研究生数值分析试卷
研究生数值分析试卷.docx
2005-2006学年第一学期硕士研究生期末考试试题(A 卷)科目名称:数值分析学生所在院: _______ 学号: _________ 姓名: _______ 注意:所有的答题内容必须答在答题纸上,凡答在试题或草稿纸上的一律无效。
一、 (15分)设求方程12-3x + 2cosx = 0根的迭代法(1) 证明对0兀0 w /?,均有lim 林,其中T 为方程的根.kT8 (2) 此迭代法收敛阶是多少?证明你的结论.二、 (12分)讨论分别用Jacobi 迭代法和Gauss-Seidel 迭代法求解下列方程组的 收敛性。
x } + 2X 2 - 2X 3 = 1,v 兀]+ 兀2 +兀3 = _1,2兀]+ 2兀2 +兀3 = °・a 0、a 0 ,说明对任意实数。
工0,方程组AX=b 都是0 Q,非病态的。
(范数用||・|L )四、(15分)已知y = f (x )的数据如下:求/(%)的Hermite 插值多项式H 3 (%),并给出截断误差/?(兀)=f (x ) - H 3 (x )。
五、(10分)在某个低温过程屮,函数y 依赖丁•温度兀(°C )的试验数据为已知经验公式的形式为『=仮+方兀2 ,试用最小二乘法求出a , b o 六、(12分)确定常数a, b 的值,使积分(2a 三、(8分)若矩阵A = 0J(a, /?) = !] [ax2取得最小值。
七、(14分)已知Legendre (勒让德)止交多项式厶(x )有递推关系式:'L 曲(兀)=^77 心(兀)一 -—Ln-1(兀)(斤=1, 2,…)试确定两点的高斯一勒让德(G —L )求积公式£ f (x )djc = £ f\x }) + A 2 .f (兀2)的求积系数和节点,并用此公式近似计算积分go ) = y ()儿+1 =儿+力(^心+-^2) k\=f (Xn ,yJ 忍=fg + h,y n +hk {)(1) 验证它是二阶方法; (2) 确定此单步法的绝对稳定域。
研究生数值分析考试
工科研究生《数值分析》复习练习一.填空(共4分,每空44分)(1)设i x i =(n i ,,2,1,0⋯=)插值结点,)(x l i 是相应的n 次Lagrange 插值基函数,则()ni i l x ==∑(),=∑=ni i i x l x 0)(().(2)用简单迭代法求方程3()10f x x x =−−=的正实根,迭代格式()至少是二阶收敛的。
(3)求解非线性方程01=−x xe 的牛顿迭代公式是()(4)在所有首项系数为1的n 次多项式中,首项系数为1的n 次()多项式在[-1,1]上与零的平方逼近误差最小。
(5)设211314122A −⎛⎞⎜⎟=⎜⎟⎜⎟−⎝⎠,则1||||A =(),||||A ∞=().(6)32()272f x x x =−+,则[1,2,3,4]f =(),[1,1,1]f =()(7)n 次Chebyshev 多项式在[-1,1]上的零点为()(8)插值型求积公式0()()nbk k ak A f x f x dx =≈∑∫至少具有()次代数精度,求积系数之和0nk k A ==∑(),而Gauss 求积公式至少具有()次代数精度。
(9)初值问题'24,(0)2,y y x y =−−=,则显式Euler 格式,隐式Euler 格式和梯形格式分别为(),(),()。
(10)已知数据对),,2,1)(,(n k y x k k ⋯=,用直线c bx ax y ++=2拟合这n 个点,则参数c b a ,,满足的法方程组是()(11)第一种幂法迭代格式为()二(10分)求一个次数不高于4次的代数多项式()p x ,使它满足(0)'(0)0,(1)'(1)1,(2)1p p p p p =====,并写出其余项表达式。
(利用Newton 插值公式,制作带重节点的差商表)三(10分)证明:区间[a,b]上带权()x ρ的正交多项式()n g x 的零点都是实数,相异的,且全部落在开区间(,)a b内部。
研究生《数值分析》试卷(带答案)
2009级研究生《数值分析》试卷一.(6分) 已知描述某实际问题的数学模型为xy y x y x u 223),(+=,其中,y x ,由统计方法得到,分别为4,2==y x,统计方法的误差限为0.01,试求出u 的误差限)(u ε和相对误差限)(u r ε.解:)(23)(6)(),()(),()(222y x y x x x y xy y y y x u x x y x u u εεεεε⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛-=∂∂+∂∂≈ 6.016.044.001.0)412(01.0)448(=+=⨯++⨯-= 0.010714566.03)()(22=≈+=xy y x u u r εε 二.(6分) 已知函数13)(3+=x x f 计算函数)(x f 的2阶均差]2,1,0[f ,和4阶均差]4,3,2,1,0[f .解:21142512)1()2(]2,1[,311401)0()1(]1,0[=-=--==-=--=f f f f f f9232102]1,0[]2,1[]2,1,0[=-=--=f f f ,0!4)(]4,3,2,1,0[)4(==ξff 三.(6分)试确定求积公式: )]1(')0('[121)]1()0([21)(1f f f f dx x f -++≈⎰的代数精度.解:记⎰=10)(dx x f I )]1(')0('[121)]1()0([21f f f f I n -++= 1)(=x f 时:1110==⎰dx I1]00[121]2[21=-+=n I x x f =)(时:2110==⎰xdx I 21]11[121]1[21=-+=n I2)(x x f =时:31102==⎰dx x I 31]20[121]1[21=-+=n I3)(x x f =时:41103==⎰dx x I 41]30[121]1[21=-+=n I 4)(x x f =时:51104==⎰dx x I 61]40[121]1[21=-+=n I求积公式)]1(')0('[121)]1()0([21)(1f f f f dx x f -++≈⎰具有3次代数精度. 四.(12分) 已知函数122)(23-++=x x x x f 定义在区间[-1,1]上,在空间},,1{)(2x x Span x =Φ上求函数)(x f 的最佳平方逼近多项式.其中,权函数1)(=x ρ,154))(),((,1532))(),((,34))(),((210-==-=x x f x x f x x f ϕϕϕ.解:0))(),(())(),((21))(),((1101101100=====⎰⎰--dx x x x x x dx x x ϕϕϕϕϕϕ32))(),(())(),(())(),((112110220====⎰-dx x x x x x x x ϕϕϕϕϕϕ0))(),(())(),((1131221===⎰-dx x x x x x ϕϕϕϕ 52))(),((11422==⎰-dx x x x ϕϕ解方程组⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛154153234520320320320221a a a 得⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛15161210a a a 则)(x f 的最佳平方逼近多项式为:1516)(2-+=x x x p 五.(16分) 设函数)(x f 满足表中条件:(1) 填写均差计算表((2) 分别求出满足条件22k k k k 的 2次 Lagrange 和 Newton 差值多项式.