁场分析 2211⋅⋅===⋅⋅⎰⎰⎰⎰D S E S E lE lS S d d qC Ud d ε1. 位函数微分方程与边界条件矢量位:2∇=-A J μ12121211⨯⨯⨯A A e A A J n s μμ()=∇-∇=标量位:20m φ∇=211221∂∂==∂∂m m m m n nφφφφμμ 2. 电感定义:d d ⋅⋅===⎰⎰B S A lSlL IIIψ0=+i L L L3. 恒定磁场的能量N 个线圈:112==∑Nmj j j W I ψ连续分布:m 1d 2=⋅⎰A J V W V 磁场能量密度:m 12ω=⋅H B第四章一、边值问题的类型(1)狄利克利问题:给定整个场域边界上的位函数值()=f s φ (2)纽曼问题:给定待求位函数在边界上的法向导数值()∂=∂f s nφ(3)混合问题:给定边界上的位函数及其向导数的线性组合:2112()()∂==∂f s f s nφφ (4)自然边界:lim r r φ→∞=有限值二、唯一性定理静电场的惟一性定理:在给定边界条件(边界上的电位或边界上的法向导数或导体表面电荷分布)下,空间静电场被唯一确定。
电磁场与电磁波公式总结
电磁场与电磁波公式总结电磁场与电磁波是物质与能量在空间中相互作用的重要现象,而它们的本质则由一系列理论和数学公式所描述和解释。
本文将综述电磁场与电磁波的一些重要公式,总结它们的基本特征和应用。
首先,我们来介绍电磁场的公式。
电磁场是由电荷或电流产生的一种力场,它可以用麦克斯韦方程组来描述。
麦克斯韦方程组包括以下四个方程:1. 麦克斯韦第一方程:高斯定律∇·E = ρ/ε₀这个方程描述了电场强度E与电荷密度ρ之间的关系,其中ε₀是真空电介质常数。
2. 麦克斯韦第二方程:法拉第电磁感应定律∇×E = -∂B/∂t这个方程表明变化的磁场会产生电场强度的旋转,从而引发感应电流。
3. 麦克斯韦第三方程:高斯磁定律∇·B = 0这个方程说明磁场强度B是无源场,即它没有直接与任何电荷或电流相关。
4. 麦克斯韦第四方程:安培定律∇×B = μ₀J + μ₀ε₀∂E/∂t这个方程描述磁场强度B与电流密度J和电场强度E之间的关系,其中μ₀是真空磁导率。
这些方程共同描述了电场和磁场的产生、相互作用和传播的规律。
通过求解这些方程,我们可以获得电场和磁场的分布情况,从而进一步研究它们对物质和能量的影响。
接下来,我们将讨论电磁波的公式。
电磁波是由电场和磁场相互耦合并传播而成的波动现象,其具体表达式可以由麦克斯韦方程组推导出来。
麦克斯韦方程组的解是电场和磁场的波动方程,可以写成如下形式:E = E₀sin(kx - ωt)B = B₀sin(kx - ωt)其中E₀和B₀分别是电场和磁场的振幅,k是波数,ω是角频率,x是位置,t是时间。
根据这些波动方程我们可以得到电场和磁场的一些重要特征:1. 波长λ 和频率 f 的关系:λ = c/f其中c是光速,它等于电磁波的传播速度。
2. 光速与真空介电常数ε₀和真空磁导率μ₀的关系:c = 1/√(ε₀μ₀)这个公式说明光速与真空电磁特性有密切的关系。
电磁场与电磁波公式总结
电磁场与电磁波公式总结电磁场与电磁波是电磁学中的两个重要概念。
电磁场是描述电荷体系在空间中产生的电磁现象的物理场,而电磁波是由电磁场振荡而产生的能量传播过程。
在电磁学中,有一些重要的公式用来描述电磁场和电磁波的性质和行为。
本文将对这些公式进行总结。
1.库仑定律:库仑定律描述了两个电荷之间的相互作用力。
对于两个电荷之间的相互作用力F,它与两个电荷之间的距离r的平方成反比,与两个电荷的电量的乘积成正比。
库仑定律的公式如下:F=k*,q1*q2,/r^2其中F为两个电荷之间的相互作用力,k为库仑常数,q1和q2为两个电荷的电量大小,r为两个电荷之间的距离。
2.电场强度公式:电场是描述电荷体系对电荷施加的力的物理量。
电场强度E可以通过电荷q对其施加的力F来定义。
电场强度的公式如下:E=F/q其中F为电荷所受的力,q为电荷的大小。
3.高斯定律:高斯定律描述了电场的产生和分布与电荷的关系。
高斯定律可以用来计算电荷在闭合曲面上的总电通量。
高斯定律的公式如下:Φ=∮E·dA=Q/ε0其中Φ为电场在曲面上的电通量,E为电场强度矢量,dA为曲面的面积矢量,Q为曲面内的总电荷,ε0为真空介电常数。
4.法拉第电磁感应定律:法拉第电磁感应定律描述了磁场变化引起的感应电动势。
法拉第电磁感应定律的公式如下:ε = -dΦ / dt其中ε为感应电动势,Φ为磁通量,t为时间。
5.毕奥—萨伐尔定律:毕奥—萨伐尔定律描述了电流元产生的磁场。
根据毕奥—萨伐尔定律,磁场强度B可以通过电流元i对其产生的磁场来定义。
毕奥—萨伐尔定律的公式如下:B = μ0 / 4π * ∮(i * dl × r) / r^3其中B为磁场强度,μ0为真空磁导率,i为电流强度,l为电流元的长度,r为电流元到观察点的距离。
6.安培环路定理:安培环路定理描述了围绕导线路径的磁场和沿路径的电流之间的关系。
安培环路定理的公式如下:∮B·dl = μ0 * I其中B为磁场强度矢量,dl为路径元素矢量,I为路径中的总电流,μ0为真空磁导率。
电磁场与电磁波公式总结
