高中数学选修2-2综合测试题(全册含答案)

合集下载

高中新课标数学选修(2-2)综合测试题(4)

高中新课标数学选修(2-2)综合测试题(4)

高中新课标数学选修(2-2)综合测试题一、选择题1、函数2x y =在区间]2,1[上的平均变化率为( ) (A )2 (B )3 (B )4 (D )52曲线3x y =在点)1,1(处的切线与x 轴、直线2=x 所围成的三角形的面积为( )(A )38 (B )37 (C )35(D )343、已知直线kx y =是x y ln =的切线,则k 的值为( ) (A )e1 (B )e1-(C )e2 (D )e2-4、设ai b bi a ++,,1是一等比数列的连续三项,则b a ,的值分别为( )(A )21,23±=±=b a (B )23,21=-=b a(C )21,23=±=b a (D )23,21-=-=b a5、方程)(04)4(2R a ai x i x ∈=++++有实根b ,且bi a z +=,则=z ( )(A )i 22- (B )i 22+(C )i 22+- (D )i 22--6、已知三角形的三边分别为c b a ,,,内切圆的半径为r ,则三角形的面积为a s (21=rc b )++;四面体的四个面的面积分别为4321,,,s s s s ,内切球的半径为R 。

类比三角形的面积可得四面体的体积为( )(A )R s s s s V )(214321+++= (B )Rs s s s V )(314321+++=(C )Rs s s s V )(414321+++= (D )R s s s s V )(4321+++=7、数列 ,4,4,4,4,3,3,3,2,2,1的第50项是( )(A )8 (B )9 (C )10 (D )118、在证明12)(+=x x f 为增函数的过程中,有下列四个命题:①增函数的定义是大前提;②增函数的定义是小前提;③函数12)(+=x x f 满足增函数的定义是小前提;④函数12)(+=x x f 满足增函数的定义是大前提;其中正确的命题是( )(A )①② (B )②④ (C )①③ (D )②③9、若R b a ∈,,则复数i b b a a )62()54(22-+-++-表示的点在( ) (A )在第一象限 (B )在第二象限(C )在第三象限 (D )在第四象限 10、用数学归纳法证明不等式“)2(2413212111>>+++++n nn n ”时的过程中,由k n =到1+=k n 时,不等式的左边( )(A )增加了一项)1(21+k(B )增加了两项)1(21121+++k k(C )增加了两项)1(21121+++k k ,又减少了11+k ;(D )增加了一项)1(21+k ,又减少了一项11+k ;11、如图是函数d cx bx x x f +++=23)(的大致 图象,则2221x x +等于( ) (A )32 (B )34 (C )38 (D )31212、对于函数233)(x x x f -=,给出下列四个命题:①)(x f 是增函数,无极值;②)(x f 是减函数,有极值;③)(x f 在区间]0,(-∞及),2[+∞上是增函数;④)(x f 有极大值为0,极小值4-;其中正确命题的个数为( )(A )1 (B )2(C )3 (D )4班级: 姓名:题号 1 2 3 4 5 6 7 8 9 10 11 12 答案二、填空题13、函数13)(3+-=x x x f 在闭区间]0,3[-上的最大值与最小值分别为:14、若i z 311-=,i z 862-=,且21111z z z =+,则z 的值为 ;15、用火柴棒按下图的方法搭三角形:按图示的规律搭下去,则所用火柴棒数n a 与所搭三角形的个数n 之间的关系式可以是 .16、物体A 的运动速度v 与时间t 之间的关系为12-=t v (v 的单位是s m /,t 的单位是s ),物体B 的运动速度v 与时间t 之间的关系为t v 81+=,两个物体在相距为405m 的同一直线上同时相向运动。

(湘教版)高中数学选修2-2(全册)同步练习汇总

(湘教版)高中数学选修2-2(全册)同步练习汇总

(湘教版)高中数学选修2 -2 (全册)同步练习汇总第4章导数及其应用4.1导数概念4.1.1问题探索- -求自由落体的瞬时速度一、根底达标1.设物体的运动方程s=f(t) ,在计算从t到t+d这段时间内的平均速度时,其中时间的增量d() A.d>0 B.d<0C.d=0 D.d≠0答案 D2.一物体运动的方程是s=2t2 ,那么从2 s到(2+d) s这段时间内位移的增量为() A.8 B.8+2dC.8d+2d2D.4d+2d2答案 C解析Δs=2(2+d)2-2×22=8d+2d2.3.一物体的运动方程为s=3+t2 ,那么在时间段[2,2.1]内相应的平均速度为() A.4.11 B.4.01 C.4.0答案 D解析v=错误!=4.1.4.一木块沿某一斜面自由下滑,测得下滑的水平距离s与时间t之间的方程为s=18t2 ,那么t=2时,此木块水平方向的瞬时速度为()A.2 B.1 C.12 D.14答案 C解析ΔsΔt=18(2+Δt)2-18×22Δt=12+18Δt→12(Δt→0).5.质点运动规律s=2t2+1 ,那么从t=1到t=1+d时间段内运动距离对时间的变化率为________.答案4+2d解析v=2(1+d)2+1-2×12-11+d-1=4+2d.6.某个物体走过的路程s(单位:m)是时间t(单位:s)的函数:s=-t2+1.(1)t=2到t=2.1;(2)t =2到t =2.01; (3)t =2到t =2.001.那么三个时间段内的平均速度分别为________ ,________ ,________ ,估计该物体在t =2时的瞬时速度为________. 答案 -4.1 m/s -4.01 m/s -4.001 m/s -4 m/s7.某汽车的紧急刹车装置在遇到特别情况时 ,需在2 s 内完成刹车 ,其位移 (单位:m)关于时间(单位:s)的函数为: s (t )=-3t 3+t 2+20 ,求:(1)开始刹车后1 s 内的平均速度; (2)刹车1 s 到2 s 之间的平均速度; (3)刹车1 s 时的瞬时速度. 解 (1)刹车后1 s 内平均速度v 1=s (1)-s (0)1-0=(-3×13+12+20)-201=-2(m/s).(2)刹车后1 s 到2 s 内的平均速度为: v 2=s (2)-s (1)2-1=(-3×23+22+20)-(-3×13+12+20)1=-18(m/s).(3)从t =1 s 到t =(1+d )s 内平均速度为: v 3=s (1+d )-s (1)d=-3(1+d )3+(1+d )2+20-(-3×13+12+20)d=-7d -8d 2-3d 3d =-7-8d -3d 2→-7(m/s)(d →0)即t =1 s 时的瞬时速度为-7 m/s. 二、能力提升8.质点M 的运动方程为s =2t 2-2 ,那么在时间段[2,2+Δt ]内的平均速度为( )A .8+2ΔtB .4+2ΔtC .7+2ΔtD .-8+2Δt答案 A解析 Δs Δt =2(2+Δt )2-2-(2×22-2)Δt=8+2Δt .9.自由落体运动的物体下降的距离h 和时间t 的关系式为h =12gt 2 ,那么从t =0到t =1时间段内的平均速度为________ ,在t =1到t =1+Δt 时间段内的平均速度为________ ,在t =1时刻的瞬时速度为________. 答案 12g g +12g Δt g 解析 12g ×12-12g ×021-0=12g .12g (1+Δt )2-12g ×12Δt =g +12g Δt . 当Δt →0时 ,g +12g Δt →g .10.自由落体运动的物体下降距离h 和时间t 的关系式为h =12gt 2,t =2时的瞬时速度为19.6 ,那么g =________. 答案解析 12g (2+Δt )2-12g ×22Δt =2g +12g Δt . 当Δt →0时 ,2g +12g Δt →2g . ∴2g =19.6 ,g =9.8.11.求函数s =2t 2+t 在区间[2,2+d ]内的平均速度. 解 ∵Δs =2(2+d )2+(2+d )-(2×22+2)=9d +2d 2 , ∴平均速度为Δsd =9+2d .12.甲、乙二人平时跑步路程与时间的关系以及百米赛跑路程和时间的关系分别如图①、②所示.问:(1)甲、乙二人平时跑步哪一个跑得快?(2)甲、乙二人百米赛跑,快到终点时,谁跑得快(设Δs为s的增量)?解(1)由题图①在(0 ,t]时间段内,甲、乙跑过的路程s甲<s乙,故有s甲t<s乙t即在任一时间段(0 ,t]内,甲的平均速度小于乙的平均速度,所以乙比甲跑得快.(2)由题图②知,在终点附近[t-d,t)时间段内,路程增量Δs乙>Δs甲,所以Δs乙d>Δs甲d即快到终点时,乙的平均速度大于甲的平均速度,所以乙比甲跑得快.三、探究与创新13.质量为10 kg的物体按照s(t)=3t2+t+4的规律做直线运动,求运动开始后4秒时物体的动能.解s(Δt+4)-s(4)Δt=3(Δt+4)2+(Δt+4)+4-(3×42+4+4)Δt=3Δt+25 , 当Δt→0时,3Δt+25→25.即4秒时刻的瞬时速度为25.∴物质的动能为12m v2=12×10×252=3 125(J)4.问题探索- -求作抛物线的切线一、根底达标1.曲线y=2x2上一点A(1,2) ,那么A处的切线斜率等于() A.2 B.4C.6+6d+2d2D.6答案 B2.曲线y=12x2-2上的一点P(1 ,-32) ,那么过点P的切线的倾斜角为()A.30°B.45°C.135°D.165°答案 B3.如果曲线y=2x2+x+10的一条切线与直线y=5x+3平行,那么切点坐标为() A.(-1 ,-8) B.(1,13)C.(1,12)或(-1,8) D.(1,7)或(-1 ,-1)答案 B4.曲线y=x-2在点P(3,1)处的切线斜率为()A.-12B.0 C.12D.1答案 C解析(3+Δx)-2-3-2Δx=Δx+1-1Δx=1Δx+1+1.当Δx→0时,1Δx+1+1→12.5.假设曲线y=x2+1在曲线上某点处的斜率为2 ,那么曲线上该切点的坐标为________.答案(1,2)6.曲线y=x2+2在点P(1,3)处的切线方程为________.答案2x-y+1=0解析(1+Δx)2+2-(12+2)Δx=Δx+2 ,当Δx→0时,Δx+2→2.所以曲线y=x2+2在点P(1,3)处的切线斜率为2 ,其方程为y-3=2(x-1).即为2x-y+1=0.7.抛物线y=x2在点P处的切线与直线2x-y+4=0平行,求点P的坐标及切线方程.解设点P(x0 ,y0) ,f(x0+d)-f(x0)d=(x0+d)2-x20d=d+2x0 ,d→0时,d+2x0→2x0.抛物线在点P处的切线的斜率为2x0 ,由于切线平行于2x-y+4=0 ,∴2x0=2 ,x0=1 , 即P点坐标为(1,1) ,切线方程为y-1=2(x-1) ,即为2x-y-1=0.二、能力提升8.曲线y=-1x在点(1 ,-1)处的切线方程为()A.y=x-2 B.y=xC.y=x+2 D.y=-x-2 答案 A解析-1Δx+1-(-11)Δx=1-1Δx+1Δx=1Δx+1,当Δx→0时,1Δx+1→1.曲线y=-1x在点(1 ,-1)处的切线的斜率为1 ,切线方程为y+1=1×(x-1) ,即y=x-2.9.曲线f(x)=x2+3x在点A(2,10)处的切线的斜率为________.答案7解析f(2+Δx)-f(2)Δx=(2+Δx)2+3(2+Δx)-(22+3×2)Δx=Δx+7 ,当Δx→0时,Δx+7→7 ,所以,f(x)在A处的切线的斜率为7.10.曲线f(x)=x2+3x在点A处的切线的斜率为7 ,那么A点坐标为________.答案(2,10)解析设A点坐标为(x0 ,x20+3x0) ,那么f(x0+Δx)-f(x0)Δx=(x0+Δx)2+3(x0+Δx)-(x20+3x0)Δx=Δx+(2x0+3) ,当Δx→0时,Δx+(2x0+3)→2x0+3 ,∴2x0+3=7 ,∴x0=2.x20+3x0=10.A点坐标为(2,10).11.抛物线y=x2+1 ,求过点P(0,0)的曲线的切线方程.解设抛物线过点P的切线的切点为Q(x0 ,x20+1).那么(x0+Δx)2+1-(x20+1)Δx=Δx+2x0.Δx→0时,Δx+2x0→2x0.∴x20+1-0x0-0=2x0 ,∴x0=1或x0=-1.即切点为(1,2)或(-1,2).所以,过P(0,0)的切线方程为y=2x或y=-2x.即2x-y=0或2x+y=0.三、探究与创新12.直线l:y=x+a(a≠0)和曲线C:y=x3-x2+1相切,求切点的坐标及a的值.解设切点A(x0 ,y0) ,(x0+d)3-(x0+d)2+1-(x30-x20+1)d=3x20d+3x0d2+d3-2x0d-d2d=3x 20-2x 0+(3x 0-1)d +d 2→3x 20-2x 0(d →0). 故曲线上点A 处切线斜率为3x 20-2x 0 ,∴3x 20-2x 0=1 ,∴x 0=1或x 0=-13 ,代入C的方程得 ⎩⎪⎨⎪⎧x 0=1 y 0=1或⎩⎪⎨⎪⎧x 0=-13 y 0=2327代入直线l ,当⎩⎪⎨⎪⎧x 0=1y 0=1时 ,a =0(舍去) ,当⎩⎪⎨⎪⎧x 0=-13 y 0=2327时 ,a =3227 ,即切点坐标为(-13 ,2327) ,a =3227.4. 导数的概念和几何意义一、根底达标1.设f ′(x 0)=0 ,那么曲线y =f (x )在点(x 0 ,f (x 0))处的切线( )A .不存在B .与x 轴平行或重合C .与x 轴垂直D .与x 轴斜交答案 B2.函数y =f (x )的图象如图 ,那么f ′(x A )与f ′(x B )的大小关系是( )A.f′(x A)>f′(x B) B.f′(x A)<f′(x B)C.f′(x A)=f′(x B) D.不能确定答案 B解析分别作出A、B两点的切线,由题图可知k B>k A ,即f′(x B)>f′(x A).3.曲线y=2x2上一点A(2,8) ,那么在点A处的切线斜率为() A.4 B.16 C.8 D.2解析在点A处的切线的斜率即为曲线y=2x2在x=2时的导数,由导数定义可求y′=4x ,∴f′(2)=8.答案 C4.函数f(x)在x=1处的导数为3 ,那么f(x)的解析式可能为() A.f(x)=(x-1)2+3(x-1)B.f(x)=2(x-1)C.f(x)=2(x-1)2D.f(x)=x-1答案 A解析分别求四个选项的导函数分别为f′(x)=2(x-1)+3;f′(x)=2;f′(x)=4(x-1);f′(x)=1.5.抛物线y=x2+x+2上点(1,4)处的切线的斜率是________ ,该切线方程为____________.答案33x-y+1=0解析Δy=(1+d)2+(1+d)+2-(12+1+2)=3d+d2 ,故y′|x=1=limd→0Δy d=limd→0(3+d)=3.∴切线的方程为y-4=3(x-1) ,即3x-y+1=0.6.假设曲线y=x2-1的一条切线平行于直线y=4x-3 ,那么这条切线方程为____________.答案4x-y-5=0解析∵f′(x)=f(x+d)-f(x)d=(x+d)2-1-(x2-1)d=2xd+d2d=(2x+d)=2x.设切点坐标为(x0,y0) ,那么由题意知f′(x0)=4 ,即2x0=4 ,∴x0=2 ,代入曲线方程得y0y-3=4(x-2) ,即4x-y-5=0.7.求曲线y=x3在点(3,27)处的切线与两坐标轴所围成的三角形的面积.解∵f′(3)=f(3+d)-f(3)d=(3+d)3-33d=(d2+9d+27)=27 ,∴曲线在点(3,27)处的切线方程为y-27=27(x-3) , 即27x-y-54=0.此切线与x轴、y轴的交点分别为(2,0) ,(0 ,-54).∴切线与两坐标轴围成的三角形的面积为S=12×2×54=54.二、能力提升8.曲线y=-x3+3x2在点(1,2)处的切线方程为() A.y=3x-1 B.y=-3x+5C.y=3x+5 D.y=2x答案 A解析-(Δx+1)3+3(Δx+1)2-(-13+3×12)Δx=-Δx2+3.Δx→0时,-Δx2+3→3.∴f′(1)=3.即曲线在(1,2)处的切线斜率为3. 所以切线方程为y-2=3(x-1) ,即y=3x-1.9.函数y=f(x)图象在M(1 ,f(1))处的切线方程为y=12x+2 ,那么f(1)+f′(1)=________. 答案 3解析 由切点在切线上. ∴f (1)=12×1+2=52.切线的斜率f ′(1)=12.∴f (1)+f ′(1)=3.10.假设曲线y =x 2+ax +b 在点(0 ,b )处的切线方程为x -y +1=0 ,那么a ,b 的值分别为________ ,________. 答案 1 1解析 ∵点(0 ,b )在切线x -y +1=0上 , ∴-b +1=0 ,b =1.又f (0+Δx )-f (0)Δx =Δx 2+a Δx +b -b Δx =a +Δx ,∴f ′(0)=a =1.11.曲线y =x 3+1 ,求过点P (1,2)的曲线的切线方程. 解 设切点为A (x 0 ,y 0) ,那么y 0=x 30+1.(x 0+Δx )3+1-(x 30+1)Δx =Δx 3+3x 20Δx +3x 0Δx2Δx =Δx 2+3x 0Δx +3x 20.∴f ′(x 0)=3x 20 ,切线的斜率为k =3x 20.点(1,2)在切线上 ,∴2-(x 30+1)=3x 20(1-x 0).∴x 0=1或x 0=-12. 当x 0=1时 ,切线方程为3x -y -1=0 , 当x 0=-12时 ,切线方程为3x -4y +5=0.所以 ,所求切线方程为3x -y -1=0或3x -4y +5=0. 12.求抛物线y =x 2的过点P (52 ,6)的切线方程. 解 由得 ,Δyd =2x +d , ∴当d →0时 ,2x +d →2x , 即y ′=2x ,设此切线过抛物线上的点(x 0 ,x 20) , 又因为此切线过点(52 ,6)和点(x 0 ,x 20) ,其斜率应满足x20-6x0-52=2x0 ,由此x0应满足x20-5x0+6=0.解得x0=2或3.即切线过抛物线y=x2上的点(2,4) ,(3,9).所以切线方程分别为y-4=4(x-2) ,y-9=6(x-3).化简得4x-y-4=0,6x-y-9=0 ,此即是所求的切线方程.三、探究与创新13.求垂直于直线2x-6y+1=0并且与曲线y=x3+3x2-5相切的直线方程.解设切点为P(a ,b) ,函数y=x3+3x2-5的导数为y′=3x2+6x.故切线的斜率k=y′|x=a=3a2+6a=-3 ,得a=-1 ,代入y=x3+3x2-5得,b=-3 ,即P(-1 ,-3).故所求直线方程为y+3=-3(x+1) ,即3x+y+6=0.4.导数的运算法那么一、根底达标1.设y=-2e x sin x ,那么y′等于() A.-2e x cos x B.-2e x sin xC.2e x sin x D.-2e x(sin x+cos x)答案 D解析y′=-2(e x sin x+e x cos x)=-2e x(sin x+cos x).2.当函数y=x2+a2x(a>0)在x=x0处的导数为0时,那么x0=() A.a B.±a C.-a D.a2答案 B解析 y ′=⎝ ⎛⎭⎪⎫x 2+a 2x ′=2x ·x -(x 2+a 2)x 2=x 2-a 2x 2 ,由x 20-a 2=0得x 0=±a . 3.设曲线y =x +1x -1在点(3,2)处的切线与直线ax +y +1=0垂直 ,那么a 等于( )A .2 B.12 C .-12 D .-2 答案 D 解析 ∵y =x +1x -1=1+2x -1, ∴y ′=-2(x -1)2.∴y ′|x =3=-12. ∴-a =2 ,即a =-2.4.曲线y =x 3在点P 处的切线斜率为k ,那么当k =3时的P 点坐标为( )A .(-2 ,-8)B .(-1 ,-1)或(1,1)C .(2,8)D.⎝ ⎛⎭⎪⎪⎫-12 -18 答案 B解析 y ′=3x 2 ,∵k =3 ,∴3x 2=3 ,∴x =±1 , 那么P 点坐标为(-1 ,-1)或(1,1).5.设函数f (x )=g (x )+x 2 ,曲线y =g (x )在点(1 ,g (1))处的切线方程为y =2x +1 ,那么曲线y =f (x )在点(1 ,f (1))处切线的斜率为________. 答案 4解析 依题意得f ′(x )=g ′(x )+2x , f ′(1)=g ′(1)+2=4.6.f (x )=13x 3+3xf ′(0) ,那么f ′(1)=________. 答案 1解析 由于f ′(0)是一常数 ,所以f ′(x )=x 2+3f ′(0) , 令x =0 ,那么f ′(0)=0 , ∴f ′(1)=12+3f ′(0)=1. 7.求以下函数的导数: (1)y =(2x 2+3)(3x -1); (2)y =x -sin x 2cos x2.解 (1)法一 y ′=(2x 2+3)′(3x -1)+(2x 2+3)(3x -1)′=4x (3x -1)+ 3(2x 2+3)=18x 2-4x +9.法二 ∵y =(2x 2+3)(3x -1)=6x 3-2x 2+9x -3 , ∴y ′=(6x 3-2x 2+9x -3)′=18x 2-4x +9. (2)∵y =x -sin x 2cos x 2=x -12sin x , ∴y ′=x ′-⎝ ⎛⎭⎪⎫12sin x ′=1-12cos x .二、能力提升8.曲线y =sin x sin x +cos x -12在点M ⎝ ⎛⎭⎪⎪⎫π4 0处的切线的斜率为( )A .-12 B.12 C .-22 D.22 答案B 解析 y ′=cos x (sin x +cos x )-sin x (cos x -sin x )(sin x +cos x )2=1(sin x +cos x )2,故y ′|x =π4=12 ,∴曲线在点M ⎝ ⎛⎭⎪⎪⎫π4 0处的切线的斜率为12. 9.点P 在曲线y =4e x +1上 ,α为曲线在点P 处的切线的倾斜角 ,那么α的取值范围是( )A .[0 ,π4) B .[π4 ,π2) C .(π2 ,3π4] D .[3π4 ,π)答案 D解析 y ′=-4e x (e x +1)2=-4e xe 2x +2e x+1 ,设t =e x ∈(0 ,+∞) ,那么y ′ =-4tt 2+2t +1=-4t +1t +2,∵t +1t ≥2 ,∴y ′∈[-1,0) ,α∈[3π4 ,π). 10.(2021·江西)设函数f (x )在(0 ,+∞)内可导 ,且f (e x )=x +e x ,那么f ′(1)=________. 答案 2解析 令t =e x ,那么x =ln t ,所以函数为f (t )=ln t +t ,即f (x )=ln x +x ,所以f ′(x )=1x +1 ,即f ′(1)=11+1=2.11.求过点(2,0)且与曲线y =x 3相切的直线方程.解 点(2,0)不在曲线y =x 3上 ,可令切点坐标为(x 0 ,x 30).由题意 ,所求直线方程的斜率k =x 30-0x 0-2=y ′|x =x 0=3x 20 ,即x 30x 0-2=3x 20 ,解得x 0=0或x 0=3.当x 0=0时 ,得切点坐标是(0,0) ,斜率k =0 ,那么所求直线方程是y =0; 当x 0=3时 ,得切点坐标是(3,27) ,斜率k =27 , 那么所求直线方程是y -27=27(x -3) , 即27x -y -54=0.综上 ,所求的直线方程为y =0或27x -y -54=0.12.曲线f (x )=x 3-3x ,过点A (0,16)作曲线f (x )的切线 ,求曲线的切线方程. 解 设切点为(x 0 ,y 0) ,那么由导数定义得切线的斜率k =f ′(x 0)=3x 20-3 ,∴切线方程为y =(3x 20-3)x +16 , 又切点(x 0 ,y 0)在切线上 , ∴y 0=3(x 20-1)x 0+16 ,即x 30-3x 0=3(x 20-1)x 0+16 ,解得x 0=-2 ,∴切线方程为9x -y +16=0. 三、探究与创新13.设函数f (x )=ax -bx ,曲线y =f (x )在点(2 ,f (2))处的切线方程为7x -4y -12=0.(1)求f (x )的解析式;(2)证明:曲线y =f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形的面积为定值 ,并求此定值. (1)解 由7x -4y -12=0得y =74x -3.当x =2时 ,y =12 ,∴f (2)=12 ,①又f ′(x )=a +bx 2 , ∴f ′(2)=74 ,②由① ,②得⎩⎪⎨⎪⎧2a -b 2=12 a +b 4=74.解之得⎩⎪⎨⎪⎧a =1b =3.故f (x )=x -3x .(2)证明 设P (x 0 ,y 0)为曲线上任一点 ,由y ′=1+3x 2知 曲线在点P (x 0 ,y 0)处的切线方程为 y -y 0=⎝ ⎛⎭⎪⎫1+3x 20(x -x 0) ,即y -⎝ ⎛⎭⎪⎫x 0-3x 0=⎝ ⎛⎭⎪⎫1+3x 20(x -x 0).令x =0得y =-6x 0,从而得切线与直线x =0的交点坐标为⎝ ⎛⎭⎪⎪⎫0 -6x 0. 令y =x 得y =x =2x 0 ,从而得切线与直线y =x 的交点坐标为(2x 0,2x 0). 所以点P (x 0 ,y 0)处的切线与直线x =0 ,y =x 所围成的三角形面积为12⎪⎪⎪⎪⎪⎪-6x 0||2x 0=6.故曲线y =f (x )上任一点处的切线与直线x =0 ,y =x 所围成的三角形的面积为定值 ,此定值为6.4.2 导数的运算4.2.1 几个幂函数的导数 4.2.2 一些初等函数的导数表一、根底达标1.以下结论中正确的个数为( )①y =ln 2 ,那么y ′=12;②y =1x 2 ,那么y ′|x =3=-227;③y =2x ,那么y ′=2x ln 2;④y =log 2x ,那么y ′=1x ln 2. A .0 B .1 C .2 D .3 答案 D解析 ①y =ln 2为常数 ,所以y ′=0.①错.②③④正确. 2.过曲线y =1x 上一点P 的切线的斜率为-4 ,那么点P 的坐标为( )A.⎝ ⎛⎭⎪⎪⎫12 2B.⎝ ⎛⎭⎪⎪⎫12 2或⎝ ⎛⎭⎪⎪⎫-12 -2C.⎝ ⎛⎭⎪⎪⎫-12 -2D.⎝ ⎛⎭⎪⎪⎫12 -2 答案 B解析 y ′=⎝ ⎛⎭⎪⎫1x ′=-1x 2=-4 ,x =±12 ,应选B. 3.f (x )=x a ,假设f ′(-1)=-4 ,那么a 的值等于( )A .4B .-4C .5D .-5 答案 A解析 f ′(x )=ax a -1 ,f ′(-1)=a (-1)a -1=-4 ,a =4. 4.函数f (x )=x 3的斜率等于1的切线有( )A .1条B .2条C .3条D .不确定 答案 B解析∵f ′(x )=3x 2 ,设切点为(x 0 ,y 0) ,那么3x 20=1 ,得x 0=±33 ,即在点⎝ ⎛⎭⎪⎪⎫33 39和点⎝ ⎛⎭⎪⎪⎫-33 -39处有斜率为1的切线. 5.曲线y =9x 在点M (3,3)处的切线方程是________. 答案 x +y -6=0解析 ∵y ′=-9x 2 ,∴y ′|x =3=-1 , ∴过点(3,3)的斜率为-1的切线方程为: y -3=-(x -3)即x +y -6=0. 6.假设曲线在点处的切线与两个坐标轴围成的三角形的面积为18 ,那么a =________. 答案 64 解析∴曲线在点处的切线斜率,∴切线方程为.令x =0得;令y =0得x =3a .∵该切线与两坐标轴围成的三角形的面积为 S =12·3a ·=18 ,∴a =64.7.求以下函数的导数:(1) y =7x 3;(2)y =1x 4;(3)y =-2sin x 2⎝ ⎛⎭⎪⎫1-2cos 2x 4;(4)y =log 2x 2-log 2x . 解 (1)y ′=⎝⎛⎭⎫7x 3′==377x 4.(2)y ′=⎝ ⎛⎭⎪⎫1x 4′=(x -4)′=-4x -4-1=-4x -5=-4x 5.(3)∵y =-2sin x 2⎝ ⎛⎭⎪⎫1-2cos 2x 4 =2sin x 2⎝ ⎛⎭⎪⎫2cos 2x 4-1=2sin x 2cos x 2=sin x ,∴y ′=(sin x )′=cos x . (4)∵y =log 2x 2-log 2x =log 2x , ∴y ′=(log 2x )′=1x ·ln 2. 二、能力提升8.直线y =kx 是曲线y =e x 的切线 ,那么实数k 的值为( )A.1e B .-1e C .-e D .e 答案 D解析y ′=e x,设切点为(x 0 ,y 0) ,那么⎩⎪⎨⎪⎧y 0=kx 0 y 0=e x 0k =e x 0.∴e x 0=e x 0·x 0 ,∴x 0=1 ,∴k =e.9.曲线y =ln x 在x =a 处的切线倾斜角为π4 ,那么a =______. 答案 1解析 y ′=1x ,∴y ′|x =a =1a =1 ,∴a =1.10.