(3) 求出一个四次插值多项式)(4x H ,使其满足表中所有条件.并用多项式降幂形式表示. 解:12)12)(02()1)(0()20)(10()2)(1()(22+-=----+----=x x x x x x x L12)1)(0(1)0)(1(1)(22+-=--+--+=x x x x x x N 令)2)(1()(12)(24--+++-=x x x b ax x x x H则)2()()2)(1)(()2)(1(22)('4-++--++--+-=x x b ax x x b ax x x ax x x H)1()(-++x x b ax由 ⎩⎨⎧-=+=+⇒⎩⎨⎧=-++-=-=-++-=1220)12(2)2(24)2('2)21)((22)1('44b a b a b a H b a H ,解得 5,3=-=b a 因此1820143)2)(1()53(12)(23424++-+-=--+-++-=x x x x x x x x x x x H 六.(16分)(1). 用Romberg 方法计算⎰31dx x ,将计算结果填入下表(*号处不填).(2). 试确定三点 Gauss-Legender 求积公式⎰∑-=≈110)()(k k k x f A dx x f 的Gauss 点k x 与系数k A ,并用三点 Gauss-Legender 求积公式计算积分: ⎰31dx x .解:过点(1,-1)和点(3,1)作直线得 y t x +=所以积分⎰⎰-+=11312dt t dx x由三次Legendre 多项式 )35(21)(33x x x p -=得得Gauss 点: ,515,0,515210==-=x x x再由代数精度得 ⎪⎪⎪⎩⎪⎪⎪⎨⎧==+==+-==++⎰⎰⎰---32535305155152111220112011210dt x A A dt x A A dt A A A即 ⎪⎩⎪⎨⎧=+=-=++9/10022020210A A A A A A A 解得 ,95,98,95210===A A A所以三点Gauss-Legendre 求积公式为:()⎪⎪⎭⎫⎝⎛++⎪⎪⎭⎫ ⎝⎛-≈⎰-5159509851595)(11f f f dx x f 因此 79746.2515295298515295211=+++-≈+=⎰-dx t I七.(14分)(1) 证明方程02ln =--x x 在区间(1,∞)有一个单根.并大致估计单根的取值范围. (2) 写出Newton 迭代公式,并计算此单根的近似值.(要求精度满足: 5110||-+<-k k x x ). 解:令 2ln )(--=x x x f),1(,011)('∞∈>-=x xx f > 即)(x f 在区间 ),1(∞ 单调增又 04)(,02ln )2(22>-=<-=e e f f 所以 02ln =--x x 在区间 ),1(∞有一单根 ),1(20e x ∈ Newton 迭代公式为1ln 112ln 1-+=----=+k k k k kk k k k x x x x x x x x x令 20=x 计算得八. (12分) 用追赶法求解方程组:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛022112111131124321x x x x 的解. 解: 由计算公式 ⎪⎩⎪⎨⎧-===+====-1,,2,,,2,,111111n i c n i b a c b i i ii i i i i i βααβγγβαα得 ,2,1,1,21,1,24321111======γγγββαα25211322212=⨯-=⇒=+ααβγb 52222222==⇒=αββαc c 53521133323=⨯-=⇒=+ααβγb 35333333==⇒=αββαc c37352144434-=⨯-=⇒=+ααβγb因此 ⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎪⎪⎭⎫⎝⎛135152121137253125121211113112即 LU A = 令 b Ly = 解 ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-022137253125124321y y y y 得⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛23753214321y y y y 令 y Ux =解 ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛237532113515212114321x x x x 得⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛21104321x x x x九. (12分) 设求解初值问题⎩⎨⎧==00)(),('y x y y x f y 的计算格式为:)],(),([111--+++=n n n n n n y x bf y x af h y y ,假设11)(,)(--==n n n n y x y y x y ,试确定参数b a ,的值,使该计算格式的局部截断误差为二阶,即截断部分为: )(3h o .解:)],(),([111--+++=n n n n n n y x bf y x af h y y )](')('[)(1-++=n n n x by x ay h x y])('''21)('')('[)(')(2++-++=n nn n n x y h x hy x y hb x hay x y ++-++=)('''21)('')(')()(32n n n n x by h x by h x y b a h x y对比 ++++=+)('''61)(''21)(')()(321n n n n n x y h x y h x hy x y x y得 ⎩⎨⎧==+2/11b b a , 即 2/1==b a 时该计算格式具有二阶精度.。
研究生数值分析试题
一、选择题(四个选项中仅有一项符合题目要求,每小题 3 分,共计 15 分)
1、一般用高斯消元法解线性代数方程组要采用的技术是(
)
(1)调换方程位置; (2)选主元; (3)直接求解; (4)化简方程组。
⎛ 2 2 3⎞ ⎛ 1 0 0 ⎞⎛2 2 3⎞
2、设矩阵
A
为初值迭代一步。
四、(12 分)应用牛顿法于方程
f (x) =
xn
−a
Байду номын сангаас
=
0和
f (x) =1−
a xn
= 0 ,分别导出求 n
a
的
迭代公式,并求极限 lim n a − xk+1 。 k→∞ ( n a − xk )2
五 、 ( 12 ) 方 程 x3 − 6 x − 8 = 0 在 x = 3 附 近 有 根 , 把 方 程 写 成 三 种 不 同 的 等 价 形 式
零, A = LU 为 Doolitte 分解,则上三角矩阵 U 的上半带宽为
。
5、设对称正定矩阵
A
=
(aij
)∈
Rn×n , a11
≠
0
,经过一次
Gauss
消元得到形如
A
=
⎛ ⎜ ⎝
a11 0
∗⎞
A1
⎟ ⎠
的
矩阵,则 A1 是
矩阵。
三、(12 分)试用高斯列主元素法求解线性方程组
⎡ 1 3 −2 −4 ⎤ ⎡ x1 ⎤ ⎡3 ⎤
3、设矩阵 A ∈ Rn×n , Q ∈ Rn×n ,且 QT Q = E ,则下列关系式不成立的是(
)
(1) A = AQ ;(2) QA = A ;(3) Qx = x ,其中 x ∈ Rn ;