电磁场与电磁波公式总结电磁场与电磁波复习第一部分知识点归纳第一章矢量分析1、三种常用的坐标系(1)直角坐标系微分线元:dz a dy a dx a R d z y x →→→→++= 面积元:===dxdy dS dxdz dS dydzdS zyx,体积元:dxdydz d =τ(2)柱坐标系长度元:===dz dl rd dl drdl z r ??,面积元======rdrdzdl dl dS drdz dl dl dS dz rd dl dl dS z zz r z r ,体积元:dz rdrd d ?τ=(3)球坐标系长度元:===?θθ?θd r dl rd dl drdl r sin ,面积元:======θθ?θθθ??θθ?rdrd dl dl dS drd r dl dl dS d d r dl dl dS r r r sin sin2,体积元:?θθτd drd r d sin 2=2、三种坐标系的坐标变量之间的关系(1)直角坐标系与柱坐标系的关系==+====z z x y yx r z z r y r x arctan,sin cos 22 (2)直角坐标系与球坐标系的关系=++=++====z yz y x z z y x r r z r y r x arctan arccos ,cos sin sin cos sin 222 222?θθ?θ?θ (3)柱坐标系与球坐标系的关系=+=+====??θθ??θ22'22''arccos ,cos sin z r z zr r r z r r 3、梯度(1)直角坐标系中:za y a x a grad z y x ??+??+??=?=→→→μμμμμ(2)柱坐标系中:za r a r a grad z r ??+??+??=?=→→→μμμμμ?1(3)球坐标系中:μθθμμμμ?θ??+??+??=?=→→→sin 11r a r a r a grad r4.散度(1)直角坐标系中:zA y A x A A div zy X ??+??+??=→(2)柱坐标系中:zA A r rA r r A div zr ??+??+??=→1)(1 (3)球坐标系中:θθθθ?θ+??+??=→A r A r A r rr A div r sin 1)(sin sin 1)(122 5、高斯散度定理:→→→→=??=?ττττd A div d A S d A S ,意义为:任意矢量场→A 的散度在场中任意体积内的体积分等于矢量场→A 在限定该体积的闭合面上的通量。
南京邮电大学电磁场与电磁波考试必背公式
南京邮电⼤学电磁场与电磁波考试必背公式电磁场与电磁波复习第⼀部分知识点归纳第⼀章⽮量分析1、三种常⽤的坐标系(1)直⾓坐标系微分线元:dz a dy a dx a R d z y x →→→→++= ⾯积元:===dxdy dS dxdz dS dydzdS zyx ,体积元:dxdydz d =τ(2)柱坐标系长度元:===dz dl rd dl drdl z r ??,⾯积元======rdrdz dl dl dS drdz dl dl dS dz rd dl dl dS z zz r z r ,体积元:dz rdrd d ?τ=(3)球坐标系长度元:===?θθ?θd r dl rd dl dr dl r sin ,⾯积元:======θθ?θθθ??θθ?rdrd dl dl dS drd r dl dl dS d d r dl dl dS r r r sin sin 2,体积元:?θθτd drd r d sin 2= 2、三种坐标系的坐标变量之间的关系(1)直⾓坐标系与柱坐标系的关系==+====z z x y yx r z z r y r x arctan,sin cos 22 (2)直⾓坐标系与球坐标系的关系=++=++====z yz y x z z y x r r z r y r x arctan arccos ,cos sin sin cos sin 2 22222?θθ?θ?θ(3)柱坐标系与球坐标系的关系=+=+=??===??θθ??θ22'22''arccos ,cos sin z r z zr r r z r r 3、梯度(1)直⾓坐标系中:za y a x a grad z y x ??+??+??=?=→→→µµµµµ(2)柱坐标系中:za r a r a grad z r ??+??+??=?=→→→µµµµµ1(3)球坐标系中:µθθµµµµ?θ??+??+??=?=→→→sin 11r a r a r a grad r4.散度(1)直⾓坐标系中:zA y A x A A div zA A r rA r r A div zr ??+??+??=→1)(1 (3)球坐标系中:θθθθ?θ??+??+??=→A r A r A r rr A div r sin 1)(sin sin 1)(1225、⾼斯散度定理:→→→→=??=?ττττd A div d A S d A S,意义为:任意⽮量场→A 的散度在场中任意体积的体积分等于⽮量场→A 在限定该体积的闭合⾯上的通量。
大学物理电磁学公式总结汇总
大学物理电磁学公式总结汇总——WORD文档,下载后可编辑修改——大学物理电磁学公式总结1定律和定理1. 矢量叠加原理:任意一矢量可看成其独立的分量的和。
即:=∑ (把式中换成、、、、、就分别成了位置、速度、加速度、力、电场强度和磁感应强度的叠加原理)。
2. 牛顿定律: =m (或 = );牛顿第三定律:′= ;万有引力定律:3. 动量定理:→动量守恒:条件4. 角动量定理:→角动量守恒:条件5. 动能原理: (比较势能定义式: )6. 功能原理:A外+A非保内=ΔE→机械能守恒:ΔE=0条件A外+A 非保内=07. 理想气体状态方程:或P=nkT(n=N/V,k=R/N0)8. 能量均分原理:在平衡态下,物质分子的每个自由度都具有相同的平均动能,其大小都为kT/2。
