第八章认识概率辅导课

合集下载

《概率的意义教案》课件

《概率的意义教案》课件

《概率的意义教案》PPT课件一、教学目标1. 让学生理解概率的概念,知道概率是反映事件发生可能性大小的量。

2. 让学生掌握概率的计算方法,能计算简单事件的概率。

3. 培养学生运用概率解决实际问题的能力。

二、教学重点与难点1. 教学重点:概率的概念,概率的计算方法。

2. 教学难点:概率的计算方法,如何运用概率解决实际问题。

三、教学方法1. 采用讲授法,讲解概率的概念和计算方法。

2. 采用案例分析法,分析实际问题,引导学生运用概率解决实际问题。

3. 采用小组讨论法,让学生分组讨论,培养学生的合作意识。

四、教学准备1. PPT课件:包括概率的定义、概率的计算方法、实际案例等。

2. 教学素材:包括概率题目、实际问题等。

3. 笔记本电脑、投影仪等教学设备。

五、教学过程1. 导入新课:通过一个简单的概率问题,引导学生思考概率的概念。

2. 讲解概率的定义:讲解概率是反映事件发生可能性大小的量,让学生理解概率的本质。

3. 讲解概率的计算方法:介绍两种常用的概率计算方法:古典概型和条件概率。

并通过具体例子讲解这两种方法的计算过程。

4. 案例分析:分析实际问题,引导学生运用概率解决实际问题。

如:抛硬币、抽奖、骰子等。

5. 小组讨论:让学生分组讨论,运用概率解决实际问题。

教师巡回指导,解答学生的疑问。

6. 课堂小结:回顾本节课的内容,强调概率的概念和计算方法。

7. 布置作业:布置一些简单的概率题目,巩固所学知识。

8. 课后反思:教师对本节课的教学进行反思,分析学生的学习情况,为下一节课的教学做好准备。

六、教学内容与流程1. 教学内容:概率的基本性质,如何运用概率解释随机现象。

2. 教学流程:a. 通过具体案例,讲解概率的基本性质,如:事件的独立性、互斥事件等。

b. 分析实际问题,引导学生运用概率解释随机现象。

c. 小组讨论,让学生运用概率解决实际问题。

七、教学策略1. 采用问题驱动法,引导学生主动思考概率的基本性质。

苏科版八年级下册数学第8章 认识概率 含答案

苏科版八年级下册数学第8章 认识概率 含答案

苏科版八年级下册数学第8章认识概率含答案一、单选题(共15题,共计45分)1、不透明的袋子中装有形状、大小、质地完全相同的个球,其中个黑球,个白球,从袋子中一次摸出个球,下列事件是不可能事件的是()A.摸出的是个黑球,个白球B.摸出的是个黑球C.摸出的是个白球,个黑球D.摸出的是个白球2、下面事件是随机事件的有()①连续两次掷一枚硬币,两次都出现正面朝上②异性电荷,相互吸引③在标准大气压下,水在1℃时结冰A.②B.③C.①D.②③3、一个不透明的袋子中有3个白球,4个黄球和5个红球,这些球除颜色不同外,其他完全相同.从袋子中随机摸出一个球,则它是黄球的概率是()A. B. C. D.4、在一个不透明的口袋里,装有仅颜色不同的黑球和白球若干只,某小组做摸球实验:将球搅匀后从中随机摸出一个,记下颜色,再放入袋中,不断重复,下表是活动中的一组数据,则摸到白球的概率约是()摸球的次数100 150 200 500 800 1000摸到白球的次数58 96 116 295 484 601摸到白球的频率0.58 0.64 0.58 0.59 0.605 0.6015、某班有25名男生和20名女生,现随机抽签确定一名学生做代表参加学代会,则下列选项中说法正确的是()A.男、女生做代表的可能性一样大B.男生做代表的可能性较大C.女生做代表的可能性较大D.男、女生做代表的可能性的大小不能确定6、国学经典《声律启蒙》中有这样一段话:“斜对正,假对真,韩卢对苏雁,陆橘对庄椿”,现有四张卡片依次写有一“斜”、“正”、“假”、“真”,四个字(4张卡片除了书写汉字不同外其他完全相同),现从四张卡片中随机抽取两张,则抽到的汉字恰为相反意义的概率是()A. B. C. D.7、“江阴市明天降水概率是20%”,对此消息下列说法中正确的是()A.江阴市明天将有20%的地区降水B.江阴市明天将有20%的时间降水 C.江阴市明天降水的可能性较小 D.江阴市明天肯定不降水8、下列事件中为必然事件的是()A.打开电视机,正在播放茂名新闻B.早晨的太阳从东方升起C.随机掷一枚硬币,落地后正面朝上D.下雨后,天空出现彩虹9、掷一枚质地均匀的骰子,下列事件是不可能事件是()A.向上一面点数是奇数B.向上一面点数是偶数C.向上一面点数是大于6D.向上一面点数是小于710、某学习小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如下折线统计图,则符合这一结果的实验最有可能的是()A.袋中装有大小和质地都相同的3个红球和2个黄球,从中随机取一个,取到红球B.掷一枚质地均匀的正六面体骰子,向上的面的点数是偶数C.先后两次掷一枚质地均匀的硬币,两次都出现反面D.先后两次掷一枚质地均匀的正六面体骰子,两次向上的面的点数之和是7或超过911、在一个不透明的布袋中,有红色、黑色、白色球共40个,它们除颜色外其他完全相同,小明通过多次摸球试验后发现其中摸到红色球、黑色球的频率稳定在和,则布袋中白色球的个数可能是()A.24B.18C.16D.612、布袋中装有除颜色外没有其他区别的1个红球和2个白球,搅匀后从中摸出一个球,放回搅匀,再摸出第二个球,两次都摸出白球的概率是()A. B. C. D.13、黑色不透明口袋里装有红色、白色球共10个,它们除颜色外都相同.从口袋中随机摸出一个球,记下颜色后放回,并摇匀,不断重复上述实验1000次,其中200次摸到红球,则可估计口袋中红色球的个数是()A.2B.4C.6D.814、已知二次函数y=kx2﹣6x+3,若k在数组(﹣3,﹣2,﹣1,1,2,3,4)中随机取一个,则所得抛物线的对称轴在直线x=1的右方时的概率为()A. B. C. D.15、小明在一次用频率估计概率的实验中,统计了某一结果出现的频率,并绘制了如图所示的统计图,则符合这一结果的实验可能是()A.掷一枚质地均匀的硬币,正面朝上的概率B.从一个装有2个白球和1个红球的不透明袋子中任意摸出一球(小球除颜色外,完全相同),摸到红球的概率C.从一副去掉大小王的扑g牌,任意抽取一张,抽到黑桃的概率D.任意买一张电影票,座位号是2的倍数的概率二、填空题(共10题,共计30分)16、在一个不透明的袋中装有12个红球和若干个白球,它们除颜色外都相同从袋中随机摸出一个球,记下颜色后放回,并搅均,不断重复上述的试验共5000次,其中2000次摸到红球,请估计袋中大约有白球________个17、某学习小组做摸球实验,在一个不透明的口袋里装有颜色不同的黄、白两种颜色的乒乓球若干只,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复.下表是活动进行中的一组统计数据摸球的次数n 100 150 200 500 800 1000摸到白球的次数m 58 96 116 295 484 601摸到白球的频率0.58 0.64 0.58 0.59 0.605 0.601 现从这个口袋中摸出一球,恰好是黄球的概率为________.18、有五个面的石块,每个面上分别标记1,2,3,4,5,现随机投掷100次,每个面落在地面上的次数如下表,估计石块标记3的面落在地面上的概率是________.石块的面 1 2 3 4 5频数17 28 15 16 2419、为了检验某批足球的质量,随机抽取了100个足球,发现合格的有90个.如果从这批足球中随机取出一个,那么这个足球合格的概率约为________.20、一个不透明的袋中装有2枚白色棋子和n枚黑色棋子,它们除颜色不同外,其余均相同.若小明从中随机摸出一枚棋子,多次实验后发现摸到黑色棋子的频率稳定在80%.则n很可能是________枚.21、甲、乙两同学下棋,胜一盘得2分,和一盘各得1分,负一盘得0分,连下三盘,得分多者为胜.则甲取胜的概率是________。