点P 是曲线y =e x 上任意一点 ,那么点P 到直线y =x 的最|小距离为________. 答案 22解析 根据题意设平行于直线y =x 的直线与曲线y =e x 相切于点(x 0 ,y 0) ,该切点即为与y =x 距离最|近的点 ,如图.那么在点(x 0 ,y 0)处的切线斜率为1 ,即y ′|x =x 0=1.∵y ′=(e x )′=e x ,∴e x 0=1 ,得x 0=0 ,代入y =e x ,得y 0=1 ,即P (0,1).利用点到直线的距离公式得距离为22.11.f (x )=cos x ,g (x )=x ,求适合f ′(x )+g ′(x )≤0的x 的值. 解 ∵f (x )=cos x ,g (x )=x ,∴f ′(x )=(cos x )′=-sin x ,g ′(x )=x ′=1 , 由f ′(x )+g ′(x )≤0 ,得-sin x +1≤0 , 即sin x ≥1 ,但sin x ∈[-1,1] , ∴sin x =1 ,∴x =2k π+π2 ,k ∈Z .12.抛物线y =x 2 ,直线x -y -2=0 ,求抛物线上的点到直线的最|短距离. 解 根据题意可知与直线x -y -2=0平行的抛物线y =x 2的切线 ,对应的切点到直线x-y-2=0的距离最|短,设切点坐标为(x0 ,x20) ,那么y′|x=x=2x0=1 ,所以x0=12,所以切点坐标为⎝⎛⎭⎪⎪⎫1214,切点到直线x-y-2=0的距离d=⎪⎪⎪⎪⎪⎪12-14-22=728,所以抛物线上的点到直线x-y-2=0的最|短距离为728.三、探究与创新13.设f0(x)=sin x ,f1(x)=f′0(x) ,f2(x)=f′1(x) ,… ,f n+1(x)=f′n(x) ,n∈N ,试求f2 014(x).解f1(x)=(sin x)′=cos x ,f2(x)=(cos x)′=-sin x ,f3(x)=(-sin x)′=-cos x ,f4(x)=(-cos x)′=sin x ,f5(x)=(sin x)′=f1(x) ,f6(x)=f2(x) ,… ,f n+4(x)=f n(x) ,可知周期为4 ,∴f2 014(x)=f2(x)=-sin x.4.3导数在研究函数中的应用4.3.1利用导数研究函数的单调性一、根底达标1.命题甲:对任意x∈(a ,b) ,有f′(x)>0;命题乙:f(x)在(a ,b)内是单调递增的,那么甲是乙的() A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 A解析f(x)=x3在(-1,1)内是单调递增的,但f′(x)=3x2≥0(-1<x<1) ,故甲是乙的充分不必要条件,选A.2.函数y=12x2-ln x的单调减区间是()A.(0,1) B.(0,1)∪(-∞ ,-1) C.(-∞ ,1) D.(-∞ ,+∞)答案 A解析∵y=12x2-ln x的定义域为(0 ,+∞) ,∴y′=x-1x,令y′<0 ,即x-1x<0 ,解得:0<x<1或x<-1.又∵x>0 ,∴0<x<1 ,应选A.3.函数f(x)=x3+ax2+bx+c ,其中a ,b ,c为实数,当a2-3b<0时,f(x)是() A.增函数B.减函数C.常函数D.既不是增函数也不是减函数答案 A解析求函数的导函数f′(x)=3x2+2ax+b ,导函数对应方程f′(x)=0的Δ=4(a2-3b)<0 ,所以f′(x)>0恒成立,故f(x)是增函数.4.以下函数中,在(0 ,+∞)内为增函数的是() A.y=sin x B.y=x e2C.y=x3-x D.y=ln x-x答案 B解析 显然y =sin x 在(0 ,+∞)上既有增又有减 ,故排除A ;对于函数y =x e 2 ,因e 2为大于零的常数 ,不用求导就知y =x e 2在(0 ,+∞)内为增函数; 对于C ,y ′=3x 2-1=3⎝⎛⎭⎪⎫x +33⎝ ⎛⎭⎪⎫x -33 ,故函数在⎝ ⎛⎭⎪⎫-∞ -33 ,⎝ ⎛⎭⎪⎫33 +∞上为增函数 , 在⎝ ⎛⎭⎪⎪⎫-33 33上为减函数;对于D ,y ′=1x -1 (x >0). 故函数在(1 ,+∞)上为减函数 , 在(0,1)上为增函数.应选B.5.函数y =f (x )在其定义域⎝ ⎛⎭⎪⎪⎫-32 3内可导 ,其图象如下图 ,记y =f (x )的导函数为y=f ′(x ) ,那么不等式f ′(x )≤0的解集为________.答案 ⎣⎢⎢⎡⎦⎥⎥⎤-13 1∪[2,3)6.函数y =ln(x 2-x -2)的递减区间为________. 答案 (-∞ ,-1) 解析 f ′(x )=2x -1x 2-x -2,令f ′(x )<0得x <-1或12<x <2 ,注意到函数定义域为(-∞ ,-1)∪(2 ,+∞) ,故递减区间为(-∞ ,-1).7.函数f (x )=x 3+ax +8的单调递减区间为(-5,5) ,求函数y =f (x )的递增区间. 解 f ′(x )=3x 2+a .∵(-5,5)是函数y =f (x )的单调递减区间 ,那么-5,5是方程3x 2+a =0的根 ,∴af′(x)=3x2-75 ,令f′(x)>0 ,那么3x2-75>0 ,解得x>5或x<-5 ,∴函数y=f(x)的单调递增区间为(-∞ ,-5)和(5 ,+∞).二、能力提升8.如果函数f(x)的图象如图,那么导函数y=f′(x)的图象可能是()答案 A解析由f(x)与f′(x)关系可选A.9.设f(x) ,g(x)在[a ,b]上可导,且f′(x)>g′(x) ,那么当a<x<b时,有() A.f(x)>g(x)B.f(x)<g(x)C.f(x)+g(a)>g(x)+f(a)D.f(x)+g(b)>g(x)+f(b)答案 C解析∵f′(x)-g′(x)>0 ,∴(f(x)-g(x))′>0 ,∴f (x )-g (x )在[a ,b ]上是增函数 , ∴当a <x <b 时f (x )-g (x )>f (a )-g (a ) , ∴f (x )+g (a )>g (x )+f (a ).10.(2021·大纲版)假设函数f (x )=x 2+ax +1x 在⎝ ⎛⎭⎪⎪⎫12 +∞是增函数 ,那么a 的取值范围是________. 答案 [3 ,+∞)解析 因为f (x )=x 2+ax +1x 在⎝ ⎛⎭⎪⎪⎫12 +∞上是增函数 ,故f ′(x )=2x +a -1x 2≥0在⎝ ⎛⎭⎪⎪⎫12 +∞上恒成立 , 即a ≥1x 2-2x 在⎝ ⎛⎭⎪⎪⎫12 +∞上恒成立. 令h (x )=1x 2-2x ,那么h ′(x )=-2x 3-2 , 当x ∈⎝ ⎛⎭⎪⎪⎫12 +∞时 ,h ′(x )<0 ,那么h (x )为减函数 , 所以h (x )<h ⎝ ⎛⎭⎪⎫12=3 ,所以a ≥3.11.求以下函数的单调区间: (1)y =x -ln x ; (2)y =ln(2x +3)+x 2.解 (1)函数的定义域为(0 ,+∞) ,y ′=1-1x , 由y ′>0 ,得x >1;由y ′<0 ,得0<x <1.∴函数y =x -ln x 的单调增区间为(1 ,+∞) ,单调减区间为(0,1). (2)函数y =ln(2x +3)+x 2的定义域为⎝ ⎛⎭⎪⎪⎫-32 +∞.∵y =ln(2x +3)+x 2 ,∴y ′=22x +3+2x =4x 2+6x +22x +3=2(2x +1)(x +1)2x +3.当y ′>0 ,即-32<x <-1或x >-12时 , 函数y =ln(2x +3)+x 2单调递增; 当y ′<0 ,即-1<x <-12时 , 函数y =ln(2x +3)+x 2单调递减.故函数y =ln(2x +3)+x 2的单调递增区间为⎝ ⎛⎭⎪⎪⎫-32 -1 ,⎝ ⎛⎭⎪⎪⎫-12 +∞ ,单调递减区间为⎝ ⎛⎭⎪⎪⎫-1 -12. 12.函数f (x )=x 3+bx 2+cx +d 的图象经过点P (0,2) ,且在点M (-1 ,f (-1))处的切线方程为6x -y +7=0. (1)求函数y =f (x )的解析式; (2)求函数y =f (x )的单调区间.解 (1)由y =f (x )的图象经过点P (0,2) ,知d =2 , ∴f (x )=x 3+bx 2+cx +2 ,f ′(x )=3x 2+2bx +c . 由在点M (-1 ,f (-1))处的切线方程为6x -y +7=0 , 知-6-f (-1)+7=0 ,即f (-1)=1 ,f ′(-1)=6. ∴⎩⎪⎨⎪⎧ 3-2b +c =6 -1+b -c +2=1 即⎩⎪⎨⎪⎧2b -c =-3 b -c =0 解得b =c =-3.故所求的解析式是f (x )=x 3-3x 2-3x +2. (2)f ′(x )=3x 2-6xf ′(x )>0 , 得x <1-2或x >1+2; 令f ′(x )<0 ,得1-2<x <1+ 2.故f (x )=x 3-3x 2-3x +2的单调递增区间为(-∞ ,1-2)和(1+ 2 ,+∞) ,单调递减区间为(1- 2 ,1+2). 三、探究与创新13.函数f(x)=mx3+nx2(m、n∈R ,m≠0) ,函数y=f(x)的图象在点(2 ,f(2))处的切线与x轴平行.(1)用关于m的代数式表示n;(2)求函数f(x)的单调增区间.解(1)由条件得f′(x)=3mx2+2nx ,又f′(2)=0 ,∴3m+n=0 ,故n=-3m.(2)∵n=-3m ,∴f(x)=mx3-3mx2 ,∴f′(x)=3mx2-6mx.令f′(x)>0 ,即3mx2-6mx>0 ,当m>0时,解得x<0或x>2 ,那么函数f(x)的单调增区间是(-∞,0)和(2 ,+∞);当m<0时,解得0<x<2 ,那么函数f(x)的单调增区间是(0,2).综上,当m>0时,函数f(x)的单调增区间是(-∞ ,0)和(2 ,+∞);当m<0时,函数f(x)的单调增区间是(0,2).4.3.2函数的极大值和极小值一、根底达标y=f(x)的定义域为(a,b) ,y=f′(x)的图象如图,那么函数y=f(x)在开区间(a ,b)内取得极小值的点有()A.1个B.2个C.3个D.4个答案 A解析当满足f′(x)=0的点,左侧f′(x)<0 ,右侧f′(x)>0时,该点为极小值点,观察题图,只有一个极小值点.2. "函数y=f(x)在一点的导数值为0”是 "函数y=f(x)在这点取得极值〞的() A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 B解析对于f(x)=x3 ,f′(x)=3x2 ,f′(0)=0 ,不能推出f(x)在x=0处取极值,反之成立.应选B.3.假设a>0 ,b>0 ,且函数f(x)=4x3-ax2-2bx+2在x=1处有极值,那么ab的最|大值等于() A.2 B.3 C.6 D.9答案 D解析f′(x)=12x2-2ax-2b ,∵f(x)在x=1处有极值,∴f′(1)=12-2a-2b=0 ,∴a+b=6.又a>0 ,b>0 ,∴a+b≥2ab,∴2ab≤6 ,∴ab≤9 ,当且仅当a=b=3时等号成立,∴ab的最|大值为9.4.函数y=x3-3x2-9x(-2<x<2)有() A.极大值5 ,极小值-27B.极大值5 ,极小值-11C.极大值5 ,无极小值D.极小值-27 ,无极大值答案 C解析由y′=3x2-6x-9=0 ,得x=-1或x=3 ,当x<-1或x>3时,y′>0 ,当-1<x<3时,y′x=-1时,函数有极大值5;x取不到3 ,故无极小值.5.函数f(x)=x3+3ax2+3(a+2)x+3既有极大值又有极小值,那么实数a的取值范围是________.答案(-∞ ,-1)∪(2 ,+∞)解析∵f′(x)=3x2+6ax+3(a+2) ,令3x2+6ax+3(a+2)=0 ,即x2+2ax+a +2=0 ,∵函数f(x)有极大值和极小值,∴方程x2+2ax+a+2=0有两个不相等的实数根 ,即Δ=4a 2-4a -8>0 ,解得a >2或a <-1.6.假设函数y =x 3-3ax +a 在(1,2)内有极小值 ,那么实数a 的取值范围是________. 答案 (1,4)解析 y ′=3x 2-3a ,当a ≤0时 ,y ′≥0 ,函数y =x 3-3ax +a 为单调函数 ,不合题意 ,舍去;当a >0时 ,y ′=3x 2-3a =0⇒x =±a ,不难分析 ,当 1<a <2 ,即1<a <4时 ,函数y =x 3-3ax +a 在(1,2)内有极小值. 7.求函数f (x )=x 2e -x 的极值. 解 函数的定义域为R , f ′(x )=2x e -x+x 2·⎝ ⎛⎭⎪⎫1e x ′ =2x e -x -x 2e -x =x (2-x )e -x , 令f ′(x )=0 ,得x =0或x =2.当x 变化时 ,f ′(x ) ,f (x )的变化情况如下表: x (-∞ ,0) 0 (0,2) 2 (2 ,+∞) f ′(x ) -0 +0 -f (x )4e -2当x =2时 ,函数有极大值 ,且为f (2)=4e -2. 二、能力提升8.函数f (x ) ,x ∈R ,且在x =1处 ,f (x )存在极小值 ,那么( )A .当x ∈(-∞ ,1)时 ,f ′(x )>0;当x ∈(1 ,+∞)时 ,f ′(x )<0B .当x ∈(-∞ ,1)时 ,f ′(x )>0;当x ∈(1 ,+∞)时 ,f ′(x )>0C .当x ∈(-∞ ,1)时 ,f ′(x )<0;当x ∈(1 ,+∞)时 ,f ′(x )>0D .当x ∈(-∞ ,1)时 ,f ′(x )<0;当x ∈(1 ,+∞)时 ,f ′(x )<0 答案 C解析 ∵f (x )在x =1处存在极小值 , ∴x <1时 ,f ′(x )<0 ,x >1时 ,f ′(x )>0.9.(2021·福建)设函数f (x )的定义域为R ,x 0(x 0≠0)是f (x )的极大值点 ,以下结论一定正确的选项是( )A .∀x ∈R ,f (x )≤f (x 0)B .-x 0是f (-x )的极小值点C .-x 0是-f (x )的极小值点D .-x 0是-f (-x )的极小值点 答案 D解析 x 0(x 0≠0)是f (x )的极大值点 ,并不是最|大值点.故A 错;f (-x )相当于f (x )关于y 轴的对称图象的函数 ,故-x 0应是f (-x )的极大值点 ,B 错;-f (x )相当于f (x )关于x 轴的对称图象的函数 ,故x 0应是-f (x )的极小值点.跟-x 0没有关系 ,C 错;-f (-x )相当于f (x )关于坐标原点的对称图象的函数.故D 正确.y =f (x )的导函数的图象如下图 ,给出以下判断: ①函数y =f (x )在区间⎝ ⎛⎭⎪⎪⎫-3 -12内单调递增; ②函数y =f (x )在区间⎝ ⎛⎭⎪⎪⎫-12 3内单调递减; ③函数y =f (x )在区间(4,5)内单调递增; ④当x =2时 ,函数y =f (x )有极小值; ⑤当x =-12时 ,函数y =f (x )有极大值. 那么上述判断正确的选项是________.(填序号) 答案 ③解析 函数的单调性由导数的符号确定 ,当x ∈(-∞ ,-2)时 ,f ′(x )<0 ,所以f (x )在(-∞ ,-2)上为减函数 ,同理f (x )在(2,4)上为减函数 ,在(-2,2)上是增函数 ,在(4 ,+∞)上为增函数 ,所以可排除①和② ,可选择③.由于函数在x =2的左侧递增 ,右侧递减 ,所以当x =2时 ,函数有极大值;而在x = -12的左右两侧 ,函数的导数都是正数 ,故函数在x =-12的左右两侧均为增函数 ,所以x =-12不是函数的极值点.排除④和⑤.11.f (x )=x 3+12mx 2-2m 2x -4(m 为常数 ,且m >0)有极大值-52 ,求m 的值. 解 ∵f ′(x )=3x 2+mx -2m 2=(x +m )(3x -2m ) , 令f ′(x )=0 ,那么x =-m 或x =23m . 当x 变化时 ,f ′(x ) ,f (x )的变化情况如下表:x (-∞ ,-m ) -m⎝ ⎛⎭⎪⎪⎫-m 23m 23m ⎝ ⎛⎭⎪⎪⎫23m +∞ f ′(x ) +0 -0 +f (x )极大值极小值∴f (x )极大值=f (-m )=-m 3+12m 3+2m 3-4=-52 ,∴m =1. 12.设a 为实数 ,函数f (x )=x 3-x 2-x +a . (1)求f (x )的极值;(2)当a 在什么范围内取值时 ,曲线y =f (x )与x 轴仅有一个交点 ? 解 (1)f ′(x )=3x 2-2x -1. 令f ′(x )=0 ,那么x =-13或x =1.当x 变化时 ,f ′(x ) ,f (x )的变化情况如下表:x ⎝ ⎛⎭⎪⎪⎫-∞ -13 -13 ⎝ ⎛⎭⎪⎪⎫-13 1 1 (1 ,+∞) f ′(x ) +0 -0 +f (x )极大值极小值所以f (x )的极大值是f ⎝ ⎛⎭⎪⎫-13=527+a ,极小值是f (1)=a -1.(2)函数f (x )=x 3-x 2-x +a =(x -1)2(x +1)+a -1 , 由此可知 ,x 取足够大的正数时 ,有f (x )>0 , x 取足够小的负数时 ,有f (x )<0 ,所以曲线y =f (x )与x 轴至|少有一个交点.由(1)知f (x )极大值=f ⎝ ⎛⎭⎪⎫-13=527+a ,f (x )极小值=f (1)=a -1.∵曲线y =f (x )与x 轴仅有一个交点 ,∴f (x )极大值<0或f (x )极小值>0 , 即527+a <0或a -1>0 ,∴a <-527或a >1 ,∴当a ∈⎝ ⎛⎭⎪⎪⎫-∞ -527∪(1 ,+∞)时 ,曲线y =f (x )与x 轴仅有一个交点. 三、探究与创新13.(2021·新课标Ⅱ)函数f (x )=e x -ln(x +m ).(1)设x =0是f (x )的极值点 ,求m ,并讨论f (x )的单调性; (2)当m ≤2时 ,证明f (x )>0. (1)解 f ′(x )=e x -1x +m. 由x =0是f (x )的极值点得f ′(0)=0 ,所以m =1. 于是f (x )=e x -ln(x +1) ,定义域为(-1 ,+∞) , f ′(x )=e x -1x +1. 函数f ′(x )=e x -1x +1在(-1 ,+∞)单调递增 ,且f ′(0)=0 ,因此当 x ∈(-1,0)时 ,f ′(x )<0;当x ∈(0 ,+∞)时 ,f ′(x )>0. 所以f (x )在(-1,0)单调递减 ,在(0 ,+∞)单调递增. (2)证明 当m ≤2 ,x ∈(-m ,+∞)时 ,ln(x +m )≤ ln(x +2) ,故只需证明当m =2时 ,f (x )>0. 当m =2时 , 函数f ′(x )=e x -1x +2在(-2 ,+∞)单调递增.又f′(-1)<0 ,f′(0)>0 ,故f′(x)=0在(-2 ,+∞)有唯一实根x0 , 且x0∈(-1,0).当x∈(-2 ,x0)时,f′(x)<0;当x∈(x0 ,+∞)时,f′(x)>0 ,从而当x=x0时,f(x)取得最|小值.由f′(x0)=0得e x0=1x0+2,ln(x0+2)=-x0 ,故f(x)≥f(x0)=1x0+2+x0=(x0+1)2x0+2>0.综上,当m≤2时,f(x)>0.4.3.3三次函数的性质:单调区间和极值一、根底达标1.函数y=f(x)在[a ,b]上() A.极大值一定比极小值大B.极大值一定是最|大值C.最|大值一定是极大值D.最|大值一定大于极小值答案 D解析由函数的最|值与极值的概念可知,y=f(x)在[a,b]上的最|大值一定大于极小值.2.函数y=x e-x ,x∈[0,4]的最|大值是()A.0 B.1e C.4e4 D.2e2答案 B解析y′=e-x-x·e-x=e-x(1-x) ,令y′=0 ,∴x=1 ,∴f(0)=0 ,f(4)=4e4,f(1)=e-1=1e,∴f(1)为最|大值,应选B.3.函数y=ln xx的最|大值为()A.e-1B.e C.e2 D.10 3答案 A解析令y′=(ln x)′x-ln x·x′x2=1-ln xx2=0.(x>0)解得xx>e时,y′<0;当0<x<e时,y′>0.y极大值=f(e)=1e,在定义域(0 ,+∞)内只有一个极值,所以y max=1 e.4.函数y=4xx2+1在定义域内() A.有最|大值2 ,无最|小值B.无最|大值,有最|小值-2 C.有最|大值2 ,最|小值-2 D.无最|值答案 C解析令y′=4(x2+1)-4x·2x(x2+1)2=-4x2+4(x2+1)2=0 ,得xx变化时,y′ ,y随x的变化如下表:x (-∞ ,-1)-1(-1,1)1(1 ,+∞) y′-0+0-y 极小值极大值最|大值2.5.函数f(x)=e x-2x+a有零点,那么a的取值范围是________.答案(-∞ ,2ln 2-2]解析 函数f (x )=e x -2x +a 有零点 ,即方程e x -2x +a =0有实根 ,即函数 g (x )=2x -e x ,y =a 有交点 ,而g ′(x )=2-e x ,易知函数g (x )=2x -e x 在 (-∞ ,ln 2)上递增 ,在(ln 2 ,+∞)上递减 ,因而g (x )=2x -e x 的值域为 (-∞ ,2ln 2-2] ,所以要使函数g (x )=2x -e x ,y =a 有交点 ,只需 a ≤2ln 2-2即可.6.函数y =x +2cos x 在区间⎣⎢⎢⎡⎦⎥⎥⎤0 π2上的最|大值是________. 答案π6+ 3 解析 y ′=1-2sin x =0 ,x =π6 ,比拟0 ,π6 ,π2处的函数值 ,得y max =π6+ 3. 7.函数f (x )=2x 3-6x 2+a 在[-2,2]上有最|小值-37 ,求a 的值及f (x )在 [-2,2]上的最|大值.解 f ′(x )=6x 2-12x =6x (x -2) , 令f ′(x )=0 ,得x =0或x =2 ,当x 变化时 ,f ′(x ) ,f (x )的变化情况如下表:x -2 (-2,0) 0 (0,2) 2 f ′(x ) +0 - 0 f (x )-40+a极大值a-8+amin 当x =0时 ,f (x )的最|大值为3. 二、能力提升8.设直线x =t 与函数f (x )=x 2 ,g (x )=ln x 的图象分别交于点M ,N ,那么当|MN |到达最|小时t 的值为( )A .1 B.12 C.52 D.22 答案 D解析 由题意画出函数图象如下图 ,由图可以看出|MN |=y =t 2-ln t (t >0).y′=2t-1t=2t2-1t=2⎝⎛⎭⎪⎫t+22⎝⎛⎭⎪⎫t-22t.当0<t<22时,y′<0 ,可知y在⎝⎛⎭⎪⎫22上单调递减;当t>22时,y′>0 ,可知y在⎝⎛⎭⎪⎫22+∞上单调递增.故当t=22时,|MN|有最|小值.9.(2021·湖北重点中学检测)函数f(x)=x3-tx2+3x,假设对于任意的a∈[1,2] ,b ∈(2,3] ,函数f(x)在区间[a ,b]上单调递减,那么实数t的取值范围是() A.(-∞ ,3] B.(-∞ ,5] C.[3 ,+∞) D.[5 ,+∞)答案 D解析∵f(x)=x3-tx2+3x,∴f′(x)=3x2-2tx+3 ,由于函数f(x)在(a,b)上单调递减,那么有f′(x)≤0在[a ,b]上恒成立,即不等式3x2-2tx+3≤0在[a,b]上恒成立,即有t≥32⎝⎛⎭⎪⎫x+1x在[a,b]上恒成立,而函数y=32⎝⎛⎭⎪⎫x+1x在[1,3]上单调递增,由于a∈[1,2] ,b∈(2,3] ,当b=3时,函数y=32⎝⎛⎭⎪⎫x+1x取得最|大值,即y max=32⎝⎛⎭⎪⎫3+13=5 ,所以t≥5 ,应选D.10.如果函数f(x)=x3-32x2+a在[-1,1]上的最|大值是2 ,那么f(x)在[-1,1]上的最|小值是________.答案-1 2解析f′(x)=3x2-3x ,令f′(x)=0得x=0 ,或x=1.∵f(0)=a ,f(-1)=-52+a ,f(1)=-12+a ,∴f(x)max=a=2.∴f (x )min =-52+a =-12.11.函数f (x )=x 3-ax 2+bx +c (a ,b ,c ∈R ).(1)假设函数f (x )在x =-1和x =3处取得极值 ,试求a ,b 的值; (2)在(1)的条件下 ,当x ∈[-2,6]时 ,f (x )<2|c |恒成立 ,求c 的取值范围. 解 (1)f ′(x )=3x 2-2ax +b ,∵函数f (x )在x =-1和x =3处取得极值 , ∴-1,3是方程3x 2-2ax +b =0的两根. ∴⎩⎪⎨⎪⎧-1+3=23a -1×3=b3,∴⎩⎨⎧a =3b =-9.(2)由(1)知f (x )=x 3-3x 2-9x +c ,f ′(x )=3x 2-6x -9 ,令f ′(x )=0 ,得x =-1或x =3. 当x 变化时 ,f ′(x ) ,f (x )随x 的变化如下表:x (-∞ ,-1)-1 (-1,3) 3 (3 ,+∞) f ′(x ) +0 -0 +f (x )极大值c +5极小值 c -27∴当x ∈[-2,6]时 ,f (x )的最|大值为c +54 , 要使f (x )<2|c |恒成立 ,只要c +54<2|c |即可 , 当c ≥0时 ,c +54<2c ,∴c >54; 当c <0时 ,c +54<-2c ,∴c <-18.∴c ∈(-∞ ,-18)∪(54 ,+∞) ,此即为参数c 的取值范围. 12.函数f (x )=-x 3+3x 2+9x +a . (1)求f (x )的单调递减区间;(2)假设f (x )在区间[-2,2]上的最|大值为20 ,求它在该区间上的最|小值.解(1)∵f′(x)=-3x2+6x+9.令f′(x)<0 ,解得x<-1或x>3 ,∴函数f(x)的单调递减区间为(-∞ ,-1) ,(3 ,+∞).(2)∵f(-2)=8+12-18+a=2+a ,f(2)=-8+12+18+a=22+a ,∴f(2)>f(-2).于是有22+a=20 ,∴a=-2.∴f(x)=-x3+3x2+9x-2.∵在(-1,3)上f′(x)>0 ,∴f(x)在[-1,2]上单调递增.又由于f(x)在[-2 ,-1]上单调递减,∴f(2)和f(-1)分别是f(x)在区间[-2,2]上的最|大值和最|小值,∴f(-1)=1+3-9-2=-7 ,即f(x)最|小值为-7.三、探究与创新13.(2021·新课标Ⅰ)函数f(x)=x2+ax+b,g(x)=e x(cx+d) ,假设曲线y=f(x)和曲线y=g(x)都过点P(0,2) ,且在点P处有相同的切线y=4x+2.(1)求a ,b ,c ,d的值;(2)假设x≥-2时,f(x)≤kg(x) ,求k的取值范围.解(1)由得f(0)=2 ,g(0)=2 ,f′(0)=4 ,g′(0)=4 ,而f′(x)=2x+a ,g′(x)=e x(cx+d+c) ,∴a=4 ,b=2 ,c=2 ,d=2.(2)由(1)知,f(x)=x2+4x+2 ,g(x)=2e x(x+1) ,设函数F(x)=kg(x)-f(x)=2k e x(x+1)-x2-4x-2(x≥-2) ,F′(x)=2k e x(x+2)-2x-4=2(x+2)(k e x-1).有题设可得F(0)≥0 ,即k≥1 ,令F′(x)=0得,x1=-ln k ,x2=-2 ,①假设1≤k<e2 ,那么-2<x1≤0 ,∴当x∈(-2 ,x1)时,F′(x)<0 ,当x∈(x1 ,+∞)时,F′(x)>0 ,即F(x)在(-2 ,x1)单调递减,在(x1 ,+∞)单调递增,故F(x)在x=x1取最|小值F(x1) ,而F(x1)=2x1+2-x21-4x1-2=-x1(x1+2)≥0.∴当≥-2时,F(x)≥0 ,即f(x)≤kg(x)恒成立.②假设k=e2 ,那么F′(x)=2e2(x+2)(e x-e2) ,∴当x ≥-2时 ,F ′(x )≥0 ,∴F (x )在(-2 ,+∞)单调递增 ,而F (-2)=0 ,∴当x ≥-2时 ,F (x )≥0 ,即f (x )≤kg (x )恒成立 ,③假设k >e 2 ,那么F (-2)=-2k e -2+2=-2e -2(k -e 2)<0 ,∴当x ≥-2时 ,f (x )≤kg (x )不可能恒成立.综上所述 ,k 的取值范围为[1 ,e 2].4.4 生活中的优化问题举例一、根底达标1.方底无盖水箱的容积为256 ,那么最|省材料时 ,它的高为( )A .4B .6C .4.5D .8 答案 A解析 设底面边长为x ,高为h , 那么V (x )=x 2·h =256 ,∴h =256x 2 ,∴S (x )=x 2+4xh =x 2+4x ·256x 2=x 2+4×256x ,∴S ′(x )=2x -4×256x 2.令S ′(x )=0 ,解得x =8 ,∴h =25682=4.2.某银行准备新设一种定期存款业务 ,经预算 ,存款量与存款利率的平方成正比 ,比例系数为k (k >0).贷款的利率为0.0486 ,且假设银行吸收的存款能全部放贷出去.设存款利率为x ,x ∈(0,0.0486) ,假设使银行获得最|大收益 ,那么x 的取值为( )A .0.016 2B .0.032 4C .0.024 3D .0.048 6 答案 B。