克劳修斯表述:不可能把热量从低温物体传到高温物体而不产生其它影响。
开尔文表述:不可能从单一热源吸取热量,使之完全变为有用的功而不产生其它影响。
实质:在孤立系统内部发生的过程,总是由热力学概率小的宏观状态向热力学概率大的状态进行。
亦即在孤立系统内部所发生的过程总是沿着无序性增大的方向进行。
9. 热力学第一定律:ΔE=Q+A10.热力学第二定律:孤立系统:ΔS>0(熵增加原理)11. 库仑定律:(k=1/4πε0)12. 高斯定理: (静电场是有源场)→无穷大平板:E=σ/2ε013. 环路定理: (静电场无旋,因此是保守场)θ2Ir P o Rθ1I14. 毕奥—沙伐尔定律:直长载流导线:无限长载流导线:载流圆圈:,圆弧:电磁学1. 定义:= /q0 单位:N/C =V/mB=Fmax/qv;方向,小磁针指向(S→N);单位:特斯拉(T)=104高斯(G) ① 和:=q( + × )洛仑兹公式②电势:电势差:电动势: ( )③电通量:磁通量:磁通链:ΦB=NφB单位:韦伯(Wb)Θ ⊕-q +qS④电偶极矩: =q 磁矩: =I =IS⑤电容:C=q/U 单位:法拉(F)乘自感:L=Ψ/I 单位:亨利(H)乘互感:M=Ψ21/I1=Ψ12/I2 单位:亨利(H)⑥电流:I = ; 乘位移电流:ID =ε0 单位:安培(A)⑦乘能流密度:2. 实验定律① 库仑定律:②毕奥—沙伐尔定律:③安培定律:d =I ×④电磁感应定律:ε感= –动生电动势:感生电动势: ( i为感生电场)乘⑤欧姆定律:U=IR( =ρ )其中ρ为电导率3. 乘定理(麦克斯韦方程组)电场的高斯定理: ( 静是有源场)( 感是无源场)磁场的高斯定理: ( 稳是无源场)( 感是无源场)电场的环路定理: (静电场无旋)(感生电场有旋;变化的磁场产生感生电场)安培环路定理: (稳恒磁场有旋)(变化的电场产生感生磁场)4. 常用公式①无限长载流导线:螺线管:B=nμ0I② 带电粒子在匀强磁场中:半径周期磁矩在匀强磁场中:受力F=0;受力矩③电容器储能:Wc= CU2 乘电场能量密度:ωe= ε0E2 电磁场能量密度:ω= ε0E2+ B2乘电感储能:WL= LI2 乘磁场能量密度:ωB= B2 电磁场能流密度:S=ωV④ 乘电磁波:C= =3.0×108m/s 在介质中V=C/n,频率f=ν=波动学大学物理电磁学公式总结2概念(2113定义和相关公式)1. 位置矢量:,其5261在直角坐标系中: ; 角位置:4102θ16532. 速度:平均速度:速率: ( )角速度:角速度与速度的关系:V=rω3. 加速度:或平均加速度:角加速度:在自然坐标系中其中(=rβ),(=r2 ω)4. 力: =m (或 = ) 力矩: (大小:M=rFcosθ方向:右手螺旋法则)5. 动量:,角动量: (大小:L=rmvcosθ方向:右手螺旋法则)6. 冲量:(= Δt);功: (气体对外做功:A=∫PdV)mg(重力) → mgh-kx(弹性力) → kx2/2F= (万有引力) → =Ep(静电力) →7. 动能:mV2/28. 势能:A保= –ΔEp不同相互作用力势能形式不同且零点选择不同其形式不同,在默认势能零点的情况下:机械能:E=EK+EP9. 热量:其中:摩尔热容量C与过程有关,等容热容量Cv与等压热容量Cp之间的关系为:Cp= Cv+R10. 压强:11. 分子平均平动能: ;理想气体内能:12. 麦克斯韦速率分布函数: (意义:在V附近单位速度间隔内的分子数所占比率)13. 平均速率:方均根速率: ;最可几速率:14. 熵:S=KlnΩ(Ω为热力学几率,即:一种宏观态包含的微观态数)15. 电场强度: = /q0 (对点电荷: )16. 电势: (对点电荷 );电势能:Wa=qUa(A= –ΔW)17. 电容:C=Q/U ;电容器储能:W=CU2/2;电场能量密度ωe=ε0E2/218. 磁感应强度:大小,B=Fmax/qv(T);方向,小磁针指向(S→N)。
电磁学主要公式定理定律
电磁学主要公式、定理、定律 一. 电场1.库仑定律:212q q F Kr =2.电场强度定义式:F E q=3.点电荷电场强度决定式:2Q E K r = 4.电势定义式:PE qϕ=5.两点间电势差:AB A B U ϕϕ=-6.场强与电势差的关系式:AB U Ed = (只适用于匀强电场)7.电场力移动电荷做功:AB W U q =⋅8平行板电容器电容定义式:QC U =(U 就是电势差AB U ) 9.平行板电容器电容决定式:4SC Kdεπ= ( 式中,ε为介质的介电常数,S 为两板正对面积,K 为静电力恒量,d 为板间距离)10.带电粒子在匀强电场中被加速:212mv qU =11.带电粒子在匀强电场中偏转:2202qL Uy mv d = (U 为两板间电压) 二.恒定电流1.电流强度定义式:qI t= 2.电流微观表达式:I nqSv = (其中n 为单位体积内的自由电荷数,q 为每个电荷的电量值,S 为导体的横截面积,v 为 自由电荷定向移动速率。
) 3.电动势定义式:WE q=(W 为非静电力移送电荷做的功,q 为被移送的电荷量) 4.导线电阻决定式:LR Sρ= ( 式中ρ为电阻率,由导线材料、温度决定,L 为导线长,S为导线横截面积。