数值分析试卷及答案
数值分析试卷及答案数值分析试卷一、选择题(共10题,每题2分,共计20分)1. 数值分析的研究内容主要包括以下哪几个方面?A. 数值计算方法B. 数值误差C. 数值软件D. 数学分析答:A、B、C2. 下列哪种方法不属于数值积分的基本方法?A. 插值法B. 微积分基本公式C. 数值微积分D. 数值积分公式答:A3. 数值积分的目的是求解什么?A. 函数的导数B. 函数的原函数C. 函数的极值D. 函数的积分答:D4. 数值微分的目的是求解什么?A. 函数的导数B. 函数的原函数C. 函数的极值D. 函数的积分答:A5. 数值微分的基本方法有哪几种?A. 前向差分B. 后向差分C. 中心差分D. 插值法答:A、B、C6. 用数值方法求解方程的基本方法有哪几种?A. 迭代法B. 曲线拟合法C. 插值法D. 数值积分法答:A、B、C7. 用迭代法求方程的根时,当迭代结果满足何条件时可停止迭代?A. 当迭代结果开始发散B. 当迭代结果接近真实解C. 当迭代次数超过一定阈值D. 当迭代结果在一定范围内波动答:B8. 下列哪种插值方法能够确保经过所有给定数据点?A. 拉格朗日插值B. 牛顿插值C. 三次样条插值D. 二次插值答:A、B、C9. 数值解线性方程组的基本方法有哪几种?A. 直接法B. 迭代法C. 插值法D. 拟合法答:A、B10. 下列哪种方程求解方法适用于非线性方程?A. 直接法B. 迭代法C. 插值法D. 曲线拟合法答:B二、填空题(共5题,每题4分,共计20分)1. 数值积分的基本公式是_________。
答:牛顿-科特斯公式2. 数值微分的基本公式是_________。
答:中心差分公式3. 数值积分的误差分为_________误差和_________误差。
答:截断、舍入4. 用插值法求解函数值时,通常采用_________插值。
答:拉格朗日5. 数值解线性方程组的常用迭代法有_________方法和_________方法。
Ch1-Ch4(2009-2011级硕士研究生《数值分析》试卷)
2009级一、判断题 (每题2分)3. 若n 阶方阵A 是严格对角占优的,则解方程组A =x b 的Jacobi 迭代法收敛。
( √ )4. 设是方程的根,则求的Newton 迭代法至少是平方收敛的。
( ) *x 0)(=x f *x二、填空题 (每空2分)1. 近似数关于准确值* 3.120x = 3.12065x =有 位有效数字,相对误差是 . 4. 设2543A −⎡⎤=⎢⎥−⎣⎦,则1A = ,A ∞= ,1Cond()A = .五(本题满分10分) 对于下列方程组1231231234222633245x x x x x x x x x ,,,−+=⎧⎪++=⎨⎪++=⎩ 建立Gauss–Seidel 迭代公式,写出相应的迭代矩阵,并用迭代矩阵的范数判断所建立的Gauss–Seidel 迭代公式是否收敛。
七(本题满分10分) 已知方程在10x xe −=00.5x =附近有一个实根.*x (1) 取初值00.5x =,用Newton 迭代法求(只迭代两次)。
*x (2) 取初值010.5,0.6x x ==,用弦截法求(只迭代两次)。
*x2010级一、填空题 (每空2分,共20分)1. 近似数关于准确值*2.315x = 2.31565x =有 位有效数字,相对误差是 .4. 设2345A −⎡⎤=⎢⎥−⎣⎦,则1A = ,Cond()A ∞= .5. 设是方程的3重实根,则求的改进的Newton 迭代公式为 *x 0)(=x f *x .二 (本题满分8分) 对下列方程组1231231232633245,422x x x x x x x x x ,++=⎧⎪++=⎨⎪−+=⎩ 建立收敛的Jacobi 迭代公式和收敛的Gauss–Seidel 迭代公式,并说明理由。
五(本题满分10分) 已知方程在3210x x −−=0 1.5x =附近有一个实根.*x (1) 取初值0 1.5x =,用Newton 迭代法求(只迭代两次)。
硕士研究生数值分析试卷
数值分析(研究生,2008-12-15)1.(10分)求函数⎩⎨⎧≤≤++<≤-+=10,101,1sin )(2x x x x x x f 在区间[-1,1]上的最佳平方逼近式x e a x a a x 210)(++=φ。
2.(15分)利用乘幂法计算下列矩阵的主特征值和相应的特征向量⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----110141012,初始向量为T x ]0,0,1[0=(要求结果有三位有效数字)。
同时计算该矩阵的1-条件数和谱条件数。
3.(15分)已知函数x x f sin )(=在36.0,34.0,32.0210===x x x 处的值分别为352274.0,333487.0,314567.0210===y y y 。
用Lagrange 插值多项式对3167.0=x 的函数值进行近似计算,并估计近似计算的误差界。
4.(15分)用Newton 迭代法求方程0ln 2=+x x 在区间(0,2π)内的解,选择你认为合适的初始点,计算方程的根,使得近似解具有四位有效数字。
请从理论上估计达到所需精度所需的迭代次数。
5.(15分)用Gauss-Seidel 迭代法解方程组⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---542834*********x x x 取初始近似向量0[0,0,0]Tx =,估计达到4位有效数字需要的迭代次数,并实际计算之。
就该具体问题分析计算过程中总的乘除法计算量。
6. (10分)应用拟牛顿法解非线性方程组⎪⎩⎪⎨⎧=-+=-+.12,2322112221x x x x x x 取T x ]1,0[)0(= ,终止容限210-=ε。
7.(10分) 求解矛盾方程组⎪⎪⎩⎪⎪⎨⎧=++=++=++=++232328.12221321321321321x x x x x x x x x x x x8. (10分)用复合Simpson 公式计算积分⎰=21sin )(xdx f I 讨论在误差要求不超过410-的条件下的步长。
重庆大学研究生数值分析试题解析
是Gauss公式。 六、(12分)设初值问题
y f( x ,y ) y ( a ) a x b
(1)试证单步法
2 2 K f ( x , y ) , K f ( x h , y hK ) 1 n n 2 n n 1 3 3 h y y ( K 3 K ) n 0 , 1 , 2 ,... n 1 n 1 2 4 y 0
( 4 ) f ( ) 2 x R ( x ) x ( x 1 ) ( x 2 ) 4 !
五、(12分)试确定参数A,B,C及,使数值积分公式
f ( x ) dx Af ( ) Bf ( 0 ) Cf ( ) 2 有尽可能高的代数精度,并问代数精度是多少?它是否是
2 ,所以‖A‖1=5,‖A-1‖1=5/7. 7 2 1 1 a a 2.设矩阵A= a 1 0 ,当a取______值时,A可以唯一分解 a 0 1 1 3 -1 又A =
为GGT,其中G为下三角矩阵.
解
令
1 a a 1 a 1 1 2 2 1 a 0 ,a 1 0 1 2 a 0 , 得: a a 1 2 2 a 01
3.向量x=(x1,x2,x3)T,试问|x1|+|2x2|+|x3|是不是一种向
是 量范数______, 而|x1|+|2x2+x3|是不是一种向量范数不是 _____.
4.求 3 a 解 只要取(x)=x3-a ,或(x)=1-x3/a. 1 5.设(x)=x3+x2-3,则差商[3,32,33,34]=_______.