(压轴题)高中数学高中数学选修2-2第四章《定积分》测试卷(包含答案解析)(1)

(压轴题)高中数学高中数学选修2-2第四章《定积分》测试卷(包含答案解析)(1)

一、选择题1.4片叶子由曲线2||y x =与曲线2||y x =围成,则每片叶子的面积为() A .16B.6C .13D .232.若函数()32nxf x x x =++在点()1,6M 处切线的斜率为33ln3+,则n 的值是( ) A .1 B .2 C .4 D .33.已知函数()2ln 2f x mx x x =+-在定义域内存在单调递减区间,则实数m 的取值范围是( ) A .12m ≥B .12m < C .1m ≥ D .1m < 4.若曲线ln y kx x =+在点()1,k 处的切线平行于x 轴,则k =( ) A .2- B .1- C .0 D .15.设若20lg ,0()3,0ax x f x x t dt x >⎧⎪=⎨+≤⎪⎩⎰,((1))1f f =,则a 的值是( ) A .-1 B .2 C .1 D .-26.等比数列{}n a 中,36a =,前三项和3304S xdx =⎰,则公比q 的值为( )A .1-或12-B .1或12-C .12-D .17.设()2012a x dx =-⎰,则二项式6212a x x ⎛⎫+ ⎪⎝⎭的常数项是( ) A .240 B .240-C .60-D .608.定积分2]x dx ⎰的值为( )A .24π- B .2π- C .22π- D .48π-9.设曲线e xy x =-及直线0y =所围成的封闭图形为区域D ,不等式组1102x y -≤≤⎧⎨≤≤⎩所确定的区域为E ,在区域E 内随机取一点,则该点落在区域D 内的概率为A .2e 2e 14e--B .2e 2e 4e-C .2e e 14e--D .2e 14e-10.由直线0,,2y x e y x ===及曲线2y x=所围成的封闭图形的面积为( ) A .3B .32ln 2+C .223e -D .e11.某几何体的三视图如图所示,则该几何体的体积为( )A.4B.2 C.43D.2312.由曲线4y x=,1yx=,2x=围成的封闭图形的面积为()A.172ln22-B.152ln22-C.15+2ln22D.17+2ln22二、填空题13.()222sin4x x dx-+-=⎰______.14.由曲线xy e x=+与直线0,1,0x x y===所围成图形的面积等于________.15.曲线()sin0πy x x=≤≤与x轴围成的封闭区域的面积为__________.16.如图所示,则阴影部分的面积是 .17.1321(tan sin)x x x x dx-++⎰的值为______________________18.定积分()12xx e dx+=⎰__________.19.定积分()12xx e dx+=⎰__________.20.若()()4112ax x-+的展开式中2x项的系数为4,则21aedxx=⎰________________三、解答题21.已知函数()3812f x x x=+-.(1)求()f x的单调区间;(2)求函数()y f x =的极大值和极小值. 22.已知函数21()ln (1)12f x x ax a x =-+-+. (1)当1a =时,)求函数()f x 在2x =处的切线方程; (2)求函数()f x 在[]1,2x ∈时的最大值. 23.计算: (1)710C (2)()22224x x dx -+-⎰24.已知曲线C :322321y x x x =--+,点1(,0)2P ,求过P 的切线l 与C 围成的图形的面积.25.已知函数()1x f x e ex =--,其中e 为自然对数的底数,函数()(2)g x e x =-. (1)求函数()()()h x f x g x =-的单调区间;(2)若函数(),,()(),f x x m F x g x x m ≤⎧=⎨>⎩的值域为R ,求实数m 的取值范围.26.已知函数f (x )=3sin 2x cos 2x +cos 22x +m 的图象过点(56π,0).(1)求实数m 值以及函数f (x )的单调递减区间;(2)设y=f (x )的图象与x 轴、y 轴及直线x=t (0<t <23π)所围成的曲边四边形面积为S ,求S 关于t 的函数S (t )的解析式.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】先计算图像交点,再利用定积分计算面积. 【详解】 如图所示:由2y x y x ⎧=⎪⎨=⎪⎩0,0,x y =⎧⎨=⎩11x y =⎧⎨=⎩, 根据图形的对称性,可得每片叶子的面积为)13023210211d 333x x x x x ⎛⎫⎰=-= ⎪⎝⎭.故答案选C 【点睛】本题考查定积分的应用,考查运算求解能力2.A解析:A【解析】由题意,得()13ln32n x f x nx-=++', ()13ln3233ln3f n =++=+',所以1n =;故选A.3.B解析:B【解析】求导函数,可得()1'220f x mx x x=+->,,函数()2ln 2f x mx x x =+-在定义域内是增函数,所以()'0f x < 成立,即1220(0)mx x x+-<>恒成立,所以21211m x ⎛⎫->-- ⎪⎝⎭,所以21m ->-,所以12m < 时,函数()f x 在定义域内是增函数.故选B .4.B解析:B【解析】因为1y k x'=+,所以10,1k k +==- ,选B. 点睛:(1)求曲线的切线要注意“过点P 的切线”与“在点P 处的切线”的差异,过点P 的切线中,点P 不一定是切点,点P 也不一定在已知曲线上,而在点P 处的切线,必以点P 为切点.(2)利用导数的几何意义解题,主要是利用导数、切点坐标、切线斜率之间的关系来进行转化.以平行、垂直直线斜率间的关系为载体求参数的值,则要求掌握平行、垂直与斜率之间的关系,进而和导数联系起来求解.5.C解析:C 【详解】233003|aat dt t a ==⎰,33(1)lg10,(0),1, 1.f f a a a ===∴==故选:C6.B解析:B 【解析】试题分析:解:∵3304S xdx =⎰=18,,∴a 1+a 2=32a q (1+q)=12,⇒2q 2-q-1=0,⇒q=1或q=12-,故选B考点:等比数列的前n 项和, 定积分的基本运算点评:本题考查等比数列的前n 项和、定积分的基本运算,求定积分关键是找出被积函数的原函数,本题属于基础题.7.D解析:D 【解析】试题分析:242a =-=-,62122x x ⎛⎫- ⎪⎝⎭的通项为()()662112366112222rrrrr r rC x x C x----⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,1230,4r r -==,系数为()244612602C ⎛⎫-= ⎪⎝⎭.考点:定积分、二项式定理.8.B解析:B 【解析】试题分析:由定积分的几何意义有⎰表示的是以(2,0)为圆心,半径为2的圆的14部分,而20xdx ⎰表示的是直线y x =,0,2,x x x ==轴所围成的面积,故2]x dx ⎰表示的图形如下图的阴影部分,面积为221122242ππ⨯-⨯=-.故选B.考点:1.定积分的几何意义;2.方程的化简.9.D解析:D 【详解】曲线e x y x =-及直线0y =所围成封闭图形的面积()1211112x x S e x dx e x -⎛⎫=-=- ⎪-⎝⎭⎰阴影=1e e --;而不等式组1102x y -≤≤⎧⎨≤≤⎩所确定区域的面积22 4.S =⨯=所以该点落在区域D 内的概率1S 4S e e P --==阴影=2e 14e-.故选D. 【方法点睛】本题题主要考查定积分的几何意义及“面积型”的几何概型,属于中档题.解决几何概型问题常见类型有:长度型、角度型、面积型、体积型,求与体积有关的几何概型问题关鍵是计算问题题的总面积以及事件的面积积;几何概型问题还有以下几点容易造成失分,在备考时要高度关注:(1)不能正确判断事件是古典概型还是几何概型导致错误;(2)基本事件对应的区域测度把握不准导致错误;(3)利用几何概型的概率公式时,忽视验证事件是否等可能性导致错误.10.A解析:A 【解析】如图所示,曲边四边形OABC 的面积为11121212ln 12(ln ln1)1232eedx x e x ⨯⨯+=+=+-=+=⎰.故选A.点睛:本题考查了曲线围成的图形的面积,着重考查了定积分的几何意义和定积分计算公式等知识,属于基础题;用定积分求平面图形的面积的步骤:(1)根据已知条件,作出平面图形的草图;根据图形特点,恰当选取计算公式;(2)解方程组求出每两条曲线的交点,以确定积分的上、下限;(3)具体计算定积分,求出图形的面积.11.D解析:D 【分析】根据三视图可得到该几何体的直观图,进而可求出该几何体的体积. 【详解】根据三视图可知该几何体为四棱锥E ABCD -,四边形ABCD 是边长为1的正方形,BE ⊥平面ABCD ,2BE =,则四棱锥E ABCD -的体积为1233ABCD V S BE =⋅=. 故选D.【点睛】本题考查了三视图,考查了四锥体的体积的计算,考查了学生的空间想象能力,属于基础题.12.B解析:B 【解析】 【分析】联立方程组,确定被积区间和被积函数,得出曲边形的面积2121(4)S x dx x=-⎰,即可求解,得到答案. 【详解】由题意,联立方程组41y xy x =⎧⎪⎨=⎪⎩,解得12x =,所以曲线4y x =,1y x=,2x =围成的封闭图形的面积为 22222112211115(4)(2ln )|(22ln 2)[2()ln ]2ln 2222S x dx x x x =-=-=⨯--⨯-=-⎰,故选B . 【点睛】本题主要考查了利用定积分求解曲边形的面积,其中解答中根据题意求解交点的坐标,确定被积分区间和被积函数,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.二、填空题13.【分析】根据定积分的四则运算和几何意义求定积分【详解】因为故答案为2π【点睛】本题考查了定积分的计算;利用定积分的几何意义分别求出两个被积函数的定积分属于基础题 解析:2π【分析】根据定积分的四则运算和几何意义求定积分. 【详解】因为(222222sin sin 022x dx xdx ππ---+=+=+=⎰⎰⎰故答案为2π. 【点睛】本题考查了定积分的计算;利用定积分的几何意义分别求出两个被积函数的定积分,属于基础题.14.【分析】根据定积分的几何意义得到积S =(ex +x)dx 由牛顿莱布尼茨公式可得到答案【详解】根据定积分的几何意义得到面积S =(ex +x)dx =故答案为【点睛】这个题目考查了定积分的几何意义以及常见函数解析:12e -【分析】根据定积分的几何意义得到积S =10⎰(e x +x )d x ,由牛顿莱布尼茨公式可得到答案.【详解】根据定积分的几何意义得到,面积S =10⎰(e x +x )d x =210111|1.222xe x e e ⎛⎫+=+-=- ⎪⎝⎭ 故答案为1.2e - 【点睛】这个题目考查了定积分的几何意义,以及常见函数的积分值的求法.15.2【解析】与轴所围成的封闭区域的面积故答案为2解析:2 【解析】sin (0π)y x x =≤≤与x 轴所围成的封闭区域的面积ππsin d cos cos πcos020S x x x==-=-+=⎰,故答案为2.16.【解析】试题分析:由题意得直线与抛物线解得交点分别为和抛物线与轴负半轴交点设阴影部分的面积为则考点:定积分在求面积中的应用【方法点晴】本题主要考查了定积分求解曲边形的面积中的应用其中解答中根据直线方 解析:323【解析】试题分析:由题意得,直线2y x =与抛物线23y x =-,解得交点分别为(3,6)--和(1,2),抛物线23y x =-与x轴负半轴交点(,设阴影部分的面积为S,则1220(32)(3)S x x dx xdx =--+-⎰2332)xdx x dx ---+-⎰532933=+-. 考点:定积分在求面积中的应用.【方法点晴】本题主要考查了定积分求解曲边形的面积中的应用,其中解答中根据直线方程与曲线方程的交点坐标,确定积分的上、下限,确定被积函数是解答此类问题的关键,同时解答中注意图形的分割,在x 轴下方的部分积分为负(积分的几何意义强调代数和),着重考查了分析问题和解答问题的能力,属于中档试题.17.0【解析】因为f(x)=x3+tanx+x2sinx−1⩽x ⩽1所以f(−x)=−x3−tanx−x2sinx=−f(x)所以f(x)为奇函数解析:0 【解析】因为f (x )=x 3+tanx +x 2sinx ,−1⩽x ⩽1 所以f (−x )=−x 3−tanx −x 2sinx =−f (x ), 所以f (x )为奇函数,21310x tanx x sinx dx -⎛⎫∴++= ⎪⎝⎭⎰. 18.e 【解析】点睛:1求曲边图形面积的方法与步骤(1)画图并将图形分割为若干个曲边梯形;(2)对每个曲边梯形确定其存在的范围从而确定积分的上下限;(3)确定被积函数;(4)求出各曲边梯形的面积和即各积分解析:e 【解析】121212000(2)()|(1)(0)x x x e dx x e e e e +=+=+-+=⎰.点睛:1.求曲边图形面积的方法与步骤 (1)画图,并将图形分割为若干个曲边梯形;(2)对每个曲边梯形确定其存在的范围,从而确定积分的上、下限; (3)确定被积函数;(4)求出各曲边梯形的面积和,即各积分的绝对值的和.2.利用定积分求曲边图形面积时,一定要找准积分上限、下限及被积函数.当图形的边界不同时,要分不同情况讨论.19.e 【解析】点睛:1求曲边图形面积的方法与步骤(1)画图并将图形分割为若干个曲边梯形;(2)对每个曲边梯形确定其存在的范围从而确定积分的上下限;(3)确定被积函数;(4)求出各曲边梯形的面积和即各积分解析:e 【解析】1212120(2)()|(1)(0)x x x e dx x e e e e +=+=+-+=⎰. 点睛:1.求曲边图形面积的方法与步骤 (1)画图,并将图形分割为若干个曲边梯形;(2)对每个曲边梯形确定其存在的范围,从而确定积分的上、下限; (3)确定被积函数;(4)求出各曲边梯形的面积和,即各积分的绝对值的和.2.利用定积分求曲边图形面积时,一定要找准积分上限、下限及被积函数.当图形的边界不同时,要分不同情况讨论.20.【解析】由题意得项的系数为所以点睛:求二项展开式有关问题的常见类型及解题策略(1)求展开式中的特定项可依据条件写出第项再由特定项的特点求出值即可(2)已知展开式的某项求特定项的系数可由某项得出参数项 解析:ln51-【解析】由题意得2x项的系数为221445224,2C aC a ⋅-⨯==,所以5225152ln |ln ln ln5 1.222e e dx x e x ==-=-⎰ 点睛:求二项展开式有关问题的常见类型及解题策略(1)求展开式中的特定项.可依据条件写出第1r +项,再由特定项的特点求出r 值即可. (2)已知展开式的某项,求特定项的系数.可由某项得出参数项,再由通项写出第1r +项,由特定项得出r 值,最后求出其参数.三、解答题21.(1)22x -<<;(2)()()28f x f 极小值=-=-或()()224f x f ==极大值【解析】试题分析:(1)求出()f x ',求出()0f x '=,即可得到()f x 的单调区间;(2)由(1)可知,当2x =-时,()f x 有极小值,当2x =时,()f x 有极大值 试题∵()3812f x x x =+-,∴()()234f x x ='-,(1)由()0f x '<,解得2x >或2x <-; 由()0f x '>,解得22x -<<.所以,()f x 在()2,2-上单调递增,在(),2-∞-,()2,+∞上单调递减. (2)由(1)知,当2x =-时,()f x 有极小值,()()28f x f =-=-极小值, 同理,当2x =时,()()224f x f 极大值==.22.(1)32ln 22y x =-++(2)max 143ln 2,211()ln ,12232,12a a f x a a a a a ⎧-++≤⎪⎪⎪=-+<<⎨⎪⎪-+≥⎪⎩【解析】试题分析:(1)由导数几何意义得切线斜率为()2f ',再根据点斜式可得切线方程;(2)先研究导函数符号变化规律:当12a ≤时,为正;当112a <<时,先正后负;当1a ≥时,为负,对应确定单调性,进而确定函数最值试题解:(1)当1a =时,()21ln 12f x x x =-+ ∴()1f x x x'=- ∴()322f '=-,即32k 切=- 已知切点为()2,1ln2-+ ∴切线的方程为:32ln22y x =-++ (2)∵()()()21112ax a x f x x x-+-+≤'=≤当0a ≤时,()0f x '>在[]1,2x ∈恒成立 ∴()f x 在[]1,2x ∈单调递增∴()()max 243ln2f x f a ==-++ 当102a <≤时,()f x 在[]1,2x ∈单调递增 ∴()()max 243ln2f x f a ==-++ 当112a <<时,()f x 在11,x a ⎡⎤∈⎢⎥⎣⎦单调递增,在1,2x a ⎡⎤∈⎢⎥⎣⎦单调递减 ∴()max 11ln 2f x f a a a⎛⎫==- ⎪⎝⎭ 当1a ≥时,()f x 在[]1,2x ∈单调递减 ∴()()max 3122f x f ==-+ 综上所述()max 1432,211,12232,12a ln a f x lna a a a a ⎧-++≤⎪⎪⎪=-+<<⎨⎪⎪-+≥⎪⎩23.(1)120;(2)2π 【分析】(1)根据组合数的对称性计算;(2)将括号中内容拆分,一部分按定积分性质计算,另一部分使用定积分几何意义计算. 【详解】 (1)7310101098C =C ==1203⨯⨯!; (2)(222222=2x dx xdx ---+⎰⎰⎰,其中222xdx -⎰中()2f x x =是奇函数,所以 2220xdx -=⎰;2-⎰表示圆心在原点半径等于2的圆在x 轴上方的面积,故(2222242=2022x dx xdx ππ---++=+=⎰⎰⎰. 【点睛】 (1)计算()aaf x dx -⎰(0a >)时,若()f x 为奇函数,则()0aaf x dx -=⎰;若()f x 为偶函数,则()2()2()aaaaf x dx f x dx f x dx --==⎰⎰⎰.(2)组合数对称性:C =C ()mn mn n m n -≤.24.2732. 【解析】试题分析:先根据导数的几何意义求得曲线在点P 处的切线,然后画出草图,结合图形得到被积函数和积分区间,最后由定积分求得图形的面积. 试题∵322321y x x x =--+, ∴2662y x x =--'.设切点为00(,)A x y ,则0200|662x x y x x =-'=-, ∴所求切线方程为20000(662)()y y x x x x -=---, 即,∵切线过点P (),∴ , 整理得,解得,∴01y =, ∴点(0,1)A .故切线方程为12(0)y x -=--,即. 由,解得.∴点B 的坐标为().画出图形如图所示.∴切线l 与C 围成的图形的面积333223232432000127[(12)(2321)](23)()|232S x x x x dx x x dx x x =----+=-+=-+=⎰⎰. 点睛:利用定积分求平面图形面积的步骤(1)根据题意画出图形;(2)借助图形确定出被积函数,求出交点坐标,确定积分的上、下限;(3)把平面图形的面积表示成若干个定积分的和或差;(4)计算定积分得出答案. 25.(1)单调增区间为(ln 2,)+∞,单调减区间为(,ln 2)-∞.(2)1[0,]2e -. 【解析】试题分析:(1)求出函数的导数()2xh x e '=-,解关于导函数的不等式,求出函数的单调区间即可;(2)函数的导数,通过讨论m 的范围得到函数的值域,从而确定m 的具体范围即可. 试题(1)()()()()21,2xxh x f x g x e x h x e =-=--=-'.由()0h x '>得ln2x >,由()0h x '<得ln2x <.所以函数()h x 的单调增区间为()ln2,+∞,单调减区间为(),ln2-∞. (2)()xf x e e '=-.当1x <时,()0f x '<,所以()f x 在区间(),1-∞上单调递减; 当1x >时,()0f x '>,所以()f x 在区间()1,+∞上单调递增.1° 当1m ≤时,()f x 在(],m -∞上单调递减,值域为)1,me em ⎡--+∞⎣,()()2g x e x =-在(),m +∞上单调递减,值域为()(),2e m -∞-,因为()F x 的值域为R ,所以()12me em e m --≤-,即210m e m --≤.(*)由(1)可知当0m <时,()()2100mh m e m h =-->=,故(*)不成立.因为()h m 在()0,ln2上单调递减,在()ln2,1上单调递增,且()()00,130h h e ==-<, 所以当01m ≤≤时,()0h m ≤恒成立,因此01m ≤≤.2° 当1m >时,()f x 在(),1-∞上单调递减,在(]1,m 上单调递增,所以函数()1xf x e ex =--在(],m -∞上的值域为())1,f ⎡+∞⎣,即[)1,-+∞.()()2g x e x =-在(m ,+∞)上单调递减,值域为()(),2e m -∞-.因为()F x 的值域为R ,所以()12e m -≤-,即112m e <≤-. 综合1°,2°可知,实数m 的取值范围是10,2e ⎡⎤⎢⎥-⎣⎦. 26.(1)12m =-,单调递减区间是42,233k k ππππ⎡⎤++⎢⎥⎣⎦,k ∈Z ;(2)2()sin()(0)323s t t t ππ=-+<<.【分析】(1)利用二倍角的正弦和余弦公式降幂,化为y=162sin x m π⎛⎫+++ ⎪⎝⎭的形式,把点(56π,0)代入函数解析式求得m 的值,再代入函数解析式后利用复合函数的单调性求得函数f (x )的单调递减区间;(2)对(1)中所求函数f (x )求0到t 上的积分,即求被积函数f (x )的原函数,代入积分上限和下限后作差得答案. 【详解】(1)f (x )2x cos 2x +cos 22x +m=1122cosx m +++ =162sin x m π⎛⎫+++ ⎪⎝⎭. ∵f (x )的图象过点(56π,0), ∴510662sin m ππ⎛⎫+++=⎪⎝⎭,解得12m =-.∴f (x )=6sin x π⎛⎫+ ⎪⎝⎭, 由322262k x k πππππ+≤+≤+,得42233k x k ππππ+≤≤+,k ∈Z . 故f (x )的单调递减区间是42,233k k ππππ⎡⎤++⎢⎥⎣⎦,k ∈Z ;(2)由(1)得,f (x )12sinx cosx +.∴012tS cosx dx ⎫=⎰+⎪⎪⎝⎭=01|2t sinx ⎛⎫+ ⎪ ⎪⎝⎭=110022sint sin ⎛⎫⎛⎫+-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭=32sin t π⎛⎫-+ ⎪⎝⎭.∴()32S t sin t π⎛⎫=-+ ⎪⎝⎭(203t π<<). 【点睛】本题主要考查二倍角公式、两角和与差的三角函数公式、三角函数的图象与性质及定积分等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想、函数与方程思想,是中档题.。

高中数学选修2-2综合测试试题及答案解析

高中数学选修2-2综合测试试题及答案解析

高中数学选修2-2综合测试试题及答案解析时间120分钟,满分150分.一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.曲线y =4x -x 3在点(-1,-3)处的切线方程是导学号 10510897( ) A .y =7x +4 B .y =x -4 C .y =7x +2D .y =x -22.设x =3+4i ,则复数z =x -|x |-(1-i)在复平面上的对应点在导学号 10510898( ) A .第一象限 B .第二象限 C .第三象限D .第四象限3.若函数f (x )=x 2+bx +c 的图象的顶点在第四象限,则函数f ′(x )的图象是导学号 10510899( )4.定义复数的一种运算z 1*z 2=|z 1|+|z 2|2(等式右边为普通运算),若复数z =a +b i ,z -为z 的共轭复数,且正实数a ,b 满足a +b =3,则z *z -的最小值为导学号 10510900( )A.92B.322C.32D .945.(2016·宜春高二检测)已知函数f (x )=sin x +e x +x 2015,令f 1(x )=f ′(x ),f 2(x )=f 1′(x ),f 3(x )=f 2′(x ),…,f n +1(x )=f n ′(x ),则f 2016(x )=导学号 10510901( )A .sin x +e xB .cos x +e xC .-sin x +e xD .-cos x +e x6.函数f (x )=3x -4x 3(x ∈[0,1])的最大值是导学号 10510902( ) A.12 B .-1 C .0D .17.(2016·哈尔滨质检)在平面直角坐标系中,横、纵坐标均为整数的点叫做格点.若函数图象恰好经过k 个格点,则称函数为k 阶格点函数.已知函数:①y =sin x; ②y =cos(x +π6);③y =e x -1;④y =x 2.其中为一阶格点函数的序号为导学号 10510903( ) A .①② B .②③ C .①③D .②④8.(2016·淄博高二检测)下列求导运算正确的是导学号 10510904( ) A .(2x )′=x ·2x -1 B .(3e x )′=3e xC .(x 2-1x )′=2x -1x2D .(xcos x )′=cos x -x sin x (cos x )29.古希腊人常用小石子在沙滩上摆成各种形状来研究数.比如:他们研究过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似的,称图2中的1,4,9,16,…,这样的数为正方形数.下列数中既是三角形数又是正方形数的是导学号 10510905( )A .289B .1024C .1225D .137810.若曲线y =x -12在点(a ,a -12)处的切线与两个坐标围成的三角形的面积为18,则a =导学号 10510906( )A .64B .32C .16D .811.(2016·全国卷Ⅲ理,12)定义“规范01数列”{a n }如下:{a n }共有2m 项,其中m 项为0,m 项为1,且对任意k ≤2m ,a 1,a 2,…,a k 中0的个数不少于1的个数,若m =4,则不同的“规范01数列”共有导学号 10510907( )A .18个B .16个C .14个D .12个12.当x ∈[-2,1]时,不等式ax 3-x 2+4x +3≥0恒成立,则实数a 的取值范围是导学号 10510908( )A .[-5,-3]B .[-6,-98]C .[-6,-2]D .[-4,-3]二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.对任意非零实数a 、b ,若a ⊗b 的运算原理如图所示,则2⊗⎠⎛0πsin x d x =________.导学号 1051090914.请阅读下列材料:若两个正实数a 1、a 2满足a 21+a 22=1,那么a 1+a 2≤ 2.证明:构造函数f (x )=(x -a 1)2+(x -a 2)2=2x 2-2(a 1+a 2)x +1.因为对一切实数x ,恒有f (x )≥0,所以Δ≤0,从而得4(a 1+a 2)2-8≤0,所以a 1+a 2≤ 2.类比上述结论,若n 个正实数满足a 21+a 22+…+a 2n =1,你能得到的结论为________.导学号 1051091015.对大于或等于2的自然数m 的n 次方幂有如下分解方式:导学号 10510911 22=1+3,32=1+3+5,42=1+3+5+7; 23=3+5,33=7+9+11,43=13+15+17+19.根据上述分解规律,若n 2=1+3+5+…+19,m 3(m ∈N *)的分解中最小的数是21,则m +n 的值为________.16.(2016·全国卷Ⅱ理,16)若直线y =kx +b 是曲线y =ln x +2的切线,也是曲线y =ln(x +1)的切线,则b =________.导学号 10510912三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(本题满分10分)(2016·大连高二期中)已知z 1、z 2为复数,i 为虚数单位,z 1·z -1+3(z 1+z -1)+5=0,z 2+3z 2-3为纯虚数,z 1、z 2在复平面内对应的点分别为P 、Q .导学号 10510913(1)求点P 的轨迹方程; (2)求点Q 的轨迹方程; (3)写出线段PQ 长的取值范围.18.(本题满分12分)设函数f (x )=sin x -cos x +x +1,0<x <2π,求函数f (x )的单调区间与极值.导学号 1051091419.(本题满分12分)已知A n (n ,a n )为函数y 1=x 2+1图象上的点,B n (n ,b n )为函数y 2=x 的图象上的点,设c n =a n -b n ,其中n ∈N *.导学号 10510915(1)求证:数列{c n }既不是等差数列也不是等比数列; (2)试比较c n 与c n +1的大小.20.(本题满分12分)设函数f (x )=x ln x .导学号 10510916 (1)求f (x )的单调区间;(2)求f (x )在区间[18,12]上的最大值和最小值.21.(本题满分12分)(2016·贵州高二检测)已知点列A n (x n,0),n ∈N *,其中x 1=0,x 2=a (a >0),A 3是线段A 1A 2的中点,A 4是线段A 2A 3的中点,…,A n 是线段A n -2A n -1的中点,….导学号 10510917(1)写出x n 与x n -1、x n -2之间的关系式(n ≥3);(2)设a n =x n +1-x n ,计算a 1、a 2、a 3,由此推测数列{a n }的通项公式,并加以证明.22.(本题满分12分)(2016·北京文,20)设函数f (x )=x 3+ax 2+bx +c .导学号 10510918 (1)求曲线y =f (x )在点(0,f (0))处的切线方程;(2)设a =b =4,若函数f (x )有三个不同零点,求c 的取值范围; (3)求证:a 2-3b >0是f (x )有三个不同零点的必要而不充分条件.高中数学选修2-2综合测试试题答案解析1.[答案] D[解析] y ′|x =-1=(4-3x 2)|x =-1=1, ∴切线方程为y +3=x +1,即y =x -2.2. [答案] B[解析] ∵x =3+4i ,∴|x |=32+42=5, ∴z =3+4i -5-(1-i)=(3-5-1)+(4+1)i =-3+5i. ∴复数z 在复平面上的对应点在第二象限,故应选B.3. [答案] A[解析] ∵f ′(x )=2x +b 为增函数,∴排除B 、D ; 又f (x )的顶点在第四象限,∴-b2>0,∴b <0,排除C ,故选A.4.[答案] B[解析] 由题意可得z *z -=|a +b i|+|a -b i|2=a 2+b 2+a 2+(-b )22=a 2+b 2,∵正实数a ,b 满足a +b =3,∴b =3-a ,∴a 2+b 2=a 2+(3-a )2=2a 2-6a +9,由二次函数可知当a =32时,上式取最小值322.故选B.5.[答案] A[解析] f 1(x )=f ′(x )=cos x +e x +2015x 2014,f 2(x )=f 1′(x )=-sin x +e x +2015× 2014x 2013, f 3(x )=f 2′(x )=-cos x +e x +2015×2014×2013x 2012,…,∴f 2016(x )=sin x +e x .6.[答案] D[解析] 由f ′(x )=3-12x 2=0得,x =±12,∵x ∈[0,1],∴x =12,∵当x∈[0,12],f ′(x )>0,当x ∈[12,1]时,f ′(x )<0,∴f (x )在[0,12]上单调递增,在[12,1]上单调递减,故x =12时,f (x )取到极大值也是最大值,f (12)=3×12-4×(12)3=1,故选D.7. [答案] C[解析] 对于①,注意到y =sin x 的值域是[-1,1];当sin x =0时,x =k π(k ∈Z ),此时相应的整数x =0;当sin x =±1时,x =k π+π2(k ∈Z ),此时没有相应的整数x ,因此函数y =sin x 仅过唯一的整点(0,0),该函数是一阶格点函数.同理可知,对于②,函数y =cos(x +π6)不是一阶格点函数.对于③,令y =e x -1=k (k ∈Z )得e x =k +1>0,x =ln(k +1),仅当k =0时,x =0∈Z ,因此函数y =e x -1是一阶格点函数.对于④,注意到函数y =x 2的图象经过多个整点,如点(0,0),(1,1),因此函数y =x 2不是一阶格点函数.综上所述知选C.8.[答案] B[解析] 对于A ,(2x )′=2x ln2;对于B ,(3e x )′=3e x ;对于C ,(x 2-1x)′=2x +1x 2;对于D ,(xcos x )′=cos x +x sin x (cos x )2;综上可知选B.9.[答案] C[解析] 图1中满足a 2-a 1=2,a 3-a 2=3,…,a n -a n -1=n ,以上累加得a n -a 1=2+3+…+n ,a n =1+2+3+…+n =n ·(n +1)2,图2中满足b n =n 2,一个数若满足三角形数,其必能分解成两个相邻自然数乘积的一半; 一个数若满足正方形数,其必为某个自然数的平方. ∵1225=352=49×502,∴选C.10.[答案] A[解析] y ′=-12x -32,∴k =-12a -32,切线方程是y -a -12=-12a -32(x -a ),令x =0,y =32a -12,令y =0,x =3a ,∴三角形的面积是S =12·3a ·32a -12=18,解得a =64.11. [答案] C[解析] 由题意可得a 1=0,a 8=1,a 2,a 3,…,a 7中有3个0、3个1,且满足对任意k ≤8,都有a 1,a 2,…,a k 中0的个数不少于1的个数,利用列举法可得不同的“规范01数列”有00001111,00010111,00011011,00011101,00100111,00101011,00101101,00110011,00110101,01000111,01001011,01001101,01010011,01010101,共14个.12.[答案] C[解析] ax 3≥x 2-4x -3恒成立.当x =0时式子恒成立.∴a ∈R , 当x >0时,a ≥1x -4x 2-3x 3恒成立.令1x =t ,x ∈(0,1],∴t ≥1.∴a ≥t -4t 2-3t 3恒成立.令g (t )=t -4t 2-3t 3,g ′(t )=1-8t -9t 2=(t +1)(-9t +1), ∴函数g ′(t )在[1,+∞)上为减函数 而且g ′(1)=-16<0,∴g ′(t )<0在[1,+∞)上恒成立. ∴g (t )在[1,+∞)上是减函数, ∴g (t )max =g (1)=-6,∴a ≥-6; 当x <0时,a ≤1x -4x 2-3x 3恒成立,∵x ∈[-2,0),∴t ≤-12,令g ′(t )=0得,t =-1,∴g (t )在(-∞,-1]上为减函数,在(-1,-12]上为增函数,∴g (t )min =g (-1)=-2,∴a ≤-2.综上知-6≤a ≤-2. 13. [答案]22[解析] ∵⎠⎛0πsin x d x =-cos x |π0=2>2, ∴2⊗⎠⎛0πsin x d x =2⊗2=2-12=22.14.[答案] a 1+a 2+…+a n ≤n (n ∈N *)[解析] 构造函数f (x )=(x -a 1)2+(x -a 2)2+…+(x -a n )2=nx 2-2(a 1+a 2+…+a n )x +1, ∵f (x )≥0对任意实数x 都成立,∴Δ=4(a 1+a 2+…+a n )2-4n ≤0, ∵a 1,a 2,…,a n 都是正数,∴a 1+a 2+…+a n ≤n .15. [答案] 15[解析] 依题意得n 2=10×(1+19)2=100,∴n =10.易知m 3=21m +m (m -1)2×2,整理得(m -5)(m +4)=0,又m ∈N *,所以m =5,即53=21+23+25+27+29,所以m +n =15.16. [答案] 1-ln2[解析] 设y =kx +b 与y =ln x +2和y =ln(x +1)的切点分别为(x 1,ln x 1+2)和(x 2,ln(x 2+1)).则切线分别为y -ln x 1-2=1x 1(x -x 1),y -ln(x 2+1)=1x 2+1(x -x 2),化简得y =1x 1x +ln x 1+1,y =1x 2+1x -x 2x 2+1+ln(x 2+1),依题意,⎩⎨⎧1x 1=1x 2+1ln x 1+1=-x 2x 2+1+ln (x 2+1),解得x 1=12,从而b =ln x 1+1=1-ln2.17. [解析] (1)设z 1=x +y i ,(x 、y ∈R ),由z 1·z -1+3(z 1+z -1)+5=0得x 2+y 2+6x +5=0,整理得(x +3)2+y 2=4,∴点P 的轨迹方程为(x +3)2+y 2=4. (2)设z 2=x +y i ,(x 、y ∈R ), z 2+3z 2-3=x +3+y i x -3+y i =x 2+y 2-9-6y i(x -3)2+y 2, ∵z 2+3z 2-3为纯虚数,∴x 2+y 2=9且y ≠0, ∴点Q 的轨迹方程为x 2+y 2=9(y ≠0). (3)PQ 长的取值范围是[0,8). ∵两圆相交,∴PQ 长的最小值为0,又两圆圆心距为3,两圆半径分别为2和3,∴PQ 长的最大值为8,但点Q 的轨迹方程中y ≠0,∴|PQ |<8,∴线段PQ 长的取值范围是[0,8).18. [解析] f ′(x )=cos x +sin x +1=2sin(x +π4)+1 (0<x <2π),令f ′(x )=0,即sin(x +π4)=-22,解之得x =π或x =3π2.x ,f ′(x )以及f (x )变化情况如下表:∴f (x )的单调增区间为(0,π)和(3π2,2π),单调减区间为(π,3π2).f 极大(x )=f (π)=π+2,f 极小(x )=f (3π2)=3π2.19. [解析] (1)证明:依题意,a n =n 2+1,b n =n ,c n =n 2+1-n . 假设{c n }是等差数列,则2c 2=c 1+c 3,∴2(5-2)=2-1+10-3. ∴25=2+10,产生矛盾, ∴{c n }不是等差数列.假设{c n }是等比数列,则c 22=c 1c 3,即(5-2)2=(2-1)(10-3).有6=65-32-10,产生矛盾, ∴{c n }也不是等比数列.(2)解:∵c n +1=(n +1)2+1-(n +1)>0,c n =n 2+1-n >0, ∴c n +1c n =(n +1)2+1-(n +1)n 2+1-n =n 2+1+n(n +1)2+1+(n +1), 0<n 2+1<(n +1)2+1, 又0<n <n +1,∴n 2+1+n <(n +1)2+1+n +1, ∴0<n 2+1+n(n +1)2+1+(n +1)<1,∴c n +1c n<1,即c n +1<c n . 20. [解析] (1)由题意知,函数的定义域为(0,+∞). ∵f (x )=x ln x ,∴f ′(x )=ln x +1,令f ′(x )=0,得x =1e ,令f ′(x )>0,得x >1e ,令f ′(x )<0,得0<x <1e,∴f (x )的单调递增区间为(1e ,+∞),单调递减区间为(0,1e ).(2)∵f (18)=18ln 18=38ln 12,f (12)=12ln 12,f (1e )=1e ln 1e =-1e , 又12ln 12<38ln 12, ∴求f (x )在区间[18,12]的最大值为38ln 12,最小值为-1e .21. [解析] (1)由题意,当n ≥3时,x n =12(x n -1+x n -2)(2)x 1=0,x 2=a ,x 3=12(x 2+x 1)=a 2,x 4=12(x 3+x 2)=3a4,∴a 1=x 2-x 1=a ,a 2=x 3-x 2=-a 2,a 3=x 4-x 3=a4,推测a n =a(-2)n -1.方法一证明:对于任意n ∈N *,a n =x n +1-x n ,a n +1=x n +2-x n +1=12(x n +1+x n )-x n +1=-12(x n +1-x n )=-12a n ,又∵a 1=a >0,∴{a n }是以a 为首项,以-12为公比的等比数列.故a n =a ·(-12)n -1=a(-2)n -1. 方法二下面用数学归纳法证明:①当n =1时,a 1=a =a ·(-12)1-1,结论a n =a (-2)n -1成立. ②假设当n =k (k ≥1,k ∈N )时,a n =a (-2)n -1成立,即a k=a ·(-12)k -1, 则当n =k +1时,a k +1=x k +2-x k +1=x k +x k +12-x k +1=x k -x k +12=-12a k =(-12)·a ·(-12)k -1=a ·(-12)(k +1)-1,所以n =k +1时,a n =a(-2)n -1成立. 由①②可知,数列{a n }的通项公式为a n =a ·(-12)n -1,n ∈N *.22. [解析] (1)由f (x )=x 3+ax 2+bx +c ,得f ′(x )=3x 2+2ax +b . 因为f (0)=c ,f ′(0)=b ,所以曲线y =f (x )在点(0,f (0))处的切线方程为y =bx +c . (2)当a =b =4时,f (x )=x 3+4x 2+4x +c , 所以f ′(x )=3x 2+8x +4.令f ′(x )=0,得3x 2+8x +4=0,解得x =-2或x =-23.f (x )与f ′(x )在区间(-∞,+∞)上的情况如下:所以,当c >0且c -3227<0时,存在x 1∈(-4,-2),x 2∈(-2,-23),x 3∈(-23,0),使得f (x 1)=f (x 2)=f (x 3)=0.由f (x )的单调性知,当且仅当c ∈(0,3227)时,函数f (x )=x 3+4x 2+4x +c 有三个不同零点.(3)当Δ=4a 2-12b <0时,f ′(x )=3x 2+2ax +b >0,x ∈(-∞,+∞),此时函数f (x )在区间(-∞,+∞)上单调递增,所以f (x )不可能有三个不同零点. 当Δ=4a 2-12b =0时, f ′(x )=3x 2+2ax +b 只有一个零点,记作x 0. 当x ∈(-∞,x 0)时, f ′(x )>0,f (x )在区间(-∞,x 0)上单调递增;当x ∈(x 0,+∞)时, f ′(x )>0,f (x )在区间(x 0,+∞)上单调递增;所以f (x )不可能有三个不同零点.综上所述,若函数f (x )有三个不同零点,则必有Δ=4a 2-12b >0. 故a 2-3b >0是f (x )有三个不同零点的必要条件.当a =b =4,c =0时,a 2-3b >0,f (x )=x 3+4x 2+4x =x (x +2)2只有两个不同零点,所以a 2-3b >0不是f (x )有三个不同零点的充分条件.因此a 2-3b >0是f (x )有三个不同零点的必要而不充分条件.。

高中数学选修2-2分章节测试卷(含答案)

高中数学选修2-2分章节测试卷(含答案)