苏科版八年级下册第八章《认识概率》要点总结归纳+例题精讲

苏科版八年级下册第八章《认识概率》要点总结归纳+例题精讲

概率与统计1、普查与抽查普查和抽查是调查的2种方式,各有利弊.普查费时费力,但调查的结果准确.抽查节省人力物力时间,但数据不够准确.因此,一般为了全面了解数据,且总体个数较少时,采用普查.对精密度,安全性要求特别高的,也要用普查.而当调查全部个体有困难,或者具有一定的破坏性时,选择抽查,但要注意样本具有代表性2、抽查涉及的4个量抽查会涉及:总体,个体,样本,样本容量.这四个量中,都需要值得注意,如总体中,要明确抽查的内容,抽查八年级50位学生的身高,总体不是所有八年级的学生,是所有八年级学生的身高的全体.个体也不是每个学生,是每个学生的身高,样本容量是一个纯数字,不带单位.3、统计图的选用常见的统计图有3种,扇形统计图,条形统计图,折线统计图.它们又各自的特点,扇形统计图强调各部分占总体的比例.条形统计图可以直观显示各项目的数目.折线统计图则能清楚反映数据的变化情况.通常在中考中,会给出缺项的扇形统计图和条形统计图,根据已知信息,补全未知项目.3、统计图的选用常见的统计图有3种,扇形统计图,条形统计图,折线统计图.它们又各自的特点,扇形统计图强调各部分占总体的比例.条形统计图可以直观显示各项目的数目.折线统计图则能清楚反映数据的变化情况.通常在中考中,会给出缺项的扇形统计图和条形统计图,根据已知信息,补全未知项目.4、统计涉及的四个频统计中的四频是指频数,频率,频数分布表,频数分布直方图.其中,频率=频数÷总数.为了更好的体现数据的整体情况,我们通常要将其按照一定的范围进行分组.首先确定组数,当数据n≤50,通常分5-7组,当数据为50<n≤100,通常分8-12组.接着确定组距,找到数据中的最大值和最小值,算出两者之差,即极差.用极差÷组数,即为组距.当组距不为整数时,我们可以适当调整,如最大值为100,最小值为40,分8组,则组距为7.5,我们可以取8,相应的,将总区间调整为38-102,8组分别是38-46,46-54,……,86-94,94-102.5、用样本估计总体通常,我们根据抽查中,符合要求的某一项的数目,要去估计总体中,符合要求的大概数目.在根据比例求出这个数据后,我们别忘了写上答句,估计.....约有.......6、事件的分类事件分为确定事件和随机事件2种,其中确定事件又分必然事件和不可能事件.有些随机事件发生的可能性较大,但不能就说是必然事件,而有些随机事件的可能性较小,也不能就说是不可能事件.7、频率与概率实际生活中,当实验次数很大时,我们常把事件发生的频率作为其概率的估计值,但不能将两者混完一谈,前者是通过实验得出的数值,是不确定的.后者是根据实际事件计算得到的数值,是确定的.当实验次数较小时,频率波动较大,当实验次数较大时,频率波动变小逐渐稳定在一个常数附近,但不一定就等于概率的数值.如抛硬币,正面朝上概率是0.5,但不是说抛1000次,就一定500次正面朝上,也许可能是489次,也许可能是507次.8、概率的书写概率通常用字母P来表示,比如,布袋中有8个球,2个红球和6个白球,除颜色外,其他完全相同,求摸出红球的概率.应写作P(摸出红球)=2÷8=0.25例题精炼例1:下列调查中,最适合采用抽样调查的是()A.对某地区现有的16名百岁以上老人睡眠时间的调查B.对“神舟十一号”运载火箭发射前零部件质量情况的调查C.对某校九年级三班学生视力情况的调查D.对某市场上某一品牌电脑使用寿命的调查解答:D例2:为了解某市老人的身体健康状况,需要抽取部分老人进行调查,下列抽取老人的方法最合适的是()A.随机抽取100位女性老人B.随机抽取100位男性老人C.随机抽取公园内100位老人D.在城市和乡镇各选10个点,每个点任选5位老人解答:D例3:为了考察我校七年级同学的视力情况,从七年级的10个班共540名学生中,抽取了50名进行分析,在这个问题中,总体是________________________________,个体是________________________________,样本是________________________________,样本容量是_____________________________.解答:总体是我校七年级同学的视力情况的全体.个体是我校七年级每个同学的视力情况.样本是从我校七年级同学中抽取的50名同学的视力情况.样本容量是50.例4:在“宏扬传统文化,打造书香校园”活动中,学校计划开展四项活动:“A-国学诵读”、“B-演讲”、“C-课本剧”、“D-书法”,要求每位同学必须且只能参加其中一项活动,学校为了了解学生的意愿,随机调查了部分学生,结果统计如下:(1)如图,希望参加活动C占20%,希望参加活动B占15%,则被调查的总人数为_____人,扇形统计图中,希望参加活动D所占圆心角为_______度,根据题中信息补全条形统计图.(2)学校现有800名学生,请根据图中信息,估算全校学生希望参加活动A有多少人?解答:例5:某地区对该区所属的中学的初一年级数学教学情况进行期末质量调查,抽出20个班级的数学期末均分如下:80,81,83,79,64,76,80,66,70,72,71,68,78,69,80,67,72,68,70,65取组距为4,应分成______组;第三组的频率是______.解答:例6:某区对参加2017年中考的5000名初中毕业生进行了一次视力抽样调查,绘制出频分布表和频数分布直方图的一部分,请根据图表信息回答下列问题:(1)在频数分布表中,a的值为__________,b的值为__________,并将频数分布直方图补充完整;(2)若视力在4.9以上(含4.9)均属正常,则视力正常的人数占被统计人数的百分比是__________,并根据上述信息估计全区初中毕业生中视力正常的学生有多少人?解答:例7:在括号里填上“不可能”“不太可能”“可能”“很有可能”“必然”等词语.(1)如果a=b,那么a²=b².( )(2)今天下雨了,明天也下雨.( )(3)如果|a|+|b|=0,那么a<0,b>0.( )(4)一个袋子里有5个红球,1个白球,从袋里任取一球是红色的.( )(5)骰子连续掷10次,掷得的点数全是6.( )(6)任意367人中,至少有2人是同月同日生.( )解答:例8:在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共20只,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复,下表是活动进行中的一组统计数据:(1)请估计:当n很大时,摸到白球的频率将会接近____;(精确到0.01)(2)假如你去摸一次,你摸到白球的概率是____,摸到黑球的概率是____;(3)试估算口袋中黑、白两种颜色的球各有多少只?解答:(1)观察表格得摸到白球的频率将会接近0.60;(2)摸到白球的概率是0.6;摸到黑球的概率是1-0.6=0.4;(3)∵20×0.6=12个,20×0.4=8个,∴白球12个,黑球8个.。

苏科版八年级下册数学第8章 认识概率 含答案

苏科版八年级下册数学第8章 认识概率 含答案

苏科版八年级下册数学第8章认识概率含答案一、单选题(共15题,共计45分)1、下列成语或词语所反映的事件中,可能性大小最小的是()A.瓮中捉鳖B.守株待兔C.旭日东升D.夕阳西下2、在一个不透明的口袋中,装有5个红球3个白球,它们除颜色外都相同,从中任意摸出一个球,则摸到红球的概率为()A. B. C. D.3、对于“a,b都是实数,则(a-b)2≥0”这一事件是( )A.必然事件B.不确定事件C.不可能事件D.随机事件4、下列事件为确定事件的是()A.6张相同的小标签分别标有数字1~6,从中任意抽取一张,抽到3号签 B.抛掷1枚质地均匀的硬币反面朝上 C.射击运动员射击一次,命中靶心 D.长度分别是4,6,8的三条线段能围成一个三角形5、将一质地均匀的正方体骰子朝上一面的数字,与3相差1的概率是()A. B. C. D.6、从下列四张卡片中任取一张,卡片上的图形既是轴对称又是中心对称图形的概率是()A. B. C. D.17、下列说法正确的是()A.要了解某公司生产的100万只灯泡的使用寿命,可以采用抽样调查的方法 B.4位同学的数学期末成绩分别为100、95、105、110,则这四位同学数学期末成绩的中位数为100 C.甲乙两人各自跳远10次,若他们跳远成绩的平均数相同,甲乙跳远成绩的方差分别为0.51和0.62 D.某次抽奖活动中,中奖的概率为表示每抽奖50次就有一次中奖8、已知实数,则下列事件是随机事件的是()A. B. C. D.9、在投掷一枚硬币的游戏过程中,已知“正面朝上”的概率为50%,那么下列说法正确的是()A.投掷100次必有50次“正面朝上”;B.投掷100次可能有50次“正面朝上”;C.投掷很多次的时候,极少出现“正面朝上”;D.投掷很多次的时候,极有可能出现“正面朝上”.10、下列事件中必然发生的事件是()A.一个图形旋转后所得的图形与原来的图形不全等B.100件产品中有4件次品,从中任意抽取5件,至少一件是正品C.不等式的两边同时乘以一个数,结果仍是不等式D.随意翻一本书的某页,这页的页码一定是偶数11、中国抗击疫情最宝贵的经验就是“早发现,早报告,早隔离,早治疗”.在这12个字中“早”字出现的频率是()A. B. C. D.12、在围棋盒中有x颗白色棋子和y颗黑色棋子,从盒中随机取出一颗棋子,取得白色棋子的概率是.如果再往盒中放进6颗黑色棋子,取得白色棋子的概率是,则原来盒中有白色棋子()A.8颗B.6颗C.4颗D.2颗13、下列事件:①掷一次骰子,向上一面的点数是3;②从一个只装有黑色球的袋子摸出一个球,摸到的是白球;③13个人中至少有两个人的生日是在同一个月份;④射击运动员射击一次,命中靶心;⑤水中捞月;⑥冬去春来.其中是必然事件的有()A.1个B.2个C.3个D.4个14、下列事件中属于必然事件的是()A.早上的太阳从西边升起B.掷一枚质地均匀的骰子,掷出的点数不超过6 C.经过有交通信号灯的路口,遇到红灯 D.打开电视任选一频道,正在播放普宁新闻15、下列说法正确的是 ( )A.掷两枚硬币,一枚正面朝上,一枚反面朝上是不可能事件B.随意地翻到一本书的某页,这页的页码为奇数是随机事件C.经过某市一装有交通信号灯的路口,遇到红灯是必然事件D.某一抽奖活动中奖的概率为,买100张奖券一定会中奖二、填空题(共10题,共计30分)16、下列事件:(1)从装有1个红球和2个黄球的袋子中摸出的1个球是白球;(2)随意调查1位青年,他接受过九年制义务教育;(3)花2元买一张体育彩票,喜中500万大奖;(4)抛掷1个小石块,石块会下落.估计这些事件的可能性大小,在相应位置填上序号.一定会发生的事件:________ ;发生的可能性非常大的事件:________ ;发生的可能性非常小的事件:________ ;不可能发生的事件:________ .17、小英同时掷甲、乙两枚质地均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).记甲立方体朝上一面上的数字为x,乙立方体朝上一面上的数字为y,这样就确定点P的一个坐标(x,y),那么点P落在双曲线y= 上的概率为________.18、在两只不透明的袋子中,各有10个除颜色外完全一样的小球.第一个袋子中有2个红球、8个白球,第二个袋子中有8个红球、2个白球,分别从每个袋子中任意摸出一个球,则第________个袋子中摸出白球的可能性大.19、布袋中有红、黄、蓝三种不同颜色的球各一个,从中先摸出一个球,记录下颜色后不放回布袋,将布袋搅匀,再摸出一个球,这时摸出的两个球是“一红一黄”的概率为________.20、在一所有1500名学生的中学里,调查人员随机调查了50名学生,其中有40人每天都喝牛奶,那么在这所学校里,随便询问1人,每天都喝牛奶的概率是________.21、如图,平面内有16个格点,每个格点小正方形的边长为1,则图中阴影部分的面积为________.22、数学试卷的选择题都是四选一的单项选择题,小阳对某道选择题完全不会做,只能靠猜测获得结果,则小阳做对的概率为________.23、从﹣3、﹣1、、1、3这五个数中,随机抽取一个数,记为a,则关于x 的一次函数y=﹣x+a的图象与坐标轴围成三角形的面积不超过4的概率为________.24、袋中装有6个黑球和4个白球,经过若干次试验,若从袋中任摸出一个球,恰是黑球的概率为________.25、在一个不透明的袋子中,装有2个红球和3个白球,它们除颜色外其余均相同.现随机从袋中摸出一个球,颜色是白色的概率是________.三、解答题(共6题,共计25分)26、一个袋子中装有3个红球和两个黄球,它们除颜色外,其他都相同.(1)求从袋中摸出一个球是红球的概率;(2)将n个绿球(与红、黄球除颜色外,其他都相同)放入袋中摇均匀,从袋中随机摸出一个球,记下颜色,再把它放回袋中,不断重复上述的过程,共摸了500次,其中60次摸到红球.请通过计算估计n的值.27、有一则广告称“有80%的人使用本公司的产品”,你对该则广告的宣传有何看法?28、三张背面完全相同的数字牌,它们的正面分别印有数字1,2,3,将它们背面朝上,洗匀后随机抽取一张,记录牌上的数字并把牌放回,再重复这样的步骤两次,得到三个数字a,b,c,求以a,b,c为边长正好构成等边三角形的概率.29、一个口袋中有黑球10个,白球若干个,小明从袋中随机一次摸出10只球,记下其中黑球的数目,再把它们放回,搅均匀后重复上述过程20次,发现共有黑球18个,由此你能估计出袋中的白球是多少个吗?30、某商场举办购物有奖活动,在商场购满价值50元的商品可抽奖一次,丽丽在商场购物共花费120元,按规定抽了两张奖券,结果其中一张中了奖,能不能说商场的抽奖活动中奖率为50%?为什么?参考答案一、单选题(共15题,共计45分)1、B2、D3、A4、D5、D6、B7、A8、B9、B10、B11、D12、C14、B15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、三、解答题(共6题,共计25分)26、27、28、29、30、。