因此方程(x)=0有唯一正根,且在区间(1,2)内. (2)构造迭代格式: x 1 sin x k 0 , 1 , 2 ,... k 1 k 由于|(x)|=| cos |<1,故此迭代法收敛. x / 2 1 sin x
研究生数值分析练习题答案
允许使用计算器一、 填空题 (本大题共10小题,每小题 2分,共 20分) 1. 若 2.71828x e ==,取近似值* 2.7180x =,则*x 具有 4 位有效数字。
2.为了提高数值计算精度,应将8格式进行计算。
3.已知n=3时牛顿—柯特斯系数(3)(3)(3)012133,,888C C C ===,那么(3)3C =18 。
4.设3()1f x x x =+-,则函数的四阶差商[0,1,2,3,4]f = 0 。
5. 用牛顿迭代法解方程0xx e在0.5x 附近的近似实根的牛顿迭代格式为)1,0(e 1e )()(1=+--='-=--+n x x x f x f x x nnx x n n n n n n6. 对给定的剖分01:n a x x x b ∆=<<<=,当()s x 满足条件 ()s x 在[a,b]有2阶连续导数且在每个子区间上是个3次多项式 时是三次样条函数。
7.用最小二乘法拟合三点()()()0,1,1,3,2,2A B C 的直线是1322y x =+。
8.向量序列()211cos ,sin ,3Tk k xe k k k k -⎛⎫=+ ⎪⎝⎭的极限向量为()0,1,3T9.求积公式 10311()()(1)434f x dx f f ≈+⎰的代数精度为 2 。
10.若绝对误差限为31102-⨯,那么近似数有 2 位有效数字二、单项选择题(本大题共5小题,每小题 2 分,共 10分)1. 已知实验数据555521111(,)(1,2,3,4,5),15,31,55,105.5,k k k k kk k k k k k x y k x y x x y =========∑∑∑∑其中则用最小二乘法求近似公式01y a a x =+的法方程为( C )A 0101153155105.5a a a a +=⎧⎨+=⎩B 0101515551531105.5a a a a +=⎧⎨+=⎩C 0101515311555105.5a a a a +=⎧⎨+=⎩D 0101531153155105.5a a a a +=⎧⎨+=⎩2. 以下矩阵是严格对角占优矩阵的是( B )A 3210141011410012⎛⎫ ⎪ ⎪ ⎪⎪⎝⎭ B 2100131013610113-⎛⎫⎪--⎪ ⎪-- ⎪-⎝⎭C 5210113121410012-⎛⎫ ⎪--⎪ ⎪ ⎪⎝⎭ D 4211141021411315⎛⎫⎪ ⎪⎪- ⎪⎝⎭3.已知两种递推公式11(1)35(1,2,,20)31(2)(20,,1)55n n n n I nI n I I n n n--=-==-=则在数值计算过程中( C )。
数值计算(数值分析)试题及答案
武汉理工大学研究生课程考试标准答案用纸课程名称:数值计算(A ) 任课教师 :一. 简答题,请简要写出答题过程(每小题5分,共30分) 1.将227和355113作为 3.14159265358979π=L 的近似值,它们各有几位有效数字, 绝对误差和相对误差分别是多少3分)2分)2.已知()8532f x x x =+-,求0183,3,,3f ⎡⎤⎣⎦L ,0193,3,,3f ⎡⎤⎣⎦L .(5分)3.确定求积公式10120()(0)(1)(0)f x dx A f A f A f '≈++⎰中的待定系数,使其代数精度尽量高,并指明该求积公式所具有的代数精度。
解:要使其代数精度尽可能的高,只需令()1,,,m f x x x =L L 使积分公式对尽可能大的正整数m 准确成立。
由于有三个待定系数,可以满足三个方程,即2m =。
由()1f x =数值积分准确成立得:011A A += 由()f x x =数值积分准确成立得:121/2A A += 由2()f x x =数值积分准确成立得:11/3A =解得1201/3,1/6,2/3.A A A === (3分)此时,取3()f x x =积分准确值为1/4,而数值积分为11/31/4,A =≠所以该求积公式的最高代数精度为2次。
(2分)4.求矩阵101010202A -⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦的谱半径。
解 ()()101011322I A λλλλλλλ--=-=---矩阵A 的特征值为1230,1,3λλλ=== 所以谱半径(){}max 0,1,33A ρ== (5分)5. 设10099,9998A ⎛⎫= ⎪⎝⎭计算A 的条件数()(),2,p cond A P =∞.解:**19899-98999910099-100A A A A --⎛⎫⎛⎫=⇒== ⎪ ⎪-⎝⎭⎝⎭矩阵A 的较大特征值为,较小的特征值为,则1222()198.00505035/0.0050503539206cond A A A -=⨯==(2分)1()199********cond A A A -∞∞∞=⨯=⨯= (3分)22001130101011010220100110110()(12)()(12)()()()()()x x x x x x x x H x y y x x x x x x x x x x x x x x y x x y x x x x ----=-+-------''+-+---(5分)并依条件1(0)1,(0),(1)2,(1) 2.2H H H H ''====,得2222331()(12)(1)2(32)(1)2(1)211122H x x x x x x x x x x x =+-+-+-+-=++ (5分)2.已知()()()12,11,21f f f -===,求()f x 的Lagrange 插值多项式。
数值分析试卷及答案
数值分析试卷及答案**注意:以下是一份数值分析试卷及答案,试卷和答案分别按照题目和解答的格式排版,以确保整洁美观,语句通顺。
**---数值分析试卷一、选择题(每题2分,共20分)1. 数值分析是研究如何用计算机处理数值计算问题的一门学科。
以下哪个选项不是数值分析的应用领域?A. 金融风险评估B. 天气预测C. 数据挖掘D. 图像处理2. 在数值计算中,稳定性是指算法对于输入数据的微小扰动具有较好的性质。
以下哪个算法是稳定的?A. 高斯消元法B. 牛顿迭代法C. 不动点迭代法D. 雅可比迭代法二、填空题(每题3分,共30分)1. 下面关于插值多项式的说法中,不正确的是:一般情况下,插值多项式的次数等于插值点的个数减1。
2. 线性方程组中,如果系数矩阵A是奇异的,则该方程组可能无解或有无穷多解。
......三、解答题(共50分)1. 请给出用割线法求解非线性方程 f(x) = 0 的迭代格式,并选择合适的初始值进行计算。
解:割线法的迭代公式为:x_(k+1) = x_k - f(x_k) * (x_k - x_(k-1)) / (f(x_k) - f(x_(k-1)))选择初始值 x0 = 1,x1 = 2 进行计算:迭代1次得到:x2 = x1 - f(x1) * (x1 - x0) / (f(x1) - f(x0))迭代2次得到:x3 = x2 - f(x2) * (x2 - x1) / (f(x2) - f(x1))继续迭代直至满足精度要求。
2. 对于一个给定的线性方程组,高斯消元法可以用来求解其解空间中的向量。
请简要描述高斯消元法的基本思想并给出求解步骤。
高斯消元法的基本思想是通过一系列的行变换将线性方程组化为上三角形式,然后再通过回代求解方程组的未知数。
求解步骤如下:步骤1:将方程组表示为增广矩阵形式,即将系数矩阵和常数向量连接在一起。
步骤2:从第一行开始,选取第一个非零元素作为主元,然后通过行变换将其它行的该列元素消去。
数值分析考试卷及详细答案解答
数值分析考试卷及详细答案解答姓名班级学号一、选择题1.()2534F,,,-表示多少个机器数(C ).A 64B 129C 257D 2562. 以下误差公式不正确的是( D)A .()()()1212x *x *x *x *εεε-≈+B .()()()1212x *x *x *x *εεε+≈+C .()()()122112x *x *x *x *x x *εεε?≈+ D .()()()1212x */x *x *x *εεε≈-3. 设)61a =, 从算法设计原则上定性判断如下在数学上等价的表达式,哪一个在数值计算上将给出a 较好的近似值?(D )A6)12(1+ B 27099- C 3)223(- D3)223(1+4. 一个30阶线性方程组, 若用Crammer 法则来求解, 则有多少次乘法? ( A )A 31×29×30!B 30×30×30!C 31×30×31!D 31×29×29!5. 用一把有毫米的刻度的米尺来测量桌子的长度, 读出的长度1235mm, 桌子的精确长度记为( D )A 1235mmB 1235-0.5mmC 1235+0.5mmD 1235±0.5mm二、填空1.构造数值算法的基本思想是近似替代、离散化、递推化。