第一章 综合能力检测一、选择题:本大题共12小题,每小题5分,共60分. 1.函数y =sin(π4-x )的导数为( )A .-cos(π4+x )B .cos(π4-x )C .-sin(π4-x )D .-sin(x +π4)2.(2009·广东三校联考)函数f (x )=a ln x +x 在x =1处取得极值,则a 的值为( ) A.12B .-1C .0D .-123.如果f (x )为定义在R 上的偶函数,且导数f ′(x )存在,则f ′(0)的值为( ) A .2B .1C .0D .-14.(2009·全国卷Ⅰ)已知直线y =x +1与曲线y =ln(x +a )相切,则a 的值为( ) A .1B .2C .-1D .-25.已知f (x )=(x -1)2+2,g (x )=x 2-1,则f [g (x )]( ) A .在(-2,0)上递增 B .在(0,2)上递增 C .在(-2,0)上递增 D .在(0,2)上递增6.已知三次函数f (x )=13x 3-(4m -1)x 2+(15m 2-2m -7)x +2在R 上是增函数,则m 的取值范围是( )A .m <2或m >4B .-4<m <-2C .2<m <4D .2≤m ≤47.(2009·江西高考)若存在过点(1,0)的直线与曲线y =x 3和y =ax 2+154x -9都相切,则a 等于( )A .-1或-2564B .-1或214C .-74或-2564D .-74或78.若f (x )=-12x 2+b ln(x +2)在(-1,+∞)上是减函数,则b 的取值范围是( )A .[-1,+∞)B .(-1,+∞)C .(-∞,-1]D .(-∞,-1) 9.由y =sin x ,y =cos x ,x =0,x =π所围成图形的面积可表示为( ) A.⎠⎛0π(sin x -cos x )dxC.⎠⎛0π(cos x -sin x )dx10.已知f (a )=⎠⎛01(2ax 2-a 2x )dx ,则f (a )的最大值为( )A .-12B.19C.29D .不存在11.(2009·青岛模拟)如右图,在一个长为π,宽为2的矩形OABC 内,由曲线y =sin x (0≤x ≤π)与x 轴围成如图所示的阴影部分,向矩形OABC 内随机投一点(该点落在矩形OABC 内任何一点是等可能的),则所投的点落在阴影部分的概率是( )A.1πB.2πC.3πD.π412.f (x )是定义在(0,+∞)上的非负可导函数,且满足xf ′(x )+f (x )≤0,对任意正数a ,b ,若a <b ,则必有( )A .af (b )≤bf (a )B .bf (a )≤af (b )C .af (a )≤f (b )D .bf (b )≤f (a ) 二、填空题:本大题共4小题,每小题5分,共20分. 13.⎠⎛02(2x -e x )dx =________.14.(2009·海淀区模拟)已知函数f (x )=sin(ωx +φ)(ω>0,|φ|<π2)的导函数y=f ′(x )的部分图象如右图所示,且导函数f ′(x )有最小值-2,则ω=________,φ=________.15.若函数y =a (x 3-x )的单调递减区间为(-33,33),则a 的取值范围是________. 16.物体A 以速度v =3t 2+1在一直线上运动,在此直线上物体A 出发的同时,物体B 在物体A 的正前方5 m 处以v =10t 的速度与A 同向运动,当t =________ s 时,两物体相遇,相遇时物体A 走过________m.三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.17.(本小题满分10分)(2009·浙江高考)已知函数f(x)=x3+(1-a)x2-a(a+2)x+b(a,b∈R).(1)若函数f(x)的图象过原点,且在原点处的切线斜率是-3,求a,b的值;(2)若函数f(x)在区间(-1,1)上不单调...,求a的取值范围.18.(本小题满分12分)已知F(x)=⎠⎛x-1t(t-4)dt,x∈(0,+∞).(1)求F(x)的单调区间;(2)求函数F(x)在[1,5]上的最值.19.(本小题满分12分)已知f(x)=ax3+bx2+cx(a≠0)在x=±1时取得极值,且f(1)=-1.(1)试求常数a,b,c的值;(2)试判断x=±1是函数的极小值点还是极大值点,并说明理由.20.(本小题满分12分)求函数y=x3-3ax+2的极值,并说明方程x3-3ax+2=0何时有三个不同的实根?何时有唯一的实根?(其中a>0)21.(本小题满分12分)已知函数f(x)=13ax3-bx2+(2-b)x+1,在x=x1处取得极大值,在x=x2处取得极小值,且0<x1<1<x2<2.(1)证明a>0;(2)求z=a+2b的取值范围.22.(本小题满分12分)(2009·湖北黄冈模拟)已知函数f(x)=12x2-a ln x(a∈R).(1)若f(x)在x=2时取得极值,求a的值;(2)求f(x)的单调区间;(3)求证:当x>1时,12x2+ln x<23x3.第二章 综合能力检测一、选择题:本大题共12小题,每小题5分,共60分.1.所有自然数都是整数,4是自然数,所以4是整数,以上三段推理( ) A .正确 B .推理形式不正确 C .两个“自然数”概念不一致 D .两个“整数”概念不一致 2.若a >0,b >0,则有( )A.b 2a >2b -aB.b 2a <2b -aC.b 2a ≥2b -a D.b 2a≤2b -a 3.设S (n )=1n +1n +1+1n +2+1n +3+…+1n 2,则( )A .S (n )共有n 项,当n =2时,S (2)=12+13B .S (n )共有n +1项,当n =2时,S (2)=12+13+14C .S (n )共有n 2-n 项,当n =2时,S (2)=12+13+14D .S (n )共有n 2-n +1项,当n =2时,S (2)=12+13+144.F (n )是一个关于自然数n 的命题,若F (k )(k ∈N *)真,则F (k +1)真,现已知F (7)不真,则有:①F (8)不真;②F (8)真;③F (6)不真;④F (6)真;⑤F (5)不真;⑥F (5)真.其中为真命题的是( )A .③⑤B .①②C .④⑥D .③④5.若x ,y ∈R ,且2x 2+y 2=6x ,则x 2+y 2+2x 的最大值为( ) A .14B .15C .16D .176.设f (x )(x ∈R )为奇函数,f (1)=12,f (x +2)=f (x )+f (2),则f (5)等于( )A .0B .1 C.52D .57.若O 是平面上一定点,A ,B ,C 是平面上不共线的三个点,动点P 满足OP →=OA →+λ(AB →|AB →|+AC→|AC →|),λ∈[0,+∞),则动点P 的轨迹一定通过△ABC 的( ) A .外心 B .内心 C .重心D .垂心8.如图所示为某旅游区各景点的分布图,图中一支箭头表示一段有方向的路,试计算顺着箭头方向,从A 到H 有几条不同的旅游路线可走( )A .15B .16C .17D .189.对于直角坐标平面内的任意两点A (x 1,y 1)、B (x 2,y 2)定义它们之间的一种“距离”:||AB ||=|x 2-x 1|+|y 2-y 1|.给出下列三个命题:①若点C 在线段AB 上,则||AC ||+||CB ||=||AB ||; ②在△ABC 中,若∠C =90°,则||AC ||2+||CB ||2=||AB ||2; ③在△ABC 中,||AC ||+||CB ||>||AB ||. 其中真命题的个数为( ) A .0B .1C .2D .310.已知a ,b ,c ,d 是正实数,P =a a +b +c +b a +b +d +c c +d +a +d c +d +b ,则有( )A .0<P <1B .1<P <2C .2<P <3D .3<P <411.一个等差数列{a n },其中a 10=0,则有a 1+a 2+…+a n =a 1+a 2+…+a 19-n (1≤n ≤19).一个等比数列{b n },其中b 15=1.类比等差数列{a n }有下列结论,正确的是( )A .b 1b 2…b n =b 1b 2…b 29-n (1≤n ≤29,n ∈N *)B .b 1b 2…b n =b 1b 2…b 29-nC .b 1+b 2+…+b n =b 1+b 2+…+b 29-n (1≤n ≤29,n ∈N *)D .b 1+b 2+…+b n =b 1+b 2+…+b 29-n 12.观察数表1 2 3 4 …第一行 2 3 4 5 …第二行 3 4 5 6 …第三行 4 5 6 7 …第四行 … … … …第一列 第二列 第三列 第四列根据数表中所反映的规律,第n 行与第n 列的交叉点上的数应该是( ) A .2n -1 B .2n +1 C .n 2-1D .n 2二、填空题:本大题共4小题,每小题5分,共20分.13.若三角形内切圆的半径为r ,三边长分别为a ,b ,c ,则三角形的面积S =12r (a +b +c ),根据类比推理的方法,若一个四面体的内切球的半径为R ,四个面的面积分别为S 1,S 2,S 3,S 4,则四面体的体积V =________.14.若符号“*”表示求实数a 与b 的算术平均数的运算,即a *b =a +b2,则两边均含有运算符号“*”和“+”,且对于任意3个实数a 、b 、c 都能成立的一个等式可以是________.15.把数列{2n +1}依次按第一个括号一个数,第二个括号两个数,第三个括号三个数,第四个括号四个数,第五个括号一个数……循环下去,如:(3),(5,7),(9,11,13),(15,17,19,21),…,则第104个括号内各数字之和为________.16.已知n 次多项式P n (x )=a 0x n +a 1x n -1+…+a n -2x 2+a n -1x +a n .如果在一种算法中,计算x k 0(k =2,3,4,…,n )的值需要k -1次乘法,计算P 3(x 0)的值共需要9次运算(6次乘法,3次加法),那么计算P n (x 0)的值共需要________次运算.下面给出一种减少运算次数的算法:P 0(x )=a 0,P k +1(x )=xP k (x )+a k +1(k =0,1,2,…,n -1).利用该算法,计算P 3(x 0)的值共需要6次运算,计算P n (x 0)的值共需要________次运算.三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分)证明对于任意实数x ,y 都有x 4+y 4≥12xy (x +y )2.18.(本小题满分12分)(2009·江苏高考)如右图,在直三棱柱ABC -A 1B 1C 1中,E ,F 分别是A 1B ,A 1C 的中点,点D 在B 1C 1上,A 1D ⊥B 1C .求证:(1)EF ∥平面ABC ; (2)平面A 1FD ⊥平面BB 1C 1C .19.(本小题满分12分)求证:y =ax 2+2bx +c ,y =bx 2+2cx +a ,y =cx 2+2ax +b (a ,b ,c 是互不相等的实数)这三条抛物线中,至少有一条与x 轴有两个交点.20.(本小题满分12分)已知函数f(n)(n∈N*),满足条件:①f(2)=2,②f(xy)=f(x)·f(y),③f(n)∈N*,④当x>y时,有f(x)>f(y).(1)求f(1),f(3)的值;(2)由f(1),f(2),f(3)的值,猜想f(n)的解析式;(3)证明你猜想的f(n)的解析式的正确性.21.(本小题满分12分)已知数列a1,a2,…,a30,其中a1,a2,…,a10是首项为1,公差为1的等差数列;a10,a11,…,a20是公差为d的等差数列;a20,a21,…a30是公差为d2的等差数列(d≠0).(1)若a20=40,求d;(2)试写出a30关于d的关系式,并求a30的取值范围;(3)续写已知数列,使得a30,a31,a40是公差为d3的等差数列,…,依次类推,把已知数列推广为无穷数列.提出同(2)类似的问题((2)应当作为特例),并进行研究,你能得到什么样的结论?22.(本小题满分12分)对于函数f(x),若存在x0∈R,使f(x0)=x0成立,则称x0为f(x)的不动点.如果函数f(x)=x2+abx-c(b,c∈N)有且只有两个不动点0,2,且f(-2)<-12.(1)求函数f(x)的解析式;(2)已知各项均不为零的数列{a n}满足4S n·f(1a n)=1,求数列的通项a n;(3)如果数列{a n}满足a1=4,a n+1=f(a n),求证当n≥2时,恒有a n<3成立.第三章 综合能力检测一、选择题:本大题共12小题,每小题5分,共60分. 1.一个实数x 与一个虚数y 的和x +y 必为( )A .实数B .虚数C .可能实数也可能是虚数D .纯虚数 2.复数4+3i1+2i 的实部是( )A .-2B .2C .3D .43.复数z =m -2i1+2i (m ∈R ,i 为虚数单位)在复平面上的对应点不可能位于( )A .第一象限B .第二象限C .第三象限D .第四象限4.若复数a +3i1+2i (a ∈R ,i 为虚数单位)是纯虚数,则实数a 的值为( )A .-2B .4C .-6D .65.若3+2i 是关于x 的方程2x 2+px +q =0(p ,q ∈R )的一个根,则q 的值是( ) A .26B .13C .6D .56.已知z 1=2-5i ,z 2=-3+i ,z 1,z 2的对应点分别为P 1,P 2,则向量P 2P 1→对应的复数为( ) A .-5+6iB .5-6iC .5+6iD .-1-4i7.已知m1+i =1+n i ,其中m ,n 是实数,i 是虚数单位,则m +n i 的值为( )A .1+2iB .1-2iC .2+iD .2-i8.复数z 满足|3z +1|=|z -i|,则复数z 对应点的轨迹是( ) A .直线B .正方形C .圆D .椭圆9.“复数z =12+32i ”是“z +1z ∈R ”的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分又非必要条件10.复数-35+2i 2+35i +(21+i )2008的虚部为( )A .-1B .1C .-iD .i11.设f (n )=(1+i 1-i )n +(1-i 1+i )n(n ∈N *),则集合{x |x =f (n )}中的元素有( )A .1个B .2个C .3个D .无穷多个12.若复数z ,a ,x 满足x =a -z 1-a z,且|z |=1,则|x |等于( )A .0B .1C .|a |D.12二、填空题:本大题共4小题,每小题5分,共20分.13.已知复数z 0=3+2i ,复数z 满足z ·z 0=3z +z 0,则复数z =________. 14.复数z 满足|z +2+2i|=|z |,那么|z -1+i|的最小值是________. 15.i 是虚数单位,若1+7i 2-i=a +b i(a ,b ∈R ),则乘积ab =________.16.对于n 个复数z 1,z 1,…,z n ,如果存在n 个不全为零的实数k 1,k 2,…,k n ,使得k 1z 1+k 2z 2+…+k n z n =0,就称z 1,z 2,…,z n 线性相关.若要说明复数z 1=1+2i ,z 2=1-i ,z 3=-2线性相关,那么可取{k 1,k 2,k 3}=________.(只要写出满足条件的一组值即可)三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分)(1)设复数z 1=1+i ,z 2=x +2i(x ∈R ).若z 1z 2为实数,求实数x ; (2)计算:(4-i 5)(6+2i 7)+(7-i 11)(4-3i).18.(本小题满分12分)在复数范围内解方程|z 2|+(z +z )i =3-i2+i .(i 为虚数单位)19.(本小题满分12分)已知z =(-1+3i)(1-i)-(1+3i)i ,ω=z +a i(a ∈R ),当|ωz |≤2时,求a的取值范围.20.(本小题满分12分)已知z ∈C ,z -1z +1是纯虚数,求|z 2-z +2|的最小值.21.(本小题满分12分)设虚数z 满足|2z +5|=|z +10|. (1)求|z |的值;(2)若z m +mz为实数,求实数m 的值;(3)若(1-2i)z 在复平面上对应的点在第一、三象限的角平分线上,求复数z .22.(本小题满分12分)对任意一个非零复数α,定义M α={ω|ω=α2n -1,n ∈N *}.(1)设α是方程x +1x =2的一个根,试用列举法表示集合M α.若在M α中任取两个元素,求其和为零的概率P ;(2)若集合M α中只有三个元素,试写出满足条件的一个α值,并说明理由.第一章 综合能力检测答案一、选择题:1.解析:y ′=-cos(π4-x )=-sin[π2-(π4-x )]=-sin(π4+x ). 答案:D2.解析:f ′(x )=ax +1,令f ′(x )=0,得x =-a ,由题知当a =-1时,原函数在x =1处取得极值. 答案:B3.解析:偶函数的导数为奇函数,即f ′(x )为奇函数,故f ′(0)=0. 答案:C4.解析:y ′=1x +a ,设直线y =x +1与曲线y =ln(x +a )相切的切点为(x 0,x 0+1),则1x 0+a =1,∴x 0=1-a ,∴ln(1-a +a )=2-a ,∴e 2-a =1, ∴a =2. 答案:B5.解析:F (x )=f [g (x )]=x 4-4x 2+6,F ′(x )=4x 3-8x .令F ′(x )>0,得-2<x <0或x >2,∴F (x )在(-2,0)上递增. 答案:C6.解析:由题意,得f ′(x )=x 2-2(4m -1)x +(15m 2-2m -7),由于f ′(x )≥0恒成立,故Δ≤0,解得2≤m ≤4. 答案:D7.解析:设直线与曲线y =x 3的切点为P (x 0,y 0), 则⎩⎪⎨⎪⎧y 0=x 30y 0x 0-1=3x 20⇒切线斜率k =3x 20=0或k =274. 若k =0,切线方程为y =0. 由⎩⎪⎨⎪⎧y =0,y =ax 2+154x -9, 消去y ,得ax 2+154x -9=0,其判别式Δ=0⇒a =-2564;若k =274,切线方程为y =274(x -1),由⎩⎨⎧y =274(x -1),y =ax 2+154x -9消去y ,得ax 2-3x -94=0,其判别式Δ=0⇒a =-1. 答案:A8. 解析:∵f ′(x )=-x +b x +2,由题知,f ′(x )<0在(-1,+∞)上恒成立,即-x +bx +2<0,∴b <x (x +2)=(x +1)2-1. ∴b <-1.又当b =-1时,f ′(x )=-x -1x +2=-x (x +2)+1x +2=-(x +1)2x +2<0,∴b ≤-1. 答案:C9.解析:由y =sin x ,y =cos x ,x =0,x =π所围成的图形,如下图的阴影部分.答案:B10.解析:⎠⎛01(2ax 2-a 2x )dx=(23ax 3-12a 2x 2)|10=23a -12a 2, 即f (a )=23a -12a 2=-12(a 2-43a +49)+29=-12(a -23)2+29,∴当a =23时,f (a )有最大值29. 答案:C11.解析:根据几何概型的意义,所投的点落在阴影部分的概率是S 阴影S 矩形,由S 阴影=⎠⎛0πsin xdx =(-cos x )|π0=2,所求概率为S 阴影S 矩形=22π=1π. 答案:A 12.解析:设函数F (x )=xf (x ),∴F ′(x )=[xf (x )]′=f (x )+xf ′(x )≤0,∴F (x )=xf (x )在(0,+∞)上单调递减.∵a <b ,∴F (a )≥F (b ),即af (a )≥bf (b ).又∵0<a <b ,f (b )≥0,∴af (a )≤bf (a ),bf (b )≥af (b ).∴bf (a )≥af (b ). 答案:A二、填空题:13.解析:⎠⎛02(2x -e x )dx =(x 2-e x )|20=4-e 2+1=5-e 2. 答案:5-e 214.解析:f ′(x )=ωcos(ωx +φ), 依题意,得ω=2,2cos(π3+φ)=-1,解得φ=π3.答案:2 π315.解析:∵y ′=a (3x 2-1),令y ′<0,当a >0时,不等式的解集为(-33,33); 当a <0时,不等式的解集为(-∞,-33)∪(33,+∞).∵已知函数y =a (x 3-x )在(-33,33)上单调递减, ∴a >0. 答案:a >016.解析:设A 追上B 时,所用的时间为t 0,依题意有s A =s B +5,即10tdt+5,t 30+t 0=5t 20+5,即t 0(t 20+1)=5(t 20+1),解得t 0=5 s .所以s A =5t 20+5=130(m). 答案:130三、解答题:17.解:(1)由函数f (x )的图象过原点,得b =0, 又f ′(x )=3x 2+2(1-a )x -a (a +2), f (x )在原点处的切线斜率是-3, 则-a (a +2)=-3,所以a =-3,或a =1.(2)由f ′(x )=0,得x 1=a ,x 2=-a +23.又f (x )在(-1,1)上不单调,即⎩⎨⎧-1<a <1,a ≠-a +23,或⎩⎪⎨⎪⎧-1<-a +23<1,a ≠-a +23.解得⎩⎪⎨⎪⎧ -1<a <1,a ≠-12,或⎩⎪⎨⎪⎧-5<a <1,a ≠-12,所以a 的取值范围是(-5,-12)∪(-12,1).18.解:F (x )=⎠⎛x -1(t 2-4t )dt =(13t 3-2t 2)|x -1=13x 3-2x 2-(-13-2)=13x 3-2x 2+73(x >-1). (1)F ′(x )=x 2-4x ,由F ′(x )>0,即x 2-4x >0,得-1<x <0或x >4,由F ′(x )<0,即x 2-4x <0,得0<x <4,∴F (x )的单调递增区间为(-1,0)∪(4,+∞),单调递减区间为(0,4).(2)由(1)知F (x )在[1,4]上递减,[4,5]上递增.又∵F (1)=13-2+73=23,F (4)=13×43-2×42+73=-253,F (5)=13×53-2×52+73=-6,∴F (x )在[1,5]上的最大值为23,最小值为-253. 19.解:(1)f ′(x )=3ax 2+2bx +c ,因为x =±1是函数f (x )的极值点,所以x =±1是方程f ′(x )=0即3ax 2+2bx +c =0的两根.由根与系数的关系,得⎩⎨⎧-2b3a =0,①c3a =-1,②又f (1)=-1,所以a +b+c =-1.③ 由①②③,解得a =12,b =0,c =-32.(2)因为f (x )=12x 3-32x ,所以f ′(x )=32x 2-32=32(x -1)·(x +1).当x <-1或x >1时,f ′(x )>0,当-1<x <1时,f ′(x )<0.所以函数f (x )在(-∞,-1)和(1,+∞)上是增函数,在(-1,1)上是减函数.所以当x =-1时,函数取得极大值f (-1)=1,当x =1时,函数取得极小值f (1)=-1.20.解:函数的定义域为R ,其导函数为y ′=3x 2-3a .由y ′=0,得x=±a ,列表讨论如下:x (-∞,-a ) -a(-a ,a ) a (a ,+∞) f ′(x ) +0 -0 +f (x )极大值极小值由此可得,函数x =-a 处取得极大值2+2a 32;在x =a 处取得极小值2-2a 32.根据列表讨论,可作出函数的草图(如右图所示),因为极大值f (-a )=2+2a 32>0,故当极小值f (a )=2-2a 32<0,即a >1时,方程x 3-3ax +2=0有三个不同的实根;当极小值f (a )=2-2a 32>0,即0<a <1时,方程x 3-3ax +2=0有唯一的实根.21.解:求函数f (x )的导数得 f ′(x )=ax 2-2bx +2-b .(1)证明:由函数f (x )在x =x 1处取得极大值,在x =x 2处取得极小值,知x 1,x 2是f ′(x )=0的两个根.所以f ′(x )=a (x -x 1)(x -x 2). 当x <x 1时,f ′(x )>0,函数为增函数, 由x -x 1<0,x -x 2<0得a >0. (2)在题设下,0<x 1<1<x 2<2等价于⎩⎨⎧f ′(0)>0,f ′(1)<0,f ′(2)>0.即⎩⎪⎨⎪⎧2-b >0,a -2b +2-b <0,4a -4b +2-b >0.化简得⎩⎪⎨⎪⎧2-b >0,a -3b +2<0,4a -5b +2>0.此不等式组表示的区域为平面aOb 上三条直线2-b =0,a -3b +2=0,4a -5b +2=0所围成的△ABC 的内部,其三个顶点分别为A (47,67),B (2,2),C (4,2).z 在这三点的值依次为167,6,8.所以z 的取值范围为(167,8).22.解:(1)f ′(x )=x -ax ,∵x =2是一个极值点,∴2-a2=0.∴a =4.此时f ′(x )=x -4x =x 2-4x =(x -2)(x +2)x.∵f (x )的定义域是{x |x >0},∴当0<x <2时,f ′(x )<0;当x >2时,f ′(x )>0. ∴当a =4时,x =2是f (x )的极小值点.∴a =4. (2)∵f ′(x )=x -ax,∴当a ≤0时,f (x )的单调递增区间为(0,+∞).当a >0时,f ′(x )=x -a x =x 2-a x =(x -a )(x +a )x,令f ′(x )>0有x >a ,∴函数f (x )的单调递增区间为(a ,+∞); 令f ′(x )<0有0<x <a ,∴函数f (x )的单调递减区间为(0,a ). (3)证明:设g (x )=23x 3-12x 2-ln x ,则g ′(x )=2x 2-x -1x,∵当x >1时,g ′(x )=(x -1)(2x 2+x +1)x >0,∴g (x )在(1,+∞)上是增函数. ∴g (x )>g (1)=16>0.∴当x >1时,12x 2+ln x <23x 3.第二章 综合能力检测答案一、选择题:1.解析:三段论中的大前提、小前提及推理形式都是正确的. 答案:A 2.解析:∵b 2a -(2b -a )=b 2-2ab +a 2a =(b -a )2a ≥0,∴b 2a≥2b -a . 答案:C 3.解析:从n 到n 2共有n 2-n +1个自然数,即S (n )共有n 2-n +1项.故选D. 4.解析:若F (k )真,则F (k +1)一定真,其逆否命题为F (k +1)不真,则F (k )不真. ∴F (7)不真,则F (6)不真;F (6)不真,则F (5)不真. 答案:A5.解析:x 2+y 2+2x =x 2+(6x -2x 2)+2x =-x 2+8x =-(x -4)2+16≤16. 答案:C6.解析:∵f (x +2)=f (x )+f (2) ∴令x =-1则有 f (1)=f (-1)+f (2) ∴f (2)=2f (1)又∵f (1)=12,∴f (2)=1∴f (5)=f (2+3)=f (2)+f (3) =f (2)+f (2)+f (1) =2f (2)+f (1)=2+12=52. 答案:C7.解析:OP →=OA →+λ(AB →|AB →|+AC →|AC →|),AP →=λ(AB →|AB →|+AC →|AC →|)=λ(e 1+e 2),∴AP 是∠A 的内角平分线.答案:B8.解析:这是图论中的一个问题,如果一条一条的去数,由于道路错综复杂,哪些已算过,哪些没有算过就搞不清了,所以我们换一个思路,用分析法来试试.要到H 点,需从F 、E 、G 走过来,F 、E 、G 各点又可由哪些点走过来,……,这样一步步倒推,最后归结到A ,然后再反推过去得到如下的计算法:A 至B 、C 、D 的路数记在B 、C 、D 圆圈内,B 、C 、D 分别到F 、E 、G 的路数亦记在F 、E 、G 圆圈内,最后F 、E 、G 各个路数之和,即得至H 的总路数如答图1所示. 答案:C9.解析:①当点C 在线段AB 上时,可知||AC ||+||CB ||=||AB ||,故①是正确的.②取A (0,0),B (1,1),C (1,0),则||AC ||2=1,||BC ||2=1,||AB ||2=(1+1)2=4,故②是不正确的.③取A (0,0),B (1,1),C (1,0),证明||AC ||+||CB ||=||AB ||,故③不正确.故选B. 10.解析:P =a a +b +c +b a +b +d +c c +d +a +dc +d +b>a a +b +c +d +b a +b +d +c +c c +d +a +b +d c +d +b +a =1, P =a a +b +c +b a +b +d +c c +d +a +dc +d +b<a a +b +b a +b +c c +d +d c +d =2, ∴1<P <2. 答案:B11. 解析:在等差数列{a n }中,a 10=0,知以a 10为等差中项的项和为0,如a 9+a 11=a 8+a 12=…=a 2+a 18=a 1+a 19=0.而在等比数列{b n }中,b 15=1,类比地有b 1b 29=b 2b 28=…=b 14b 16=1.从而类似地总结规律应为各项之积.∵等差数列{a n }中a 10=0,∴a 1+a 19=a 2+a 18=…=a 8+a 12=a 9+a 11=0. 即:a 19-n +a n +1=0, a 18-n +a n +2=0, a 17-n +a n +3=0, …∴a 1+a 2+…+a n =a 1+a 2+…+a n +a n +1+a n +2+…+a 19-n . ∵b 15=1,∴b 1b 29=b 2b 28=…=b 14b 16=1. 即b 29-n b n +1=b 28-n b n +2=…=b 14b 16=1.∴b 1b 2…b n =b 1b 2…b 29-n (1≤n ≤29,n ∈N *).故选A.12.解析:根据数表可知,第1行第1列上的数为1,第2行第2列上的数为3,第3行第3列上的数为5,第4行第4列上的数为7,那么,由此可以推导出第n 行第n 列交叉点上的数应该是2n -1. 答案:A二、填空题:13.解析:由平面图形到空间图形的类比过程中,边长→面积,面积→体积. 答案:13R (S 1+S 2+S 3+S 4)14.解析:答案不唯一.因为a +(b *c )=a +b +c 2=2a +b +c 2,又(a +b )*(a +c )=(a +b )+(a +c )2=2a +b +c2,因此答案成立.同时:(a *b )+c =(a *c )+(b *c );a *(b +c )=(a +b )*c =(b +c )*a =(a +c )*b ;(a *b )+c =(b *a )+c 也符合题意. 答案:a +(b *c )=(a +b )*(a +c )15.解析:前面103个括号中共用了256个数,第104个括号有4个数分别是515,517,519,521,其和为2072. 答案:207216.解析:P n (x 0)=a 0x n -10+…+a n -2x 20+a n -1x 0+a n ,共需n 次加法运算,每个小因式中所需乘法运算依次为n ,n -1,…,1.故共需计算次数为n +n (n +1)2=12n (n +3).第二种运算中,P 0(x 0)=a 0,不需要运算,P 1(x 0)=x 0P 0(x 0)+a 1,需2次运算.P 2(x 0)=x 0P 1(x 0)+a 2,需2+2次运算,依次往下,P n (x 0)需2n 次运算. 答案:12n (n +3) 2n三、解答题:17.证明:(分析法)要证x 4+y 4≥12xy (x +y )2,只需证明2(x 4+y 4)≥xy (x +y )2, 即证2(x 4+y 4)≥x 3y +xy 3+2x 2y 2.只需x 4+y 4≥x 3y +xy 3与x 4+y 4≥2x 2y 2同时成立即可. 又知x 4+y 4-2x 2y 2=(x 2-y 2)2≥0,即x 4+y 4≥2x 2y 2成立, 只需再有x 4+y 4≥x 3y +xy 3成立即可. 由于x 4+y 4-x 3y -xy 3=(x -y )(x 3-y 3), ∵x -y 与x 3-y 3同号,∴(x -y )(x 3-y 3)≥0,即x 4+y 4≥x 3y +xy 3成立.∴对于任意实数x ,y 都有x 4+y 4≥12xy (x +y )2成立.18.证明:(1)因为E 、F 分别是A 1B 、A 1C 的中点,所以EF ∥BC ,EF ⊄面ABC ,BC ⊂面ABC .所以EF ∥平面ABC .(2)因为三棱柱ABC -A 1B 1C 1为直三棱柱, 所以BB 1⊥面A 1B 1C 1,BB 1⊥A 1D , 又A 1D ⊥B 1C ,所以A 1D ⊥平面BB 1C 1C , 又A 1D ⊂平面A 1FD , 所以平面A 1FD ⊥平面BB 1C 1C .19.证明:假设三条抛物线均与x 轴无两交点,则Δ1=4b 2-4ac ≤0,Δ2=4c 2-4ab ≤0,Δ3=4a 2-4bc ≤0,∴a 2+b 2+c 2-ab -ac -bc ≤0,即12[(a -b )2+(b -c )2+(c -a )2]≤0,∴a =b =c ,与a ,b ,c 是互不相等的实数矛盾.故三条抛物线中,至少有一条与x 轴有两个交点.20.解:(1)∵f (2)=f (2×1)=f (2)·f (1),又f (2)=2,∴f (1)=1.又∵f (4)=f (2·2)=f (2)·f (2)=4,2=f (2)<f (3)<f (4)=4,且f (3)∈N *.∴f (3)=3.(2)由f (1)=1,f (2)=2,f (3)=3,猜想f (n )=n (n ∈N *).(3)用数学归纳法证明:(ⅰ)当n =1时,f (1)=1,函数解析式成立. (ⅱ)假设n =k 时,f (k )=k ,函数解析式成立.①若k +1=2m (m ∈N *),f (k +1)=f (2m )=f (2)·f (m )=2m =k +1. ②若k +1=2m +1(m ∈N *),f (2m +2)=f [2(m +1)]=f (2)·f (m +1)=2(m +1)=2m +2,2m =f (2m )<f (2m +1)<f (2m +2)=2m +2. ∴f (2m +1)=2m +1=k +1.即当n =k +1时,函数解析式成立. 综合(ⅰ)(ⅱ)可知,f (n )=n (n ∈N *)成立. 21.解:(1)a 10=10,a 20=10+10d =40, ∴d =3.(2)a 30=a 20+10d 2=10(1+d +d 2)(d ≠0), a 30=10[(d +12)2+34],当d ∈(-∞,0)∪(0,+∞)时,a 30∈[7.5,+∞);(3)所给数列可推广为无穷数列{a n },其中a 1,a 2,…,a 10是首项为1,公差为1的等差数列,当n ≥1时,数列a 10n ,a 10n +1,…,a 10(n +1)是公差为d n 的等差数列.研究的问题可以是:试写出a 10(n +1)关于d 的关系式,并求a 10(n +1)的取值范围 研究的结论可以是:由a 40=a 30+10d 3=10(1+d +d 2+d 3), 依次类推可得a 10(n +1)=10(1+d +…+d n ) =⎩⎪⎨⎪⎧10×1-d n +11-d ,d ≠1,10(n +1),d =1.当d >0时,a 10(n +1)的取值范围为(10,+∞). 22.解:(1)依题意有x 2+a bx -c=x ,化简为(1-b )x 2+cx +a =0,由根与系数的关系得⎩⎪⎨⎪⎧2+0=-c 1-b,2·0=a 1-b,解得⎩⎪⎨⎪⎧a =0,b =1+c 2,代入表达式得f (x )=x 2(1+c 2)x -c ,由f (-2)=-21+c <-12,得c <3.又因为c ∈N ,b ∈N ,若c =0,b =1,f (x )=x 不止有两个不动点,若c =1,b =32,则f (x )=x只有一个不动点,所以c =2,b =2,故f (x )=x 22(x -1)(x ≠1).(2)由题设得4S n ·(1a n)22(1a n-1)=1,得2S n =a n -a 2n ,(*) 且a n ≠1,把n -1代入得2S n -1=a n -1-a 2n -1.(**)由(*)与(**)两式相减得2a n =(a n -a n -1)-(a 2n -a 2n -1),即(a n +a n -1)(a n -a n -1+1)=0,所以a n =-a n -1或a n -a n -1=-1,把n =1代入(*)得2a 1=a 1-a 21,解得a 1=0(舍去)或a 1=-1.由a 1=-1,a n =-a n -1,得a 2=1,这与a n ≠1矛盾,所以a n -a n -1=-1,即{a n }是以-1为首项,-1为公差的等差数列,所以a n =-n .(3)证明:(采用反证法)假设a n ≥3(n ≥2),则由(1)知a n +1=f (a n )=a 2n2a n -2,所以a n +1a n =a n 2(a n -1)=12·(1+1a n -1)≤12(1+12)=34<1,即a n +1<a n (n ≥2,n ∈N ),有a n <a n -1<…<a 2,而当n =2时,a 2=a 212a 1-2=168-2=83<3,所以a 2<3.这与假设矛盾,故假设不成立,所以a n <3.第三章 综合能力检测答案一、选择题:1.解析:由复数的概念可知x +y 仍是虚数. 答案:B2. 解析:4+3i 1+2i =(4+3i)(1-2i)1+22=(4+6)+(3-8)i5=2-i. 答案:B3.解析:m -2i 1+2i =(m -2i)(1-2i)(1+2i)(1-2i)=(m -4)-2(m +1)i5,对于m 的值,不存在m 使m -4>0且m+1<0,故对应的点不可能在第一象限. 答案:A4.解析:∵z =(a +3i)(1-2i)(1+2i)(1-2i)=a +65+(3-2a )i 5.若z 为纯虚数,则⎩⎪⎨⎪⎧a +6=0,3-2a ≠0⇒⎩⎪⎨⎪⎧a =-6,a ≠32.答案:C5.解析:由于实系数一元二次方程的虚根成对出现,是互为共轭复数的,故另一根为3-2i ,则(3+2i)·(3-2i)=q2=13.故选A.6.解析:∵P 2P 1→=OP 1→-OP 2→,∴P 2P 1→对应的复数为z 1-z 2=(2-5i)-(-3+i)=5-6i. 答案:B7.解析:由m1+i =1+n i 得m =(1+i)(1-n i)=(1+n )+(1-n )i ,∴⎩⎪⎨⎪⎧ m =1+n ,0=1-n ,∴⎩⎪⎨⎪⎧m =2,n =1,∴m +n i =2+i. 答案:C8.解析:设z =x +y i ,则|3x +3y i +1|=|x +y i -i|. ∴(3x +1)2+9y 2=x 2+(y -1)2, 即4x 2+4y 2+3x +y =0.∴复数z 对应点Z 的轨迹为圆.故选C.9.解析:由z =12+32i 可得,z +1z =12+32i +12-32i =1∈R . ∴z =12+32i 是z +1z ∈R 的充分条件.但z +1z ∈R ⇒|z |=1z =12+32i ,所以z =12+32i 是z +1z∈R 的充分非必要条件. 答案:A10.解析:-35+2i 2+35i +(21+i )2008=i(35i +2)2+35i +1i1004=i +1. 答案:B11.解析:f (n )=(1+i 1-i )n +(1-i1+i )n =i n +(-i)n (n ∈N *),根据i n 取值的周期性,给n 赋值发现集合{x |x =f (n )}={0,-2,2},故应选C.12.解析:由|z |=1,得|z |2=1,即z ·z =1,所以x =a -z z z -a z =a -zz (z -a )=-1z=-z ,所以|x |=|-z |=1. 答案:B二、填空题:13.解析:由已知得z =z 0z 0-3=3+2i 2i =1-32i. 答案:1-32i14.解析:设z =x +y i(x ,y ∈R ),由|z +2+2i|=|z |得(x +2)2+(y +2)2=x 2+y 2,即x +y +2=0,点(1,-1)到直线x +y +2=0的距离为d =|1-1+2|2=2,∴|z -1+i|的最小值为 2. 答案: 215.解析:1+7i 2-i =(1+7i)(2+i)4+1=-1+3i由-1+3i =a +b i 得a =-1,b =3 ∴ab =-3 答案:-316.解析:由k 1z 1+k 2z 2+k 3z 3=0得k 1(1+2i)+k 2(1-i)+k 2·(-2)=0, 即(k 1+k 2-2k 3)+(2k 1-k 2)i =0,∴⎩⎪⎨⎪⎧k 1+k 2-2k 3=0,2k 1-k 2=0.∴k 1∶k 2∶k 3=1∶2∶32.(答案不唯一,只需满足1∶2∶32的任何一组都行) 答案:{1,2,32}三、解答题:17.解:(1)z 1z 2=(1+i)(x +2i)=x +2i +x i -2=(x -2)+(2+x )i ,因为z 1z 2是实数,所以x +2=0,所以x =-2.(2)原式=2(4-i)(3-i)+(7-i)(4-3i)=2(12-3i -4i 2)+(28-4i -21i +3i 2)=2(11-7i)+25(1-i)=47-39i.18.解:原方程化简为|z |2+(z +z )i =1-i ,设z =x +y i(x 、y ∈R ),代入上述方程;得x 2+y 2+2x i =1-i ,所以⎩⎪⎨⎪⎧x 2+y 2=1,2x =-1.解得⎩⎨⎧x =-12,y =±32.所以原方程的解是z =-12±32i.19.解:z =2+4i -(1+3i)i =1+i i =-i(1+i)=1-i ,ω=1+(a -1)i ,ωz =1+(a -1)i1-i=[1+(a -1)i](1+i)2=2-a +a i 2,由|ωz |≤2,得(2-a 2)2+(a2)2≤2,解得1-3≤a ≤1+ 3.故a 的取值范围是[1-3,1+3].20.解:设z =x +y i(x ,y ∈R ),则z -1z +1=(x -1)+y i (x +1)+y i =x 2+y 2-1+2y i(x +1)2+y 2是纯虚数,∴x2+y 2=1且y ≠0,于是-1<x <1.而|z 2-z +2|=|(x +y i)2-(x +y i)+2|=|(x 2-y 2-x +2)+y (2x -1)i|=(x 2-y 2-x +2)2+y 2(2x -1)2=8x 2-6x +2=8(x -38)2+78,∴当x =38时,|z 2-z +2|取得最小值144. 21.解:(1)设z =x +y i(x ,y ∈R ,且y ≠0),则 (2x +5)2+(2y )2=(x +10)2+y 2. 化简得x 2+y 2=25.∴|z |=5. (2)∵z m +m z =x +y i m +m x +y i=(x m +mx x 2+y 2)+(y m -myx 2+y2)i 为实数,∴y m -myx 2+y 2=0. 又y ≠0,且x 2+y 2=25, ∴1m -m25=0,解得m =±5. (3)(1-2i)z =(1-2i)(x +y i)=(x +2y )+(y -2x )i ,依据题意,得x +2y =y -2x . ∴y =-3x .①又∵|z |=5,即x 2+y 2=25.② 由①、②得⎩⎨⎧x =102,y =-3102或⎩⎨⎧x =-102,y =3102.∴z =102-3102i 或z =-102+3102i. 22.解:(1)解方程x +1x =2,得x =22±22i.当α1=22+22i 时,ω=α2n -11=(α21)nα1=[(22+22i)2]n α1=in α1.由i n 的周期性知,ω有四个值,n =1时,ω=22+22i ;n =2时,ω=-22+22i ;n =3时,ω=-22-22i ;n =4是,ω=22-22i. 当α2=22-22i 时,ω=α2n -12=(α22)n α2=(-i)nα2.当n =1时,ω=22-22i ;n =2时,ω=-22-22i ;n =3时,ω=-22+22i ;n =4时,ω=22+22i.∴不论α=22+22i 还是α=22-22i ,都有 M α={22+22i ,22-22i ,-22+22i ,-22-22i},P =2C 24=13. (2)取α=-12+32i ,则α3=1,α5=-12-32i ,于是M α={α,α3,α5}={-12+32i,1,-12-32i}.(或取α=-12-32i ,则α3=1,α5=-12+32i)。