苏科版八年级下册数学第8章 认识概率 含答案

苏科版八年级下册数学第8章 认识概率 含答案

苏科版八年级下册数学第8章认识概率含答案一、单选题(共15题,共计45分)1、在一个不透明的盒子里有n个除颜色外其它均相同的小球,其中有8个黄球,采用有放回的方式摸球,结果发现摸到黄球的频率稳定在40%,那么可以推算出n大约是( )A.8B.20C.32D.402、下列事件中为必然事件的是()A.打开电视机,正在播放茂名新闻B.早晨的太阳从东方升起C.随机掷一枚硬币,落地后正面朝上D.下雨后,天空出现彩虹3、下列说法正确的是()A.调查孝感区居民对创建“全国卫生城市”的知晓度,宜采用抽样调查B.一组数据85,95,90,95,95,90,90,80,95,90的众数为95C.“打开电视,正在播放乒乓球比赛”是必然事件 D.同时抛掷两枚质地均匀的硬币一次,出现两个正面朝上的概率为4、同时抛两枚质地均匀的硬币,有且只有一枚硬币正面朝上的概率是()A. B. C. D.5、以下说法正确的是( )A.在同一年出生的400人中至少有两人的生日相同B.一个游戏的中奖率是1%,买100张奖券,一定会中奖C.一副扑g牌中,随意抽取一张是红桃K,这是必然事件 D.一个袋中装有3个红球、5个白球,任意摸出一个球是红球的概率是6、下列事件中,随机事件是()A.在地球上,抛出去的篮球会下落B.通常水加热到100℃时会沸腾 C.购买一张福利彩票中奖了 D.掷一枚骰子,向上一面的字数一定大于零7、某种商品原价是100元,经两次降价后的价格是90元.设平均每次降价的百分率为x,可列方程为()A.100x(1﹣2x)=90B.100(1+2x)=90 C.100(1﹣x)2=90 D.100(1+x)2=908、2012﹣2013NBA整个常规赛季中,科比罚球投篮的命中率大约是83.3%,下列说法错误的是()A.科比罚球投篮2次,一定全部命中B.科比罚球投篮2次,不一定全部命中C.科比罚球投篮1次,命中的可能性较大D.科比罚球投篮1次,不命中的可能性较小9、从一副扑g牌中随机抽取一张,它恰好是Q的概率为()A. B. C. D.10、在一个不透明的袋子里装有红球、黄球共20个,这些球除颜色外都相同.小明通过多次实验发现,摸出红球的频率稳定在0.3左右,则袋子中红球的个数最有可能是( )A.14B.12C.6D.411、从长度分别为2,4,6,8的四条线段中任选三条作边,能构成三角形的概率为()A. B. C. D.12、下列说法不正确的是()A.某种彩票中奖的概率是,买1000张该种彩票一定会中奖B.了解一批电视机的使用寿命适合用抽样调查 C.若甲组数据的标准差S甲=0.25,则乙组数据比甲组数据稳定 D.在=0.31,乙组数据的标准差S乙一个装有白球和绿球的袋中摸球,摸出黑球是不可能事件13、为调查6个人中2个人生肖相同的概率,进行有放回地摸球试验,则()A.用12个球每摸6次为一次试验,看是否有2次相同B.用12个球每摸12次为一次试验,看是否有2次相同C.用6个球每摸12次为一次试验,看是否有2次相同D.用6个球每摸6次为一次试验,看是否有2次相同14、下列说法不正确的是()A.某种彩票中奖的概率是,买1000张该种彩票一定会中奖B.了解一批电视机的使用寿命适合用抽样调查 C.若甲组数据的标准差S甲=0.25,则乙组数据比甲组数据稳定 D.在=0.31,乙组数据的标准差S乙一个装有白球和绿球的袋中摸球,摸出黑球是不可能事件15、下列事件中,必然事件是()A.任意掷一枚均匀的硬币,正面朝上B.通常情况下,抛出的篮球会下落 C.从一副扑g牌中,随意抽出一张是大王 D.三角形内角和为360°二、填空题(共10题,共计30分)16、一个布袋中装有3个红球和4个白球,这些除颜色外其它都相同.从袋子中随机摸出一个球,这个球是白球的概率为________.17、不透明的袋子里装有将10个乒乓球,其中5个白色的,2个黄色的,3个红色的,这些乒乓球除颜色外全相同,从中任意摸出一个,则摸出白色乒乓球的概率是 ________18、在一个不透明的袋子中有50个除颜色外均相同的小球,通过多次摸球试验后,发现摸到白球的频率约为36%,估计袋中白球有________个.19、某农科所在相同条件下做玉米种子发芽实验,结果如下:某位顾客购进这种玉米种子10kg,那么大约有________kg种子能发芽.20、如图,大圆半径为6,小圆半径为3,在如图所示的圆形区域中,随机撒一把豆子,多次重复这个实验,若把“豆子落在小圆区域A中”记作事件W,请估计事件W的概率P(W)的值________.21、一个猜想是否正确,科学家们要经过反复的实验论证.下表是几位科学家“掷硬币”的实验数据:请根据以上数据,估计硬币出现“正面朝上”的概率为________(精确到0.1).22、一个不透明的口袋里装有除颜色外都相同的5个白球和若干个红球,在不允许将球倒出来数的前提下,小亮为了估计其中的红球数,采用如下方法:先将口袋中的球摇匀,再从口袋中随机摸出一球,记下颜色,然后把它放回口袋中.不断重复上述过程.小亮共摸了100次,其中有10次摸到白球.因此小亮估计口袋中的红球大约有________.23、一个袋中装有10个红球、3个黄球,每个球只有颜色不同,现在任意摸出一个球,摸到________球的可能性较大.24、在一个不透明的布袋中装有8个白球和4个红球,它们除了颜色不同外,其余均相同.从中随机摸出一个球,投到红球的概率是________.25、任意选择电视的某一频道,正在播放动画片,这个事件是________事件.(填“必然”“不可能”或“不确定”)三、解答题(共6题,共计25分)26、一只不透明的袋子中装有1个白球、2个黄球和3个红球,每个球除颜色外都相同,将球摇匀,从中任意摸出一个球:(1)该球是白球;(2)该球是黄球;(3)该球是红球.估计上述事件发生的可能性的大小,将这些事件的序号按发生的可能性从小到大的顺序排列.27、一个盒中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机摸取一个小球然后放回,再随机摸出一个小球.(Ⅰ)请用列表法(或画树状图法)列出所有可能的结果;(Ⅱ)求两次取出的小球标号相同的概率;(Ⅲ)求两次取出的小球标号的和大于6的概率.28、小明购买双色球福利彩票时,两次分别购买了1张和100张,均未获奖,于是他说:“购买1张和100张中奖的可能性相等.”小华说:“这两个事件都是不可能事件.”他们的说法对吗?请说明理由.29、某日学校值周教师巡查早读情况,发现九年级共有三名学生迟到,年级主任通报九年级情况后,九(1)班班主任是数学老师,借此事在课堂上请同学们猜一猜、算一算迟到的学生是一个男生和两个女生的概率,李晓说:共有四种情况:一男二女,一女二男,三男,三女,因此概率是.请你利用树状图,判断李晓说法的正确性30、在研究抛两枚硬币,出现都是正面朝上的概率问题时,假如你的手上没有硬币,怎么办?请设计出一种试验方案代替它.参考答案一、单选题(共15题,共计45分)1、B2、B4、C5、A6、C7、C8、A9、B10、C11、C12、A13、A14、A15、B二、填空题(共10题,共计30分)16、17、18、20、21、22、23、24、25、三、解答题(共6题,共计25分)26、28、29、30、。

苏科版八年级数学下册第八章《认识概率复习》公开课课件

苏科版八年级数学下册第八章《认识概率复习》公开课课件

11、一个好的教师,是一个懂得心理学和教育学的人。2021/7/312021/7/312021/7/31Jul-2131-Jul-21
12、要记住,你不仅是教课的教师,也是学生的教育者,生活的导师和道德的引路人。2021/7/312021/7/312021/7/31Saturday, July 31, 2021
9、抛一枚骰子各面标有1、2、3、4、5、6, 写出一个随机事件事件_____,写出一个必然事 件_______;写出一个不可能事件_______;
三、简答题
1、学校门口经常有小贩搞摸奖活动,某小贩 在一只黑色的口袋里装有只有颜色不同的50 只小球,其中红球1只,黄球2只,绿球10只, 其余为白球,搅拌均匀后,每2元摸1个球, 奖品的情况标注在球上(如图)
13、He who seize the right moment, is the right man.谁把握机遇,谁就心想事成。2021/7/312021/7/312021/7/312021/7/317/31/2021
14、谁要是自己还没有发展培养和教育好,他就不能发展培养和教育别人。2021年7月31日星期六2021/7/312021/7/312021/7/31
(1)、打开电视机,它正在广播新闻_____;
(2)、太阳每天从东方升起_____
(3)、十三名学生其中两人生日在同一个


二、填空题
7、口袋中放有3个红球和11个黄球,这两种球 除颜色外没有任何区别,随机从口袋中取一个 球,取到黄球的概率是_________;
8、某班50名学生在适应性考试中,分数在 90~100的概率为0.1,则该班在这个分数段的 人数有______人;
4、中央电视台“幸运52”栏目中的“百宝 箱”互动环节,是一种竞猜游戏,游戏规则 如下:在20个商标中,有5个商标牌的背面 注明一定的金额,其余商标牌的背面是一张 哭脸,若翻到哭脸就不得奖,参与这个节目 的观众有三次翻牌的机会(翻过的牌不能再 翻),某观众前两次翻牌均获得若干奖金, 那么他第三次翻牌获奖的概率是( )