)5.欧姆定律:UI R=(只适用于金属导电和电解液导电的纯电阻电路,对含电动机、电解槽 的非纯电阻电路,气体导电和半导体导电不适用) 6.串联电路: (1) 总电阻 12......R R R =++总 (2) 电流关系 123.....I I I I ===(3) 电压关系 123......U U U U =++总 7.并联电路:(1)总电阻1231111......R R R R =+++总 ①只有两个电阻并联时用 1212R R R R R =+总 更方便快捷;②若是n 个相同的电阻并联。
可用1=R R n总(2) 电流关系 123=......I I I I +++总 (3) 电压关系 123=......U U U U ===总8.电功的定义式:W qU UIt == ( 在纯电阻电路中 ,22U W UIt I Rt t R===) 9.电功率定义式:W P UI t== ( 在纯电阻电路中 , 22U P I R R ==)10.焦耳定律(电热计算式):2Q I Rt = 11.电热与电功的关系 :(1)在纯电电路中,W Q =(2)在非纯电阻电路中 W qU UIt == >Q 2I Rt = 12.电功率定义式:WP t=13.电功率通用式:W P t= 和 P UI = (对纯电阻电路,22W U P UI I R t R ====)14.闭合电路欧姆定律:EI R r=+ (变形:E U U =+外内 ;E IR Ir =+; E U Ir =+外) 三. 磁场1. 磁感应强度定义式:FB IL= (F 是通电直导线受到磁场的作用力---安培力, I 和 L 分别为通电电流值和导线长。
电磁场与电磁波公式整理
电磁场与电磁波公式整理第一章A:矢量恒等式()()()A B C B C A C A B ×=×=×i i i ()()()A B C B A C C A B ××=−i i ()uv u v v u ∇=∇+∇ ()uA u A A u ∇=∇+∇i()0U ∇×∇=()0A ∇∇×=i 2()U U ∇∇=∇i2()()A A A ∇×∇×=∇∇−∇iVSAdV A dS ∇=∫∫i iVCAdS A dl ∇×=∫∫in V S AdV AdS e ∇×=×∫∫ n V S udV udS e ∇=∫∫n S C udS udl e ×∇=∫∫ 2)V S u v u dV udSnv v ∂+∇∇=∇∂∫∫i22(()VSuu v v dV uv dS n nv u ∂∂−=−∇∇∂∂∫∫ B:三种坐标系的积分元以及梯度、散度、旋度、和拉普拉斯运算⑴直角坐标系位置矢量微分元:x y z dr dx dy dz e e e =++面积元:,,x y z d dydz d dxdz d dxdy s s s === 体积元:dv dxdydz = x y z u u uu e e e x y z ∂∂∂∇=++∂∂∂ y x z A A A A x y z∇=∂∂∂++∂∂∂i x yz A x y z A A A x yz e ee∂∂∂∇×=2222222u u u u x y z ∇∂∂∂=++∂∂∂()uA u A u A ∇×=∇×+∇×()A B B A A B∇×=∇×−∇×i i i ()()()A B A B B A A B B A ∇=∇×+∇+×∇×+×∇×i i i ()()()()A B A B B A B A A B ∇××=∇−∇+∇−∇i i i i⑵圆柱坐标系位置矢量微分元:z dr d d dz e e e ρφρρφ=++面积元:,,z d d dz d d dz d d d s s s ρφρφρρρφ=== 体积元:dv d d dz ρρφ=z u u u u z e e e ρφρρφ∂∂∂∇=++∂∂∂ ()()()11A A A z A z ρρρφρρρφ∂∂∂∇=++∂∂∂i1z e e e A z A A Az ρφρρφρρφ∂∂∂∇×=∂∂∂22222211()u u u u z ρρρρρφ∂∂∂∂=++∇∂∂∂∂⑶球坐标系位置矢量微分元:sin r r r dr dr d d e e e θφθθφ=++面积元:2sin ,sin ,r d d d d r drd d rdrd r s s s θφθθφθφθ=== 体积元:2sin dv drd d r θθφ=1sin ru u u u r r r e e e θφθθφ∂∂∂∇=++∂∂∂22111()(sin )sin sin r A r r r r rA r A A φθθθθθφ∂∂∂∇=++∂∂∂i2sin 1sin sin re re r e A r ArrA r A r θφθθφθθθφ∂∂∂∇×=∂∂∂ 22222222111()(sin sin sin u u uu r r r r r r θθθθφθ∇∂∂∂∂∂=++∂∂∂∂∂ C:几个定理散度定理:v s FdV F dS ∇=∫∫i i斯托克斯定理:s c F dS F dl∇×=∫∫i i亥姆霍茨定理:()()()F r u r A r =−∇+∇×格林定理:n V S FdV F dS e ∇=∫∫i i高斯定理和环路定理:第二章表一:电荷和电流的三种密度表二:电场和磁场表四:介质中的电(磁)场感应强度:电磁感应定律S in B dS d d dt dt ϕε=−=−∫i in C in E dl ε=∫i S C S d Bd dt tE dl ∂∂=−∫∫i i 积分形式 1.如果回路静止则有:S C S Bd tE dl ∂∂=−∫∫i BE t∂∇×=−∂ 2.导体以速度v 在磁场中运动 : ()CC v B dl E dl ×=∫∫i i3.导体在时变场中运动:()CS S B d tC v B dl E dl ∂∂−×=+∫∫∫i i i表五:麦克斯韦方程组:。