高二数学选修2-2全册综合测试题A

高二数学选修2-2全册综合测试题A

选修2-2综合测试题一一、选择题:本大题共12小题,每小题5分,共60分. 1.数列1,4,7,10,…的一个通项公式为( ) A .a n =4nB .a n =3n -2C .a n =3n +1D .a n =4n +22.(2009·辽宁高考)已知复数z =1-2i ,那么1z 等于( )A.55+255i B.55-255i C.15+25i D.15-25i 3.函数y =(sin x 2)3的导数是( )A .y ′=3x sin x 2·sin2x 2;B .y ′=3(sin x 2)2C .y ′=3(sin x 2)2cos x 2D .y ′=6sin x 2cos x 2 4.设f (x )为可导函数,且满足条件lim x →0 f (x +1)-f (1)2x=3,则曲线y =f (x )在点(1,f (1))处的切线的斜率为( )A.32B .3C .6D .无法确定5.观察下列各等式:55-4+33-4=2,22-4+66-4=2,77-4+11-4=2,1010-4+-2-2-4=2,依照以上各式成立的规律,得到一般性的等式为( )A.n n -4+8-n (8-n )-4=2B.n +1(n +1)-4+(n +1)+5(n +1)-4=2C.nn -4+n +4(n +4)-4=2 D.n +1(n +1)-4+n +5(n +5)-4=2 6.已知函数y =xf ′(x )的图象如下图所示,其中f ′(x )是函数f (x )的导函数,函数y =f (x )的图象大致是图中的( )9.若f (x )=ln xx ,0<a <b <e ,则有( )A .f (a )>f (b )B .f (a )=f (b )C .f (a )<f (b )D .f (a )·f (b )>110.定义在R 上的可导函数f (x ),已知y =e f ′(x )的图象如图所示,则y =f (x )的增区间是( )A .(-∞,1)B .(-∞,2)C .(0,1)D .(1,2)11.已知函数f (x )=x 3-px 2-qx 的图象与x 轴相切于点(1,0),则f (x )的( ) A .极大值为427,极小值为0; B .极大值为0,极小值为-427C .极小值为-527,极大值为0D .极小值为0,极大值为52712.(2009·安徽高考)设函数f (x )=sin θ3x 3+3cos θ2x 2+tan θ,其中θ∈[0,5π12],则导数f ′(1)的取值范围是( )A .[-2,2]B .[2,3]C .[3,2]D .[2,2]二、填空题:本大题共4小题,每小题5分,共20分.13.⎠⎛0a (3x 2-x +1)dx =________.14.(2009·江苏高考)在平面直角坐标系x O y 中,点P 在曲线C :y =x 2-10x +3上,且在第二象限内,已知曲线C 在点P 处的切线的斜率为2,则点P 的坐标为________.15.由曲线y =(x -2)2+1,横坐标轴及直线x =3,x =5围成的图形的面积等于________. 16.已知m ≥2,n ≥2且m 、n 为正整数,对m 的n 次幂进行如下图所示方式的“分裂”: 那么,以下几个关于“分裂”的叙述:①52的“分裂”中最大的数是9;②44的“分裂”中最小的数是13;③若m 3的“分裂”中最小的数是21,则m 的值为5.其正确的叙述的序号是________.(写出所有正确的叙述的序号)三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.17.(本小题满分10分)设复数z =(1+i )2+3(1-i )2+i ,若z 2+ax +b =1+i ,求实数a ,b 的值.18.(本小题满分12分)(2009·天津高考)设函数f(x)=-13x3+x2+(m2-1)x(x∈R),其中m>0.(1)当m=1时,求曲线y=f(x)在点(1,f(1))处的切线的斜率;(2)求函数f(x)的单调区间与极值.20.(本小题满分12分)统计表明,某种型号的汽车在匀速行驶中每小时的耗油量y(升)关于行驶速度x(千米/时)的函数解析式可以表示为y=1128000x3-380x+8(0<x≤120).已知甲、乙两地相距100千米.(1)当汽车以40千米/时的速度匀速行驶时,从甲地到乙地要耗油多少升?(2)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?21.(本小题满分12分)(2009·安徽高考)已知函数f (x )=x -2x +1-a ln x ,a >0.(1)讨论f (x )的单调性;(2)设a =3,求f (x )在区间[1,e 2]上的值域,其中e =2.71828…是自然对数的底数.22.(本小题满分12分)已知{a n }是等差数列,{b n }是公比为q 的等比数列,a 1=b 1,a 2=b 2≠a 1,记S n 为数列{b n }的前n 项和.(1)若b k =a m (m ,k 是大于2的正整数),求证:S k -1=(m -1)a 1;(2)若b 3=a i (i 是某个正整数),求证:q 是整数,且数列{b n }中的每一项都是数列{a n }中的项;(3)是否存在这样的正数q ,使等比数列{b n }中有三项成等差数列?若存在,写出一个q 的值,并加以说明;若不存在,请说明理由.选修2-2综合测试题一一、选择题:本大题共12小题,每小题5分,共60分. 1.数列1,4,7,10,…的一个通项公式为( ) A .a n =4nB .a n =3n -2C .a n =3n +1D .a n =4n +2解析:由4-1=7-4=10-7=3,猜想数列为等差数列且公差为3, ∴数列的一个通项公式为a n =3n -2. 答案:B2.(2009·辽宁高考)已知复数z =1-2i ,那么1z 等于( )A.55+255i B.55-255i C.15+25i D.15-25i 解析:1z =11-2i =15+25i.答案:C3.函数y =(sin x 2)3的导数是( )A .y ′=3x sin x 2·sin2x 2;B .y ′=3(sin x 2)2C .y ′=3(sin x 2)2cos x 2D .y ′=6sin x 2cos x 2解析:y ′=[(sin x 2)3]′=3(sin x 2)2·(sin x 2)′=3(sin x 2)2·cos x 2·2x =3×2sin x 2·cos x 2·x ·sin x 2=3x ·sin x 2·sin2x 2,故选A. 答案:A4.设f (x )为可导函数,且满足条件lim x →0 f (x +1)-f (1)2x=3,则曲线y =f (x )在点(1,f (1))处的切线的斜率为( )A.32B .3C .6D .无法确定解析:∵lim x →0 f (x +1)-f (1)2x =12lim x →0 f (x +1)-f (1)x =12f ′(1)=3, ∴f ′(1)=6.答案:C5.观察下列各等式:55-4+33-4=2,22-4+66-4=2,77-4+11-4=2,1010-4+-2-2-4=2,依照以上各式成立的规律,得到一般性的等式为( )A.n n -4+8-n (8-n )-4=2B.n +1(n +1)-4+(n +1)+5(n +1)-4=2C.nn -4+n +4(n +4)-4=2 D.n +1(n +1)-4+n +5(n +5)-4=2 答案:A6.已知函数y =xf ′(x )的图象如下图所示,其中f ′(x )是函数f (x )的导函数,函数y =f (x )的图象大致是图中的( )解析:由y=xf′(x)的图象可得当x<-1时,f′(x)>0,所以当x<-1时f(x)为增函数;当-1<x<0时,f′(x)<0,所以f(x)在(-1,0)上为减函数;当0<x<1时,f′(x)<0,所以f(x)在(0,1)上减函数;当x>1时,f′(x)>0,所以f(x)在(1,+∞)上增函数,所以选择C.答案:C7.物体在地球上做自由落体运动时,下落距离s=12·gt2,其中t为经历的时间,g=9.8 m/s2,若v=s(1+Δt)-s(1)Δt=9.8m/s,则下列说法正确的是()A.0~1 s时间段内的速度为9.8 m/sB.在1 s~(1+Δt) s时间段内的速度为9.8 m/sC.在1 s末的速度为9.8 m/sD.若Δt>0,则9.8 m/s是1 s~(1+Δt)s时间段的速度,若Δt<0,则9.8 m/s是(1+Δt)s~1 s时间段的速度解析:由导数的定义和几何意义可知,v=s(1+Δt)-s(1)Δt=s′(t)|t=1=9.8 m/s,即物体在t=1时的瞬时速度,即在1 s末的速度.故选C.答案:C8.△ABC内有任意三点不共线的2010个点,加上A、B、C三个顶点,共2013个点,把这2013个点连线形成互不重叠的小三角形,则一共可以形成小三角形的个数为()A.4021 B.4022C.4023 D.4027解析:由题设条件知三角形内一个点,比原来多出两个三角形,如下图所示,由观察分析知a n+1-a n=2(a n表示三角形内部有n个点时,组成不重叠的小三角形的个数),∴数列{a n}是首项为3,公差为2的等差数列.∴a n=2n+1(n∈N*).∴a2010=2×2010+1=4021.故选A.答案:A9.若f (x )=ln xx ,0<a <b <e ,则有( )A .f (a )>f (b )B .f (a )=f (b )C .f (a )<f (b )D .f (a )·f (b )>1解析:f ′(x )=1-ln xx 2,在(0,e)上f ′(x )>0,∴f (x )在(0,e)上为增函数. ∴f (a )<f (b ). 答案:C10.定义在R 上的可导函数f (x ),已知y =e f′(x )的图象如图所示,则y =f (x )的增区间是( )A .(-∞,1)B .(-∞,2)C .(0,1)D .(1,2)解析:由题中图象知e f′(x )≥1,即f ′(x )≥0时,x ≤2,∴y =f (x )的增区间为(-∞,2). 答案:B11.已知函数f (x )=x 3-px 2-qx 的图象与x 轴相切于点(1,0),则f (x )的( ) A .极大值为427,极小值为0B .极大值为0,极小值为-427C .极小值为-527,极大值为0D .极小值为0,极大值为527解析:由题设条件知⎩⎪⎨⎪⎧ f ′(1)=0,f (1)=0.所以⎩⎪⎨⎪⎧ 3-2p -q =0,1-p -q =0.所以⎩⎪⎨⎪⎧p =2,q =-1.所以f (x )=x 3-2x 2+x ,进而可求得f (1)是极小值,f (13)是极大值.答案:A12.(2009·安徽高考)设函数f (x )=sin θ3x 3+3cos θ2x 2+tan θ,其中θ∈[0,5π12],则导数f ′(1)的取值范围是( )A .[-2,2]B .[2,3]C .[3,2]D .[2,2]解析:∵f ′(x )=sin θx 2+3cos θx .f ′(1)=sin θ+3cos θ=2sin(θ+π3),∵θ∈[0,5π12],∴θ+π3∈[π3,3π4].∴sin(θ+π3)∈[22,1].∴2sin(θ+π3)∈[2,2].答案:D二、填空题:本大题共4小题,每小题5分,共20分. 13.⎠⎛0a (3x 2-x +1)dx =________.解析:∵⎠⎛0a (3x 2-x +1)dx =x 3-12x 2+x |a 0=a 3-12a 2+a . 答案:a 3-12a 2+a14.(2009·江苏高考)在平面直角坐标系x O y 中,点P 在曲线C :y =x 2-10x +3上,且在第二象限内,已知曲线C 在点P 处的切线的斜率为2,则点P 的坐标为________.解析:∵y ′=3x 2-10.设切点P (x 0,y 0)(x 0<0),则点P 处切线斜率k =3x 20-10=2,∴x 0=-2(x 0<0). ∴P (-2,15). 答案:(-2,15)15.由曲线y =(x -2)2+1,横坐标轴及直线x =3,x =5围成的图形的面积等于________. 解析:S =⎠⎛35[(x -2)2+1]dx =⎠⎛35(x 2-4x +5)dx =(x 33-2x 2+5x )|53=323. 答案:32316.已知m ≥2,n ≥2且m 、n 为正整数,对m 的n 次幂进行如下图所示方式的“分裂”: 那么,以下几个关于“分裂”的叙述:①52的“分裂”中最大的数是9;②44的“分裂”中最小的数是13;③若m 3的“分裂”中最小的数是21,则m 的值为5.其正确的叙述的序号是________.(写出所有正确的叙述的序号)解析:观察规律可知对m n 进行“分裂”,则m 表示可以分成几项,而右边“分裂”的数,都是相差为2的奇数.设a k 表示右边“分裂”后最小奇数,则有m n =ma k +(m -1)·m .所以52=1+3+5+7+9;44=4a k +12⇒a k =61.即44=61+63+65+67.m 3=m ×21+m (m -1)⇒m 2-m -20=0⇒m =5或m =-4(舍).故①③正确.答案:①③三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分)设复数z =(1+i )2+3(1-i )2+i,若z 2+ax +b =1+i ,求实数a ,b 的值.解:z =(1+i )2+3(1-i )2+i =2i +3(1-i )2+i =3-i 2+i =(3-i )(2-i )(2+i )(2-i )=1-i ,将z =1-i 代入z 2+a z +b =1+i ,得(1-i )2+a (1-i )+b =1+i ,即(a +b)-(a +2)i =1+i ,所以⎩⎪⎨⎪⎧ a +b =1,-(a +2)=1.所以⎩⎪⎨⎪⎧a =-3,b =4.18.(本小题满分12分)(2009·天津高考)设函数f (x )=-13x 3+x 2+(m 2-1)x (x ∈R ),其中m >0.(1)当m =1时,求曲线y =f (x )在点(1,f (1))处的切线的斜率; (2)求函数f (x )的单调区间与极值.解:(1)当m =1时,f (x )=-13x 3+x 2,f ′(x )=-x 2+2x ,故f ′(1)=1.所以曲线y =f (x )在点(1,f (1))处的切线的斜率为1. (2)f ′(x )=-x 2+2x +m 2-1.令f ′(x )=0,解得x =1-m ,或x =1+m . 因为m >0,所以1+m >1-m .当x 变化时,f ′(x ),f (x )的变化情况如下表:所以f (x )在(函数f (x )在x =1-m 处取得极小值f (1-m ),且f (1-m )=-23m 3+m 2-13.函数f (x )在x =1+m 处取得极大值f (1+m ),且f (1+m )=23m 3+m 2-13.19.(本小题满分12分)在四棱锥P -ABCD 中,底面ABCD 是一个平行四边形,AB →=(2,-1,-4),AD →=(4,2,0),AP →=(-1,2,-1).(1)求证:P A ⊥底面ABCD ;(2)求四棱锥P -ABCD 的体积;(3)对于向量a =(x 1,y 1,z 1),b =(x 2,y 2,z 2),c =(x 3,y 3,z 3),定义一种运算: (a ×b )·c =x 1y 2z 3+x 2y 3z 1+x 3y 1z 2-x 1y 3z 2-x 2y 1z 3-x 3y 2z 1.试计算(AB →×AD →)·AP →的绝对值的值;说明其与四棱锥P -ABCD 体积的关系,并由此猜想向量这一运算(AB →×AD →)·AP →的绝对值的几何意义.解:(1)∵AP →·AB →=-2-2+4=0, ∴AP ⊥AB .又∵AP →·AD →=-4+4+0=0, ∴AP ⊥AD .∵AB 、AD 是底面ABCD 上的两条相交直线, ∴AP ⊥底面ABCD .(2)设AB →与AD →的夹角为θ,则 cos θ=AB →·AD→|AB →|·|AD →|=8-24+1+16·16+4=3105.V =13|AB →|·|AD →|·sin θ·|AP →|=23105·1-9105·1+4+1=16. (3)|(AB →×AD →)·AP →|=|-4-32-4-8|=48,它是四棱锥P -ABCD 体积的3倍.猜测:|(AB →×AD →)·AP →|在几何上可表示以AB 、AD 、AP 为棱的平行六面体的体积(或以AB 、AD 、AP 为棱的直四棱柱的体积).20.(本小题满分12分)统计表明,某种型号的汽车在匀速行驶中每小时的耗油量y (升)关于行驶速度x (千米/时)的函数解析式可以表示为y =1128000x 3-380x +8(0<x ≤120).已知甲、乙两地相距100千米. (1)当汽车以40千米/时的速度匀速行驶时,从甲地到乙地要耗油多少升? (2)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?解:(1)当x =40时,汽车从甲地到乙地行驶了10040=2.5小时,要耗油(1128000×403-380×40+8)×2.5=17.5(升),即当汽车以40千米/时的速度匀速行驶时,从甲地到乙地耗油17.5升.(2)当速度为x 千米/时时,汽车从甲地到乙地行驶了100x 小时,设耗油量为h (x )升,依题意,得h (x )=(1128000x 3-380x +8)·100x =11280x 2+800x -154(0<x ≤120),h ′(x )=x 640-800x 2=x 3-803640x 2(0<x ≤120).令h ′(x )=0,得x =80.当x ∈(0,80)时,h ′(x )<0,h (x )是减函数; 当x ∈(80,120)时,h ′(x )>0,h (x )是增函数. ∵当x =80时,h (x )取到极小值h (80)=11.25. ∴h (x )在(0,120]上只有一个极值, ∵它是最小值,即当汽车以80千米/时的速度匀速行驶时,从甲地到乙地耗油最少,最少为11.25升. 21.(本小题满分12分)(2009·安徽高考)已知函数f (x )=x -2x +1-a ln x ,a >0.(1)讨论f (x )的单调性;(2)设a =3,求f (x )在区间[1,e 2]上的值域,其中e =2.71828…是自然对数的底数.解:(1)f (x )的定义域是(0,+∞),导函数f ′(x )=1+2x 2-a x =x 2-ax +2x 2.设g (x )=x 2-ax +2,二次方程g (x )=0的判别式Δ=a 2-8. ①当Δ<0即0<a <22时,对一切x >0都有f ′(x )>0. 此时f (x )是(0,+∞)上的单调递增函数.②当Δ=0即a =22时,仅对x =2有f ′(x )=0,对其余的x >0都有f ′(x )>0. 此时f (x )也是(0,+∞)上的单调递增函数.③当Δ>0即a >22时,方程g (x )=0有两个不同的实根,x 1=a -a 2-82,x 2=a +a 2-82,0<x 1<x 2.此时f (x )在(0)上单调递增.(2)当a =3时,方程g (x )=0有两个不同的实根x 1=1,x 2=2.由(1)知,在(1,e 2)内,当x =2时f (x )取得极值,f (1)=0,f (2)=2-3ln2, f (e 2)=e 2-2e -2-5.因为f (2)<f (1)<f (e 2),所以f (x )在区间[1,e 2]上的值域为[2-3ln2,e 2-2e -2-5].22.(本小题满分12分)已知{a n }是等差数列,{b n }是公比为q 的等比数列,a 1=b 1,a 2=b 2≠a 1,记S n 为数列{b n }的前n 项和.(1)若b k =a m (m ,k 是大于2的正整数),求证:S k -1=(m -1)a 1;(2)若b 3=a i (i 是某个正整数),求证:q 是整数,且数列{b n }中的每一项都是数列{a n }中的项;(3)是否存在这样的正数q ,使等比数列{b n }中有三项成等差数列?若存在,写出一个q 的值,并加以说明;若不存在,请说明理由.解:(1)设{a n }的公差为d . 由a 2=b 2得a 1+d =a 1q ≠a 1, 知q ≠1且d =a 1(q -1)≠0. ∵{b n }为等比数列, ∴S n =a 1(1-q n )1-q.b k =a 1·q k -1=a 1+(m -1)d =a 1+(m -1)·a 1(q -1).∵a 1≠0,∴q k -1=1+(m -1)(q -1). ∴S k -1=a 1(1-q k -1)1-q =a 1(m -1)(1-q )1-q=a 1(m -1)成立.(2)b 3=a 1·q 2=a 1+(i -1)d =a 1+(i -1)a 1(q -1), ∴q 2=1+(i -1)(q -1). ∵q ≠1,∴q +1=i -1. ∴q =i -2. ∵i 为整数,∴i -2为整数,即q 为整数. 用数学归纳法证明:①由以上推理及题设知{b n }的前三项满足. 即n =1,2,3时结论成立. ②假设当n =k 时结论成立 即存在p ∈N *使b k =a p .。

高中数学反证法综合测试题(含答案)

高中数学反证法综合测试题(含答案)

高中数学反证法综合测试题(含答案) 选修2-2 2.2.2 反证法一、选择题1.否定结论“至多有两个解”的说法中,正确的是() A.有一个解B.有两个解C.至少有三个解D.至少有两个解[答案] C[解析] 在逻辑中“至多有n个”的否定是“至少有n+1个”,所以“至多有两个解”的否定为“至少有三个解”,故应选C.2.否定“自然数a、b、c中恰有一个偶数”时的正确反设为()A.a、b、c都是奇数B.a、b、c或都是奇数或至少有两个偶数C.a、b、c都是偶数D.a、b、c中至少有两个偶数[答案] B[解析] a,b,c三个数的奇、偶性有以下几种情况:①全是奇数;②有两个奇数,一个偶数;③有一个奇数,两个偶数;④三个偶数.因为要否定②,所以假设应为“全是奇数页 1 第或至少有两个偶数”.故应选B.3.用反证法证明命题“三角形的内角中至少有一个不大于60”时,反设正确的是()A.假设三内角都不大于60B.假设三内角都大于60C.假设三内角至多有一个大于60D.假设三内角至多有两个大于60[答案] B[解析] “至少有一个不大于”的否定是“都大于60”.故应选B.4.用反证法证明命题:“若整系数一元二次方程ax2+bx+c =0(a0)有有理根,那么a,b,c中至少有一个是偶数”时,下列假设正确的是()A.假设a,b,c都是偶数B.假设a、b,c都不是偶数C.假设a,b,c至多有一个偶数D.假设a,b,c至多有两个偶数[答案] B[解析] “至少有一个”反设词应为“没有一个”,也就是说本题应假设为a,b,c都不是偶数.5.命题“△ABC中,若B,则ab”的结论的否定应该是() A.a页 2 第B.abC.a=bD.ab[答案] B[解析] “ab”的否定应为“a=b或ab”,即ab.故应选B. 6.已知a,b是异面直线,直线c平行于直线a,那么c与b的位置关系为()A.一定是异面直线B.一定是相交直线C.不可能是平行直线D.不可能是相交直线[答案] C[解析] 假设c∥b,而由c∥a,可得a∥b,这与a,b异面矛盾,故c与b不可能是平行直线.故应选C.7.设a,b,c(-,0),则三数a+1b,c+1a,b+1c中() A.都不大于-2B.都不小于-2C.至少有一个不大于-2D.至少有一个不小于-2[答案] C[解析] a+1b+c+1a+b+1c页 3 第=a+1a+b+1b+c+1c∵a,b,c(-,0),a+1a=--a+-1a-2b+1b=--b+-1b-2c+1c=--c+-1c-2a+1b+c+1a+b+1c-6三数a+1b、c+1a、b+1c中至少有一个不大于-2,故应选C.8.若P是两条异面直线l、m外的任意一点,则()A.过点P有且仅有一条直线与l、m都平行B.过点P有且仅有一条直线与l、m都垂直C.过点P有且仅有一条直线与l、m都相交D.过点P有且仅有一条直线与l、m都异面[答案] B[解析] 对于A,若存在直线n,使n∥l且n∥m则有l∥m,与l、m异面矛盾;对于C,过点P与l、m都相交的直线不一定存在,反例如图(l∥);对于D,过点P与l、m都异面的直线不唯一.9.有甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖,有人走访了四位歌手,甲说:“是乙或丙获奖”,乙说:“甲、丙都未获奖”,丙说:“我获奖了”,丁说:“是乙获奖了”,四位歌手的话只有两句是对的,则获奖的歌手是页 4 第()A.甲B.乙C.丙D.丁[答案] C[解析] 因为只有一人获奖,所以丙、丁只有一个说对了,同时甲、乙中只有一人说对了,假设乙说的对,这样丙就错了,丁就对了,也就是甲也对了,与甲错矛盾,所以乙说错了,从而知甲、丙对,所以丙为获奖歌手.故应选C. 10.已知x10,x11且xn+1=xn(x2n+3)3x2n+1(n=1,2…),试证“数列{xn}或者对任意正整数n都满足xnxn+1,或者对任意正整数n都满足xnxn+1”,当此题用反证法否定结论时,应为()A.对任意的正整数n,都有xn=xn+1B.存在正整数n,使xn=xn+1C.存在正整数n,使xnxn+1且xnxn-1D.存在正整数n,使(xn-xn-1)(xn-xn+1)0[答案] D[解析] 命题的结论是“对任意正整数n,数列{xn}是递增数列或是递减数列”,其反设是“存在正整数n,使数列既不是递增数列,也不是递减数列”.故应选D.页 5 第二、填空题11.命题“任意多面体的面至少有一个是三角形或四边形或五边形”的结论的否定是________.[答案] 没有一个是三角形或四边形或五边形[解析] “至少有一个”的否定是“没有一个”.12.用反证法证明命题“a,bN,ab可被5整除,那么a,b 中至少有一个能被5整除”,那么反设的内容是________________.[答案] a,b都不能被5整除[解析] “至少有一个”的否定是“都不能”.13.用反证法证明命题:“一个三角形中不能有两个直角”的过程归纳为以下三个步骤:①A+B+C=90+90+180,这与三角形内角和为180相矛盾,则A=B=90不成立;②所以一个三角形中不能有两个直角;③假设A,B,C中有两个角是直角,不妨设A=B=90.正确顺序的序号排列为____________.[答案] ③①②[解析] 由反证法证明的步骤知,先反证即③,再推出矛盾即①,最后作出判断,肯定结论即②,即顺序应为③①②. 14.用反证法证明质数有无限多个的过程如下:假设______________.设全体质数为p1、p2、…、pn,令p 页 6 第=p1p2…pn+1.显然,p不含因数p1、p2、…、pn.故p要么是质数,要么含有______________的质因数.这表明,除质数p1、p2、…、pn之外,还有质数,因此原假设不成立.于是,质数有无限多个.[答案] 质数只有有限多个除p1、p2、…、pn之外[解析] 由反证法的步骤可得.三、解答题15.已知:a+b+c0,ab+bc+ca0,abc0.求证:a0,b0,c0.[证明] 用反证法:假设a,b,c不都是正数,由abc0可知,这三个数中必有两个为负数,一个为正数,不妨设a0,b0,c0,则由a+b+c0,可得c-(a+b),又a+b0,c(a+b)-(a+b)(a+b)ab+c(a+b)-(a+b)(a+b)+ab即ab+bc+ca-a2-ab-b2∵a20,ab0,b20,-a2-ab-b2=-(a2+ab+b2)0,即ab +bc+ca0,这与已知ab+bc+ca0矛盾,所以假设不成立.因此a0,b0,c0成立.页 7 第16.已知a,b,c(0,1).求证:(1-a)b,(1-b)c,(1-c)a 不能同时大于14.[证明] 证法1:假设(1-a)b、(1-b)c、(1-c)a都大于14.∵a、b、c都是小于1的正数,1-a、1-b、1-c都是正数.(1-a)+b2(1-a)b>14=12,同理(1-b)+c2>12,(1-c)+a2>12.三式相加,得(1-a)+b2+(1-b)+c2+(1-c)+a2>32,即32>32,矛盾.所以(1-a)b、(1-b)c、(1-c)a不能都大于14.证法2:假设三个式子同时大于14,即(1-a)b14,(1-b)c14,(1-c)a14,三式相乘得(1-a)b(1-b)c(1-c)a143①因为01,所以0a(1-a)1-a+a22=14.同理,0b(1-b)14,0c(1-c)14.所以(1-a)a(1-b)b(1-c)c143.②因为①与②矛盾,所以假设不成立,故原命题成立.17.已知函数f(x)是(-,+)上的增函数,a,bR.(1)若a+b0,求证:f(a)+f(b)f(-a)+f(-b);(2)判断(1)中命题的逆命题是否成立,并证明你的结论.[解析] (1)证明:∵a+b0,a-b.由已知f(x)的单调性得f(a)f(-b).页 8 第又a+bb-af(b)f(-a).两式相加即得:f(a)+f(b)f(-a)+f(-b).(2)逆命题:f(a)+f(b)f(-a)+f(-b)a+b0.下面用反证法证之.假设a+b0,那么:a+ba-bf(a)f(-b)a+bb-af(b)f(-a)f(a)+f(b)f(-a)+f(-b).这与已知矛盾,故只有a+b0.逆命题得证.18.(2019湖北理,20改编)已知数列{bn}的通项公式为bn =1423n-1.求证:数列{bn}中的任意三项不可能成等差数列.[解析] 假设数列{bn}存在三项br、bs、bt(rt)按某种顺序成等差数列,由于数列{bn}是首项为14,公比为23的等比数列,于是有btbr,则只可能有2bs=br+bt成立.21423s-1=1423r-1+1423t-1.两边同乘3t-121-r,化简得3t-r+2t-r=22s-r3t-s,由于rt,所以上式左边为奇数,右边为偶数,故上式不可能成立,导致矛盾.故数列{bn}中任意三项不可能成等差数列.页 9 第。