苏科版八年级下册数学第8章 认识概率含答案【步步高升】

苏科版八年级下册数学第8章 认识概率含答案【步步高升】

苏科版八年级下册数学第8章认识概率含答案一、单选题(共15题,共计45分)1、下列说法正确的是()A.投掷质量分布均匀的六面体骰子600次,骰子六面分别标有1,2,3,4,5,6,那么出现5点的机会大约为100次B.抛掷硬币实验中,抛掷500次和抛掷1000次没什么区别C.现有9张卡片,分别标有1至9这九个数字,将它们背面朝上洗匀后,任意抽出一张,因小丽的幸运数是“8”,所以她抽到数字8的机会比抽到其他数字的机会大D.某彩票的中奖机会是1%,买1张一定不会中奖2、下列事件中,是必然事件的是()A.打开电视刚好在播放广告B.抛出的铁球会落地C.早上的太阳从西边升起D.雨后有彩虹3、“射击运动员射击一次,命中靶心”这个事件是()A.确定事件B.必然事件C.不可能事件D.不确定事件4、如图,电路图上有个开关、、、和个小灯泡,同时闭合开关、或同时闭合开关、都可以使小灯泡发光.下列操作中,“小灯泡发光”这个事件是随机事件的是()A.只闭合1个开关B.只闭合2个开关C.只闭合3个开关D.闭合4个开关5、现有4张卡片,其中3张卡片正面上的图案是“ ”,1张卡片正面上的图案是“ ”,它们除此之外完全相同.把这4张卡片背面朝上洗匀,从中随机抽取两张,则这两张卡片正面图案相同的概率是()A. B. C. D.6、事件A:打开电视,它正在播广告;事件B:抛掷一个均匀的骰子,朝上的点数小于7;事件C:在标准大气压下,温度低于0℃时冰融化.3个事件的概率分别记为P(A)、P(B)、P(C),则P(A)、P(B)、P(C)的大小关系正确的是()A.P(C)<P(A)=P(B)B.P(C)<P(A)<P(B)C.P (C)<P(B)<P(A)D.P(A)<P(B)<P(C)7、掷一枚六个面分别标有1,2,3,4,5,6的正方体骰子,则向上一面的数不大于4的概率是()A. B. C. D.8、下列说法不正确的是()A.选举中,人们通常最关心的数据是众数B.从1、2、3、4、5中随机取一个数,取得奇数的可能性比较大C.数据3、5、4、1、2的中位数是3D.某游艺活动的中奖率是60%,说明参加该活动10次就有6次会获奖9、下列事件中是必然事件的是()A.a 是实数,|a|≥0B.打开数学课本时刚好翻到第60页C.从一定高度落下的图钉,落地后钉尖朝上D.在一个仅装着白球和黑球的袋中摸球,摸出白球10、在一个不透明的盒子中装有8个白球,若干个黄球,它们除颜色不同外,其余均相同,若从中随机摸出一个球为白球的概率是,则黄球的个数为().A.16B.12C.8D.411、掷两个普通的正方体骰子,把两个点数相加.则下列事件中发生的机会最大的是 ( )A.和为11B.和为8C.和为3D.和为212、下列说法不正确的是()A.为了解宿迁市所有中学生的视力情况,可采用抽样调查的方法B.彩票中奖的机会是1﹪,买100张彩票一定会中奖C.在同一年出生的367名学生中,至少有两人的生日是同一天D.12只型号相同的杯子,其中一等品7只,二等品3只,三等品2只,则从中任取一只,取到是二等品的概率是13、下列事件为必然事件的是()A.打开电视,正在播放新闻B.买一张电影票,座位号是奇数号C.任意画一个三角形,其内角和是180°D.掷一枚质地均匀的硬币,正面朝上14、下列说法:①要了解一批灯泡的使用寿命,应采用普查的方式;②若一个游戏的中奖率是1%,则做100次这样的游戏一定会中奖;③甲、乙两组数据的样本容量与平均数分别相同若方差S甲2=0.1,S乙2=0.2,则甲组数据比乙组数据稳定;④“掷一枚硬币,正面朝上”是必然事件.正确的说法有()个.A.4B.3C.2D.115、商场举行摸奖促销活动,对于“抽到一等奖的概率为0.1”,下列说法正确的是()A.抽10次奖必有一次抽到一等奖B.抽一次不可能抽到一等奖C.抽10次也可能没有抽到一等奖D.抽了9次如果没有抽到一等奖,那么再抽一次肯定抽到一等奖二、填空题(共10题,共计30分)16、在一个布袋中装有只有颜色不同的a个小球,其中红球的个数为2,随机摸出一个球记下颜色后再放回袋中,通过大量重复实验后发现,摸到红球的频率稳定于0.2,那么可以推算出a大约是________.17、布袋里有8个大小相同的乒乓球,其中2个为红色,1个为白色,5个为黄色,搅匀后从中随机摸出一个球是红色的概率是________.18、初一(5)班有学生37人,其中4个或4个以上学生在同一个月出生的可能性用百分数表示为________%.19、某种产品共有10件,其中有1件是次品,现从中任意抽取1件,恰好抽到次品的概率是________ .20、 2月上旬某市空气质量指数(AQI)(单位:pg/m3)如表所示:(空气质量指数不大于100表示空气质量优良)如果小王2月上旬到该市度假一次,那么他在该市度假3天空气质量都是优良的概率是________.21、在一个不透明的布袋中装有50个黄、白两种颜色的球,除颜色外其他都相同,小红通过多次摸球试验后发现,摸到黄球的频率稳定在0.3左右,则布袋中白球可能有________个.22、北环中学初一年级共10个班,每班有43名学生,现从每个班中任意抽一名学生共10名学生参加福田区教育局组织的冬令营.若你是该校初一某班的学生,你被抽到的可能性是________23、数学老师将全班分成6个小组开展小组合作学习,采用随机抽签确定一个小组进行展示活动,则第3个小组被抽到的概率是________.24、从3,0,﹣1,﹣2,﹣3这五个数中,随机抽取一个数,作为函数y=(5﹣m2)x和关于x的方程(m+1)x2+mx+1=0中m的值,恰好使所得函数的图象经过第一、三象限,且方程有实数根的概率为________.25、从﹣3,﹣2,﹣1,0,1,2这6个数中任意取出一个数记作k,则既能使函数y=的图象经过第一、第三象限,又能使关于x的一元二次方程x2﹣kx+1=0有实数根的概率为________.三、解答题(共6题,共计25分)26、中考报名前各校初三学生都要进行体检,某次中考体验设有A、B两处检测点,甲、乙、丙三名学生各自随机选择其中的一处进行中考体检,请用表格或树状图分析:(1)求甲、乙、丙三名学生在同一处中考体验的概率;(2)求甲、乙、丙三名学生中至少有两人在B处检测视力的概率.27、下表记录了一名球员在罚球线上投篮的结果,投篮次数(n)50 100 150 209 250 300 350投中次数(m)28 60 78 104 123 152 175投中频率(n/m)0.56 0.60 0.52 0.50 0.49 0.51 0.58 (1)计算并填写表中的投中频率(精确到0.01);(2)这名球员投篮一次,投中的概率约是多少(精确到0.1)?28、为了考察甲、乙两种成熟期小麦的株高长势情况,现从中随机抽取6株,并测得它们的株高(单位:cm)如下表所示:甲63 66 63 61 64 61乙63 65 60 63 64 63(Ⅰ)请分别计算表内两组数据的方差,并借此比较哪种小麦的株高长势比较整齐?(Ⅱ)现将进行两种小麦优良品种杂交实验,需从表内的甲、乙两种小麦中,各随机抽取一株进行配对,以预估整体配对情况,请你用列表法或画树状图的方法,求所抽取的两株配对小麦株高恰好都等于各自平均株高的概率.29、在阳光体育活动时间,小亮、小莹、小芳和大刚到学校乒乓球室打乒乓球,当时只有一副空球桌,他们只能选两人打第一场.(1)如果确定小亮打第一场,再从其余三人中随机选取一人打第一场,求恰好选中大刚的概率;(2)如果确定小亮做裁判,用“手心、手背”的方法决定其余三人哪两人打第一场.游戏规则是:三人同时伸“手心、手背”中的一种手势,如果恰好有两人伸出的手势相同,那么这两人上场,否则重新开始,这三人伸出“手心”或“手背”都是随机的,请用画树状图的方法求小莹和小芳打第一场的概率.30、某校9年2班有2名男生和3名女生报名参加志愿者活动。

苏科版八年级下册数学第8章 认识概率 含答案完整版

苏科版八年级下册数学第8章 认识概率 含答案完整版

苏科版八年级下册数学第8章认识概率含答案一、单选题(共15题,共计45分)1、小明将分别标有爱我中华汉字的四个小球装在一个不透明的口袋中,这些球除汉字外都相同,每次摸球前先搅拌均匀,随机摸出一球记下汉字后放回,再随机摸出一球,两次摸出的球上的汉字能组成“中华”的概率是( )A. B. C. D.2、一只盒子中有红球m个,白球8个,黑球n个,每个球除颜色外都相同,从中任取一个球,取得白球的概率与不是白球的概率相同,那么m与n的关系是()A.m=3,n=5B.m=n=4C.m+n=4D.m+n=83、小烈和小伟玩一种扑g版的游戏,若小烈手里有3张牌是K,小伟从小烈手中抽到K的概率为,则小烈手里共有扑g牌()A.4张B.9张C.12张D.15张4、一个盒子装有除颜色外其它均相同的2个红球和3个白球,现从中任取2个球,则取到的是一个红球、一个白球的概率为()A. B. C. D.5、盒子中装有2个红球和4个绿球,每个球除颜色外都相同,从盒子中任意摸出一个球,是绿球的概率是( )A. B. C. D.6、下列事件中,是随机事件的是()A.将石子抛入水中,石子会沉入水底B.傍晚的太阳从东方落下C.用长度为厘米厘米、厘米的三根小木棒(不能折断),首尾顺次相接可以搭成一个三角形D.打开电视机,正在播放篮球比赛7、下列说法正确的是()A.抛一枚硬币,正面一定朝上B.掷一颗骰子,朝上一面的点数一定不大于6C.为了解一种灯泡的使用寿命,宜采用普查的方法D.“明天的降水概率为80%”,表示明天会有80%的地方下雨8、四张质地、大小、背面完全相同的卡片上,正面分别画有圆、矩形、等边三角形、等腰梯形四个图案.现把它们的正面向下随机摆放在桌面上,从中任意抽出一张,则抽出的卡片正面图案是中心对称图形的概率为()A. B. C. D.19、下列说法中,正确的是()A.“打开电视,正在播放河南新闻节目”是必然事件B.某种彩票中奖概率为10%是指买十张一定有一张中奖C.神舟飞船发射前需要对零部件进行抽样调查D.了解某种节能灯的使用寿命适合抽样调查10、从﹣1,0,,π,中随机任取一数,取到无理数的概率是()A. B. C. D.11、从﹣2,0,1,2,3中任取一个数作为a,既要使关于x一元二次方程ax2+(2a﹣4)x+a﹣8=0有实数解,又要使关于x的分式方程=3有正数解,则符合条件的概率是()A. B. C. D.12、在李咏主持的“幸运52”栏目中,曾有一种竞猜游戏,游戏规则是:在20个商标牌中,有5个商标牌的背面注明了一定的奖金,其余商标牌的背面是一张“哭脸”,若翻到“哭脸”就不获奖,参与这个游戏的观众有三次翻牌的机会,且翻过的牌不能再翻.有一位观众已翻牌两次,一次获奖,一次不获奖,那么这位观众第三次翻牌获奖的概率是()A. B. C. D.13、下列事件中,属于必然事件的是()A.任意购买一张电影票,座位号是奇数B.明天晚上会看到太阳C.五个人分成四组,这四组中有一组必有2人D.三天内一定会下雨14、在一个不透明的口袋中,装有5个红球3个白球,它们除颜色外都相同,从中任意摸出一个球,摸到白球的概率为()A. B. C. D.15、下列说法正确的是( )A.“概率为0.0001的事件”是不可能事件B.任意掷一枚质地均匀的硬币10次,正面向上的一定是5次C.“任意画出一个等边三角形,它是轴对称图形”是随机事件D.“任意画出一个平行四边行,它是中心对称图形”是必然事件二、填空题(共10题,共计30分)16、袋中有4个红球,x个黄球,从中任摸一个恰为黄球的概率为,则x的值为________.17、下列事件:①掷一枚质地均匀的硬币,正面朝上;②某彩票中奖率为买100张一定会中奖;③13人中至少有2人的生日在同一个月.其中是必然事件的是________(填序号).18、如图1,有六张写有汉字的卡片,它们的背面都相同,现将它们背面朝上洗匀后如图2摆放,从中任意翻开一张是汉字“成”的概率是________.19、如图,是某射手在相同条件下进行射击训练的结果统计图,该射手击中靶心的概率的估计值为________.20、袋子中装有除颜色外完全相同的n个黄色乒乓球和3个白色乒乓球,从中随机抽取1个,若选中白色乒乓球的概率是,则n的值是________.21、在4张完全相同的卡片上分别画上①、②、③、④。