2.十进制123.3转换成二进制为1111011.01001。
3.二进制110010.1001转换成十进制为 50.5625 。
4. 二进制0101.转换成十进制为57。
5.已知近似数x*有两位有效数字,则其相对误差限5% 。
6. ln2=0.69314718…,精确到310-的近似值是 0.693 。
7.31415926x .π==,则131416*x .=,23141*x .=的有效数位分别为5 和3 。
8.设200108030x*.,y*.==-是由精确值x y 和经四舍五入得到的近似值,则x*y*+的误差限0.55×10-3 。
数值分析试题及答案
数值分析试题及答案一、单项选择题(每题3分,共30分)1. 线性代数中,矩阵A的逆矩阵记作()。
A. A^TB. A^-1C. A^+D. A*答案:B2. 插值法中,拉格朗日插值多项式的基函数是()。
A. 多项式B. 指数函数C. 正弦函数D. 余弦函数答案:A3. 在数值积分中,梯形规则的误差是()阶的。
A. O(h^2)B. O(h^3)C. O(h)D. O(1/h)答案:A4. 求解线性方程组时,高斯消元法的基本操作不包括()。
A. 行交换B. 行乘以非零常数C. 行加行D. 行除以非零常数答案:D5. 非线性方程f(x)=0的根的迭代法中,收敛的必要条件是()。
A. f'(x)≠0B. f'(x)=0C. |f'(x)|<1D. |f'(x)|>1答案:C6. 利用牛顿法求解非线性方程的根时,需要计算()。
A. 函数值B. 函数值和导数值C. 函数值和二阶导数值D. 函数值、一阶导数值和二阶导数值答案:B7. 矩阵的特征值和特征向量是()问题中的重要概念。
A. 线性方程组B. 特征值问题C. 线性规划D. 非线性方程组答案:B8. 在数值分析中,条件数是衡量矩阵()的量。
A. 稳定性B. 可逆性C. 正交性D. 稀疏性答案:A9. 利用龙格现象说明,高阶插值多项式在区间端点附近可能产生()。
A. 振荡B. 收敛C. 稳定D. 单调答案:A10. 雅可比迭代法和高斯-塞德尔迭代法都是求解线性方程组的()方法。
A. 直接B. 迭代C. 精确D. 近似答案:B二、填空题(每题4分,共20分)11. 线性代数中,矩阵A的行列式记作________。
答案:det(A) 或 |A|12. 插值法中,牛顿插值多项式的基函数是________。
答案:差商13. 在数值积分中,辛普森规则的误差是________阶的。
答案:O(h^4)14. 求解线性方程组时,迭代法的基本思想是从一个初始近似解出发,通过不断________来逼近精确解。
研究生《数值分析》复习题
1 1 1 ⩽ ∵ ∗ < ∗ S S − x∗ M i ( 3 ) 1 4 ∑ ∗ ∗ ∴ εr (A ) ⩽ · |xi − xi | 4 M i=1 ( 3 ) 1 ∑ ∗ ∗ ∴ εr (A ) ⩽ |xi − xi | M i=1
(k = 0, 1, · ·· , n − 2)
类似地,由 (n − 1) 次多项式 y = xn−1 可证明
′
求三次样条插值 M0 , M1 , M2 , M3 满足的方程组 M x = b. 第一种边界条件的三弯矩方程 x0 ̸= x2 2 1 M0 0 x0 + x2 x1 ̸= 2 0.5 2 0.5 M1 = −3 0.5 2 0.5 M2 −3 3、设 xi = i + 1 (i = 0, 1, · · · , n − 1),f (x) 为首项系数为一的 1 2 M3 18 n 次多项式,Rn−1 (x) 为其在上述结点上的 (n − 1) 次插值多 项式的余项,求证:|Rn−1 (0)| = |Rn−1 (n + 1)| = n! 7、利用表中数据求方程 x − e−x = 0 的根: |Rn−1 (x)| = f (n) (ξ ) n! ωn (x) = ωn (x) = |ωn (x)| n! n! |Rn−1 (0)| = |ωn (0)| = n! |Rn−1 (n + 1)| = |ωn (n + 1)| = n! 4、令 Vn (x) = Vn (x0 , x1 , · · · , xn−1 , x) 1 1 . = . . 1 1 x0 x1 . . . xn−1 x x2 0 x2 1 . . . x2 n−1 x2 ··· ··· .. . ··· ··· xn 0 xn 1 . . . xn n−1 xn x e
哈工大研究生数值分析试题及答案
哈⼯⼤研究⽣数值分析试题及答案1. 3,2x =-分别是⽅程328120x x x --+= 的根;讨论⽤Newton 迭代法求它们近似值的收敛阶。
取初值02x =-计算根3x =-的近似值,要求迭代3次。
(结果保留4位⼩数)解:设 32()812f x x x x =--+ 2()328f x x x '=-- ()62f x x ''=- (3)0,(3)0f f '-=-≠,(2)0,(2)0,(2)100f f f '''===≠则:3-是()0f x =的单根,故Newton 迭代在3-附近是平⽅收敛; 2是()0f x =的⼆重根,故Newton 迭代在2附近是线性收敛;取02x =-,Newton 迭代:3212()812()328n n n n n n n n f x x x x x x x f x x x +--+=-=-'-- 223634n n n x x x ++=+2001023634x x x x ++==+2112123634x x x x ++==+2223223634x x x x ++==+2. 设常数0a ≠ ,求出a 的取值范围使得解⽅程组112233212313a x b a x b a x b --?????? ??? ?-= ??? ? ??? ???????的Jacobi 迭代法收敛。
解: Jacobi 迭代:(1)()k k J x B x g +=+10210211203203130130J a B a a a -----=--=-- ? ? ? ? ? ???123a b g a b a b -??=迭代矩阵J B 的特征⽅程:021211120323013013J a E B a a a a λλλλλλλ-----=+-=-=即:3()14()0a a λλ+=特征根:0,aλλ==±谱半径:()1J B aρ=< 时Jacobi 迭代收敛故:a >3. 设(1)⽤Crout 三⾓分解法求解⽅程组 12323251034133619x x x ?????? ??? ?= ??? ? ??? ???????;(2)⽤乘幂法求⽅程组系数阵的按摸最⼤的特征值和对应的特征向量。
研究生《数值分析》试卷(带答案)
一.(6分) 已知描述某实际问题的数学模型为xy y x y x u 223),(+=,其中,y x ,由统计方法得到,分别为4,2==y x ,统计方法的误差限为0.01,试求出u 的误差限)(u ε和相对误差限)(u r ε.解:)(23)(6)(),()(),()(222y x y x x x y xy y y y x u x x y x u u εεεεε⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛-=∂∂+∂∂≈6.016.044.001.0)412(01.0)448(=+=⨯++⨯-=0.010714566.03)()(22=≈+=xy y x u u r εε 二.(6分) 已知函数13)(3+=x x f 计算函数)(x f 的2阶均差]2,1,0[f ,和4阶均差]4,3,2,1,0[f .解:21142512)1()2(]2,1[,311401)0()1(]1,0[=-=--==-=--=f f f f f f9232102]1,0[]2,1[]2,1,0[=-=--=f f f0!4)(]4,3,2,1,0[)4(==ξf f三.(6分)试确定求积公式: )]1(')0('[121)]1()0([21)(10f f f f dx x f -++≈⎰的代数精度. 