人教A版选修2-2数学:第三章《数系的扩充与复数的引入》综合测试2(新人教A版选修2—2).docx

人教A版选修2-2数学:第三章《数系的扩充与复数的引入》综合测试2(新人教A版选修2—2).docx

高中新课标数学选修(2-2)第三章测试题一、选择题1.0a =是复数()z a bi a b =+∈R ,为纯虚数的( )A.充分条件但不是必要条件 B.必要条件但不是充分条件 C.充要条件D.既不是充分也不必要条件 答案:B2.若12z i =+,23()z ai a =+∈R ,12z z +的和所对应的点在实轴上,则a 为( ) A.3 B.2C.1D.1-答案:D3.复数22(2)(2)z a a a a i =-+--对应的点在虚轴上,则( ) A.2a ≠或1a ≠ B.2a ≠且1a ≠ C.0a = D.2a =或0a =答案:D4.设1z ,2z 为复数,则下列四个结论中正确的是( )A.若22120z z +>,则2212z z >-B.12z z -C.22121200z z z z +=⇔== D.11z z -是纯虚数或零 答案:D5.设22(253)(22)z t t t t i =+-++-+,t ∈R ,则下列命题中正确的是( ) A.z 的对应点Z 在第一象限B.z 的对应点Z 在第四象限 C.z 不是纯虚数 D.z 是虚数 答案:D6.若1i +是实系数方程20x bx c ++=的一个根,则方程的另一个根为( ) A.1i - B.1i -+ C.1i -- D.i 答案:A7.已知复数1cos z i θ=-,2sin z i θ=+,则12z z ·的最大值为( )A.32 D.3答案:A 8.已知m ∈R ,若6()64m mi i +=-,则m 等于( )A.2-B.C.D.4答案:B9.在复平面内,复数12ω=-+对应的向量为OA u u u r ,复数2ω对应的向量为OB u u u r .那么向量AB u u u r对应的复数是( )A.1 B.1- D.答案:D10.在下列命题中,正确命题的个数为( ) ①两个复数不能比较大小;②123z z z ∈C ,,,若221221()()0z z z z -+-=,则13z z =; ③若22(1)(32)x x x i -+++是纯虚数,则实数1x =±; ④z 是虚数的一个充要条件是z z +∈R ;⑤若a b ,是两个相等的实数,则()()a b a b i -++是纯虚数; ⑥z ∈R 的一个充要条件是z z =.A.0 B.1 C.2 D.3 答案:B11.复数()a bi a b +∈R ,等于它共轭复数的倒数的充要条件是( ) A.2()1a b += B.221a b += C.221a b -= D.2()1a b -=答案:B12.复数z 满足条件:21z z i +=-,那么z 对应的点的轨迹是( ) A.圆 B.椭圆 C.双曲线 D.抛物线 答案:A 二、填空题13.若复数cos sin z i θθ=-·所对应的点在第四象限,则θ为第 象限角. 答案:一14.复数z i =与它的共轭复数z 对应的两个向量的夹角为 . 答案:60°15.已知2z i =-,则32452z z z -++= . 答案:2 16.定义运算a b ad bc c c =-,则符合条件2132i z zi-=+的复数z = . 答案:7455i -三、解答题17.已知复数(2)()x yi x y -+∈R ,的模为3,求yx的最大值. 解:23x yi -+=∵,22(2)3x y -+=∴,故()x y ,在以(20)C ,为圆心,3为半径的圆上,yx表示圆上的点()x y ,与原点连线的斜率. 如图,由平面几何知识,易知yx的最大值为3. 18.已知1z i a b =+,,为实数. (1)若234z z ω=+-,求ω;(2)若2211z az bi z z ++=--+,求a ,b 的值.解:(1)2(1)3(1)41i i i ω=++--=--, 2ω=∴;(2)由条件,得()(2)1a b a ii i+++=-,()(2)1a b a i i +++=+∴,121a b a +=⎧⎨+=⎩,,∴解得12a b =-⎧⎨=⎩,.19.已知2211z x x i =++,22()z x a i =+,对于任意x ∈R ,均有12z z >成立,试求实数a 的取值范围. 解:12z z >∵, 42221()x x x a ++>+∴,22(12)(1)0a x a -+->∴对x ∈R 恒成立.当120a -=,即12a =时,不等式成立; 当120a -≠时,21201124(12)(1)0a a a a ->⎧⇒-<<⎨---<⎩, 综上,112a ⎛⎤∈- ⎥⎝⎦,. 20.已知()z i z ω=+∈C ,22z z -+是纯虚数,又221116ωω++-=,求ω. 解:设()z a bi a b =+∈R ,2(2)2(2)z a bi z a bi--+=+++∴2222(4)4(2)a b bia b +-+=++. 22z z -+∵为纯虚数, 22400a b b ⎧+-=⎨≠⎩,.∴222211(1)(1)(1)(1)a b i a b i ωω++-=++++-++∴2222(1)(1)(1)(1)a b a b =++++-++ 222()44a b b =+++844b =++ 124b =+.12416b +=∴.1b =∴.把1b =代入224a b +=,解得a =.z i =∴.2i ω=∴.21.复数3(1)()1i a bi z i++=-且4z =,z 对应的点在第一象限内,若复数0z z ,,对应的点是正三角形的三个顶点,求实数a ,b 的值.解:2(1)(1)()2()221i i z a bi i i a bi a bi i++=+=+=---···,由4z =,得224a b +=. ①∵复数0,z ,z 对应的点是正三角形的三个顶点,z z z =-∴,把22z a bi =--代入化简,得1b =. ② 又Z ∵点在第一象限内,0a <∴,0b <.由①②,得1a b ⎧=⎪⎨=-⎪⎩.故所求a =1b =-.22.设z 是虚数1z z ω=+是实数,且12ω-<<.(1)求z 的值及z 的实部的取值范围.(2)设11zzμ-=+,求证:μ为纯虚数; (3)求2ωμ-的最小值.(1)解:设0z a bi a b b =+∈≠R ,,,, 则1a bi a bi ω=+++2222a b a b i a b a b ⎛⎫⎛⎫=++- ⎪ ⎪++⎝⎭⎝⎭.因为ω是实数,0b ≠,所以221a b +=,即1z =.于是2a ω=,即122a -<<,112a -<<.所以z 的实部的取值范围是112⎛⎫- ⎪⎝⎭,;(2)证明:2222111211(1)1z a bi a b bi bi z a bi a b a μ------====-++++++.因为112a ⎛⎫∈- ⎪⎝⎭,,0b ≠,所以μ为纯虚数;(3)解:22222122(1)(1)b a a a a a ωμ--=+=+++1222111a a a a a -=-=-+++12(1)31a a ⎡⎤=++-⎢⎥+⎣⎦因为112a ⎛⎫∈- ⎪⎝⎭,,所以10a +>,故223ωμ-·≥431-=. 当111a a +=+,即0a =时,2ωμ-取得最小值1. 高中新课标数学选修(2-2)第三章测试题一、选择题1.实数x ,y 满足(1)(1)2i x i y ++-=,则xy 的值是( ) A.1 B.2C.2-D.1-答案:A2.复数cos z i θ=,[)02πθ∈,的几何表示是( ) A.虚轴B.虚轴除去原点C.线段PQ ,点P ,Q 的坐标分别为(01)(01)-,,, D.(C)中线段PQ ,但应除去原点 答案:C3.z ∈C ,若{}22(1)1M z z z =-=-|,则( )A.{}M =实数B.{}M =虚数C.{}{}M实数复数苘D.{}M ϕ=答案:A4.已知复数1z a bi =+,21()z ai a b =-+∈R ,,若12z z <,则( ) A.1b <-或1b > B.11b -<< C.1b > D.0b >答案:B5.已知复数z 满足2230z z --=的复数z 的对应点的轨迹是( ) A.1个圆 B.线段C.2个点D.2个圆答案:A6.设复数()z z ∈C 在映射f 下的象是zi ·,则12i -+的原象为( ) A.2i - B.2i + C.2i -+ D.13i +-答案:A7.设A ,B 为锐角三角形的两个内角,则复数(cot tan )(tan cot )z B A B A i =-+-对应的点位于复平面的( )A.第一象限 B.第二象限C.第三象限D.第四象限答案:B8.已知()22f z i z z i +=++,则(32)f i +=( ) A.9i B.93i +C.9i -D.93i --答案:B 9.复数2()12miA Bi m AB i-=+∈+R ,,,且0A B +=,则m =( )B.23 C.23-D.2答案:C10.(32)(1)i i +-+表示( ) A.点(32),与点(11),之间的距离 B.点(32),与点(11)--,之间的距离 C.点(32),与原点的距离 D.点(31),与点(21),之间的距离 答案:A11.已知z ∈C ,21z -=,则25z i ++的最大值和最小值分别是( )11 B.3和1C.和3答案:A12.已知1z ,2z ∈C ,12z z +=1z =2z =12z z -=( )A.1 B.12C.2答案:D 二、填空题13.若()1()f z z z =-∈C ,已知123z i =+,25z i =-,则12z f z ⎛⎫= ⎪ ⎪⎝⎭.答案:19172626i - 14.“复数z ∈R ”是“11z z=”的 . 答案:必要条件,但不是充分条件 15.A ,B 分别是复数1z ,2z 在复平面上对应的两点,O 为原点,若1212z z z z +=-,则AOB △为 . 答案:直角16.若n 是整数,则6(1)(1)nn i i -+-=· . 答案:8±或8i ±三、解答题17.已知复数3z z -对应的点落在射线(0)y x x =-≤上,1z +=z . 解:设()z a bi a b =+∈R ,,则33324z z a bi a bi a bi -=+-+=+, 由题意得4120ba b ⎧=-⎪⎨⎪>⎩,,①又由1z +=22(1)2a b ++=, ② 由①,②解得21a b =-⎧⎨=⎩,,2z i =-+∴.18.实数m 为何值时,复数216(815)55m z m i m i m m -⎛⎫=++++ ⎪++⎝⎭.(1)为实数; (2)为虚数; (3)为纯虚数;(4)对应点在第二象限.解:226(815)5m m z m m i m +-=++++.(1)z 为实数28150m m ⇔++=且50m +≠,解得3m =-; (2)z 为虚数2815050m m m ⎧++≠⇔⎨+≠⎩,,解得3m ≠-且5m ≠-;(3)z 为纯虚数226058150m m m m m ⎧+-=⎪⇔+⎨⎪++≠⎩,,解得2m =;(4)z 对应的点在第二象限226058150m m m m m ⎧+-<⎪⇔+⎨⎪++>⎩,,解得5m <-或32m -<<.19.设O 为坐标原点,已知向量1OZ u u u u r ,2OZ u u u u r分别对应复数12z z ,,且213(10)5z a i a =+-+,22(25)1z a i a=+--,a ∈R .若12z z +可以与任意实数比较大小,求1OZ u u u u r ,2OZ u u u u r 的值.解:213(10)5z a i a =--+,则31232[(10)(25)]51z z a a i a a+=++-+-+-的虚部为0, 22150a a +-=∴.解得5a =-或3a =. 又50a +≠∵,3a =∴.则138z i =+,21z i =-+,1318OZ ⎛⎫= ⎪⎝⎭u u u u r ,,2(11)OZ =-u u u u r ,. 1258OZ OZ =u u u u r u u u u r ∴·.20.已知z 是复数,2z i +与2zi-均为实数,且复数2()z ai +在复平面上对应的点在第一象限,求实数a 的取值范围.解:设()z x yi x y =+∈R ,,2(2)z i x y i +=++为实数,2y =-∴.211(22)(4)2255z x i x x i i i -==++---为实数, 4x =∴,则42z i =-.22()(124)8(2)z ai a a a i +=+-+-∵在第一象限, 212408(2)0a a a ⎧+->⎨->⎩,,∴解得26a <<. 21.已知关于x 的方程2(6)90()x i x ai a -+++=∈R 有实数根b . (1)求实数a ,b 的值;(2)若复数z 满足2z a bi z --=,求z 为何值时,z 有最小值并求出最小值. 解:(1)将b 代入题设方程,整理得2(69)()0b b a b i -++-=, 则2690b b -+=且0a b -=,解得3a b ==;(2)设()z x yi x y =+∈R ,,则2222(3)(3)4()x y x y -++=+, 即22(1)(1)8x y ++-=.∴点Z 在以(11)-,为圆心,22为半径的圆上, 画图可知,1z i =-时,min 2z =.。

(完整版)高中数学选修2-2综合测试题(附答案)

(完整版)高中数学选修2-2综合测试题(附答案)

高二数学选修2-2综合测试题一、选择题:1、i 是虚数单位。

已知复数413(1)3iZ i i+=++-,则复数Z 对应点落在( ) A .第四象限 B .第三象限 C .第二象限 D .第一象限2、在古希腊,毕达哥拉斯学派把1,3,6,10,15,21,28,…这些数叫做三角形数,因为这些数对应的点可以排成一个正三角形1 3 6 10 15 则第n 个三角形数为( ) A .n B .2)1(+n n C .12-n D .2)1(-n n 3、求由曲线y x =2y x =-+及y 轴所围成的图形的面积错误..的为( ) A.4(2)x x dx -+⎰B.0xdx ⎰C.222(2)y y dy ---⎰ D.022(4)y dy --⎰4、设复数z 的共轭复数是z ,且1z =,又(1,0)A -与(0,1)B 为定点,则函数()f z =(1)z +()z i -︱取最大值时在复平面上以z ,A,B 三点为顶点的图形是A,等边三角形 B,直角三角形 C,等腰直角三角形 D,等腰三角形5、函数f(x)的定义域为R ,f(-1)=2,对任意x R ∈,'()2f x >,则()24f x x >+的解集为(A)(-1,1) (B)(-1,+∞) (c)(-∞,-l) (D)(-∞,+∞)6、用数学归纳法证明412135()n n n +++∈N 能被8整除时,当1n k =+时,对于4(1)12(1)135k k +++++可变形为A.41412156325(35)k k k +++++·B.441223355k k ++··C.412135k k +++D.412125(35)k k +++7、设f (x ),g (x )分别是定义在R 上的奇函数和偶函数,当x <0时,f ′(x )g (x )+f (x )g ′(x )>0,且(3)0g -=,则不等式f (x )g (x )<0的解集是( ) A. (-3,0)∪(3,+∞) B. (-3,0)∪(0,3)C.(-∞,-3)∪(3,+∞)D. (-∞,-3)∪(0,3) 8、已知函数2()f x x bx =+的图象在点(1,(1))A f 处的切线的斜率为3,数列⎭⎬⎫⎩⎨⎧)(1n f的前n 项和为n S ,则2011S 的值为( )20122011.20112010.20102009.20092008.D C B A9、设函数f(x)=kx 3+3(k -1)x 22k -+1在区间(0,4)上是减函数,则k 的取值范围是 ( )A.13k <B.103k <≤C.103k ≤≤D.13k ≤10、函数()y f x =在定义域3(,3)2-内可导,其图象如图所示,记()y f x =的导函数为()y f x '=,则不等式()0f x '≤的解集为 ( ) A .[)1,12,33⎡⎤-⎢⎥⎣⎦ B .[]481,2,33⎡⎤-⎢⎥⎣⎦C .[]31,1,222⎡⎤-⎢⎥⎣⎦D .3148,1,,32233⎛⎤⎡⎤⎡⎫-- ⎪⎥⎢⎥⎢⎝⎦⎣⎦⎣⎭11、 已知函数)(131)(23R b a bx ax x x f ∈+-+=、在区间[-1,3]上是减函数,则b a +的最小值是A.32B.23C.2D. 312、函数32()393,f x x x x =--+若函数()()[2,5]g x f x m x =-∈-在上有3个零点,则m 的取值范围为( ) A .(-24,8) B .(-24,1]C .[1,8]D .[1,8)高二数学选修2-2综合测试题(答题卡)一、选择题(60分)。

最新人教版高中数学选修2-2综合测试题及答案2套

最新人教版高中数学选修2-2综合测试题及答案2套

最新人教版高中数学选修2-2综合测试题及答案2套最新人教版高中数学选修2-2综合测试题及答案2套模块综合检测(A)一、选择题1.复数z=2-i(i为虚数单位)在复平面内对应的点所在象限为()A。

第一象限B。

第二象限C。

第三象限D。

第四象限解析:∵z=2-i=(2.-1),在第四象限.∴复数z对应的点的坐标为(2.-1)。

答案:D2.函数f(x)=x^3+4x+5的图象在x=1处的切线在x轴上的截距为()A。

10B。

5/3C。

-1D。

-7/3解析:f′(x)=3x^2+4,f′(1)=7,f(1)=10,y-10=7(x-1),y=7(x-1)+10时,x=7/3.答案:D3.类比下列平面内的三个结论所得的空间内的结论成立的是()①平行于同一直线的两条直线平行;②一条直线如果与两条平行直线中的一条垂直,则必与另一条垂直;③如果一条直线与两条平行直线中的一条相交,则必与另一条相交。

A。

①②③B。

①③C。

①D。

②③解析:类比①的结论为:平行于同一个空间的两个平面平行,成立;类比②的结论为:一个空间如果与两个平行平面中的一个垂直,则必与另一个垂直,成立;类比③的结论为:如果一个空间与两个平行平面中的一个相交,则必与另一个相交,成立。

答案:A4.函数y=x^3-3x^2-9x(-2<x<2)有()A。

极大值5,极小值-27B。

极大值5,极小值-11C。

极大值5,无极小值D。

极小值-27,无极大值解析:y′=3x^2-6x-9=3(x-3)(x+1),得x=-1,x=3,当x0;当x>-1时,y′<0.当x=-1时,y极大值=5,x取不到3,无极小值。

答案:C5.函数y=4x^2+1/x的单调递增区间是()A。

(0,+∞)B。

(-∞,1)C。

(1,2)D。

(2,+∞)解析:令y′=8x-1/x^2=0,即x=1/2,y′(x)=8x-1/x^2>0,所以y=4x^2+1/x在(0,+∞)上单调递增。

高中数学 综合测试题3 新人教A版选修2-2

高中数学 综合测试题3 新人教A版选修2-2

高中新课标数学选修(2-2)综合测试题一、选择题1.函数2y x =在区间[12],上的平均变化率为( ) A.2 B.3 C.4 D.5答案:B2.已知直线y kx =是ln y x =的切线,则k 的值为( )A.1e B.1e- C.2e D.2e -答案:A3.如果1N 的力能拉长弹簧1cm ,为了将弹簧拉长6cm (在弹性限度内)所耗费的功为( ) A.0.18J B.0.26J C.0.12J D.0.28J答案:A4.方程2(4)40()x i x ai a ++++=∈R 有实根b ,且z a bi =+,则z =( )A.22i - B.22i + C.22i -+ D.22i --答案:A5.ABC △内有任意三点不共线的2002个点,加上A B C ,,三个顶点,共2005个点,把这2005个点连线形成不重叠的小三角形,则一共可以形成小三角形的个数为( ) A.4005 B.4002 C.4007 D.4000答案:A6.数列1,2,2,3,3,3,4,4,4,4,的第50项( ) A.8 B.9 C.10 D.11答案:C7.在证明()21f x x =+为增函数的过程中,有下列四个命题:①增函数的定义是大前提;②增函数的定义是小前提;③函数()21f x x =+满足增函数的定义是大前提;④函数()21f x x =+满足增函数的定义是大前提.其中正确的命题是( ) A.①② B.②④ C.①③ D.②③答案:C8.若a b ∈R ,,则复数22(45)(26)a a b b i -++-+-表示的点在( ) A.第一象限B.第二象限C.第三象限D.第四象限答案:D9.一圆的面积以210πcm /s 速度增加,那么当圆半径20cm r =时,其半径r 的增加速率u 为( )A.12cm/s B.13 cm/s C.14 cm/s D.15 cm/s答案:C10.用数学归纳法证明不等式“11113(2)12224n n n n +++>>++”时的过程中,由n k =到1n k =+时,不等式的左边( )A.增加了一项12(1)k +B.增加了两项11212(1)k k +++ C.增加了两项11212(1)k k +++,又减少了一项11k + D.增加了一项12(1)k +,又减少了一项11k +答案:C11.在下列各函数中,值域不是[22]-,的函数共有( ) (1)(sin )(cos )y x x ''=+ (2)(sin )cos y x x '=+ (3)sin (cos )y x x '=+(4)(sin )(cos )y x x ''=· A.1个B.2个C.3个D.4个答案:C12.如图是函数32()f x x bx cx d =+++的大致图象,则2212x x +等于( ) A.23B.43 C.83D.123答案:C二、填空题13.函数3()31f x x x =-+在闭区间[30]-,上的最大值与最小值分别为 .答案:3,17-14.若113z i =-,268z i =-,且12111z z z +=,则z 的值为 .答案:42255i -+15.用火柴棒按下图的方法搭三角形:按图示的规律搭下去,则所用火柴棒数n a 与所搭三角形的个数n 之间的关系式可以是 .答案:21n a n =+16.物体A 的运动速度v 与时间t 之间的关系为21v t =-(v 的单位是m/s ,t 的单位是s ),物体B 的运动速度v 与时间t 之间的关系为18v t =+,两个物体在相距为405m 的同一直线上同时相向运动.则它们相遇时,A 物体的运动路程为 .答案:72m三、解答题17.已知复数1z ,2z 满足2212121052z z z z +=,且122z z +为纯虚数,求证:123z z -为实数.证明:由2212121052z z z z +=,得22112210250z z z z -+=, 即221212(3)(2)0z z z z -++=,那么222121212(3)(2)[(2)]z z z z z z i -=-+=+, 由于,122z z +为纯虚数,可设122(0)z z bi b b ==∈≠R ,且, 所以2212(3)z z b -=,从而123z z b -=±, 故123z z -为实数.18.用总长14.8的钢条做一个长方体容器的框架,如果所做容器的底面的一边长比另一边长多0.5m ,那么高是多少时容器的容积最大?并求出它的最大容积.解:设该容器底面矩形的短边长为x cm ,则另一边长为(0.5)x +m ,此容器的高为14.8(0.5) 3.224y x x x =--+=-, 于是,此容器的容积为:32()(0.5)(3.22)2 2.2 1.6V x x x x x x x =+-=-++,其中0 1.6x <<,即2()6 4.4 1.60V x x x '=-++=,得11x =,2415x =-(舍去), 因为,()V x '在(01.6),内只有一个极值点,且(01)x ∈,时,()0V x '>,函数()V x 递增; (11.6)x ∈,时,()0V x '<,函数()V x 递减;所以,当1x =时,函数()V x 有最大值3(1)1(10.5)(3.221) 1.8m V =⨯+⨯-⨯=, 即当高为1.2m 时,长方体容器的空积最大,最大容积为31.8m . 19.如图所示,已知直线a 与b 不共面,直线c a M =,直线b c N =,又a 平面A α=,b 平面B α=,c 平面C α=,求证:A B C ,,三点不共线.证明:用反证法,假设A B C ,,三点共线于直线l , A B C α∈,,∵,l α⊂∴.c l C =∵,c ∴与l 可确定一个平面β. c a M =∵,M β∈∴.又A l ∈,a β⊂∴,同理b β⊂,∴直线a ,b 共面,与a ,b 不共面矛盾. 所以A B C ,,三点不共线.20.已知函数32()31f x ax x x =+-+在R 上是减函数,求a 的取值范围.解:求函数()f x 的导数:2()361f x ax x '=+-. (1)当()0()f x x '<∈R 时,()f x 是减函数.23610()0ax x x a +-<∈⇔<R 且36120a ∆=+<3a ⇔<-.所以,当3a <-时,由()0f x '<,知()()f x x ∈R 是减函数; (2)当3a =-时,33218()331339f x x x x x ⎛⎫=-+-+=--+ ⎪⎝⎭,由函数3y x =在R 上的单调性,可知当3a =-时,()()f x x ∈R 是减函数; (3)当3a >-时,在R 上存在使()0f x '>的区间,所以,当3a >-时,函数()()f x x ∈R 不是减函数. 综上,所求a 的取值范围是(3)--,∞.21.若0(123)i x i n >=,,,,,观察下列不等式:121211()4x x x x ⎛⎫++ ⎪⎝⎭≥,123123111()9x x x x x x ⎛⎫++++ ⎪⎝⎭≥,,请你猜测1212111()n nx x x x x x ⎛⎫++++++⎪⎝⎭满足的不等式,并用数学归纳法加以证明.解:满足的不等式为21212111()(2)n n x x x n n x x x ⎛⎫++++++⎪⎝⎭≥≥,证明如下: 1.当2n =时,结论成立;2.假设当n k =时,结论成立,即21212111()k kx x x k x x x ⎛⎫++++++⎪⎝⎭12121121121111111()()1k k k k k x x x x x x x x x x x x x ++⎛⎫⎛⎫=+++++++++++++++ ⎪ ⎪⎝⎭⎝⎭· 212111)1k kk x x x x ⎛⎫+++++++ ⎪⎝⎭≥ 2221(1)k k k ++=+≥.显然,当1n k =+时,结论成立.22.设曲线2(0)y ax bx c a =++<过点(11)-,,(11),. (1)用a 表示曲线与x 轴所围成的图形面积()S a ; (2)求()Sa 的最小值.解:(1)曲线过点(11)-,及(11),,故有1a b c a b c =-+=++,于是0b =且1c a =-,令0y =,即2(1)0ax a +-=,得x = 记α=,β,由曲线关于y 轴对称, 有2300()2[(1)]2(1)3a S a ax a dx x a x ββ⎡⎤=+-=+-⎢⎥⎣⎦⎰|2(13a a ⎡=-=⎢⎣· (2)()S a 3(1)()(0)a f a a a-=<,则223221(1)()[3(1)(1)](21)a f a a a a a a a -'=---=+.令()0f a '=,得12a =-或1a =(舍去).又12a ⎛⎫∈-- ⎪⎝⎭,∞时,()0f x'<;102a ⎛⎫∈- ⎪⎝⎭,时,()0f x '>.所以,当12a =-时,()f a 有最小值274,此时()S a高中新课标数学选修(2-2)综合测试题一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数cos sin y x x x =-的导数为 ( ) (A )cos x x (B )sin x x - (C )sin x x (D )cos x x -2.下列说法正确的是 ( ) (A )当0()0f x '=时,0()f x 为()f x 的极大值(B )当0()0f x '=时,0()f x 为()f x 的极小值 (C )当0()0f x '=时,0()f x 为()f x 的极值 (D )当0()f x 为()f x 的极值时, 0()0f x '=3.如果z 是34i +的共轭复数,则z 对应的向量OA 的模是 ( ) (A )1 (B 7 (C 13(D )54.若函数3()y a x x =-的递减区间为33(,33-,则a 的取值范围是 ( ) (A )(0,)+∞ (B )(1,0)- (C )(1,)+∞ (D )(0,1)5.下列四条曲线(直线)所围成的区域的面积是 ( ) (1)sin y x =;(2) s y co x =; (3)4x π=-;(4) 4x π=2 (B)22226.由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,叫 ( )(A )合情推理 (B )演绎推理 (C )类比推理 (D )归纳推理7.复数a bi -与c di +的积是实数的充要条件是 ( ) (A )0ad bc += (B )0ac bd += (C )0ad bc -= (D )0ac bd -= 8.已知函数1sin 2sin 2y x x =+,那么y '是 ( ) (A )仅有最小值的奇函数 (B )既有最大值又有最小值的偶函数 (C )仅有最大值的偶函数 (D )非奇非偶函数9.用边长为48厘米的正方形铁皮做一个无盖的铁盒时,在铁皮的四角各截去一个面积相等的小正方形,然后把四边折起,就能焊成铁盒。

(必考题)高中数学高中数学选修2-2第四章《定积分》测试卷(含答案解析)(1)

(必考题)高中数学高中数学选修2-2第四章《定积分》测试卷(含答案解析)(1)

一、选择题1.由曲线22y x =和直线4y x =-所围成的图形的面积( )A .18B .19C .20D .212.已知函数sin (11)()1(12)x x f x x x-≤≤⎧⎪=⎨<≤⎪⎩,则21()f x dx -=⎰( )A .ln 2B .ln 2-C .12-D .3cos 1-3.在1100x y x y ==-=,,,围成的正方形中随机投掷10000个点,则落入曲线20x y -=,1y =和y 轴围成的区域的点的个数的估计值为( )A .5000B .6667C .7500D .78544.直线4y x =与曲线3y x =在第一象限内围成的封闭图形的面积为( ) A .22B .42C .2D .45.如图所示的阴影部分是由x 轴,直线1x =及曲线1x y e =-围成,现向矩形区域OABC 内随机投掷一点,则该点落在阴影部分的概率是( )A .1eB .11e - C .11e-D .21e e -- 6.已知是i 虚数单位,复数()1a i z a R i -=∈-,若01||(sin )z x dx ππ=-⎰,则a =( ) A .±1 B .1 C .1- D .12±7.三棱锥D ABC -及其正视图和侧视图如图所示,且顶点,,,A B C D 均在球O 的表面上,则球O 的表面积为( )A .32πB .36πC .128πD .144π8.已知幂函数a y x =图像的一部分如下图,且过点(2,4)P ,则图中阴影部分的面积等于( )A .163B .83C .43D .239.设曲线e xy x =-及直线0y =所围成的封闭图形为区域D ,不等式组1102x y -≤≤⎧⎨≤≤⎩所确定的区域为E ,在区域E 内随机取一点,则该点落在区域D 内的概率为A .2e 2e 14e--B .2e 2e 4e-C .2e e 14e--D .2e 14e-10.一物体在力F (x )=3x 2-2x +5(力单位:N ,位移单位:m)作用力下,沿与力F (x )相同的方向由x =5 m 直线运动到x =10 m 处做的功是( ). A .925 J B .850 JC .825 JD .800 J11.已知11em dx x=⎰,函数()f x 的导数()()()f x a x m x a '=++,若()f x 在x a =-处取得极大值,则a 的取值范围是( ) A .1a < B .10a -<< C .1a >或0a <D .01a <<或0a <12.二维空间中圆的一维测度(周长)2l r π=,二维测度(面积)2S r π=,观察发现()S r l '=:三维空间中球的二维测度(表面积)24S r π=,三维测度(体积)343V r π=,观察发现()V r S '=.则由四维空间中“超球”的三维测度38V r π=,猜想其四维测度W =( ). A .224r πB .283r πC .514r πD .42r π二、填空题13.定积分211dx x⎰的值等于________. 14.由曲线2y x=,直线y =2x ,x =2所围成的封闭的图形面积为______.15.()1||214x ex dx -+-=⎰__________________16.在下列命题中 ①函数1()f x x=在定义域内为单调递减函数; ②已知定义在R 上周期为4的函数()f x 满足(2)(2)f x f x -=+,则()f x 一定为偶函数;③若()f x 为奇函数,则()2()(0)aaaf x dx f x dx a -=>⎰⎰;④已知函数32()(0)f x ax bx cx d a =+++≠,则0a b c ++=是()f x 有极值的充分不必要条件;⑤已知函数()sin f x x x =-,若0a b +>,则()()0f a f b +>. 其中正确命题的序号为___________________(写出所有正确命题的序号).17.设函数()f x 的图象与直线,x a x b ==及x 轴所围成图形的面积称为函数()f x 在[],a b 上的面积,已知函数()sin f x nx =在0,2n π⎡⎤⎢⎥⎣⎦上的面积为1n()*n N ∈,则函数()()sin 32f x x π=-+在4,33ππ⎡⎤⎢⎥⎣⎦上的面积为__________.18.计算()2224x x dx -+-⎰得__________.19.如图,两曲线2y x =,2y x 围成图面积__________.20.定积分11d ex x ⎰的值为____________________. 三、解答题21.已知函数2()ln f x x a x =-(a R ∈),()F x bx =(b R ∈). (1)讨论()f x 的单调性;(2)设2a =,()()()g x f x F x =+,若12,x x (120x x <<)是()g x 的两个零点,且1202x x x +=, 试问曲线()y g x =在点0x 处的切线能否与x 轴平行?请说明理由.22.函数()ln ,kf x x k R x=+∈.若曲线()y f x =在点()(),e f e 处的切线与直线20x -=垂直,求()f x 的单调递减区间和极小值(其中e 为自然对数的底数).23.为了降低能源消耗,某冷库内部要建造可供使用20年的隔热层,每厘米厚的隔热层建造成本为4万元,又知该冷库每年的能源消耗费用c (单位:万元)与隔热层厚度x (单位:cm )满足关系()(010)25kc x x x =≤≤+,若不建隔热层,每年能源消耗为8万元.设()f x 为隔热层建造费用与20年的能源消耗费用之和. (1)求k 的值及()f x 的表达式;(2)隔热层修建多厚时,总费用()f x 达到最小?并求最小值.24.求由抛物线28(0)y x y =>与直线60x y +-=及0y =所围成图形的面积. 25.利用定积分的定义,计算2211d x x ⎰的值. 26.已知函数()ln mf x x x=+()m R ∈. (1)若函数()f x 的图象与直线240x y +-=相切,求m 的值; (2)求()f x 在区间[]1,2上的最小值;(3)若函数()f x 有两个不同的零点1x , 2x ,试求实数m 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】画出两曲线的图像,求得交点坐标,由定积分求得图形的面积即可. 【详解】根据题意,画出量曲线的图像,设其交点为,A B ,如下所示:联立22y x =和4y x =-, 解得()()2,2,8,4A B -, 根据抛物线的对称性, 即可得两曲线围成的面积28222d (24)d S x x x x x =++⎰⎰23022021622d 2233x x x ⎛⎫⎰== ⎪⎝⎭ 82(24)d x x x +⎰83222212432x x x ⎫=-+⎪⎭322212884832⎫=⨯-⨯+⨯⎪⎭322213822242323⎫-⨯-⨯+⨯=⎪⎭故所求面积为28222d (24)d x x x x x ++⎰⎰163833=+ 18=.故选:A. 【点睛】本题考查由定积分求解曲边梯形的面积,需要注意的是,本题中需要对曲边梯形的面积进行拆分求解,这是本题的难点.2.A解析:A将所求积分分成两段来进行求解,根据积分运算法则可求得结果. 【详解】()21212111111sin cos ln cos1cos1ln 2ln1ln 2f x dx xdx dx x x x ---=+=-+=-++-=⎰⎰⎰ 故选:A 【点睛】本题考查积分的计算问题,关键是能够按照分段函数的形式将所求积分进行分段求解.3.B解析:B 【分析】应用微积分基本定理求出对应的原函数,再由定积分定义求出空白区域面积,由正方形面积减去空白区域面积即可求出阴影部分面积,结合几何概型可推导出对应区域内的点的个数 【详解】由微积分基本定理可求出2yx 的原函数为()313F x x =,空白区域面积为31101133S x ==,故阴影部分面积212133S =-=,由几何概型可知,落入阴影部分的点数估计值为21000066673⨯≈ 故选:B 【点睛】本题考查定积分与微积分的基本定理,几何概型,属于基础题4.D解析:D 【解析】直线4y x =与曲线3y x =的交点坐标为(0,0)和(2,8), 故直线4y x =与曲线3y x =在第一象限内围成的封闭图形的面积23242001(4)2|8444S x x dx x x ⎛⎫=⎰-=-=-= ⎪⎝⎭.故选D .5.D【解析】试题分析:由几何概型可知,所求概率为.考点:几何概型、定积分.6.A解析:A 【解析】 因为11122a i a a z i i -+-==+-,所以222111()()22222a a z a +-=+=+,由定积分公式0011(sin )[cos ]|1x dx x x ππππ-=--=⎰,故22122112a a +=⇒=,即1a =±,应选答案A 。