湘教版八年级数学概率的概念教案

湘教版八年级数学概率的概念教案

概率的概念5.1概率的概念教学目标:了解必然发生的事件、不可能发生的事件、随机事件的特点.学生经历体验、操作、观察、归纳、总结的过程,发展学生从纷繁复杂的表象中,提炼出本质特征并加以抽象概括的能力.重点、难点:重点:随机事件的特点.难点:判断现实生活中哪些事件是随机事件.教学过程【问题情境】摸球游戏三个不透明的袋子均装有10个乒乓球.挑选多名同学来参加游戏.游戏规则每人每次从自己选择的袋子中摸出一球,记录下颜色,放回,搅匀,重复前面的试验.每人摸球5次.按照摸出黄色球的次数排序,次数最多的为第一名,其次为第二名,最少的为第三名.教师事先准备的三个袋子中分别装有10个白色的乒乓球;5个白色的乒乓球和5个黄色的乒乓球;10个黄色的乒乓球.学生积极参加游戏,通过操作和观察,归纳猜测出在第1个袋子中摸出黄色球是不可能的,在第2个袋子中能否摸出黄色球是不确定的,在第3个袋子中摸出黄色球是必然的.教师适时引导学生归纳出必然发生的事件、随机事件、不可能发生的事件的特点.通过生动、活泼的游戏,自然而然地引出必然发生的事件、随机事件和不可能发生的事件,不仅能够激发学生的学习兴趣,并且有利于学生理解.能够巧妙地实现从实践认识到理性认识的过渡.决定性事件:肯定会出现的的一些事件就叫决定性事件.随机事件:在基本条件相同的情况下,可能出现不同的结果,究竟出现哪一种结果,随“机遇”而定,带有偶然性,这种事件叫做随机事件.【问题情境】指出下列事件中哪些是必然发生的,哪些是不可能发生的,哪些是随机事件?1.通常加热到100°C时,水沸腾;2.姚明在罚球线上投篮一次,命中;3.掷一次骰子,向上的一面是6点;4.度量三角形的内角和,结果是360°;5. 经过城市中某一有交通信号灯的路口,遇到红灯;6.某射击运动员射击一次,命中靶心;7.太阳东升西落;8.人离开水可以正常生活100天;9.正月十五雪打灯;10.宇宙飞船的速度比飞机快.教师利用多媒体课件演示问题,使问题情境更具生动性.学生积极思考,回答问题,进一步夯实必然发生的事件、随机事件和不可能发生的事件的特点.在比较充分的感知下,达到加深理解的目的.教师在学生完成问题后应注意引导学生发现在我们生活的周围大量地存在着随机事件.引领学生经历由实践认识到理性认识再重新认识实践问题的过程, 同时引入一些常识问题,使学生进一步感悟数学是认识客观世界的重要工具.概率:在随机事件中,一个事件发生的可能性的大小叫作这个事件的概率.在随机事件中,做了大量的试验后,一个事件发生的频率可以作为这个事件的概率的估计值.【问题情境】情境15名同学参加讲演比赛,以抽签方式决定每个人的出场顺序.签筒中有5根形状、大小相同的纸签,上面分别标有出场的序号1,2,3,4,5.小军首先抽签,他在看不到纸签上的数字的情况下从签筒中随机地抽取一根纸签.情境2小伟掷一个质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数.在具体情境中列举不可能发生的事件、必然发生的事件和随机事件.学生首先独立思考,再把自己的观点和小组其他同学交流,并提炼出小组成员列举的主要事件,在全班发布.开放性的问题有利于培养学生的发散性思维和创新思维,也有利于学生加深对学习内容的理解.【问题情境】请你列举一些生活中的必然发生的事件、随机事件和不可能发生的事件.教师引导学生充分交流,热烈讨论.随机事件在现实世界中广泛存在.通过让学生自己找到大量丰富多彩的实例,使学生从不同侧面、不同视角进一步深化对随机事件的理解与认识.归纳小结决定性事件:肯定会出现的的一些事件就叫决定性事件.随机事件:在基本条件相同的情况下,可能出现不同的结果,究竟出现哪一种结果,随“机遇”而定,带有偶然性,这种事件叫做随机事件.概率:在随机事件中,一个事件发生的可能性的大小叫作这个事件的概率.在随机事件中,做了大量的试验后,一个事件发生的频率可以作为这个事件的概率的估计值.教学后记5.2概率的含义教学目标:知道通过大量重复试验时的频率可以作为事件发生概率的估计值在具体情境中了解概率的意义让学生经历猜想试验--收集数据--分析结果的探索过程,丰富对随机现象的体验,体会概率是描述不确定现象规律的数学模型.初步理解频率与概率的关系.重点难点重点:在具体情境中了解概率含义.难点:对频率与概率关系的初步理解教学过程一、创设情境,引出问题教师提出问题:周末市体育场有一场精彩的篮球比赛,老师手中只有一张球票,小强与小明都是班里的篮球迷,两人都想去.我很为难,真不知该把球给谁.请大家帮我想个办法来决定把球票给谁.学生:抓阄、抽签、猜拳、投硬币,……教师对同学的较好想法予以肯定.(学生肯定有许多较好的想法,在众多方法中推举出大家较认可的方法.如抓阄、投硬币)追问,为什么要用抓阄、投硬币的方法呢?由学生讨论:这样做公平.能保证小强与小明得到球票的可能性一样大在学生讨论发言后,教师评价归纳.用抛掷硬币的方法分配球票是个随机事件,尽管事先不能确定“正面朝上”还上“反面朝上”,但同学们很容易感觉到或猜到这两个随机事件发生的可能性是一样的,各占一半,所以小强、小明得到球票的可能性一样大.质疑:那么,这种直觉是否真的是正确的呢?引导学生以投掷壹元硬币为例,不妨动手做投掷硬币的试验来验证一下.说明:现实中不确定现象是大量存在的,新课标指出:“学生数学学习内容应当是现实的、有意义、富有挑战的”,设置实际生活问题情境贴近学生的生活实际,很容易激发学生的学习热情,教师应对此予以肯定,并鼓励学生积极思考,为课堂教学营造民主和谐的气氛,也为下一步引导学生开展探索交流活动打下基础.二、动手实践,合作探究1.教师布置试验任务.(1)明确规则.把全班分成10组,每组中有一名学生投掷硬币,另一名同学作记录,其余同学观察试验必须在同样条件下进行.(2)明确任务,每组掷币50次,以实事求是的态度,认真统计“正面朝上”的频数及“正面朝上”的频率,整理试验的数据,并记录下来..2.教师巡视学生分组试验情况.注意:(1).观察学生在探究活动中,是否积极参与试验活动、是否愿意交流等,关注学生是否积极思考、勇于克服困难.(2).要求真实记录试验情况.对于合作学习中有可能产生的纪律问题予以调控.3.各组汇报实验结果.由于试验次数较少,所以有可能有些组试验获得的“正面朝上”的频率与先前的猜想有出入.提出问题:是不是我们的猜想出了问题?引导学生分析讨论产生差异的原因.在学生充分讨论的基础上,启发学生分析讨论产生差异的原因.使学生认识到每次随机试验的频率具有不确定性,同时相信随机事件发生的频率也有规律性,引导他们小组合作,进一步探究.解决的办法是增加试验的次数,鉴于课堂时间有限,引导学生进行全班交流合作.4.全班交流.把各组测得数据一一汇报,教师将各组数据记录在黑板上.全班同学对数据进行累计,按照书上P140要求填好25-2.并根据所整理的数据,在25.1-1图上标注出对应的点,完成统计图.表25-2n想一想1(投影出示). 观察统计表与统计图,你发现“正面向上”的频率有什么规律?注意学生的语言表述情况,意思正确予以肯定与鼓励.“正面朝上”的频率在0.5上下波动.想一想2(投影出示)随着抛掷次数增加,“正面向上”的频率变化趋势有何规律?在学生讨论的基础上,教师帮助归纳.使学生认识到每次试验中随机事件发生的频率具有不确定性,同时发现随机事件发生的频率也有规律性.在试验次数较少时,“正面朝上”的频率起伏较大,而随着试验次数的逐渐增加,一般地,频率会趋于稳定,“正面朝上”的频率越来越接近0.5. 这也与我们刚开始的猜想是一致的.我们就用0.5这个常数表示“正面向上”发生的可能性的大小.说明:注意帮助解决学生在填写统计表与统计图遇到的困难.通过以上实践探究活动,让学生真实地感受到、清楚地观察到试验所体现的规律,即大量重复试验事件发生的频率接近事件发生的可能性的大小(概率).鼓励学生在学习中要积极合作交流,思考探究.学会倾听别人意见,勇于表达自己的见解.为了给学生提供大量的、快捷的试验数据,利用计算机模拟掷硬币试验的课件,丰富学生的体验、提高课堂教学效率,使他们能直观地、便捷地观察到试验结果的规律性--大量重复试验中,事件发生的频率逐渐稳定到某个常数附近.其实,历史上有许多著名数学家也做过掷硬币的试验.让学生阅读历史上数学家做掷币试验的数据统计表(看书P141表25-3).通过以上学生亲自动手实践,电脑辅助演示,历史材料展示, 让学生真实地感受到、清楚地观察到试验所体现的规律,大量重复试验中,事件发生的频率逐渐稳定到某个常数附近,即大量重复试验事件发生的频率接近事件发生的可能性的大小(概率).同时,又感受到无论试验次数多么大,也无法保证事件发生的频率充分地接近事件发生的概率.在探究学习过程中,应注意评价学生在活动中参与程度、自信心、是否愿意交流等,鼓励学生在学习中不怕困难积极思考,敢于表达自己的观点与感受,养成实事求是的科学态度.5.下面我们能否研究一下“反面向上”的频率情况?学生自然可依照“正面朝上”的研究方法,很容易总结得出:“反面向上”的频率也相应稳定到0.5.教师归纳:(1)由以上试验,我们验证了开始的猜想,即抛掷一枚质地均匀的硬币时,“正面向上”与“反面向上”的可能性相等(各占一半).也就是说,用抛掷硬币的方法可以使小明与小强得到球票的可能性一样.(2)在实际生活还有许多这样的例子,如在足球比赛中,裁判用掷硬币的办法来决定双方的比赛场地等等.说明:这个环节,让学生亲身经历了猜想试验——收集数据——分析结果的探索过程,在真实数据的分析中形成数学思考,在讨论交流中达成知识的主动建构,为下一环节概率意义的教学作了很好的铺垫.三、评价概括,揭示新知问题 1.通过以上大量试验,你对频率有什么新的认识?有没有发现频率还有其他作用?学生探究交流.发现随机事件的可能性的大小可以用随机事件发生的频率逐渐稳定到的值(或常数)估计或去描述.通过猜想试验及探究讨论,学生不难有以上认识.对学生可能存在语言上、描述中的不准确等注意予以纠正,但要求不必过高.归纳:以上我们用随机事件发生的频率逐渐稳定到的常数刻画了随机事件的可能性的大小. 那么我们给这样的常数一个名称,引入概率定义.给出概率定义(板书):一般地,在大量重复试验中,如果事件A 发生的频率nm会稳定在某个常数p 附近,那么这个常数p 就叫做事件A 的概率(probability ), 记作P (A )= p.注意指出: 1.概率是随机事件发生的可能性的大小的数量反映.2.概率是事件在大量重复试验中频率逐渐稳定到的值,即可以用大量重复试验中事件发生的频率去估计得到事件发生的概率,但二者不能简单地等同.想一想(学生交流讨论)问题2.频率与概率有什么区别与联系?从定义可以得到二者的联系, 可用大量重复试验中事件发生频率来估计事件发生的概率.另一方面,大量重复试验中事件发生的频率稳定在某个常数(事件发生的概率)附近,说明概率是个定值,而频率随不同试验次数而有所不同,是概率的近似值,二者不能简单地等同.说明:猜想试验、分析讨论、合作探究的学习方式十分有益于学生对概率意义的理解,使之明确频率与概率的联系,也使本节课教学重难点得以突破.为下节课进一步研究概率和今后的学习打下了基础. 当然,学生随机观念的养成是循序渐进的、长期的.这节课教学应把握教学难度,注意关注学生接受情况. 四.练习巩固,发展提高.学生练习1.书上P143.练习.1. 巩固用频率估计概率的方法. 2.书上P143.练习.2 巩固对概率意义的理解.教师应当关注学生对知识掌握情况,帮助学生解决遇到的问题. 五.归纳总结,交流收获:1.学生互相交流这节课的体会与收获,教师可将学生的总结与板书串一起,使学生对知识掌握条理化、系统化.2.在学生交流总结时,还应注意总结评价这节课所经历的探索过程,体会到的数学价值与合作交流学习的意义.教学后记:。