解:记⎰=10)(dx x f I )]1(')0('[121)]1()0([21f f f f I n -++=1)(=x f 时:1110==⎰dx I 1]00[121]2[21=-+=n Ix x f =)(时:2110==⎰xdx I 21]11[121]1[21=-+=n I2)(x x f =时:31102==⎰dx x I 31]20[121]1[21=-+=n I3)(x x f =时:41103==⎰dx x I 41]30[121]1[21=-+=n I4)(x x f =时:51104==⎰dx x I 61]40[121]1[21=-+=n I求积公式)]1(')0('[121)]1()0([21)(1f f f f dx x f -++≈⎰具有3次代数精度. 四.(12分) 已知函数122)(23-++=x x x x f 定义在区间[-1,1]上,在空间},,1{)(2x x Span x =Φ上求函数)(x f 的最佳平方逼近多项式.其中,权函数1)(=x ρ,154))(),((,1532))(),((,34))(),((210-==-=x x f x x f x x f ϕϕϕ. 解:0))(),(())(),((21))(),((1101101100=====⎰⎰--dx x x x x x dx x x ϕϕϕϕϕϕ32))(),(())(),(())(),((112110220====⎰-dx x x x x x x x ϕϕϕϕϕϕ0))(),(())(),((1131221===⎰-dx x x x x x ϕϕϕϕ52))(),((11422==⎰-dx x x x ϕϕ解方程组⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛1541532345203203203202210a a a 得⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛15161210a a a 则)(x f 的最佳平方逼近多项式为:1516)(2-+=x x x p 五.(16分) 设函数)(x f 满足表中条件:(1) 填写均差计算表((2) 分别求出满足条件22k k k k 的 2次 Lagrange 和 Newton 差值多项式.(3) 求出一个四次插值多项式)(4x H ,使其满足表中所有条件.并用多项式降幂形式表示.解:12)12)(02()1)(0()20)(10()2)(1()(22+-=----+----=x x x x x x x L12)1)(0(1)0)(1(1)(22+-=--+--+=x x x x x x N 令)2)(1()(12)(24--+++-=x x x b ax x x x H则)2()()2)(1)(()2)(1(22)('4-++--++--+-=x x b ax x x b ax x x ax x x H)1()(-++x x b ax由 ⎩⎨⎧-=+=+⇒⎩⎨⎧=-++-=-=-++-=1220)12(2)2(24)2('2)21)((22)1('44b a b a b a H b a H 解得 5,3=-=b a因此1820143)2)(1()53(12)(23424++-+-=--+-++-=x x x x x x x x x x x H 六.(16分)(1). 用Romberg 方法计算⎰31dx x ,将计算结果填入下表(*号处不填).(2). 试确定三点 Gauss-Legender 求积公式⎰∑-=≈11)()(k k k x f A dx x f 的Gauss 点k x 与系数k A ,并用三点 Gauss-Legender 求积公式计算积分: ⎰31dx x .解:过点(1,-1)和点(3,1)作直线得 y t x +=所以积分⎰⎰-+=11312dt t dx x由三次Legendre 多项式 )35(21)(33x x x p -= 得得Gauss 点:,515,0,515210==-=x x x再由代数精度得 ⎪⎪⎪⎩⎪⎪⎪⎨⎧==+==+-==++⎰⎰⎰---32535305155152111220112011210dt x A A dt x A A dt A A A即 ⎪⎩⎪⎨⎧=+=-=++9/10022020210A A A A A A A解得 ,95,98,95210===A A A所以三点Gauss-Legendre 求积公式为:()⎪⎪⎭⎫ ⎝⎛++⎪⎪⎭⎫ ⎝⎛-≈⎰-5159509851595)(11f f f dx x f 因此 79746.2515295298515295211=+++-≈+=⎰-dx t I 七.(14分)(1) 证明方程02ln =--x x 在区间(1,∞)有一个单根.并大致估计单根的取值范围. (2) 写出Newton 迭代公式,并计算此单根的近似值.(要求精度满足: 5110||-+<-k k x x ). 解:令 2ln )(--=x x x f),1(,011)('∞∈>-=x xx f > 即)(x f 在区间 ),1(∞ 单调增 又 04)(,02ln )2(22>-=<-=e e f f 所以 02ln =--x x 在区间 ),1(∞有一单根 ),1(20e x ∈Newton 迭代公式为1ln 112ln 1-+=----=+k kk k kk k k k x x x x x x x x x 令 20=x 计算得八. (12分) 用追赶法求解方程组:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛022112111131124321x x x x 的解.解: 由计算公式 ⎪⎩⎪⎨⎧-===+====-1,,2,,,2,,111111n i c n i b a c b i i ii i i i i i βααβγγβαα得 ,2,1,1,21,1,24321111======γγγββαα25211322212=⨯-=⇒=+ααβγb 52222222==⇒=αββαc c 53521133323=⨯-=⇒=+ααβγb 35333333==⇒=αββαc c 37352144434-=⨯-=⇒=+ααβγb因此 ⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛135152121137253125121211113112 即 LU A = 令 b Ly = 解 ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-022137253125124321y y y y 得⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛23753214321y y y y令 y Ux =解 ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛237532113515212114321x x x x 得⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫⎝⎛21104321x x x x九. (12分) 设求解初值问题⎩⎨⎧==00)(),('y x y y x f y 的计算格式为:)],(),([111--+++=n n n n n n y x bf y x af h y y ,假设11)(,)(--==n n n n y x y y x y ,试确定参数b a ,的值,使该计算格式的局部截断误差为二阶,即截断部分为: )(3h o .(注:原题中)(2h o 错误)解:)],(),([111--+++=n n n n n n y x bf y x af h y y )](')('[)(1-++=n n n x by x ay h x y])('''21)('')('[)(')(2++-++=n n n n n x y h x hy x y hb x hay x y ++-++=)('''21)('')(')()(32n n n n x by h x by h x y b a h x y 对比 ++++=+)('''61)(''21)(')()(321n n n n n x y h x y h x hy x y x y 得 ⎩⎨⎧==+2/11b b a , 即 2/1==b a 时该计算格式具有二阶精度.。
2000-2009哈工大研究生《数值分析》历年试卷