电磁场与电磁波公式总结
标量场的梯度:z y x z y x e e e ∂∂+∂∂+∂∂=∇ϕϕϕϕTip :3'r r 'r r 'r r 1---=-∇方向导数P4库仑定律 q 电荷受力:3020R 4'R 4'F Rqq R q q πεπε==︒高斯定理:⎰=⋅S QdS E 0ε(Q:S 面内电量的代数和)E ερ=⋅∇0E =⨯∇ 设c 为一常数,u 和v 为数量场,很容易证明下面梯度运算法则的成立。
.︒==∇R R R R 31R R R -=∇ R 为空间两点(x,y,z)与(x’,y’,z’)的距离电位: ϕ-∇=E 'r r 4)(0-=πεϕq r (对于位于源点r ′处的点电荷q ,其在r 处产生的电位) ⎰⋅=-00l E )()(P P d P P ϕϕ(Up-p0,看清上下限)⎰⋅=0)(P P dl E P ϕ ⎰∞⋅=P dl E P )(ϕ02ερϕ-=∇ 【泊松方程】 02=∇ϕ【拉普拉斯方程】电偶极子:电偶极矩 l p q =(矢量)⎪⎪⎭⎫ ⎝⎛-=210114r r q πεϕ304r p r πε⋅=(电偶极子在空间任意点P 的电位)p30 极化介质产生的电位:'')'r r ()'(P 41)(30dV r r r r V ⋅--⋅=⎰πεϕ⎰⎰-⋅∇-+-⋅=V S dV r r dS r r '|'|P 41'|'|n P 4100πεπε由上式可以看出等效电荷:nP P ⋅=⋅-∇=SP P ρρ 电位移矢量: P E D 0+=ε0E D =⨯∇=⋅∇ρ (自由电荷)⎰⎰=⋅=⋅lS d Qd 0l E S D ερϕ-=∇2(均匀介质中的泊松方程) 静电场的边界条件: S n n D D ρ=-12t t E E 12=21ϕϕ=S nn ρϕεϕε=∂∂-∂∂2211 tanθ1tanθ2=ε1ε2P36电容相关p36电场能量: dV r r W V e )()(21ϕρ⎰=⎰⋅=V dV D E 21 能量密度: 221D E 21E w e ε=⋅= 电容器静电能:p42第三章n dSdI n S I J S =∆∆=→∆0lim n dl dI n l I J S S =∆∆=→∆0lim 电荷守恒p52:⎰⎰-=-=⋅V S dV dt d dt dq dS J ρ 欧姆定律:E J σ= 焦耳定律:E J p ⋅= 恒定电流场基本方程及边界条件p5500=⨯∇=⋅∇E J ⎰⎰=⋅=⋅l S dl E dS J 00 0)(2=-∇=-∇⋅∇=⋅∇ϕϕE0)(0)(1212=-∙=-⨯J J n E E n 或t t nn E E J J 2121==2121tan tan σσθθ= 当σ1>>σ2,即第一种媒质为良导体时,第二种媒质为不良导体时,只要θ1≠π/2, θ2≈0,即在不良导体中,电力线近似地与界面垂直。
电磁场与电磁波课程知识点总结和公式
电磁场与电磁波课程知识点总结与主要公式1 麦克斯韦方程组的理解和掌握 (1)麦克斯韦方程组⎰⎰⎰⎰⎰⎰=∙=∙∇=∙=∙∇∙∂∂-=∙∂∂-=⨯∇∙∂∂+=∙∂∂+=⨯∇ss l s l s s d B B Q s d D D s d t B l d E t B E s d tD J l d H t D J H 0)(ρ本构关系: E J HB EDσμε===(2)静态场时的麦克斯韦方程组(场与时间t 无关)⎰⎰⎰⎰=∙=∙∇=∙=∙∇=∙=⨯∇=∙=⨯∇ss l l s d B B Qs d D D l d E E Il d H J H 0000ρ2 边界条件(1)一般情况的边界条件nn n sT t t sn s n n sn tt n B B B B a J H H J H H a D D D D a E E E E a 21212121212121210)())(0)==-∙=-=-⨯=-=-∙==-⨯((ρρ(2)介质界面边界条件(ρs = 0 J s = 0)nn n t t n n n n t t n B B B B a H H H H a D D D D a E E E E a 21212121212121210)(0)0)(0)==-∙==-⨯==-∙==-⨯(((1)基本方程0022=∙==∇-=∇=∙=∙∇=∙=⨯∇⎰⎰⎰A Apsl ld E Qs d D D l d E E ϕϕϕερϕρ本构关系: E Dε=(2)解题思路● 对称问题(球对称、轴对称、面对称)使用高斯定理或解电位方程(注意边界条件的使用)。
● 假设电荷Q ——> 计算电场强度E ——> 计算电位φ ——> 计算能量ωe =εE 2/2或者电容(C=Q/φ)。
(3)典型问题● 导体球(包括实心球、空心球、多层介质)的电场、电位计算; ● 长直导体柱的电场、电位计算;● 平行导体板(包括双导体板、单导体板)的电场、电位计算; ● 电荷导线环的电场、电位计算; ● 电容和能量的计算。
电磁场与电磁波必记公式
电磁场与电磁波考前必背公式【整理于2014年4月—5月】第一章 矢量分析()0cos cos cos ,cos cos cos 1M lx y zϕϕϕϕαβγαβγ∂∂∂∂=++∂∂∂∂、标量场的方向导数其中,,:l 为沿方向的方向余弦。