苏科版数学八年级下册第8章《认识概率》复习课课件(共19张)

苏科版数学八年级下册第8章《认识概率》复习课课件(共19张)
1、有一个转盘游戏,转盘被平均分成10等份,分别标有 1~10这10个数字,转盘上有指针,转动转盘,当转盘停 止转动后,指针指向的数即为转出的数字。
游戏如下:两人参与游戏,一个人转动转盘, 另一个人猜数,若猜的数与转盘转出的数字相符, 则猜数的人获胜;若猜的数与转盘转出的数字不 相符,则转动转盘的人获胜,猜数的方法从下面 三种中选一种: (1)猜“是奇数”;
) D、无法确定
2、在等式x+y=10中,已知x、y均为自然数,试 求x、y同时为正整数的频率。
3、如图所示的10张卡片上分别写有11至20十个数字,将 它们背面朝上洗匀后,任意抽一张,将下列事件产生的机 会的大小填在横线上.
11 12 13 14 15 16 17 18 19 20
P1(抽到数字11)=______;
√(2)猜“不是3的倍数”;
(3)猜“大于4的数”。
如果你是猜数的游戏者,为了尽可能获胜,你将选择 第几种猜数方法,为什么?
2、小明和小丽为了争取一张世博园门票,他们各 自设计了一个方案:
小明的方案是:转动如图所示的转盘, 如果指针停在阴影区域,则小明得到 入场券;如果指针停在白色区域,则 小丽得到入场券(转盘被等分成6个 扇形。若指针停在边界,则重转)
P2(抽到两位数)=_____,P3(抽到一位数)=______
P4(抽到的数大于10)=________, P5(抽到的数大于16)=________, P6(抽到的数小于16)=_______ P7(抽到的数是2的倍数)=________, P8(抽到的数是3的倍数)=________.
学以致用
摸球的次数n
100 150 200 500 800 1000
摸到白球的次数m 58 96 116 295 484 601

苏科版八年级下册数学第8章 认识概率 含答案

苏科版八年级下册数学第8章 认识概率 含答案

苏科版八年级下册数学第8章认识概率含答案一、单选题(共15题,共计45分)1、某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是()A. B. C. D.2、从-3,5,-7,10四个数中任取一个数为奇数的概率是( )A. B. C. D.13、“a是有理数,|a|≥0”这一事件是()A.必然事件B.不确定事件C.不可能事件D.随机事件4、在一个不透明的口袋中装有6个红球,2个绿球,这些球除颜色外无其他差别,从这个袋子中随机摸出一个球,摸到红球的概率为()A. B. C. D.15、如图是两个可以自由转动的转盘,每个转盘被分成两个扇形,同时转动两个转盘,转盘停止后,指针所指区域内的数字之和为3的概率是( )A. B. C. D.6、下列说法正确的是()A.旅客上飞机前的安检,采用抽样调查方式B.为了了解重庆市7万名学生中考数学成绩,可以从中抽取10名学生作为样本C.若甲组数据的方差,乙组数据的方差,则乙组数据比甲组数据稳定D.一个游戏的中奖率为1%,则做100次这样的游戏一定有一次会中奖7、下列事件中,属于必然事件的是()A.一口袋中装有2个红球和1个白球,从中摸出2个球,其中必有一个红球 B.我走出校门,看到的第一辆汽车的牌照的末位数字是偶数 C.抛一枚硬币,正面朝上 D.明天西乡县下雨8、如图的四个转盘中,转盘3,4被分成8等分,若让转盘自由转动一次停止后,指针落在阴影区域内可能性从大到小排列为()A.①②④③B.③②④①C.③④②①D.④③②①9、下列事件中是必然事件的是()A.任意画一个正五边形,它是中心对称图形B.实数x使式子有意义,则实数x>3C.a,b均为实数,若a= ,b= ,则a>b D.5个数据分别是:6,6,3,2,1,则这组数据的中位数是310、在一个不透明的口袋中,装有若干个除颜色不同其余都相同的球,如果口袋中装有4个红球且摸到红球的概率为,那么口袋中球的总数为()A.12个B.9个C.6个D.3个11、下列说法错误的是( )A.必然事件发生的概率是1.B.不可能事件发生的概率是0.5.C.不确定事件发生的概率是0.D.随机事件发生的概率介于0和1之间.12、从标号分别为1,2,3,4,5的5张卡片中,随机抽取一张,下列事件中,必然事件是()A.标号小于6B.标号大于6C.标号是奇数D.标号是313、小亮做掷质量均匀硬币的试验,掷了10次,发现有8次正面朝上,2次正面朝下,则当他第11次掷这枚硬币时,()A.一定是正面朝上B.一定是正面朝下C.正面朝上的概率为0.8 D.正面朝上的概率为0.514、下列说法中正确的是()A.“打开电视,正在播放《新闻联播》”是必然事件B.了解某种饮料中含色素的情况,采用抽样调查C.数据1,1,2,2,3的众数是3D.一组数据的波动越大,方差越小15、同时掷两枚质地均匀的骰子.则下列事件为必然事件的是()A.两枚骰子的点数不相同B.两枚骰子的点数之和为10C.至少一枚骰子的点数是2D.两枚骰子的点数之和大于1二、填空题(共10题,共计30分)16、“同位角相等”是________事件.(填“确定”或“随机”)17、在研究抛掷分别标有1,2,3,4,5,6的质地均匀的正六面体骰子时,提出了一个问题:连续抛掷三次骰子,正面朝上的点数是三个连续整数的概率有多大,假设下表是几位同学抛掷骰子的试验数据.请你根据这些数据估计上面问题的答案大约是________.(精确到0.01)投掷次数1 2 3 4 5 6 7 8投掷情况试验次数100 150 200 250 300 350 400 450三个连续正数的次数10 12 20 22 25 33 36 4118、在“抛掷一枚正六面体骰子”的实验中,如果没有骰子,你能用________ 来替代.(写一种情况即可)19、不透明的袋子中装有4个红球、6个黄球和5个蓝球,每个球除颜色不同外其它都相同,从中任意摸出一个球,则摸出________球的可能性最大.20、在一个不透明的袋子中有三张完全相同的卡片,分别编号为1,2,3.若从中随机取出两张卡片,则卡片上编号之和为偶数的概率是________ .21、从分别标有数﹣3,﹣2,﹣1,0,1,2,3的七张卡片中,随机抽取一张,所抽卡片上数的绝对值小于2的概率是________.22、“任意打开我们的九上数学书,正好是第60页”,这是________(选填“随机”或“必然”)事件.23、从这五个数中任取一个数,作为关于的一元二次方程中的值,则所得方程中有两个不相等的实数根的概率为________.24、一枚质地均匀的骰子,其六个面上分别标有数字:1,2,3,4,5,6,投掷一次,朝上一面的数字是偶数的概率是________.25、一枚质地匀均的骰子,其六个面上分别标有数字:1,2,3,4,5,6,投掷一次,朝上一面的数字是偶数的概率是________.三、解答题(共6题,共计25分)26、一个不透明的袋中装有黄球、黑球和红球共40个,它们除颜色外都相同,其中红球有22个,且经过试验发现摸出一个球为黄球的频率接近0.125.(1)求袋中有多少个黑球;(2)现从袋中取出若干个黑球,并放入相同数量的黄球,搅拌均匀后使从袋中摸出一个球是黄球的概率达到,问至少取出了多少个黑球?27、如果手头没有硬币,但想知道掷一次这种均匀的硬币正面朝上的概率是多少,请问你能用三种不同的方法进行模拟试验吗?请写出试验过程.28、解不等式组写出符合不等式组的整数解,并求出这些整数解中能使关于x的方程:2x+k=﹣1的解为非负数的概率.29、在一个不透明的盒子里,装有三个分别写有数字6,-2,7的小球,它们的形状大小、质地等完全相同,先从盒子里随机取出一个小球,记下数字后放回盒子,摇匀后再随机取出一个小球,记下数字.请你用画树状图(或列表)的方法求出两次取出小球上的数字之和为偶数的概率.30、计算:cos45°﹣tan30°•sin60°.参考答案一、单选题(共15题,共计45分)1、C2、C3、A5、A6、C7、A8、A9、D10、A11、B12、A13、D14、B15、D二、填空题(共10题,共计30分)16、17、18、19、21、22、23、24、25、三、解答题(共6题,共计25分)26、28、29、30、。