人A数学选修2-2 阶段测试 (3)

人A数学选修2-2 阶段测试 (3)

选修2-2综合测评 (时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分) 1.已知复数z =21-i,则z 2-z ·z 等于( ) A .-2+2i B .2i C .-2-2iD .-2i解析:∵z =21-i =2(1+i )(1-i )(1+i )=1+i ,∴z =1-i ,∴z 2-z ·z =(1+i)2-(1+i)(1-i)=2i -2=-2+2i. 答案:A2.(2019·福建三明高二月考)某演绎推理的“三段”分解如下:①函数f (x )=13x 是减函数;②指数函数y =a x (0<a <1)是减函数;③函数f (x )=13x 是指数函数,则按照演绎推理的三段论模式,排序正确的是( )A .①→②→③B .③→②→①C .②→①→③D .②→③→①解析:按照演绎推理的三段论模式可得,已知指数函数y =a x (0<a <1)是减函数,因为函数f (x )=13x ⎝ ⎛⎭⎪⎫0<13<1是指数函数,所以函数f (x )=13x 是减函数,即排序正确的是②→③→①,故选D.答案:D3.如图,曲线f (x )=x 2和g (x )=2x 围成几何图形的面积是( )A.12 B.23C.43D.4解析:由f(x)=x2与g(x)=2x得x2=2x,得x=0或x=2,=4-83=43,故选C.答案:C4.设z=(2t2+5t-3)+(t2-2t+2)i,t∈R,则下列命题中正确的是() A.z对应的点Z在第一象限B.z对应的点Z在第四象限C.z不是纯虚数D.z是虚数解析:当t=12或t=-3时,2t2+5t-3=0,此时z为纯虚数,C不正确;当-3<t<12时,2t2+5t-3<0,又t2-2t+2>0,此时z对应的点Z在第二象限,当t<-3或t>12时,2t2+5t-3>0,又t2-2t+2>0,此时z对应的点Z在第一象限,A、B不正确;∵t2-2t+2>0恒成立,∴z是虚数,D正确.故选D.答案:D5.(2019·蚌埠二中高二检测)已知函数y=f(x)的导函数y=f′(x)的图象如图所示,则()A.函数f(x)有1个极大值点,1个极小值点B.函数f(x)有2个极大值点,2个极小值点C.函数f(x)有3个极大值点,1个极小值点D.函数f(x)有1个极大值点,3个极小值点解析:根据导函数的图象知,在x2处导函数由大于0变为小于0,此时原函数有极大值,在x3处导函数由小于0变为大于0,此时原函数有极小值,在x1,x4处导函数没有正负变化无极值点,故选A.答案:A6.设函数f(x)=x cos x+(a-2)x sin x+ax.若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为()A.y=x B.y=2xC.y=4x D.y=3x解析:∵函数f(x)=x cos x+(a-2)x sin x+ax为奇函数,∴a=2.∴f(x)=x cos x+2x,∴f′(x)=cos x-x sin x+2,∴f′(0)=cos 0+2=3,∴曲线y=f(x)在(0,0)处的切线方程为y=3x.故选D.答案:D7.(2019·南阳一中高二月考)定积分|x|d x=()A.52B.-52C.32D.-32解析:如图,|x |d x =12+2=52,故选A.答案:A8.已知函数f (x )=x 3+ax 2+bx +a 2在x =1处取得极值10,则实数a =( ) A .4或-3 B .4或-11 C .4D .-3解析:∵f (x )=x 3+ax 2+bx +a 2, ∴f ′(x )=3x 2+2ax +b . ∵f (x )在x =1处取得极值10,∴⎩⎪⎨⎪⎧ f ′(1)=0,f (1)=10,即⎩⎪⎨⎪⎧3+2a +b =0,1+a +b +a 2=10,解得⎩⎪⎨⎪⎧a =-3,b =3或⎩⎪⎨⎪⎧a =4,b =-11,经检验⎩⎪⎨⎪⎧a =-3,b =3时函数f (x )在R 上单调递增,无极值,不符合题意,当⎩⎪⎨⎪⎧ a =4,b =-11时函数f (x )在x =1处取得极小值10, ∴⎩⎪⎨⎪⎧a =4,b =-11,故选C. 答案:C9.设f (x )=13x 3+ax 2+5x +6在区间[1,3]上为单调函数,则实数a 的取值范围是()A.[-5,+∞)B.(-∞,-3]C.(-∞,-3]∪[-5,+∞)D.[-5,5]解析:f′(x)=x2+2ax+5.由f′(x)≥0在[1,3]上恒成立,或f′(x)≤0在[1,3]上恒成立,得a≥-x2-52x或a≤-x2-52x,设g(x)=-x2-52x=-⎝⎛⎭⎪⎫x2+52x,则g(x) 在[1,3]上的值域为[-3,-5],∴a≤-3或a≥- 5.答案:C10.给出下面三个推理:①由“若a、b是实数,则|a+b|≤|a|+|b|”推广到复数中,则有“若z1、z2是复数,则|z1+z2|≤|z1|+|z2|”;②由“在半径为R的圆内接矩形中,正方形的面积最大”类比推出“在半径为R的球内接长方体中,正方体的体积最大”;③以半径R为自变量,由“圆面积函数的导函数是圆的周长函数”类比推出“球体积函数的导函数是球的表面积函数”.其中,推理得到的结论正确的个数有()A.0个B.1个C.2个D.3个解析:由复数的几何意义知,①正确;设球的内接长方体的长、宽、高分别为a、b、c,则a2+b2+c2=(2R)2,由基本不等式a2+b2+c2≥33a2b2c2,即abc ≤,当且仅当a =b =c 时,等式成立,即正方体的体积最大,②正确;球的体积V =43πR 3,则V ′=4πR 2,③正确,综上所述,三个推理均正确.故选D.答案:D11.(2019·哈尔滨师大附中月考)已知函数f (x )=x 3-ln(x 2+1-x ),则对于任意实数a ,b (a +b >0),则f (a )+f (b )a +b的值为( ) A .恒正 B .恒等于0 C .恒负D .不确定解析:可知函数f (x )+f (-x )=x 3-ln(x 2+1-x )+(-x )3-ln(x 2+1+x )=0,所以函数为奇函数,同时f ′(x )=3x 2+1x 2+1>0,f (x )是递增函数,f (a )+f (b )a +b =f (a )-f (-b )a -(-b ),所以f (a )+f (b )a +b>0,所以选A.答案:A12.(2019·江西赣州十四县(市)期中联考)设f (x )=e x (x 2+2x ),令f 1(x )=f ′(x ),f n +1(x )=f ′n (x ),若f n (x )=e x (A n x 2+B n x +C n ),则数列⎩⎨⎧⎭⎬⎫1C n 的前n 项和为S n ,当|S n-1|≤12 019时,n 的最小整数值为( )A .2 017B .2 018C .2 019D .2 020解析:由题意得f 1(x )=(2x +2)e x +(x 2+2x )e x =(x 2+4x +2)e x , f 2(x )=(2x +4)e x +(x 2+4x +2)e x =(x 2+6x +6)e x , f 3(x )=(2x +6)e x +(x 2+6x +6)e x =(x 2+8x +12)e x ,…由此可得C 1=2,C 2=6,C 3=12,故可归纳得C n =n (n +1),∴1C n=1n (n +1)=1n -1n +1,∴S n =⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1=1-1n +1, 由题意得|S n -1|=1n +1≤12 019,解得n ≥2 018.∴n 的最小整数值为2 018.故选B.答案:B二、填空题(本大题共4小题,每小题5分,共20分) 13.若复数z =3-i|2-i|,则|z |=________. 解析:z =3-i |2-i|=3-i 5,∴|z |=|3-i|5=105= 2. 答案: 214.对大于或等于2的正整数的幂运算有如下分解方式: 22=1+332=1+3+542=1+3+5+7…23=3+533=7+9+1143=13+15+17+19…根据上述分解规律,若m 2=1+3+5+…+11,p 3的分解中最小的正整数是21,则m +p =______.解析:由所给等式推测m =6,p =5,∴m +p =11. 答案:1115.已知z 1=m 2-(m 2-3m )i ,z 2=(m 2-4m +3)i +10(m ∈R ),若z 1<z 2,求实数m 的取值为________.解析:∵z 1<z 2,∴z 1与z 2均为实数,∴⎩⎪⎨⎪⎧m 2-3m =0,m 2-4m +3=0,∴m =3.答案:316.对于三次函数y =ax 3+bx 2+cx +d (a ≠0),给出定义:设f ′(x )是函数y =f (x )的导数,f ″(x )是f ′(x )的导数,若方程f ″(x )=0有实数解x 0,则称点(x 0,f (x 0))为函数y =f (x )的“拐点”.某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心,若f (x )=13x 3-12x 2+3x -512,根据这一发现可得:(1)函数f (x )=13x 3-12x 2+3x -512的对称中心为________. (2)计算f ⎝ ⎛⎭⎪⎫17+f ⎝ ⎛⎭⎪⎫27+f ⎝ ⎛⎭⎪⎫37+f ⎝ ⎛⎭⎪⎫47+f ⎝ ⎛⎭⎪⎫57+f ⎝ ⎛⎭⎪⎫67=________.解析:(1)依题意,f ′(x )=x 2-x +3, ∴f ″(x )=2x -1, 由2x -1=0得x =12,又f ⎝ ⎛⎭⎪⎫12=13×18-12×14+3×12-512=1,∴函数f (x )的对称中心为⎝ ⎛⎭⎪⎫12,1.(2)由f (x )的对称中心为⎝ ⎛⎭⎪⎫12,1,得f ⎝ ⎛⎭⎪⎫17+f ⎝ ⎛⎭⎪⎫67=2,f ⎝ ⎛⎭⎪⎫27+f ⎝ ⎛⎭⎪⎫57=2,f ⎝ ⎛⎭⎪⎫37+f ⎝ ⎛⎭⎪⎫47=2, ∴f ⎝ ⎛⎭⎪⎫17+f ⎝ ⎛⎭⎪⎫27+f ⎝ ⎛⎭⎪⎫37+f ⎝ ⎛⎭⎪⎫47+f ⎝ ⎛⎭⎪⎫57+f ⎝ ⎛⎭⎪⎫67=6. 答案:(1)⎝ ⎛⎭⎪⎫12,1 (2)6三、解答题(本大题共6小题,共70分)17.(10分)某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数:①sin 213°+cos 217°-sin 13°cos 17°; ②sin 215°+cos 215°-sin 15°cos 15°; ③sin 218°+cos 212°-sin 18°cos 12°; ④sin 2(-18°)+cos 248°-sin(-18°)cos 48°; ⑤sin 2(-25°)+cos 255°-sin(-25°)cos 55°.(1)试从上述五个式子中选择一个,求出这个常数;(2)根据(1)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论.解:(1)选择②式,计算如下: sin 215°+cos 215°-sin 15°cos 15° =1-12sin 30°=1-14=34.(2)三角恒等式为sin 2α+cos 2(30°-α)-sin αcos(30°-α)=34. 证法一:sin 2α+cos 2(30°-α)-sin αcos(30°-α)=sin 2α+(cos 30°cos α+sin 30°sin α)2-sin α(cos 30°cos α+sin 30°sin α)=sin 2α+34cos 2α+32sin αcos α+14sin 2α-32sin αcos α-12sin 2α=34sin 2α+34cos 2α=34. 证法二:sin 2α+cos 2(30°-α)-sin αcos(30°-α)=1-cos 2α2+1+cos (60°-2α)2-sin α(cos 30°cos α+sin 30°sin α) =12-12cos 2α+12+12(cos 60°cos 2α+sin 60°sin 2α)-32sin αcos α-12sin 2α =12-12cos 2α+12+14cos 2α+34sin 2α-34sin 2α-14(1-cos 2α) =1-14cos 2α-14+14cos 2α=34.18.(12分)(1)已知x 2-y 2+2xy i =2i ,求实数x ,y 的值;(2)关于x 的方程3x 2-a2x -1=(10-x -2x 2)i 有实根,求实数a 的值.解:(1)∵x 2-y 2+2xy i =2i ,x ,y ∈R , ∴⎩⎨⎧ x 2-y 2=0,2xy =2,解得⎩⎨⎧ x =1,y =1或⎩⎨⎧x =-1,y =-1.(2)∵关于x 的方程3x 2-a2x -1=(10-x -2x 2)i 有实根,且a ∈R , ∴⎩⎪⎨⎪⎧3x 2-a 2x -1=0,10-x -2x 2=0,解得⎩⎨⎧x =2,a =11或⎩⎪⎨⎪⎧x =-52,a =-715.19.(12分)已知数列{a n }的前n 项和为S n ,a 1=-23,满足S n +1S n+2=a n (n ≥2),(1)求S 2,S 3,S 4;(2)根据(1)猜想S n 的表达式,并用数学归纳法证明.解:(1)由a 1=-23,及S n +1S n+2=a n (n ≥2)可算得S 1=-23,S 2=-34,S 3=-45,S 4=-56.(2)由此猜想S n 的表达式是S n =-n +1n +2.下面用数学归纳法证明:①由a 1=S 1=-23=-1+11+2知,当n =1时,等式成立; ②当n ≥2时,假设n =k (k ≥1)时等式成立,即S k =-k +1k +2,那么,当n =k +1时,由S n +1S n +2=a n (n ≥2)得 S k +1+1S k +1+2=a k +1,得-1S k +1=(S k +1-a k +1)+2,而S k =S k +1-a k +1,∴-1S k +1=S k +2=-k +1k +2+2=k +3k +2, ∴S k +1=-k +2k +3=-(k +1)+1(k +1)+2. 所以当n =k +1时,等式成立.综合①②可知,对任意的正整数n ,有S n =-n +1n +2成立. 20.(12分)已知非零实数a ,b ,c 成等差数列,且公差d ≠0,求证:1a ,1b ,1c 不可能是等差数列.证明:假设1a ,1b ,1c 成等差数列,则1a +1c =2b ,又∵a ,b ,c 成等差数列,∴a +c =2b ,∴b =a +c 2,把b =a +c 2代入1a +1c =2b ,得(a -c )2=0,∴a =c ,∴c -a =2d =0,这与公差d ≠0矛盾,∴1a ,1b ,1c 不可能是等差数列.21.(12分)(2019·乾安中学高三模拟)在各项为正的数列{a n }中,数列的前n项和S n 满足S n =12⎝ ⎛⎭⎪⎫a n +1a n . (1)求a 1,a 2,a 3;(2)由(1)猜想到数列{a n }的通项公式,并用数学归纳法证明你的猜想.解:(1)由S 1=a 1=12⎝ ⎛⎭⎪⎫a 1+1a 1,得a 21=1,因为a n >0,所以a 1=1.由S 2=a 1+a 2=12⎝ ⎛⎭⎪⎫a 2+1a 2, 得a 22+2a 2-1=0,所以a 2=2-1,由S 3=a 1+a 2+a 3=12⎝ ⎛⎭⎪⎫a 3+1a 3, 得a 23+22a 3-1=0,所以a 3=3- 2.(2)猜想a n =n -n -1(n ∈N +).证明:①当n =1时,a 1=1-0=1,命题成立;②假设n =k (k ≥1,k ∈N +)时,a k =k -k -1成立,则n =k +1时,a k +1=S k +1-S k=12⎝⎛⎭⎪⎫a k +1+1a k +1-12⎝ ⎛⎭⎪⎫a k +1a k , 即a k +1=12⎝ ⎛⎭⎪⎫a k +1+1a k +1-12k -k -1+1k -k -1=12⎝⎛⎭⎪⎫a k +1+1a k +1-k , 所以a 2k +1+2ka k +1-1=0.所以a k +1=k +1-k ,则n =k +1时,命题成立.由①②知,n ∈N +,a n =n -n -1.22.(12分)(2019·长庆高中高三阶段测试)设函数f (x )=a e x ln x +b e x -1x ,曲线y=f (x )在点(1,f (1))处的切线方程为y =e(x -1)+2.(1)求a ,b ;(2)证明:f (x )>1.解:(1)函数f (x )的定义域为(0,+∞),f ′(x )=a e x ln x +a x e x -b x 2e x -1+b x e x -1.由题意可得f (1)=2,f ′(1)=e.故a =1,b =2.(2)证明:由(1)知,f (x )=e x ln x +2x e x -1,从而f (x )>1等价于x ln x >x e -x -2e .设函数g (x )=x ln x ,则g ′(x )=1+ln x .所以当x ∈⎝ ⎛⎭⎪⎫0,1e 时,g ′(x )<0; 当x ∈⎝ ⎛⎭⎪⎫1e ,+∞时,g ′(x )>0. 故g (x )在⎝ ⎛⎭⎪⎫0,1e 上单调递减,在⎝ ⎛⎭⎪⎫1e ,+∞上单调递增, 从而g (x )在(0,+∞)上的最小值为g ⎝ ⎛⎭⎪⎫1e =-1e . 设函数h (x )=x e -x -2e ,则h ′(x )=e -x (1-x ).所以当x ∈(0,1)时,h ′(x )>0;当x ∈(1,+∞)时,h ′(x )<0.故h (x )在(0,1)上单调递增,在(1,+∞)上单调递减,从而h (x )在(0,+∞)上的最大值为h (1)=-1e .所以g (x )≥-1e ≥h (x ),又因为等号无法同时取到,所以g (x )>h (x ),即f (x )>1.。

(完整版)数学选修2-2练习题及答案

(完整版)数学选修2-2练习题及答案

目录:数学选修2-2第一章 导数及其应用 [基础训练A 组] 第一章 导数及其应用 [综合训练B 组] 第一章 导数及其应用 [提高训练C 组] 第二章 推理与证明 [基础训练A 组] 第二章 推理与证明 [综合训练B 组]第二章 推理与证明 [提高训练C 组] 第三章 复数 [基础训练A 组] 第三章 复数 [综合训练B 组]第三章 复数 [提高训练C 组](数学选修2-2)第一章 导数及其应用[基础训练A 组]一、选择题1.若函数()y f x =在区间(,)a b 内可导,且0(,)x a b ∈则000()()limh f x h f x h h→+--的值为( )A .'0()f xB .'02()f xC .'02()f x - D .02.一个物体的运动方程为21t t s +-=其中s 的单位是米,t 的单位是秒, 那么物体在3秒末的瞬时速度是( ) A .7米/秒 B .6米/秒 C .5米/秒 D .8米/秒 3.函数3yx x 的递增区间是( )A .),0(+∞B .)1,(-∞C .),(+∞-∞D .),1(+∞4.32()32f x ax x =++,若'(1)4f -=,则a 的值等于( )A .319 B .316C .313 D .310 5.函数)(x f y =在一点的导数值为0是函数)(x f y =在这点取极值的( )A .充分条件B .必要条件C .充要条件D .必要非充分条件6.函数344+-=x x y 在区间[]2,3-上的最小值为( )A .72B .36C .12D .0二、填空题1.若3'0(),()3f x x f x ==,则0x 的值为_________________;2.曲线x x y 43-=在点(1,3)- 处的切线倾斜角为__________; 3.函数sin xy x=的导数为_________________; 4.曲线x y ln =在点(,1)M e 处的切线的斜率是_________,切线的方程为_______________; 5.函数5523--+=x x x y 的单调递增区间是___________________________。

(压轴题)高中数学高中数学选修2-2第四章《定积分》检测题(含答案解析)(2)

(压轴题)高中数学高中数学选修2-2第四章《定积分》检测题(含答案解析)(2)

一、选择题1.已知函数sin (11)()1(12)x x f x x x-≤≤⎧⎪=⎨<≤⎪⎩,则21()f x dx -=⎰( )A .ln 2B .ln 2-C .12-D .3cos 1-2.若2(sin cos )2x a x dx π-=⎰,则实数a 等于( )A .1-B .1C .3-D .33.曲线y =sin x ,y =cos x 与直线x =0,x =2π所围成的平面区域的面积为( ) A .π20⎰(sin x -cos x )d x B .2π40⎰(sin x -cos x )d x C .π20⎰(cos x -sin x )d xD .2π40⎰(cos x -sin x )d x4.已知函数()f x 的图像如图所示, ()f x '就()f x 的导函数,则下列数值排序正确的是( )A .()()()()224224f f f f <-'<'B .()()()()242242f f f f '<<-'C .()()()()222442f f f f '<<-'D .()()()()422422f f f f '<'-< 5.等比数列{}n a 中,36a =,前三项和3304S xdx =⎰,则公比q 的值为( )A .1-或12-B .1或12-C .12-D .16.曲线22y x x =-与直线11x x =-=,以及x 轴所围图形的面积为( ) A .2 B .83 C .43 D .237.已知二次函数()y f x =的图像如图所示 ,则它与x 轴所围图形的面积为( )A .25π B .43C .32D .2π 8.使函数()322912f x x x x a =-+-图象与x 轴恰有两个不同的交点,则实数a 可能的取值为( ) A .8B .6C .4D .29.设函数2e ,10()1,01x x f x x x ⎧-≤≤⎪=⎨-<≤⎪⎩,计算11()d f x x -⎰的值为( ) A .1e πe 4-+ B .e 1πe 4-+ C .e 12πe - D .e 1πe 2-+ 10.已知320n x dx =⎰,且21001210(2)(23)n x x a a x a x a x +-=+++⋅⋅⋅+,则12310012102310a a a a a a a a +++⋅⋅⋅++++⋅⋅⋅+的值为( )A .823B .845C .965-D .87711.20sin xdx π=⎰( )A .4B .2C .-2D .012.已知11em dx x=⎰,函数()f x 的导数()()()f x a x m x a '=++,若()f x 在x a =-处取得极大值,则a 的取值范围是( ) A .1a < B .10a -<< C .1a >或0a <D .01a <<或0a <二、填空题13.定积分121x x dx -⎰-=______.14.424(16)x x dx --=⎰__________.15.在平面直角坐标系中,角α的始边落在x 轴的非负半轴,终边上有一点是(3-,若[)0,2απ∈,则cos xdx αα-=⎰______.16.1321(tan sin )x x x x dx -++⎰的值为______________________17.已知()[](]2,0,11,1,x x f x x e x⎧∈⎪=⎨∈⎪⎩(e 为自然对数的底数),则()e 0f x dx =⎰_________.18.2222(sin 4)x x x dx -+-⎰=______.19.若()()4112ax x -+的展开式中2x 项的系数为4,则21ae dx x=⎰________________ 20.曲线2y x =与直线230x y --=所围成的平面图形的面积为________.三、解答题21.设点P 在曲线y =x 2上,从原点向A (2,4)移动,如果直线OP ,曲线y =x 2及直线x =2所围成的面积分别记为S 1、S 2.(1)当S 1=S 2时,求点P 的坐标;(2)当S 1+S 2有最小值时,求点P 的坐标和最小值. 22.已知函数32()f x x mx nx =++(,m n R ∈)(1)若()f x 在1x =处取得极大值,求实数m 的取值范围;(2)若'(1)0f =,且过点(0,1)P 有且只有两条直线与曲线()y f x =相切,求实数m 的值. 23.如图,在棱长为1的正方体1111ABCD A BC D -中,E 为AB 的中点.求:(1)异面直线1BD 与CE 所成角的余弦值; (2)点A 到平面1A EC 的距离. 24.已知()1313d 26x ax a b x a -⎰++-=+,且()()33d tf t x ax a b x ⎰=++-为偶函数,求a ,b .25.利用定积分的定义,计算221(2)d x x x -+⎰的值,并从几何意义上解释这个值表示什么.26.计算由直线4,y x =-曲线2y x =x 轴所围图形的面积S 。

(必考题)高中数学高中数学选修2-2第三章《导数应用》测试(含答案解析)

(必考题)高中数学高中数学选修2-2第三章《导数应用》测试(含答案解析)