【是标量】()x y z e e e x y zϕϕϕϕ∂∂∂=++∂∂∂2、标量直角坐标场的梯度系下的表:grad 示方法; =.=x y z e e e x y zϕϕ∂∂∂++∂∇∂∇∂grad ,其中 【是矢量】3l l ϕϕ∂=∇∂方向导数与梯度的关系:、。
s=y x zA A A x y zA dS A A ψ∂∂∂++∂∂∂=∇=⎰4、矢量场的通量:;矢量场的散度:div 。
【均为标量】()sVAdV A d S ∇=⎰⎰5、散度定理(也称高斯定理):把体积分与面积分联系起来。
=xy y z lx y zzx e e e e A A A dl A A A y A A x y z z ⎛⎫=∇⨯∂== ⎪⎝⎭∂∂∂∂-∂∂∂∂∂⎰6、矢量场的环量;矢量场的旋度:rot z y z y x x e e z x x y A A A A ⎛⎫⎛⎫++∂∂∂∂--∂∂ ⎪ ⎪⎝∂⎝∂⎭⎭。
【是矢量】 ()slA d S A dl∇⨯=⎰⎰斯托克斯定理:(把线积分与面积分联系7、起来)。
8、根据矢量场的亥姆霍兹定理,在无界空间中,矢量场可由其散度和旋度唯一确定。
()() 00A ϕ∇∇⨯≡∇⨯∇≡9、旋度的散度恒等于零,即;梯度的旋度恒等于零矢量,即。
第二章 静电场()()0ss10;00lQE d S E QE dl E E d S E ρεεε=∇==∇⨯==∇⨯=⎰⎰⎰、静电场的高斯定理:积分形式;微分形式。
电场强度的环量与散度静电场是有源(通量源)无旋场,电荷:。
是电其中,说明场的源。
以上四个方程统称为真空中静电场的基本方程。
()()()()22002121=0=03004.5=Sl r n n s n n s E Laplace D d S q D E E dl D E D D D D ϕϕρϕϕρϕερεεερρ=-∇∇=-∇⎫=⎫⎪∇=⎪⎬⎬∇⨯==⎪⎪⎭⎭==-=⎰⎰2、电场强度E 与电位的关系:电位的微分方程为:泊松方程;当时,方程、介质中静电场的方程:微分形式,积分形式、对于各向同性介质有:、在不同介质面上静电场的边界条件为:或()21=0.t t E E =,第三章 恒定电流的电场和磁场()()()00010.2.0030,SSl J J d S J E J E B d S B B J B dl I B B J σσμμμ∇===⎫=⎫⎪∇=⎪⎬⎬∇⨯==⎪⎪⎭⎭∇=∇⨯=⎰⎰⎰、恒定电流的电流连续性方程:=0,其积分形式为:、欧姆定律的微分形式:是电导率;焦耳定律的微分形式:p 、真空中恒定磁场的基本方程:积分形式,微分形式其中说明恒定磁场是无源散()004.5,.r lBH M B H H H dl I H J μμμμ===∇⨯=⎰度源有旋场,旋涡源是电流。
大学物理电磁学公式总结汇总
大学物理电磁学公式总结汇总电磁学是物理学中非常重要的一个分支领域,它探讨电和磁之间相互关系的基本规律以及物质对电和磁的响应。
它涉及的公式非常多,因此我们需要对这些公式进行整理和总结,以便更好地掌握电磁学的知识。
1. 库仑定律库仑定律描述了电荷之间的相互作用力。
可以用以下公式表示:F = kQ1Q2 / r^2其中,F表示电荷之间的力;Q1,Q2是电荷的大小;r是两个电荷之间的距离;k是一个常数,通常被称为库仑常数。
2. 高斯定理高斯定理用于计算电荷分布的电场,它表明,如果电荷不均匀地分布在一个封闭的表面上,那么通过这个表面上任意一点的电通量正比于在这个表面内部包含的电荷的数量。
可以用以下公式表示:∫E·dA=Q/ε0其中,E表示电场;dA表示一个微小的面积元素;∫E·dA 表示电通量;Q表示包含在表面内的电荷总量;ε0是真空介电常数。
3. 法拉第定律法拉第定律描述了磁场和电场之间相互作用的基本规律,它表明一个在变化的磁场会产生一个沿着闭合电路方向的电动势。
公式可以表示为:ε = -dΦ/dt其中,ε表示电动势;Φ表示磁通量;t表示时间。
4. 安培定理安培定理描述了电流周围的磁场,它表明,一个带电的物体产生的磁场是其电流周围产生的环路的积分。
可以用以下公式表示:∮B·dL = μ0I其中,B表示磁场;L表示电流周围的环路;μ0是真空磁导率;I表示通过环路的电流。
5. 洛伦兹力洛伦兹力表明电荷在磁场中的受力情况,它可以表示为:F = q(E + v×B)其中,F表示力;q表示电荷;E表示电场强度;v表示电荷运动的速度;B表示磁场强度。
6. 磁通连续性定理磁通连续性定理描述了磁场的流线在连续的条件下不能消失,可以用以下公式表示:∇·B = 0其中,∇表示矢量的梯度;B表示磁场。
7. 矢势公式矢势公式描述了磁场可以表示为一个矢势的旋度,可以用以下公式表示:B = ∇×A其中,B表示磁场;A表示矢势。
电磁学主要公式、定理、定律