8年级数学苏科版下册课件第8单元 《单元复习》

8年级数学苏科版下册课件第8单元 《单元复习》

巩固练习 频率与概率
3.某次活动中设立了一个可以自由转动的转盘.规定:顾 客购物20元以上就能获得一次转动转盘的机会,当转盘停 止时,指针落在哪一区域就可以获得相应的奖品.表格是 此次活动中的一组统计数据:
巩固练习 频率与概率
转动转盘的次数n
100 200 300 400 500 1000
落在“书画”区域的次数m 60 122 180 242 a 604
(3)指针落在标有偶数或奇数的区域内;必然事件,它的概率为1
(4)指针落在标有奇数的区域内.发生的可能性较大
按发生的可能性从小到大的顺序排列为:(2)<(1)<(4)<(3)
知识回顾 频率与概率
(1)通常,在多次重复实验中,一个随机事件发生的频 率会在某一个常数附近摆动,且趋于稳定,这个性质称 为 频率的稳定性.
落在“书画”区域的频率
m n
0.60
0.61
0.60
b
9 0.604
(1)完成上述表格:a = 295 ;b = 0.605 ; (2)请估计当n很大时,频率将会接近 0.6 ,假如你去转动该转 盘一次,获得“书画”的概率大约是 0.6 .(结果全部精确到0.1)
巩固练习 频率与概率
4.某批乒乓球的质量检验结果如下:
摸球次数 40 80 400 600 800 1000 1200 1500
摸出白球 的频数
14
26
128 198 267 332 399
500
摸出白球 的频率 0.350
0.325
0.320 0.330 0.334 0.332
0.333
0.333
(1)请将表补充完整; 14÷40=0.350 1 000×0.332=332

苏科版八年级下册数学第8章 认识概率 含答案

苏科版八年级下册数学第8章 认识概率 含答案

苏科版八年级下册数学第8章认识概率含答案一、单选题(共15题,共计45分)1、小明抛一枚质地均匀的硬币,连续抛3次,硬币均正面朝上落地,如果他再抛第4次,那么硬币正面朝上的概率为( )A.1B.C.D.2、中央电视台“幸运52”栏目中的“百宝箱”互动环节,是一种竞猜游戏,游戏规则如下:在20个商标中,有5个商标牌的背面注明了一定的奖金额,其余商标的背面是一张苦脸,若翻到它就不得奖。

参加这个游戏的观众有三次翻牌的机会。

某观众前两次翻牌均得若干奖金,如果翻过的牌不能再翻,那么这位观众第三次翻牌获奖的概率是( )A. B. C. D.3、关于频率和概率的关系,下列说法正确的是().A.频率等于概率;B.当实验次数很大时,频率稳定在概率附近;C.当实验次数很大时,概率稳定在频率附近;D.实验得到的频率与概率不可能相等4、有一盒水彩笔除了颜色外无其他差别,其中各种颜色的数量统计如图所示.小腾在无法看到盒中水彩笔颜色的情形下随意抽出一支.小腾抽到蓝色水彩笔的概率为()A. B. C. D.5、“打开电视,正在播广告”这一事件是()A.必然事件B.确定事件C.不可能事件D.随机事件6、为了解某地区九年级男生的身高情况,随机抽取了该地区100名九年级男生,他们的身高x(cm)统计如下:组别(cm) x<160 160≤x<170 170≤x<180 x≥180人数 5 38 42 15根据以上结果,抽查该地区一名九年级男生,估计他的身高不低于180cm的概率是()A.0.85B.0.57C.0.42D.0.157、掷一枚均匀的骰子(正方体),骰子的每个面上分别标有数字1、2、3、4、5、6,则3的倍数朝上的概率为()A. B. C. D.8、四张完全相同的卡片上,分别画有圆、正方形、等边三角形和线段,现从中随机抽取两张,卡片上画的恰好都是中心对称图形的概率为()A.1B.C.D.9、下列事件中,属于确定事件的是()A.打开电视,正在播广告B.投掷一枚普通的骰子,掷得的点数小于6 C.射击运动员射击一次,命中10环 D.在一个只装有红球的袋中摸出白球10、抛掷一枚质地均匀的硬币,正面朝上的概率为0.5,下列说法正确的是()A.连续抛掷2次必有1次正面朝上B.连续抛掷10次不可能都正面朝上 C.大量反复抛掷每100次出现正面朝上50次 D.通过抛掷硬币确定谁先发球的比赛规则是公平的11、下列说法错误的是()A.通过平移或旋转得到的图形与原图形全等B.“对顶角相等”的逆命题是真命题C.圆内接正六边形的边长等于半径D.“经过有交通信号灯的路口,遇到红灯”是随机事件12、下列事件中,必然事件是()A.抛物线y=ax 2的开口向上B.投掷一枚质地均匀的硬币100次,正面向上的次数为50次C.任意一个一元二次方程都有实数根D.三角形三个内角的和等于18013、下列事件是必然事件的是()A.打开电视机,正在播放动画片B.经过有交通信号灯的路口,遇到红灯 C.过三点画一个圆 D.任意画一个三角形,其内角和是180°14、在一个不透明的口袋中,装有5个红球和3个绿球,这些球除了颜色外都相同,从口袋中随机摸出一个球,它是红球的概率是()A. B. C.1 D.15、下列事件中,是必然事件是( )A.一个星期有9天B.小红在元月调考中,数学会获得满分120分C.今天是星期一,明天是星期二D.明天武汉市一定下雨二、填空题(共10题,共计30分)16、在一个不透明的口袋中,有若干个红球和白球,它们除颜色外都相同,从中任意摸出一个球,摸到红球的概率0.75,若白球有3个,则红球有________个.17、在一个不透明的纸箱内放有除颜色外无其他差别的2个红球,8个黄球和10个白球,从中随机摸出一个球为黄球的概率是________.18、我们知道π约为3.14159265359,在这串数字中,任挑一个数是5的可能性为________.19、一个箱子里装有10个除颜色外都相同的球,其中有1个红球,3个黑球,6个绿球.随机地从这个箱子里摸出一个球,摸出绿球的可能性是________20、下表记录了一名球员在罚球线上投篮的结果.投篮次数n 100 150 300 500 800 1000投中次数m 60 96 174 302 484 602投中频率0.600 0.640 0.580 0.604 0.605 0.602估计这名球员在罚球线上投篮一次,投中的概率为________.21、为了估计抛掷同一枚啤酒瓶盖落地后凸面向上的概率,小明做了大量重复试验.经过统计发现共抛掷次啤酒瓶盖,凸面向上的次数为次,由此可估计抛掷这枚啤酒瓶盖落地后凸面向上的概率约为________(结果精确到)22、从甲地到乙地有A,B,C三条不同的公交线路.为了解早高峰期间这三条线路上的公交车从甲地到乙地的用时情况,在每条线路上随机选取了500个班次的公交车,收集了这些班次的公交车用时(单位:分钟)的数据,统计如下:早高峰期间,乘坐________(填“A”,“B”或“C”)线路上的公交车,从甲地到乙地“用时不超过45分钟”的可能性最大.23、下列事件:①随意翻到一本书的某页,这页的页码是奇数;②测得某天的最高气温是100℃;③掷一次骰子,向上一面的数字是2;④度量四边形的内角和,结果是360°.其中是随机事件的是 ________.(填序号)24、小明参加“一站到底”节目,答对最后两道单选题就通关:第一道单选题有3个选项,第二道单选题有4个选项,这两道题小明都不会,不过小明还有一个“求助”没有用(使用“求助”可以让主持人去掉其中一题的一个错误选项).从概率的角度分析,你建议小明在第________题使用“求助”.25、一副扑g牌有52张(不含大小王),分为黑桃、红心、方块及梅花4种花色,每种花色各有13张,分别标有字母A,K ,Q,J和数字10,9,8,7,6,5,4,3,2.从这副牌中任意抽出一张,则这张牌是标有字母的牌的概率是________三、解答题(共6题,共计25分)26、现有九张背面一模一样的扑g牌,正面分别为:红桃A、红桃2、红桃3、红桃4、黑桃A、黑桃2、黑桃3、黑桃4、黑桃5.(1)现将这九张扑g牌混合均匀后背面朝上放置,若从中摸出一张,求正面写有数字3的概率是多少?(2)现将这九张扑g牌分成红桃和黑桃两部分后背面朝上放置,并将红桃正面数字记作m,黑桃正面数字记作n,若从黑桃和红桃中各任意摸一张,求关于x 的方程mx2+3x+=0有实根的概率.(用列表法或画树形图法解,A代表数字1)27、某校对初三学生进行物理、化学实验操作能力测试.物理、化学各有3个不同的操作实验题目,物理实验分别用①、②、③表示,化学实验分别用a、b、c表示.测试时每名学生每科只操作一个实验,实验的题目由学生抽签确定,第一次抽签确定物理实验题目,第二次抽签确定化学实验题目.王刚同学对物理的①、②号实验和化学的b、c号实验准备得较好.请用画树状图(或列表)的方法,求王刚同学同时抽到两科都准备得较好的实验题目的概率.28、王勇和李明两位同学在学习“概率”时,做投掷骰子(质地均匀的正方体)实验,他们共做了30次实验,实验的结果如下:朝上的点数 1 2 3 4 5 6出现的次数 2 5 6 4 10 3(1)分别计算这30次实验中“3点朝上”的频率和“5点朝上”的频率;(2)王勇说:“根据以上实验可以得出结论:由于5点朝上的频率最大,所以一次实验中出现5点朝上的概率最大”;李明说:“如果投掷300次,那么出现6点朝上的次数正好是30次”.试分别说明王勇和李明的说法正确吗?并简述理由;(3)现王勇和李明各投掷一枚骰子,请用列表或画树状图的方法求出两枚骰子朝上的点数之和为3的倍数的概率.29、“五一”假日期间,某网店为了促销,设计了一种抽奖送积分活动,在该网店网页上显示如图所示的圆形转盘,转盘被均等的分成四份,四个扇形上分别标有“谢谢惠顾”、“10分”、“20分”、“40分”字样.参与抽奖的顾客只需用鼠标点击转盘,指针就会在转动的过程中随机的停在某个扇形区域,指针指向扇形上的积分就是顾客获得的奖励积分,凡是在活动期间下单的顾客,均可获得两次抽奖机会,求两次抽奖顾客获得的总积分不低于30分的概率.30、甲、乙、丙、丁4名同学进行一次羽毛球单打比赛,要从中选出2名同学打第一场比赛,求下列事件的概率:(1)已确定甲打第一场,再从其余3名同学中随机选取1名,恰好选中乙同学;(2)随机选取2名同学,其中有乙同学.参考答案一、单选题(共15题,共计45分)1、B2、B4、C5、D6、D7、B8、C9、D10、D11、B12、D13、D14、A15、C二、填空题(共10题,共计30分)16、17、18、20、21、22、23、24、25、三、解答题(共6题,共计25分)26、28、29、30、。