2009级研究生《数值分析》试卷一.(6分) 已知描述某实际问题的数学模型为xyy x y x u 223),(+=,其中,y x ,由统计方法得到,分别为4,2==y x ,统计方法的误差限为0.01,试求出u 的误差限)(u ε和相对误差限)(u r ε.二.(6分) 已知函数13)(3+=x x f 计算函数)(x f 的2阶均差]2,1,0[f ,和4阶均差]4,3,2,1,0[f .三.(6分)试确定求积公式: )]1(')0('[121)]1()0([21)(10f f f f dx x f -++≈⎰的代数精度.四.(12分) 已知函数122)(23-++=x x x x f 定义在区间[-1,1]上,在空间},,1{)(2x x Span x =Φ上求函数)(x f 的最佳平方逼近多项式.其中,权函数1)(=x ρ,154))(),((,1532))(),((,34))(),((210-==-=x x f x x f x x f ϕϕϕ.五.(16分) 设函数)(x f 满足表中条件:(1) 填写均差计算表(标有*号处不填):(2) 分别求出满足条件)2,1,0(),()(),()(22===k x f x N x f x L k k k k 的 2次 Lagrange 和 Newton 差值多项式.(3) 求出一个四次插值多项式)(4x H ,使其满足表中所有条件.并用多项式降幂形式表示. 六.(16分)(1). 用Romberg 方法计算⎰31dx x ,将计算结果填入下表(*号处不填).(2). 试确定三点 Gauss-Legender 求积公式⎰∑-=≈112)()(k k k x f A dx x f 的Gauss 点k x 与系数k A ,并用三点 Gauss-Legender 求积公式计算积分: ⎰31dx x .七.(14分)(1) 证明方程02ln =--x x 在区间(1,∞)有一个单根.并大致估计单根的取值范围. (2) 写出Newton 迭代公式,并计算此单根的近似值.(要求精度满足: 5110||-+<-k k x x ).八. (12分) 用追赶法求解方程组:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛022112111131124321x x x x 的解.九. (12分) 设求解初值问题⎩⎨⎧==00)(),('y x y y x f y 的计算格式为:)],(),([111--+++=n n n n n n y x bf y x af h y y ,假设11)(,)(--==n n n n y x y y x y ,试确定参数b a ,的值,使该计算格式的局部截断误差为二阶,即截断部分为: )(3h o .2008年春季学期数值数学试题一.(10分)设给实数0a >,初值00x >:⑴试建立求1a的Newton 迭代公式,要求在迭代函数中不含除法运算;⑵证明给定初值0x ,迭代收敛的充分必要条件为020x a<<;⑶该迭代的收敛速度是多少?⑷取00.1x =,计算15的近似值,要求计算迭代三次的值(结果保留5位小数)。
研究生《数值分析》试题
数值分析试题一.(10分)设给实数0a >,初值00x >:⑴试建立求1a的Newton 迭代公式,要求在迭代函数中不含除法运算; ⑵证明给定初值0x ,迭代收敛的充分必要条件为020x a<<;⑶该迭代的收敛速度是多少?⑷取00.1x =,计算15的近似值,要求计算迭代三次的值(结果保留5位小数)。
二.(10分)试确定参数,,a b c ,使得下面分段多项式函数()s x 是三次样条函数。
332,01()1(1)(1)(1),132x x s x x a x b x c x ⎧≤≤⎪=⎨--+-+-+≤≤⎪⎩ ()s x 是否是自然样条函数?三.(10分)利用Dollite 三角分解方法求解方程组123121022331302x x x ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦ 四.(10分)给定3阶线性方程组123122*********x x x -⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦讨论其Jacobi 迭代格式的收敛性五.(10分)推导出中矩形求积公式()()()2baa b f x dx b a f +≈-⎰ ,并求出其截断误差。
六.(10分用最小二乘法确定拟合公式bx y ae =中的参数,a b 。
七.(10分)根据已知函数表:建立不超过三次的Newton 插值项式。
八.(10分)试确定常数01,A A ,使求积公式1011()(f x dx A f A f -≈+⎰有尽可能高的代数精度,并指出代数精度是多少,该公式是否是Gauss 型?并用此公式计算积分311I dx x=⎰(结果保留5位小数)。
九.(10分)利用经典四阶Runge-Kutta 方法求初值问题:20,01(0)1y y x y '=-≤≤⎧⎨=⎩在0.2x =处的数值解(取步长0.1h =)。
10.(10分)讨论两步方法 11112(4)33n n n ny y y hy +-+'=-+ 的局部截断误差,求出它的局部阶段误差的首项(主部),它是多少阶的? (在线性多步法的局部截断误差中10111[()()],2,3,!p prr r i i i i C i a r i b r r -==-⎧⎫=--+-=⎨⎬⎩⎭∑∑ )。
电子科技大学研究生数值分析期末试卷
电子科技大学研究生数值分析期末试卷一、(15分)(1)牛顿迭代法的主要思想是什么?如何将其推广到二维问题的求解? (2)求证:迭代公式x k+1=x k (x k 2+3a 2)3x k2+a 2,a>0,是计算a 的三阶方法。
二、(15分)已知实验数据如下:(1) 求二次拟合函数y (x )=ax 2+bx +c 。
(2) 请简单叙述插值、拟合、函数逼近三者之间的区别与联系。
三、(15分)(1)拉格朗日插值与牛顿插值有何异同? (2)已知函数f(0)=1,f(1)=3,f(2)=9,f(3)=25,求3次插值多项式P 3(x),并计算P 3(0.5)。
四、(10分)用列主元高斯消元法求解下面的线性方程组:{x 1− x 2 + x 3=−45x 1−4x 2+3x 3=−122x 1+ x 2 + x 3=11五、(15分)给定求积公式∫f (x )dx 10=Af (0)+Bf (0.5)+Cf ′(0),试确定A 、B 、C ,使其代数精度尽可能的高,并指明此时求积公式的代数精度。
六、(15分)给定方程组{x 1+ 2x 2−2x 3 =5x 1+ x 2+ x 3 =12x 1+ 2x 2 + x 3=3(1) 用LU 分解法求此方程组;(2) 写出解此方程组的雅克比迭代公式,说明收敛性;并取初始向量x 0=(0,0,0)T ,求其满足‖x k+1−x k ‖<10−1的近似解。
七、(15分)设微分方程{y′′′=6y 2y′y (0)=1,y ′(0)=−1,y ′′(0)=2(1) 把该微分方程写为一阶常微分方程的初值问题; (2) 写出用二阶R-K 法:K 1=f(x n ,y n ),K 2=f(x n +ℎ,y n +ℎK 1),y n+1=y n +ℎ2(K 1+K 2)求解的迭代公式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1I(a,b) 2ax2b x dx2005~2006学年第一学期硕士研究生期末考试试题(A 卷)科目名称:数值分析 学生所在院: ________ 学号: ________ 姓名: ______ 注意:所有的答题内容必须答在答题纸上,凡答在试题或草稿纸上的一律无效。
一、 (15分)设求方程12 3x 2cosx 0根的迭代法/ 2X ki 4 cosx k3(1) 证明对X o R ,均有lim X k x *,其中X *为方程的根.k(2) 此迭代法收敛阶是多少?证明你的结论.二、 (12分)讨论分别用Jacobi 迭代法和Gauss-Seidel 迭代法求解下列方程组的 收敛性。
x 1 2x 2 2x 3 1, X 1 X 2 X 3 1, 2x 1 2x 2 x 30.0 0a非病态的。
(范数用HI )求f (X )的Hermite 插值多项式H 3(x ),并给出截断误差R (x ) f (x ) H 3(x ) 五、(10分)在某个低温过程中,函数 y 依赖于温度x (T )的试验数据为已知经验公式的形式为 y ax bx 2,试用最小二乘法求出a , b、(8分)若矩阵A 2a a 00 a 0,说明对任意实数a0,方程组AX b 都是四、(15六、(12分)确定常数 a ,b 的值,使积分、(15分)设求方程 12 3x 2cosx 0根的迭代法取得最小值。
七、(14分)已知Legendre 勒让德)正交多项式L n (x )有递推关系式:L o (x) 1, L i (x) x (n 1, 2,)试确定两点的咼斯一勒让德(G — L )求积公式11 f (x )dx 入仁花)A 2f (x 2)的求积系数和节点,并用此公式近似计算积分12 一e x dx1八、(14分)对于下面求解常微分方程初值冋题dx f (x,y )的单步法: y (x 。