电磁学主要公式、定理、定律一. 电场1.库仑定律:212q q F K r =2.电场强度定义式:F E q =3.点电荷电场强度决定式:2Q E Kr = 4.电势定义式:P E q ϕ= 5.两点间电势差:AB A B U ϕϕ=-6.场强与电势差的关系式:AB U Ed =〔只适用于匀强电场〕7.电场力移动电荷做功:AB W U q =⋅8平行板电容器电容定义式:Q C U=<U 就是电势差AB U > 9.平行板电容器电容决定式:4S C Kdεπ=〔式中,ε为介质的介电常数,S 为两板正对面积,K 为静电力恒量,d 为板间距离〕10.带电粒子在匀强电场中被加速:212mv qU = 11.带电粒子在匀强电场中偏转:2202qL U y mv d =〔U 为两板间电压〕 二.恒定电流 1.电流强度定义式:q I t = 2.电流微观表达式:I nqSv = 〔其中n 为单位体积内的自由电荷数,q 为每个电荷的电量值,S 为导体的横截面积,v 为自由电荷定向移动速率.〕3.电动势定义式:W E q=〔W 为非静电力移送电荷做的功,q 为被移送的电荷量〕4.导线电阻决定式:L R Sρ=<式中ρ为电阻率,由导线材料、温度决定,L 为导线长,S 为导线横截面积.>5.欧姆定律:U I R=<只适用于金属导电和电解液导电的纯电阻电路,对含电动机、电解槽 的非纯电阻电路,气体导电和半导体导电不适用〕6.串联电路: 〔1〕 总电阻 12......R R R =++总〔2〕电流关系123.....I I I I ===〔3〕电压关系123......U U U U =++总7.并联电路:〔1〕总电阻 1231111......R R R R =+++总 ①只有两个电阻并联时用1212R R R R R =+总 更方便快捷; ②若是n 个相同的电阻并联.可用1=R R n总 〔2〕 电流关系123=......I I I I +++总<3>电压关系123=......U U U U ===总8.电功的定义式:W qU UIt ==〔在纯电阻电路中 ,22U W UIt I Rt t R ===〕 9.电功率定义式:W P UI t==〔 在纯电阻电路中 , 22U P I R R ==〕 10.焦耳定律<电热计算式>:2Q I Rt =11.电热与电功的关系 :〔1〕在纯电电路中,W Q =〔2〕在非纯电阻电路中 W qU UIt ==>Q 2I Rt =12.电功率定义式:W P t= 13.电功率通用式:W P t=和P UI =〔对纯电阻电路,22W U P UI I R t R ====〕 14.闭合电路欧姆定律:E I R r=+〔变形:E U U =+外内;E IR Ir =+;E U Ir =+外〕三. 磁场1. 磁感应强度定义式:F B IL=〔F 是通电直导线受到磁场的作用力---安培力, I 和 L 分别为通电电流值和导线长.〕2. 通电导线在磁场中受得到的力---安培力计算式:F BIL =<B I ⊥>3.磁通量:=BS φ<B S ⊥>4.运动电荷在磁场中受到的力---洛伦兹力:〔1〕大小:F Bqv =〔B v ⊥〕〔2〕方向: 由"左手定则〞判断5. 带点粒子在匀强磁场中的运动:〔1〕v ∥ B 粒子不受力,保持匀速前进〔2〕v ⊥B 粒子受力,但是力不改变粒子速率,粒子做匀速圆周运动: 2v Bqv m R= ① 半径 mv R Bq =② 周期 2m T Bq π=四. 电磁感应1. 产生感应电流的条件:只要穿过闭合闭合导体回路的磁通量发生变化,闭合导体回路中就有感应电流产生,即:〔1〕 电路要闭合;〔2〕 穿过闭合电路的磁通量要发上变化;〔3〕 电路不闭合,虽然没有电流,但是有感应电动势E 产生,产生感应电动势的那部分导体相当于电源.2. 感应电流方向的判断方法:〔1〕 楞次定律:感应电流的磁场总要阻碍引起感应电流的磁通量的变化.① 此方法最适合于闭合导体磁通量变化的情况,即"感生电动势〞②对"阻碍〞的理解—增反减同,来拒去留,增缩减扩.〔2〕 右手定则① 此方法最适合于有"明显切割〞的情况,即"动生电动势〞3.感应电动势大小的计算——法拉第电磁感应定律〔1〕 文字表达:感应电动势的大小,跟穿过这一电路磁通量的变化率成正比.〔2〕计算公式: ①E n tφ∆=∆〔多用于回路磁通量变化时,求E 的平均值也用它〕 ②E=BLv 〔B L v 三者要互相垂直. 最适用于导线切割磁力线运动情况.求E 的瞬时值也用它〕4. 通过导体截面电荷量的计算式:q n R r φ=+〔注意,电荷量与时间无关〕5.特殊的电磁感应现象:〔1〕互感:两个彼此绝缘的电路的电磁感应现象.〔2〕自感:自身电流发生变化而产生的电磁感应现象.〔自感系数L 由线圈的匝数、截面、长短和铁芯决定〕〔3〕 涡流:块状金属在变化的磁场中产生的环状感应电流.五. 交流电1. 正弦交流电的产生:矩形线圈在匀强磁场中绕垂直于磁场方向的轴匀角速度转动. 〔1〕 中性面位置,B S ⊥, φ最大,0t φ=,0E =〔2〕 转过900后,B ∥S ,0φ=, E 为最大值:m E nBS ω=2.交流电的几个值:〔1〕最大值〔也叫峰值〕表达式m E nBS ω=〔2〕瞬时值表达式:<从中性面开始计时>〔3〕有效值〔交流电表所指,电器所标,平时所说,都指"有效值〞 ;计算交流电做功,电功率,电热,也都要用"有效值〞.〕注意:这种关系只适用于正弦交流电!〔4〕平均值:E N t φ=<绝对不能用122E E +> 〔5〕通过导体截面的电荷量: q N R r φ=+3. 交流电路中的电容和电感〔1〕 电容 〔在交流电路中有容抗〕——隔直通交;阻低通高;〔2〕 电感 〔在交流电路中有感抗〕——通直阻交;通低阻高;4. 理想变压器相关公式:〔1〕1122U n U n = 〔2〕1221I n I n = ① 该式只适用于只有一个副线圈的情况;②若有多个副线圈, 其计算式为:123.....P P P P === 即112233.......n n I U I U I U I U =+++〔3〕=P P 入出〔4〕输电功率损失 2P I r =〔r 为输电线总电阻〕〔5〕 输电电压损失 U I =r 〔r 为输电线总电阻〕。