苏科版八年级下册数学第8章 认识概率 含答案

苏科版八年级下册数学第8章 认识概率 含答案

苏科版八年级下册数学第8章认识概率含答案一、单选题(共15题,共计45分)1、下列说法中,正确的是()A.在同一年出生的367名学生中,至少有两人的生日是同一天B.“抛一枚硬币正面朝上的概率是0.5”表示每抛硬币2次就有1次出现正面朝上 C.“彩票中奖的概率是1%”表示买100张彩票一定有1张会中奖 D.“明天降雨的概率是80%”表示明天有80%的时间降雨2、下列事件为必然事件的是()A.射击一次,中靶B.画一个三角形,其内角和是C.掷一枚质地均匀的硬币,正面朝上D.12人中至少有2人的生日在同一个月3、一个暗箱里放有a个除颜色外完全相同的球,这a个球中红球只有4个,若每次将球搅匀后,任意摸出1个球记下颜色再放回暗箱,通过大量重复摸球实验后发现,摸到红球的频率稳定在20%附近,那么可以推算出a大约是()A.25B.20C.15D.104、从下列四张卡片中任取一张,卡片上的图形是中心对称图形的概率为()A.0B.C.D.5、中国抗击疫情最宝贵的经验就是“早发现,早报告,早隔离,早治疗”.在这12个字中“早”字出现的频率是()A. B. C. D.6、在一个不透明的袋子里装有一个黑球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球,两次都摸到黑球的概率是()A. B. C. D.7、在一个不透明的袋子里装有红球、黄球共20个,这些球除颜色外都相同.小敏通过多次实验发现,摸出红球的频率稳定在 0.25 左右,则袋子中红球的个数最有可能是()A.5B.10C.12D.158、以下说法正确的是()A.在同一年出生的400人中至少有两人的生日相同B.一个游戏的中奖率是1%,买100张奖券,一定会中奖C.一副扑g牌中,随意抽取一张是红桃K,这是必然事件D.一个袋中装有3个红球、5个白球,任意摸出一个球是红球的概率是9、下列事件是必然事件的是().A.在足球比赛中,弱队战胜强队B.抛掷1枚硬币,落地时正面朝上 C.任意两个正整数,其和大于1 D.小明在本次数学考试中得150分10、从标有-5a2b , 2a2b2 , ab2 , -5ab的四张同样大小的卡片中,任意抽出两张,“抽出的两张是同类项”这一事件是()A.不可能事件B.不确定事件C.必然事件D.确定事件11、下列事件是随机事件的为()A.度量三角形的内角和,结果是180°B.经过城市中有交通信号灯的路口,遇到红灯C.爸爸的年龄比爷爷大D.通常加热到100℃时,水沸腾12、抛掷一枚均匀的硬币一次,出现正面朝上的概率是()A. B. C. D.113、同时抛掷两枚硬币,正面都朝上的概率为A. B. C. D.14、下列事件中,属于必然事件的是( )A.明年元旦会下雨B.三角形三内角的和为180°C.抛一枚硬币正面向上D.在一个没有红球的盒子里,摸到红球15、一个十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时是绿灯的概率是()A. B. C. D.二、填空题(共10题,共计30分)16、从,,,,,这个数中任意选一个数作为的值,则使关于的方程的解是负数,且关于的一次函数的图象不经过第一象限的概率为________.17、小强同学从-1,0,1,2,3,4这六个数中任选一个数,满足不等式x+1<2的概率是________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二讲( 第八章认识概率)
知识点归纳:
1.在一定条件下,有些事情事先能肯定它一定不会发生,这样的事情是。

2.在一定条件下,有些事情事先能肯定它一定会发生,这样的事情是。

3. 和都是确定事件。

4. 在一定条件下,有些事情事先无法确定它会不会发生,这样的事情是。

5.随机事件的可能性大小与面积有关
6.频率与概率
【典例讲解】
一、选择题:1.下列事件中,随机事件是()
A、没有水,人类就不可能生存
B、今天是星期一,明天是星期二
C、同龄的男生比女生高
D、天空有两个太阳
2.下列成语所描述的事件是必然事件的是()
A、瓮中捉鳖
B、拔苗助长
C、守株待兔
D、水中捞月
3.“a是实数,”这一事件是()
A、必然事件
B、随机事件
C、不可能事件
4、从1,2,﹣3三个数中,随机抽取两个数相乘,积是正数的概率是()A.0 B.C.D.1
5、一名运动员连续射靶10次,其中2次命中10环,2次命中9环,6次命中8环,针对某次射击,下列说法正确的是()
A.射中10环的可能性最大B.命中9环的可能性最大
C.命中8环的可能性最大D.以上可能性均等
6、如图所示是用相同的正方形砖铺成的地板,一宝物藏在某一块下面,宝物在白色区域的概率是
A.B.C.D.
7.用1、2、3三个数字组成一个三位数,则组成的数是偶数的概率是()
A. B. C. D.
8. 从只装有4个红球的袋中随机摸出一球,若摸到白球的概率是p1,摸到红球的概率是p2,则( )
A.p1=1,p2=1.
B.p1=0,p2=1.
C.p1=0,p2=.
D.p1=p2=
9、十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是黄灯的概率是()
A. B. C. D.
10.如图,图中的两个转盘分别被均匀地分成5个和4个扇形,每个扇形上都标有数字,同时自由转动两个转盘,转盘停止后,指针都落在奇数上的概率是()
A. B. C. D.
二、填空题:11.任意掷二枚均匀的骰子(六个面分别标有1到6个点)朝上面的点数之和是数字7的概率是____________.
12.小明有两件上衣,三条长裤,则他有几种不同的穿法______________.
13.从一个不透明的口袋中任意摸出一球是白球的概率为,已知袋中白
球有3个,则袋中球的总数是____________.
14.甲、乙、丙三人站成一排,恰好甲乙两人站在两端的概率是____________。

15、如果甲邀请乙玩一个同时抛掷两枚硬币的游戏,游戏的规则如下:同时抛出两个正面,乙得1分;抛出其他结果,甲得1分. 谁先累积到10分,谁就获胜.你认为(填“甲”或“乙”)获胜的可能性更大
16.已知一个口袋中装有7个只有颜色不同的球,其中3个白球,4个黑球.若往口袋中再放入个白球和个黑球,从口袋中随机取出一个白球的概率是,
与之间的函数关系式 ___________.
【巩固提升】
17.小明所在年级共10个班,每班45名同学,现从每个班中任意抽一名学生,共10名学生参加课外活动,问小明被抽到的概率是多少?
18. 在一张边长为4cm的正方形纸上做扎针随机试验,纸上有一个半径为1cm 的圆形阴影区域,则针头扎在阴影区域内的概率为多少?
19.一家医院某天出生了3个婴儿,假设生男生女的机会相同,那么这3个婴儿中,出现1个男婴、2个女婴的概率是多少?
20.小明家中的钟正指着整点,但不知道是哪一点,问时针和分针恰好成直角的概率是多少?恰好成平角的概率是多少?
21:请设计一个摸球游戏,使得P(摸到红球)=,P(摸到白球)=,说明设计方案。

22、某校八年级1、2班联合举行晚会。

组织者为了使晚会气氛活跃,策划时计划整台晚会以转盘游戏的方式进行:每个节目开始时,两班各派一人先进行转盘游戏,胜者获得一件奖品,负责表演一个节目。

1班的文娱委员利用分别标有数字1、2、3和4、5、6、7的两个转盘(如图)设计了一种游戏方案:两人同时各转动一个转盘一次,将得到的数字相乘,积为偶数时,1班代表胜,否则2班代表胜。

你认为该方案对双方是否公平?为什么?如果你认为不公平,你能在此基础上设计一个公平的方案吗?
23.有3张不透明的卡片,除正面写有不同的数字
外,其它均相同.将这三张卡片背面朝上洗匀后,
第一次从中随机抽取一张,并把这张卡片标有的数
字记作一次函数表达式中的,第二次从余下
..的两张卡片中再随机抽取一张,上面标有的数字记作一次函数表达式中的(注:本题的第三张背面的-3应该是3)(1)写出为负数的概率;
(2)求一次函数的图象经过二、三、四象限的概率.(用树状图或列表法求解)
24.一口袋中装有四根长度分别为1cm,3cm,4cm和5cm的细木棒,小明手
中有一根长度为3cm的细木棒,现随机从袋内取出两根细木棒与小明手中的细木棒放在一起,回答下列问题:
(1)求这三根细木棒能构成三角形的概率;
(2)求这三根细木棒能构成直角三角形的概率;
(3)求这三根细木棒能构成等腰三角形的概率.
25. 除颜色外完全相同的六个小球分别放到两个袋子中,一个袋子中放两个红球和一个白球,另一个袋子中放一个红球和两个白球.随机从两个袋子中分别摸出一个小球,试判断摸出两个异色小球的概率与摸出两个同色小球的概率是否相等,并说明理由.
.拓展提优:
1、一个口袋中有10个红球和若干个白球。

小明通过以下实验估计口袋中白球的个数:从口袋中随机摸出一球,记下其颜色,再把它放回口袋中,不断重复上述过程.实验中总共摸了200次,其中有50次摸到红球.此时,小明通过计算应该得出白球有个。

2、小兰和小谭用掷A、B两枚六面体骰子的方法来确定P( x,y)的位置。

他们规定:小兰掷得的点数为x,小谭掷得的点数为y。

那么,他们各掷一次所确定的点数在直线y=-2x+6上的概率为( )
A. B. C. D.
3.在学习“轴对称现象”内容时,王老师让同学们寻找身边的轴对称图形,小明有一副三角尺和一个量角器(如图所示).
(1)小明的这三件文具中,可以看做是轴对称图形的是(填字母代号);
(2)请用这三个图形中的两个
..拼成一个轴对称图案,在答题卡的指定位置画出草图(只须画出一种);
(3)小红也有同样的一副三角尺和一个量角器.若他们分别从自己这三件文具中随机取出一件,则可以拼成一个轴对称图案的概率是多少?(请画树状图或列表计算)。

相关文档
最新文档