) y 。
11 y n 1 y n h(?k 1 - k 2)k 1 f(X n ,y n )k 2f(X n h, y n hkj(1) 验证它是二阶方法; (2) 确定此单步法的绝对稳定域。
2005~2006学年第一学期硕士研究生期末考试试题(B 卷)科目名称:数值分析 学生所在院: _______ 学号: _________ 姓名: ______ 注意:所有的答题内容必须答在答题纸上,凡答在试题或草稿纸上的一律无效。
一、(12分)讨论分别用Jacobi 迭代法和Gauss-Seidel 迭代法求解下列方程组的 收敛性。
X 1 2x 2 2x 3 1, X 1 X 2 X 31, 2x 1 2x 2 x 30.L n 1(X )2n 1n 1xL n (x) L n 1(X )2 x k1 4 cosx k 3(1)证明对 x oR ,均有lim X k x ,其中x 为方程的根.k(2) 此迭代法收敛阶是多少?证明你的结论.求f (x )的Hermite 插值多项式H s (x ),并给出截断误差R (x ) f (x ) H 3(x )五、(10分)在某个低温过程中,函数 y 依赖于温度x 「C )的试验数据为取得最小值七、(14分)对于求积公式: bn(x)f (x)dxA k f (X k ),其中:(x)是区间(a,b)a上的权函数。
(1) 证明此求积公式的代数精度不超过 2n-1次; (2) 若此公式为Gauss 型求积公式,试证明y ax bx 2,试用最小二乘法求出a ,b 。
六、(12分)确定常数 a , b 的值,使积分22A kk 1(x)dxy n i y n h (2 k i - k 2) k i f(X n 』n ) k 2f (X n h, y nhk i )(3) 验证它是二阶方法; (4) 确定此单步法的绝对稳定域。
2006~2007学年第一学期硕士研究生期末考试试题(B 卷)科目名称:数值分析 学生所在院: _______ 学号: _________ 姓名: ______ 注意:所有的答题内容必须答在答题纸上,凡答在试题或草稿纸上的一律无效。
一、(12分)讨论分别用Jacobi 迭代法和Gauss-Seidel 迭代法求解下列方程组的 收敛性。
、(15分)设(X )导数连续,迭代格式X k 1 (X k ) 一阶局部收敛到点x *。
构造新的迭代格式:X k 1 X k(X k )问如何选取常数 及,使新迭代格式有更高的收敛阶,并问是几阶收敛 四、(15分)已知y f (x )的数据如下:八、(14分)对于下面求解常微分方程初值冋题dx f (x,y )的单步法: y (x 。
) y 。
X 1 2x 2 2x 3 、(8 分) X 1 2x 1 X 2 X 3 2X 2X 31, 1, 0.若矩阵A2a0 00,说明对任意实数a 0,方程组AX b 都是 非病态的。
(范数用|| ||求f (x )的Hermite 插值多项式H 3(x ),并给出截断误差R (x ) f (x ) H 3(x ) 五、(10分)在某个低温过程中,函数 y 依赖于温度x 「C )的试验数据为取得最小值七、(14分)对于求积公式: bn(x) f (x)dxA k f(X k ),其中:(x)是区间(a,b)a上的权函数。
(3) 证明此求积公式的代数精度不超过 2n-1次; (4) 若此公式为Gauss 型求积公式,试证明(x)dx(5) 验证它是二阶方法; (6) 确定此单步法的绝对稳定域2006~2007学年第一学期硕士研究生期末考试试题(A 卷)科目名称:数值分析 学生所在院: _______ 学号: ____________ 姓名: ____注意:所有的答题内容必须答在答题纸上,凡答在试题或草稿纸上的一律无效。
一、(12分)设方程y ax bx 2,试用最小二乘法求出a ,b 。
dx f (x, y)的单步法:八、(14分)对于下面求解常微分万程初值冋题y (x 。
) y 。
y n 1 y n h(* k 1k 1 f (X n ,y n )k 2 f (X n h, y nhkjk 1a六、(12分)确定常数 a , b 的值,使积分22A k组Ax b 为2 1 x ,7 1 1 X 23(1) 用Doolittle 分解法求解方程组; (2) 求矩阵A 的条件数Co nd (A)二、 (12分)设A 为n 阶对称正定矩阵,A 的n 个特征值为12n,为求解方程组Ax b ,建立迭代格式 x (k 1) x (k) (b Ax (k)),求出常数 的取 值范围,使迭代格式收敛。
三、 (12分)已知数据试用二次多项式p(x) ax 2 bx c 拟合这些数据 四、(14分)已知y f(x)的数据如下:(1) 求f (x)的Hermite 插值多项式H 3(x);…… _ 一……33(2)为求 1 f (x)dx 的值,采用算法:1 f(x)dx1 H 3(x)dx R试导出截断误差R五、(12分)确定常数a ,b 的值,使积分1x2I (a, b)o (ax b e ) dx取得最小值。
六、(12)确定常数A ,使求积公式2o f(x)dx A 1 f (0) A 2 f (1) A 3f(2)的代数精度尽可能高,并问是否是 Gauss 型公式。
七、(12分)设(x)导数连续,迭代格式(xQ —阶局部收敛到点x *。
对 于常数,构造新的迭代格式:y n 1 y n hk 2 k f(t n ,y n ) 1 1k 2f (t n -h, y n qhkj(7) 验证它是二阶方法;(8)确定此单步法的绝对稳定区域。
2007~2008学年第一学期硕士研究生期末考试试题科目名称:数值分析 学生所在院: ________ 学号: ________ 姓名: ______ 注意:所有的答题内容必须答在答题纸上,凡答在试题或草稿纸上的一律无效。
一、 (15分)给定方程 f (x) (x 1)e x 1 0(1) 分析该方程存在几个根;(2) 用迭代法求出这些根,精确至2位有效数;(3) 说明所用的迭代格式是收敛的• 二、 (15分)设线性方程组为a 11X1312X 2 d,,a 11a22a 21 X 1 a ?2X 2 D 2,(1) 证明用Jacobi 迭代法和Gauss-Seidel 迭代法解此方程组要么同时收敛, 要么同时发散. (2) 当同时收敛时比较其收敛速度.三、 (10分)设A 为非奇异矩阵,方程组 Ax b 的系数矩阵A 有扰动 A ,受扰 动后的方程组为(A A)(x x) b ,若||A 1 || || A|| 1,试证:|| x|| II A 1 II II All||x|| 1 IIA 1 || || A||X k 1 X k(X k )问如何选取 ,使新迭代格式有更高的收敛阶,并问是几阶收敛八、(14分)对于下面求解常微分方程初值冋题dtf (t ,y )的单步法: y(t o )y四、(15分)已知y f(x)的数据如下:求f (x)的Hermite 插值多项式H 3(x),并给出截断误差R(x) f (x) H 3(x) 五、(10分)已知数据3设 f(x) ax b(x 1)2,求常数 a ,b ,使得 [f(xjmini 01 f (x)g(x)dx 在 H Span{ 1 , x , x 2}中求f(x) |x|的最佳平方逼近元素七、(10分)给定求积公式试确定A,B,C ,使此求积公式的代数精度尽可能高,并问是否是Gauss 型公式.八、(10分)给定微分方程初值冋题dyy 2 0 x 1dx y(0) 2用一个二阶方法计算y(x)在0.1 , 0.2 处的近似值•取h 0.1计算结果保留 5位有效数字。
2008〜2009学年第一学期硕士研究生期末考试试题一、(本题共3小题,每题8分,共24分)解答下面各题: 1)六、(15分)定义内积(f,g)2h2hf (x)dx Af ( h) Bf(0) Cf (h)用复化Simpson求积公式近似计算函数f(x)在区间[0, 0.8]上的积分。
2)已知函数y=f(x)的观察值如下表所示,使用N e w t o n插值法求其插值多项式。
3)取初值为2,利用Newton迭代法求方程:f(x) x2 2 0在[0,2]中的近似解。
要求迭代两次。
(如果计算结果用小数表示,则最后结果应保留5位小数)。
一、 (本题15分)设常数a^0,试求a的取值范围,使得用雅可比(Jacobi ) 迭代法求解下面线性方程组时是收敛的。
a 1 3 x a1 a2 y a 13 2 a z a 2二、(本题16分)利用Hermite插值多项式构造下面的求积公式:h h 1 2f (x)dx f (0) f (h) h2 f (0) f (h)0 2 12并导出其积分余项。