(完整word版)电磁场与电磁波课程知识点总结和公式
电磁场与电磁波课程知识点总结与主要公式1 麦克斯韦方程组的理解和掌握 (1)麦克斯韦方程组⎰⎰⎰⎰⎰⎰=•=•∇=•=•∇•∂∂-=•∂∂-=⨯∇•∂∂+=•∂∂+=⨯∇ss l s l s s d B B Q s d D D s d t B l d E t B E s d tD J l d H t D J H 0)(ϖϖϖϖϖϖϖϖϖϖϖϖϖϖϖϖϖϖϖϖρ本构关系: E J HB ED ϖϖϖϖϖϖσμε===(2)静态场时的麦克斯韦方程组(场与时间t 无关)⎰⎰⎰⎰=•=•∇=•=•∇=•=⨯∇=•=⨯∇ss l l s d B B Qs d D D l d E E Il d H J H 0000ϖϖϖϖϖϖϖϖϖϖϖϖϖρ2 边界条件(1)一般情况的边界条件nn n sT t t s n s n n sn tt n B B B B a J H H J H H a D D D D a E E E E a 21212121212121210)())(0)==-•=-=-⨯=-=-•==-⨯ϖϖϖϖϖϖϖϖϖϖϖϖϖ((ρρ(2)介质界面边界条件(ρs = 0 J s = 0)nn n t t n n n n t t n B B B B a H H H H a D D D D a E E E E a 21212121212121210)(0)0)(0)==-•==-⨯==-•==-⨯ϖϖϖϖϖϖϖϖϖϖϖϖ(((1)基本方程0022=•==∇-=∇=•=•∇=•=⨯∇⎰⎰⎰A Apsl ld E Qs d D D l d E E ϕϕϕερϕρϖϖϖϖϖϖϖϖ本构关系: E D ϖϖε=(2)解题思路● 对称问题(球对称、轴对称、面对称)使用高斯定理或解电位方程(注意边界条件的使用)。
● 假设电荷Q ——> 计算电场强度E ——> 计算电位φ ——> 计算能量ωe =εE 2/2或者电容(C=Q/φ)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.复数形式 D E, B H, J E
三、复电容率或复介电常数
若定义
c
j
则对于导电媒质的无源区域, 麦克斯韦第一方程简化为
H jc E
四、边值关系
1.一般形式
en (H1 H2 ) JS en (E1 E2 ) 0 en (B1 B2 ) 0
真空无色散,群速度和相速度都不是频率的函数,且都等
于真空光速c。
八、均匀平面波的反射与折射
ex
Ex
ey
E
y
e
jkz
式中 E x与 E y 幅角不等(否则仍属线极化)
3.沿任意方向传播的线极化均匀平面波
E E 0 e jk r
但要求复矢量
E0
k,其中k
kek
七、无限大均匀各向同性媒质中的均匀平面波
4.均匀平面电磁波的磁场表达式
H
1
ek
E
H 的表达式也可由麦克斯韦第二方程导出,而且这是 一种普适的方法。
穿透深度: 1 1 f
电导率σ越大,穿透深度δ越小,但未必说明媒质对 电磁波的吸收越严重。理想导体( σ=∞)的穿透深度 δ=0,然而它恰恰是一种特殊的无耗媒质。
8.相速度与群速度: 相速
群速度(已调制波包络的速度) vg
d d
色散越严重,群速度具有物理意义的频率范围就越窄。
dS
d dt
V
(
1 2
Ε
D 1H 2
B) dV
V Ε
J dV
流入封闭面的电磁功率=体积V内总能量的增加率+体积V
内的焦耳损耗功率
六、谐变场量的复数表示法
1.由复数形式导出瞬时表达式
E(r, t) Re[E(r )e jt ]
E r ex Ex ey Ey ez Ez
2
y1
七、无限大均匀各向同性媒质中的均匀平面波
1.关于相位常数k和波阻抗η
k 2 ,
2.理想媒质中的均匀平面波
1)线极化: E ex E x e jkz
2)圆极化: E ex jey E 0 e jkz
3)椭圆极化:E
两种媒质为理想介质
五、坡印亭矢量与坡印亭定理
电能密度
we
=
1E 2
D
磁能密度
wm
1H 2
B
体积V内的总电磁能 W (1 E D 1 B H)dV
V2
2
能流密度(坡印亭矢量) S = Ε H
焦耳损耗功率密度 P J E E2
坡印亭定理
S (Ε H)
电磁场与电磁波
——必须牢记的若干公 式和定理
一、麦克斯韦方程组
1.微分形式 H J D , E B , B 0, D =
t
t
2.复数形式
H J j E, E j H, H 0, E
二、本构关系式
1.一般形式 D E, B H, J E
ex Ex (r )e jx (r ) ey E y (r )e jy (r ) ez Ez (r )e jz (r )
2.由瞬时形式导出复数形式
E r,t exE0 cost eyE1 sint
E
r
ex E0e j
e E e j
5.导电媒质中的线极化均匀平面波
E ex E x eze j z 其中α、β分别为衰减常数和相移常数,其表达式冗
长,不必记忆。
6.媒质的分类: 若 100,则为良导电媒质;
若 0.01,则为低损耗媒质;
七、无限大均匀各向同性媒质中的均匀平面波
7.良导电媒质中的趋肤效应
en (D1 D2 ) S
注意:分界面法向单位矢量由媒质2指向媒质1。
2.特殊形式
en D S
en B 0 en E 0 en H JS
媒质2为理想导体
en (D1 D2 ) 0 en (B1 B2 ) 0 en (E1 E2 ) 0 en (H1 H2 ) 0