一、选择题1.已知函数()()11332cos 1x x x f x --+=+--,则()()0.52310.5log 9log 2f f f -⎛⎫ ⎪⎝⎭、、的大小关系( ) A .()()0.5231log 9log 0.52f f f -⎛⎫>> ⎪⎝⎭B .0.5321(log )(0.5)(log 9)2f f f ->>C .0.5321(0.5)(log )(log 9)2f f f ->>D .0.5231(log 9)(0.5)(log )2f f f ->>2.已知函数2()1(0)f x ax x a =-+≠,若任意1x ,2[1x ∈,)+∞且12x x ≠都有1212()()1f x f x x x ->-,则实数a 的取值范围( )A .[1,)+∞B .(0,1]C .[2,)+∞D .(0,)+∞3.已知定义域为R 的偶函数()f x ,其导函数为fx ,对任意[)0,x ∈+∞,均满足:()()2xf x f x >-'.若()()2g x x f x =,则不等式()()21g x g x <-的解集是( )A .(),1-∞-B .1,3⎛⎫-∞ ⎪⎝⎭C .11,3⎛⎫- ⎪⎝⎭D .()1,1,3⎛⎫-∞-+∞ ⎪⎝⎭4.定义域为R 的连续可导函数()f x 满足()()xf x f x e '-=,且()00f =,若方程()()21016m f x f x ++=⎡⎤⎣⎦有四个根,则m 的取值范围是( ) A .2416e e m -<<B .42em <<C .216e m e >-D .2e m >5.直线()0x a a =>分别与曲线21y x =+,ln y x x =+相交于A ,B 两点,则AB的最小值为() A .1B .2C D 6.若函数1()ln f x x a x =-+在区间(1,)e 上存在零点,则常数a 的取值范围为( ) A .01a <<B .11a e<< C .111a e-<< D .111a e+<< 7.函数y =x 3+x 的递增区间是( )A .(0,+∞)B .(-∞,1)C .(-∞,+∞)D .(1,+∞)8.内接于半径为R 的球且体积最大的圆柱体的高为( ) ABCD9.奇函数()f x 满足0x ≥时,()cos 0f x x '+<,且()3,2f π=-则不等式()cos 22f x x π+>--的解集为( )A .(,0)-∞B .(,)π-∞-C .(,)2π-∞-D .(,)π-∞10.已知f (x )=-x 3-ax 在(-∞,-1]上递减,且g (x )=2x-ax在区间(1,2]上既有最大值又有最小值,则a 的取值范围是( ) A .2a >-B .3a -≤C .32a -≤<-D .32a --≤≤11.已知0a >,函数()225,0,2,0,x a x f x x x ⎧+≤⎪=⎨⎪->⎩若关于x 的方程()()2f x a x =-恰有2个互异的实数解,则a 的取值范围为( )A .14a <<B .24a <<C .48a <<D .28a <<12.已知函数()3242xx f x x x e e=-+-,其中e 是自然对数的底数,若()()2210f a f a +--≤,则实数a 的取值范围为( )A .1,12⎡⎤-⎢⎥⎣⎦B .11,2⎡⎤-⎢⎥⎣⎦C .[]2,1-D .[]1,2-二、填空题13.已知函数f (x )是定义在R 上的奇函数,当x >0时,f (x )+xf '(x )>0,且f (3)=0,则不等式xf (x )>0的解集是_____.14.若函数()()2212ln 1f x ax a x x =+---只有一个零点,则实数a 的取值范围是______.15.已知函数()f x 是定义在(0,)+∞上的单调函数,()f x '是()f x 的导函数,且对任意的(0,)x ∈+∞都有2(())2f f x x -=,若函数()()2()3F x xf x f x '=--的一个零点0(,1)x m m ∈+,则整数m 的值是__________.16.已知函数()()2ln 2f x x x g x x x a ==-++,,若∀x 1,x 2∈(0,+∞),f (x 1)≥g(x 2)恒成立,则实数a 的取值范围为__________17.已知函数32()1f x x ax x =+++在区间21,33⎛⎫-- ⎪⎝⎭内是减函数,则实数a 的取值范围是________.18.设函数()'f x 是偶函数()(0)f x x ≠的导函数,(1)0f -=,当0x >时,()()0xf x f x '-<,则使得()0f x >成立的x 的取值范围是__________.19.已知函数()1ln f x x a x x=-+,存在不相等的常数m ,n ,使得()()''0f m f n ==,且10,m e ⎛⎤∈ ⎥⎝⎦,则()()f m f n -的最小值为____________.20.设函数()2()1xf x x e =-,当0x ≥时,()1(0)f x ax a ≤+>恒成立,则a 的取值范围是________.三、解答题21.设函数3222ln 11(),()28a x x f x g x x x x +==-+. (1)若曲线()y f x =在点(1,(1))f 处的切线与30x y -+=垂直,求函数()f x 的解析式;(2)如果对于任意的1213,[,]22x x ∈,都有112()()x f x g x ⋅≥成立,试求实数a 的取值范围.22.设函数()ln 1x f x x+=, (1)求曲线()y f x =在点()(),e f e 处的切线方程;(2)当1≥x 时,不等式()()211a x f x x x--≥恒成立,求a 的取值范围. 23.已知函数()2xf x eax b =-+(0a >,b R ∈,其中e 为自然对数的底数).(1)求函数()f x 的单调递增区间;(2)若函数()f x 有两个不同的零点12,x x ,当a b =时,求实数a 的取值范围.24.已知函数22()ln a f x a x x x=⋅++(0a ≠).(1)若曲线()y f x =在点(1,(1))f 处的切线与直线20x y -=垂直,求实数a 的值;(2)讨论函数()f x 的单调性;(3)当(,0)a ∈-∞时,记函数()f x 的最小值为()g a ,求证:21()2g a e ≤. 25.已知函数321()12f x x x ax =-++. (1)当2a =时,求曲线()y f x =在点(0,(0))f 处的切线方程;(2)若函数()f x 在1x =处有极小值,求函数()f x 在区间32,2⎡⎤-⎢⎥⎣⎦上的最大值.26.已知函数ln xy x=(0x >). (1)求这个函数的单调区间;(2)求这个函数在区间21,e e⎡⎤⎢⎥⎣⎦的最大值与最小值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】首先设函数()(1)332cos x x g x f x x -=+=+-,判断函数是偶函数,利用导数判断函数的单调性,根据平移关系,可判断函数()y f x =的对称性和单调性,再将2log 9,0.50.5-,以及31log 2转化在同一个单调区间,根据单调性比较大小. 【详解】令()(1)332cos x x g x f x x -=+=+-,()()g x g x -=,所以()g x 是偶函数; ()ln3(33)2sin x x g x x -'=-+,当(0,)x π∈时,()0g x '>,()g x 在(0,)π上是增函数, 将()g x 图像向右平移一个单位得到()f x 图像, 所以()f x 关于直线1x =对称,且在(1,1)π+单调递增. ∵23log 94<<,0.50.5-=()3312log 2log 22,32-=+∈, ∴0.52314log 92log 0.512->>->>, ∴()()0.5231log 92log 0.52f f f -⎛⎫>-> ⎪⎝⎭, 又∵()f x 关于直线1x =对称,∴3311log 2log 22f f ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭,∴()()0.5231log 9log 0.52f f f -⎛⎫>> ⎪⎝⎭. 故选:A【点睛】思路点睛:本题是一道函数单调性,奇偶性,对称性,判断大小的习题,本题所给函数()()11332cos 1x x x f x --+=+--,看似很复杂,但仔细观察就会发现,通过换元后可判断函数()1y f x =+是偶函数,本题的难点是判断函数的单调性,关键点是能利用对称性,转化3311log 2log 22f f ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭.2.A解析:A 【分析】求出函数的导数,通过讨论a 的范围,得到关于a 的不等式,解出即可. 【详解】1212()()1f x f x x x ->-表示函数()f x 在区间[)1,+∞上任意两个不同点连线的斜率都大于1,等价于()'211f x ax =-≥,1x 时恒成立, 0a时,()'0f x <,不合题意,0a >时,只需211ax -,即1ax在[1,)+∞恒成立, 故max 1()1a x=,故a 的范围是[1,)+∞, 故选:A 【点睛】1212()()1f x f x x x ->-表示函数()f x 在区间[)1,+∞上任意两个不同点连线的斜率都大于1,由此考虑利用导数进行求解.3.C解析:C 【解析】试题分析:[)0,x ∈+∞时()()()()()22(2)0g x xf x x f x x f x xf x =+='+'>',而()()2g x x f x =也为偶函数,所以()()()()21212121321013g x g x g x g x x x x x x <-⇔<-⇔<-⇔+-<⇔-<<,选C.考点:利用函数性质解不等式【方法点睛】利用导数解抽象函数不等式,实质是利用导数研究对应函数单调性,而对应函数需要构造. 构造辅助函数常根据导数法则进行:如()()f x f x '<构造()()xf xg x e =,()()0f x f x '+<构造()()x g x e f x =,()()xf x f x '<构造()()f x g x x=,()()0xf x f x '+<构造()()g x xf x =等4.A解析:A 【分析】构造函数()()xf x x b e =+,根据()00f =求出0b =,利用导数判断函数的单调性,作出其大致图像,令()t f x =,只需21016mt t ++=两个不同的根1t ,21,0t e ⎛⎫∈- ⎪⎝⎭,利用二次函数根的分布即可求解. 【详解】由()()()()()()()()221x xxxxx x f x e f x e f x f x e e f x e ef x e '-'-=-=⇒'=⇒,则()()()()1xx xf x f x x b x x b e e e f ⎡⎤=⇒=+=+⎢⎥⎣⎦⇒, 由()000f b =⇒=,则()xf x e x =⋅.由()()1xf x e x '=+,当()1,x ∈-+∞,()0f x '>,()f x 单调递增;当(),1x ∈-∞-,()0f x '<,()f x 单调递减,当x →-∞,()0f x <,x →+∞,()0f x >,如图所示:令()t f x =,则21016mt t ++=,由已知可得 21016mt t ++=两个不同的根1t ,21,0t e ⎛⎫∈- ⎪⎝⎭,令()2116g t mt t =++,由12121001016t t m m t t m ⎧+=-<⎪⎪⇒>⎨⎪⋅=>⎪⎩, 则()21000,41601102g e e g m e em ⎧⎛⎫-> ⎪⎪⎝⎭⎪⎛⎫⎪>⇒∈-⎨⎪∆>⎝⎭⎪⎪-<-<⎪⎩. 故选:A 【点睛】本题考查了构造函数判断函数的单调性、根据方程根的个数求参数的取值范围,考查了二次函数根的分布,此题综合性比较强,属于中档题.5.B解析:B 【分析】设A (a ,2 a+1),B (a ,a+lna ),求出|AB |,利用导数求出|AB |的最小值. 【详解】设A (a ,2a+1),B (a ,a+lna ),∴|AB |=211a a lna a lna +-+=+-(), 令y 1x lnx =+-,则y ′=11x-, ∴函数在(0,1)上单调递减,在(1,+∞)上单调递增, ∴x =1时,函数y 的最小值为20>,∴|AB |=2111a a lna a lna a lna +-+=+-=+-(),其最小值为2.故选B . 【点睛】本题考查导数知识的运用,考查学生分析解决问题的能力及转化思想,利用求导得到函数的单调性进而求得最值是关键.6.C解析:C 【分析】先利用导数判断出函数()f x 在区间()1,e 上为增函数,再解不等式(1)ln110f a =-+<,1()ln 0f e e a e=-+>,即得解.【详解】由题得211()0f x x x '=+>在区间()1,e 上恒成立, 所以函数1()ln f x x a x=-+在区间()1,e 上为增函数, 所以(1)ln110f a =-+<,1()ln 0f e e a e=-+>, 可得111a e-<<. 故选:C. 【点睛】本题主要考查利用导数研究函数的单调性和零点,意在考查学生对这些知识的理解掌握水平.7.C解析:C 【解析】y ′=3x 2+1>0对于任何实数都恒成立.8.A解析:A 【分析】根据圆柱的高,底面半径以及球半径之间的关系,建立圆柱的高与圆柱体积之间的函数关系,利用导数求体积取得最大值时对应的自变量即可. 【详解】根据题意,设圆柱底面半径为r ,圆柱的高为h ,作出示意图如下所示:显然满足2224h r R =-,故圆柱的体积()23214h r h h R h πππ=⨯=-+,故可得()223,(02)4V h h R h R ππ<'=-+<,令()0V h '>,解得0h <<,故此时()V h 单调递增,令()0V h '<2h R <<,故此时()V h 单调递减.故()maxV h V ⎫=⎪⎪⎝⎭.即当3h R =时,圆柱的体积最大. 故选:A . 【点睛】本题考查圆柱的外接球以及利用导数求体积的最大值,属综合中档题.9.A解析:A 【分析】构造函数()()sin h x f x x =+,根据其单调性,求解目标不等式即可. 【详解】不妨令()()sin h x f x x =+,因为()()cos 0h x f x x =+'<'在[)0,+∞恒成立, 即()h x 在[)0,+∞单调递减;又()f x 是奇函数,sin y x =是奇函数, 故()h x 是奇函数,且()h x 是R 上的单调减函数.由()3,2f π=-故可得22h π⎛⎫=- ⎪⎝⎭,又()cos 22f x x π+>--,即22h x h ππ⎛⎫⎛⎫+> ⎪ ⎪⎝⎭⎝⎭, 故22x ππ+<,则0x <.故选:A . 【点睛】本题考查构造函数法,涉及利用导数研究函数单调性以及利用单调性解不等式,属综合中档题.10.C解析:C 【分析】利用()f x 导数小于等于零恒成立,求出a 的范围,再由()2'2ag x x x =+在(]1,2上有零点,求出a 的范围,综合两种情况可得结果. 【详解】因为函数()3f x x ax =--在(],1-∞-上单调递减,所以()2'30f x x a =--≤对于一切(],1x ∈-∞-恒成立,得23,3x a a -≤∴≥-, 又因为()2ag x x x=-在区间(]1,2上既有最大值,又有最小值, 所以,可知()2'2ag x x x =+在(]1,2上有零点, 也就是极值点,即有解220ax x+=,在(]1,2上解得32a x =-, 可得82,32a a -≤<-∴-≤<-,故选C. 【点睛】本题主要考查“分离常数”在解题中的应用以及利用单调性求参数的范围,属于中档题. 利用单调性求参数的范围的常见方法:① 视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较求参数需注意若函数在区间[],a b 上是单调的,则该函数在此区间的任意子集上也是单调的; ② 利用导数转化为不等式()'0f x ≤或()'0f x ≥恒成立问题求参数范围. 11.D解析:D 【分析】根据分段函数,看成函数()f x 与直线()2y a x =-的交点问题,分0x =,0x ≤,0x >讨论求解.【详解】当0x =时,()502f a =,对于直线()2y a x =-,2y a =,因为0a >,所以无交点; 当0x ≤时,()2f x x '=,令2x a =-,解得 2ax =-,要使方程()()2f x a x =-恰有2个互异的实数解,则252222a a a a ⎛⎫⎛⎫-+<+ ⎪ ⎪⎝⎭⎝⎭,解得 2a >;当0x >时,()2f x x '=-,令2x a -=-,解得 2ax =,因为0x ≤时,方程()()2f x a x =-恰有2个互异的实数解,则0x >时,无交点, 则2222a a a ⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭,解得 8a <,综上:a 的取值范围为28a <<故选:D 【点睛】关键点点睛:本题关键是由0a >和直线()2y a x =-过定点()2,0,确定方程()()2f x a x =-恰有2个互异的实数解只有一种情况:当0x ≤时,方程恰有2个互异的实数解,当0x >时,方程无实数解.12.A解析:A 【分析】先求得函数()f x 是R 上的奇函数,把不等式转化为()22(1)f a f a ≤+,再利用导数求得函数的单调性,在把不等式转化为221a a ≤+,即可求解. 【详解】由题意,函数32()42xxf x x x e e =-+-的定义域为R , 又由3322()42e (42)()e x xx xf x x x x x e f x e -=-++-=--+-=-, 所以()f x 是R 上的奇函数,又因为2222()3423430x x f x x e x x e '=-++≥-+=≥, 当且仅当0x =时取等号,所以()f x 在其定义域R 上的单调递增函数,因为()22(1)0f a f a +--≤,可得()22(1)(1)f a f a f a ≤---=+,所以221a a ≤+,解得112a ≤≤, 故实数a 的取值范围是1,12⎡⎤-⎢⎥⎣⎦.故选:A 【点睛】利用函数的基本性质求解与函数有关的不等式的方法及策略: 1、求解函数不等式的依据是函数的单调性的定义. 具体步骤:①将函数不等式转化为12()()f x f x >的形式;②根据函数()f x 的单调性去掉对应法则“f ”转化为形如:“12x x >”或“12x x <”的常规不等式,从而得解.2、利用函数的图象研究不等式,当不等式问题不能用代数法求解时,常将不等式问题转化为两函数的图象上、下关系问题,从而利用数形结合求解.二、填空题13.(﹣∞﹣3)∪(3+∞)【分析】令当x >0时可得x ∈(0+∞)上函数单调递增由可得由函数是定义在R 上的奇函数可得函数是定义在R 上的偶函数进而得出不等式的解集【详解】解:令当x >0时∴x ∈(0+∞)上解析:(﹣∞,﹣3)∪(3,+∞) 【分析】令()()g x xf x =,()()()g x f x xf x ''+=,当x >0时,()()0f x xf x '+>,可得x ∈(0,+∞)上,函数()g x 单调递增.由()30f =,可得()30g =.由函数()f x 是定义在R 上的奇函数,可得函数()g x 是定义在R 上的偶函数.进而得出不等式的解集. 【详解】解:令()()g x xf x =,()()()g x f x xf x ''+= 当x >0时,()()0f x xf x '+>∴x ∈(0,+∞)上,函数()g x 单调递增.()30f =,∴()30g =.∵函数()f x 是定义在R 上的奇函数, ∴函数()g x 是定义在R 上的偶函数. 由()()03g x g >=,即()()3g x g >, ∴|x |>3,解得x >3,或x <﹣3.∴不等式()0xf x >的解集是()(),33-,-∞⋃+∞. 故答案为:()(),33-,-∞⋃+∞. 【点睛】本题考查了利用导数研究函数的单调性、方程与不等式的解法、等价转化方法,考查了推理能力与计算能力,属于中档题.14.或【分析】首先求出函数的导函数当时可得在定义域上单调递减再根据零点存在性定理可得在上存在唯一的零点当时由导数可得函数的单调性及最小值为令利用导数说明的单调性即可求出参数的值;【详解】解:因为定义域为解析:0a ≤或1a = 【分析】首先求出函数的导函数,当0a ≤时,可得()f x 在定义域上单调递减,再根据零点存在性定理可得()f x 在()0,1上存在唯一的零点,当0a >时,由导数可得函数()f x 的单调性及最小值为()min 1112ln f x f a a a ⎛⎫==+-⎪⎝⎭,令()112ln g a a a =+-,()0,a ∈+∞利用导数说明()g a 的单调性,即可求出参数a 的值; 【详解】解:因为()()2212ln 1f x ax a x x =+---,定义域为()0,∞+,所以()()()()()222122112221ax a x ax x f x ax a x x x+---+'=+--== 当0a ≤时,()0f x '<恒成立,即()f x 在定义域上单调递减,()()1310f a =-<,当0x +→时,20ax →,()210a x -→,2ln x -→+∞,所以()f x →+∞,所以()f x 在()0,1上存在唯一的零点,满足条件; 当0a >时,令()()()2110ax x f x x -+'=>,解得1x a >即函数在1,a ⎛⎫+∞ ⎪⎝⎭上单调递增,令()()()2110ax x f x x-+'=<,解得10x a <<即函数在10,a ⎛⎫⎪⎝⎭上单调递减,则()f x 在1x a =取值极小值即最小值,()min 1112ln f x f a a a ⎛⎫==+- ⎪⎝⎭, 令()112ln g a a a =+-,()0,a ∈+∞,则()2221210a g a a a a +'=+=>恒成立,即()112ln g a a a=+-在定义域上单调递增,且()112ln110g =+-=, 所以要使函数()()2212ln 1f x ax a x x =+---只有一个零点,则()min 1112ln 0f x f a a a ⎛⎫==+-= ⎪⎝⎭,解得1a =,综上可得0a ≤或1a =; 故答案为:0a ≤或1a = 【点睛】本题考查利用导数研究函数的零点问题,考查分类讨论思想,属于中档题.15.2【分析】先通过已知求出得到再利用导数研究得到函数在内没有零点函数的零点在内即得的值【详解】因为函数是定义在上的单调函数且对任意的都有所以是一个定值设所以所以或(舍去)所以所以所以所以函数在是增函数解析:2 【分析】先通过已知求出2()=+1,f x x 得到3()33F x x x =--,再利用导数研究得到函数()F x 在(0,1)内没有零点,函数()F x 的零点在(2,3)内,即得m 的值.【详解】因为函数()f x 是定义在(0,)+∞上的单调函数,且对任意的(0,)x ∈+∞都有2(())2f f x x -=,所以2()f x x -是一个定值,设2()f x x t -=, 所以2()=+f x x t ,()2f t =所以2()=+2,1f t t t t =∴=或2t =-(舍去). 所以2()=+1,()2f x x f x x '=,所以23()(1)22333F x x x x x x =+-⨯-=--, 所以2()33=3(1)(1)F x x x x '=-+-,所以函数()F x 在(1,)+∞是增函数,在(0,1)是减函数,因为(0)30,(1)50F F =-<=-<,所以函数()F x 在(0,1)内没有零点.因为(2)86310,(3)2712150F F =--=-<=-=>,函数()F x 在(1,)+∞是增函数, 所以函数()F x 的零点在(2,3)内, 所以2m =. 故答案为:2 【点睛】本题主要考查函数的单调性的应用,考查利用导数求函数的单调区间,考查利用导数研究零点问题,意在考查学生对这些知识的理解掌握水平和分析推理能力.16.【分析】求导后即可求得根据二次函数的性质可得再由恒成立问题的解决方法可得即可得解【详解】求导得则当时函数单调递减;当时函数单调递增;所以;函数为开口向下对称轴为的二次函数所以当时;由题意可知即故答案解析:11a e≤--【分析】求导后即可求得()()11f x f ee --≥=-,根据二次函数的性质可得()()11g x g a ≤=+,再由恒成立问题的解决方法可得11a e -+≤-,即可得解. 【详解】求导得()ln 1f x x '=+,则当()10,x e -∈时,()0f x '<,函数()f x 单调递减;当()1,x e -∈+∞时,()0f x '>,函数()f x 单调递增;所以()()11f x f e e--≥=-;函数()22g x x x a =-++为开口向下,对称轴为1x =的二次函数,所以当()0,x ∈+∞时,()()11g x g a ≤=+; 由题意可知11a e -+≤-即11a e -≤--. 故答案为:11a e -≤--. 【点睛】本题考查了利用导数解决不等式恒成立问题,考查了推理能力,属于中档题.17.【分析】求导得转化条件为在区间内恒成立令求导后求得即可得解【详解】函数在区间内是减函数在区间内恒成立即在区间内恒成立令则当时单调递减;当时单调递增;又故答案为:【点睛】本题考查了导数的综合应用考查了 解析:2a ≥【分析】求导得2()321f x x ax '=++,转化条件为1223x x a --≥在区间21,33⎛⎫-- ⎪⎝⎭内恒成立,令()12122333x g x x x ⎛⎫--≤≤-= ⎝-⎪⎭,求导后求得()max 2g x =即可得解. 【详解】32()1f x x ax x =+++,∴2()321f x x ax '=++,函数()f x 在区间21,33⎛⎫-- ⎪⎝⎭内是减函数, ∴()0f x '≤在区间21,33⎛⎫-- ⎪⎝⎭内恒成立,即1223x x a --≥在区间21,33⎛⎫-- ⎪⎝⎭内恒成立,令()12122333x g x x x ⎛⎫--≤≤-= ⎝-⎪⎭,则()2221312232x x x x g -++='=-,∴当2,3x ⎛∈- ⎝⎭时,()0g x '<,()g x 单调递减;当13x ⎛⎫∈- ⎪ ⎪⎝⎭时,()0g x '>,()g x 单调递增;又2734g ⎛⎫-= ⎪⎝⎭,123g ⎛⎫-= ⎪⎝⎭,∴()2g x <,∴2a ≥.故答案为:2a ≥. 【点睛】本题考查了导数的综合应用,考查了运算求解能力与推理能力,属于中档题.18.【分析】构造函数讨论单调性和奇偶性结合特殊值即可求解【详解】设函数是偶函数所以函数是奇函数且当时即当时单调递减所以当时当时是偶函数所以当时当时所以使得成立的的取值范围是故答案为:【点睛】此题考查利用解析:()()1,00,1-⋃【分析】 构造函数()()f x F x x=,讨论单调性和奇偶性,结合特殊值即可求解. 【详解】 设函数()()f x F x x =,()f x 是偶函数,()()()()f x f x F x F x x x--=-=-=-, 所以函数()F x 是奇函数,且()()()()1110,10F f f F ==-=-=, 当0x >时,()2()()0xf x f x F x x'-'=<, 即当0x >时,()F x 单调递减,()01F =, 所以当01x <<时,()()0f x F x x=>,()0f x >, 当1x >时,()()0f x F x x=<,()0f x <, ()f x 是偶函数,所以当10x -<<时,()0f x >,当1x <-时,()0f x <,所以使得()0f x >成立的x 的取值范围是()()1,00,1-⋃. 故答案为:()()1,00,1-⋃ 【点睛】此题考查利用导函数讨论函数的单调性解决不等式相关问题,关键在于准确构造函数,需要在平常的学习中多做积累,常见的函数构造方法.19.【分析】求出由已知可得为的两根求出关系并将用表示从而把表示为关于的函数设为利用的单调性即可求解【详解】因为的定义域为令即因为存在使得且即在上有两个不相等的实数根且所以∴令则当时恒成立所以在上单调递减解析:4e【分析】求出()f x ',由已知可得,m n 为()0f x '=的两根,求出,,m n a 关系,并将,n a 用m 表示,从而把()()f m f n -表示为关于m 的函数设为()h m ,利用()h m 的单调性,即可求解. 【详解】 因为()1ln f x x a x x=-+的定义域为()0,∞+, ()22211'1a x ax x x xf x ++=++=, 令()'0f x =,即210x ax ++=,()0,x ∈+∞,因为存在m ,n ,使得()()''0f m f n ==,且10,m e⎛⎤∈ ⎥⎝⎦,即210x ax ++=在()0,x ∈+∞上有两个不相等的实数根m ,n , 且m n a +=-,1⋅=m n ,所以1n m =,1a m m=--, ∴()()11111ln ln f m f m m m m m m m m m m n ⎛⎫⎛⎫=-+---+--- ⎪ ⎪-⎝⎭⎝⎭ 11l 2n m m m m m ⎡⎤⎛⎫---+ ⎪⎢⎥⎝⎭⎣⎦=,令()112ln h m m m m m m ⎡⎤⎛⎫=--+- ⎪⎢⎥⎝⎭⎣⎦, 则()()()22211121ln l 'n m m m m h m m m -+⎛⎫=-=⎪⎝⎭, 当10,m e⎛⎤∈ ⎥⎝⎦时,()'0h m <恒成立, 所以()h m 在10,m e ⎛⎤∈ ⎥⎝⎦上单调递减,∴()min 14h m h e e ⎛⎫== ⎪⎝⎭,即()()f m f n -的最小值为4e. 故答案为:4e. 【点睛】本题考查最值问题、根与系数关系、函数的单调性,应用导数是解题的关键,意在考查逻辑推理、计算求解能力,属于中档题.20.【分析】求得在处的切线的斜率结合图像求得的取值范围【详解】函数对于一次函数令解得(负根舍去)所以在上递增在上递减画出的图像如下图所示由图可知要使当时恒成立只需大于或等于在处切线的斜率而所以故答案为: 解析:[1,)+∞【分析】求得()f x 在0x =处的切线的斜率,结合图像,求得a 的取值范围. 【详解】函数()2()1xf x x e =-,()01f =.对于一次函数()()10g x ax a =+>,()01g =.()()'221,0x f x xx e x =--+⋅≥,令'0f x,解得01x (负根舍去),所以()f x 在()00,x 上递增,在()0,x +∞上递减,画出()f x 的图像如下图所示.由图可知,要使当0x ≥时,()1(0)f x ax a ≤+>恒成立,只需a 大于或等于()f x 在0x =处切线的斜率.而()'01f=,所以1a ≥.故答案为:[1,)+∞【点睛】本小题主要考查利用导数求解不等式恒成立问题,考查数形结合的数学思想方法,属于中档题.三、解答题21.(1)21ln ()x x f x x+=;(2)12a ≥. 【分析】 (1)求导3ln 4()x x x a f x x --'=,由已知得(1)1f '=-,求出12a =得解(2)求导2()34g x x x '=-得到()g x 在(12)32, 上的最大值为1()12g = 转化11()1,x f x ⋅≥ 得到1112ln a x x x ≥-在113[,]22x ∈恒成立.构造函数1111()ln ,h x x x x =-求得1()h x 的最大值为(1)1h =,得解【详解】 (1)3ln 4()x x x af x x --'=,∵曲线()y f x =在点(1,(1))f 处的切线与30x y -+=垂直,∴(1)1f '=-, 12a ∴=.21ln ()x x f x x +∴= (2)2()34g x x x '=-,∴14(,)23x ∈,()0g x '<,43(,)32x ∈,()0g x '>,∴()g x 在14(,)23上递减,在43(,)32上递增, ∴()g x 在14(,)23上的最大值为131()1,()224g g ==较大者,即()1g x ≤, ∵对于任意的113[,]22x ∈,都有112()()x f x g x ⋅≥成立, ∴11()1,x f x ⋅≥ 1112ln 1,a x x x +∴≥ 即对任意的111113(,),2ln 22x a x x x ∈≥-成立. 令1111()ln ,h x x x x =-,11()ln h x x '=-,∴11(,1)2x ∈,1()0h x '>,13(1,)2x ∈,1()0h x '<,∴1()h x 在1(,1)2上递增,在3(1,)2上递减,1()h x 的最大值为(1)1h =, ∴21a ≥,12a ≥. 【点睛】本题考查函数导数几何意义及利用导数研究函数最值及不等式恒成立求参数范围.属于基础题.22.(1)230x e y e +-=(2)(,0]-∞ 【详解】试题分析:(1)先求函数导数,再根据导数几何意义得切线斜率为()'f e ,最后根据点斜式求切线方程(2)构造函数()()2ln 1g x x a x =--,利用导数并按0a ≤,10<2a <,12a ≥进行分类讨论,通过函数的单调性以及最值进行与0比较,可得结果. 试题(1)根据题意可得,()2f e e=, ()2ln 'xf x x -=,所以()22ln 1'e f e e e -==-,即21k e=-, 所以在点()(),e f e 处的切线方程为()221y x e e e-=--,即230x e y e +-=. (2)根据题意可得,()()()221ln 110a x x a x f x x x x-----=≥在1≥x 恒成立,令()()2ln 1g x x a x =--,()1x ≥,所以()12g x ax x-'=, 当0a ≤时,()0g x '>,所以函数()y g x =在[)1,+∞上是单调递增, 所以()()10g x g ≥=, 所以不等式()()21a x f x x->成立,即0a ≤符合题意;当0a >时,令120ax x-=,解得x =1=,解得12a =,当10<2a <1,所以()g x '在⎛ ⎝上()0g x '>,在+⎫∞⎪⎪⎭上()0g x '<,所以函数()y g x =在⎛ ⎝上单调递增,在+⎫∞⎪⎪⎭上单调递减,21111ln 1ln g a a a a a a a ⎛⎫⎛⎫⎛⎫=--=--+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,令()1ln h a a a a =--+,()222111'10a a h a a a a-+=-++=>恒成立,则()h a 在10,2⎛⎫ ⎪⎝⎭单调递增 所以()1111ln 2ln2202222h a h ⎛⎫<=--+=+-<⎪⎝⎭, 所以存在10g a ⎛⎫< ⎪⎝⎭, 所以102a <<不符合题意;②当12a ≥1≤ ()0g x '≤在[)1,+∞上恒成立,所以函数()y g x =在[)1,+∞上是单调递减,所以()()10g x g ≤= 显然12a ≥不符合题意; 综上所述,a 的取值范围为{}|0a a ≤ 23.(1)1ln ,22a ⎛⎫+∞⎪⎝⎭(2)32a e >【分析】(1)直接求出函数的导函数,令()0f x '>,解不等式即可;(2)由题意容易知道2102222a ln a a a f ln e ln a ⎛⎫=-+< ⎪⎝⎭,解出即可求得实数a 的取值范围; 【详解】解:(1)因为()2x f x e ax b =-+所以()()220x f x e a a '=->,令()0f x '>,得1ln 22a x >,∴函数()f x 的单调递增区间为1ln ,22a ⎛⎫+∞ ⎪⎝⎭(2)由(1)知,函数()f x 在1,ln 22a ⎛⎫-∞ ⎪⎝⎭递减,在1ln ,22a ⎛⎫+∞ ⎪⎝⎭递增, ∴x →-∞时,()f x →+∞;x →+∞,()f x →+∞,∵函数()f x 有两个零点12,x x ,∴1ln 022a f ⎛⎫< ⎪⎝⎭,又a b =, ∴ln 21ln ln 02222a a a a f e a ⎛⎫=-+< ⎪⎝⎭, 即ln 0222a a a a -+< 所以3ln02a -< 所以32a e >【点睛】本题考查利用导数研究函数的单调性及最值问题,考查导数中零点问题,考查转化思想及运算求解能力,属于中档题.24.(1)1a =-或32a =;(2)答案不唯一,具体见解析;(3)证明见解析. 【分析】(1)利用导数几何意义列方程解得结果;(2)先求导函数,再根据a 的正负分类讨论,对应确定导函数符号,进而确定单调性; (3)根据(2)单调性确定()g a 解析式,再利用导数求()g a 最大值,即证得结果.【详解】(1)()f x 的定义域为(0,)+∞,222()1a a f x x x =-+', 根据题意有(1)2f '=-,则2230a a --=,解得1a =-或32a =; (2)22222222()(2)()1a a x ax a x a x a f x x x x x+--+=-'+==,①当0a >时,∵0x >,由()0f x '>得()(2)0x a x a -+>,解得x a >,由()0f x '<得()(2)0x a x a -+<,解得0x a <<,∴()f x 在(,)a +∞上单调递增,在(0,)a 上单调递减,②当0a <时,∵0x >,由()0f x '>得()(2)0x a x a -+>,解得2x a >-, 由()0f x '<得()(2)0x a x a -+<,解得02x a <<-,∴()f x 在(2,)a -+∞上单调递增,在(0,2)a -上单调递减,(3)证明:由(2)知,当(,0)a ∈-∞时()f x 的最小值为(2)-f a , 即22()(2)ln(2)2ln(2)32a g a f a a a a a a a a=-=⋅-+-=⋅---, 2()ln(2)3ln(2)22g a a a a a -=-+⋅=-'---,令()0g a '=,得212a e =-, 当21(,)2a e ∈-∞-时()0g a '>,当21(,0)2a e ∈-时()0g a '<, 则212a e =-是()g a 在(,0)-∞上的唯一极值点,且是极大值点, 从而也是()g a 的最大值点, ∴22222max 11111()()ln[2()]3()22222g a g e e e e e =-=-⋅-⨯--⨯-=, ∴当(,0)a ∈-∞时,21()2g a e ≤恒成立. 【点睛】本题考查导数几何意义、利用导数求单调性、利用导数求函数最值与证不等式,考查综合分析求解与论证能力,属中档题.25.(1)210x y -+=;(2)4927. 【分析】(1)利用导数的几何意义求切线的斜率,再利用点斜式方程即可求出切线方程。

高中数学选修2-2综合测试题与答案.doc

高中数学选修2-2综合测试题与答案.doc

选修 2-2 综合测试题2一、选择题1.在数学归纳法证明“1 a a2an 1 a n 1(a,N ) ”时,验证当 n1时,等式的左1 n1 a边为( )A. 1B. 1aC. 1 aD. 1 a22.已知三次函数f ( x)1 x 3 (4 m 1)x 2(15m22m7) x 2 在 x ( ∞ , ∞ ) 上是增函数,则 m 的3取值范围为( )A. m 2 或 m4B. 4 m2C. 2 m 4 D.以上皆不正确3.设 f ( x)( axb)sin x(cxd )cos x ,若 f ( x) x cosx ,则 a , b , c , d 的值分别为( )A. 1,1,0, 0B. 1,0,1,0C. 0,1,0,1D. 1,0,0,14.已知抛物线 y ax2 bx c 通过点 P(11), ,且在点 Q(2, 1) 处的切线平行于直线 yx 3,则抛物线方程为( )A. y 3x211x 9B. y3x211x9C. y 3x211x 9D. y3x 2 11x92a n ,0≤ a n ≤1,26,则 a 2004 的值为(5.数列 a n满足 a n 11若 a 1)2a ≤ a n,7n,112A.6B. 5C.3D.177776.已知 a , b 是不相等的正数,x a b, ya b ,则 x , y 的关系是()2A. x yB. yxC. x2 yD.不确定7.复数 zm 2i( m R) 不可能在()1 2iA.第一象限B.第二象限C.第三象限D.第四象限8.定义A B,B C, C D, D A 的运算分别对应下图中的(1),(2),(3),(4),那么,图中(A),(B)可能是下列()的运算的结果A. B D,A DB.B D,A CC.B C,A DD.C D,A D- 1 -9.用反证法证明命题“a, b N ,如果 ab 可被5整除,那么 a , b 至少有1个能被5整除.”则假设的内容是()A. a , b 都能被5整除B. a , b 都不能被 5 整除C. a 不能被5整除D. a , b 有 1 个不能被 5 整除10.下列说法正确的是()A.函数C.函数y x 有极大值,但无极小值B.函数y x 既有极大值又有极小值D.函数y x 有极小值,但无极大值y x 无极值11.对于两个复数 1 3 i , 1 3 i,有下列四个结论:① 1 ;② 1 ;③ 1 ;2 2 2 2④33 1).其中正确的个数为(A. 1 B. 2 C. 3 D. 412.设f ( x)在[ a,b]上连续,则 f ( x)在[ a,b]上的平均值是()A. f ( a) B. b C.1D.f (b) f (x)dx b f ( x) dx 1 b f ( x)dx2 a 2 a b a a二、填空题13.若复数z log2( x23x 3) i log 2 ( x 3) 为实数,则x 的值为.14.一同学在电脑中打出如下图形(○表示空心圆,●表示实心圆)○●○○●○○○●○○○○●若将此若干个圆依此规律继续下去,得到一系列的圆,那么前2006 年圆中有实心圆的个数为.15.函数f ( x) ax36ax 2b(a0) 在区间 [ 1,2] 上的最大值为,最小值为29 ,则 a , b 的值分3别为.16.由y2 4 x 与直线 y 2 x 4 所围成图形的面积为.三、解答题n n17.设n N且sin x cos x 1 ,求 sin x cos x 的值.(先观察 n 1,2,3,4 时的值,归纳猜测sin n x cos n x 的值.)18.设关于x的方程x2(tan i ) x (2 i)0 ,(1)若方程有实数根,求锐角和实数根;- 2 -(2)证明:对任意πkπ (k Z ) ,方程无纯虚数根.219.设t0 ,点 P(t,0) 是函数 f (x) x 3ax 与 g( x) bx 2 c 的图象的一个公共点,两函数的图象在点 P 处有相同的切线.(1)用t表示a,b,c;( 2)若函数y f (x) g ( x)在( 1,3)上单调递减,求 t 的取值范围.20.下列命题是真命题,还是假命题,用分析法证明你的结论.命题:若 a b c,且 a b c0 ,则 b 2 ac3 .a21.某银行准备新设一种定期存款业务,经预测,存款量与利率的平方成正比,比例系数为k(k0) ,且知当利率为0.012 时,存款量为 1.44 亿;又贷款的利率为 4.8% 时,银行吸收的存款能全部放贷出去;若设存款的利率为x , x (0 ,0.048) ,则当 x 为多少时,银行可获得最大收益?22.已知函数 f ( x)x,数列 a n 满足 a1 f ( x) , a n 1f (a n ) .( x 0)1 x2(1)求a2,a3,a4;(2)猜想数列an的通项,并予以证明.参考答案一、选择题: CCDAC,BABBBD二、填空题: 13、4, 14 、61, 15 、 2,3 16、917、解:当n 1 时, sin x cosx 1 ;当 n 2 时,有 sin 2 x cos 2 x 1 ;当 n 3 时,有 sin 3 x cos 3 x (sin x cos x)(sin 2 x cos 2 x sin xcos x) ,而 sin x cos x 1 ,∴1 2sin x cos x 1 , sin xcos x 0 .∴ sin3 x cos 3 x1 .当 n 4 时,有 sin 4 x cos 4 x (sin 2 x cos2 x) 2 2sin 2 xcos 2 x 1 .由以上可以猜测,当n N时,可能有sin n x cos n x( 1) n成立.18、解:( 1)设实数根为a,则a2(tan i )a (2 i ) 0 ,即(a2a tan2) (a1)i 0 .R ,那么a 2 ,a , a 1,由于 a , tan a tan tan 2 0 .又 0 π,得πa 1 1 tan 1 2 .4- 3 -(2)若有纯虚数根i(R ) ,使 ( i) 2 (tan)(i ) i (2 ) i 0 ,即 ( 2 2) ( tan 1) i0 ,22 ,由, tan R ,那么,0 由于2 2 0 无实数解.tan 1 0故对任意πZ ) ,方程无纯虚数根kπ (k219、解:( 1)因为函数 f ( x) , g (x) 的图象都过点 (t,0) ,所以 f (t ) 0 ,即 t 3 at 0 .因为 t 0 ,所以 a t 2.g (t ) 0 ,即 bt 2 c 0 ,所以 c ab .又因为 f ( x) , g (x) 在点 (t,0) 处有相同的切线,所以 f (t )g (t ) ,而 f ( x) 3x 2 a , g (x)2bx ,所以 3t 2 a 2bt .将 a t 2代入上式得 b t .因此c ab t 3.故a t2, b t , c t 3.(2)y f (x)g (x) x3t 2 x tx 2t 3, y3x22tx t 2(3 x t )( x t ) .当 y(3x t )( x t) 0 时,函数 y f ( x) g (x) 单调递减.由 y 0 ,若 t 0 ,则tt ;x3若 t 0 ,则 t x t .3,t( 1,3) t ,( 13),由题意,函数 y f ( x) g (x) 在 ( 1,3) 上单调递减,则 3 t或t 3.所以 t ≤9 或 t ≥ 3 .又当 9 t 3时,函数y f (x) g( x)在( 1,3)上不是单调递减的.所以 t 的取值范围为∞, 9 3,∞.20、解:此命题是真命题.∵ a b c 0 , a b c ,∴ a0 , c 0 .b 2ac 2 2 2 2 2要证a3 成立,只需证bac 3a ,即证 b ac 3a ,也就是证 ( a c) ac 3a ,即证 ( a c)(2 a c) 0 .∵ a c 0 , 2a c ( a c)a b a 0 ,∴ (a c)(2 ac) 0 成立,故原不等式成立.21、解:由题意,存款量 f (x) kx2,又当利率为0.012 时,存款量为 1.44 亿,即x 0.012 时,;由2,得,那么 2 ,银行应支付的利息y 1.44 1 . 4 4 k ·(0.012) k 10000 f ( x)1 0 0 0x 0g (x) x·f (x) 10000x 3 ,- 4 -设银行可获收益为 y ,则 y480x 2 10000x 3,由于 y960x 30000x 2,则 y0 ,即 960x30000x20 ,得 x 0 或 x 0.032 .因为, x(0,0.032) 时, y0 ,此时,函数y480x 2 10000x 3递增;x (0.032 , 0.048) 时, y 0 ,此时,函数y480x 2 10000x 3递减;故当 x 0.032 时, y 有最大值,其值约为0.164亿.axx22、解:( 1)由 a 12, f (x) ,得 a 2f (a 1 )1a21 x1 2 x 2 1211xx21x a 3 f (a 2 )a 2 a 21 2 x21221x2x 21xa 3 1 3x2a 4 f (a 3 )a 21231x3x 21x13x 2 x14x2,.(2)猜想: a nxN ) ,(n1 nx2证明:( 1)当 n 1 时,结论显然成立;(2)假设当 nk 时,结论成立,即 a kx ;kx 21x那么,当 n k 1 时,由 a k 1f (a k )1 kx2x,1x 2 1 (k1)x2kx 21这就是说,当 nk1 时,结论成立;由( 1),( 2)可知, a nx 对于一切自然数 n( nN ) 都成立.1 nx 2- 5 -。

高中数学 模块综合评价(二)(含解析)新人教A版选修2-2-新人教A版高二选修2-2数学试题

高中数学 模块综合评价(二)(含解析)新人教A版选修2-2-新人教A版高二选修2-2数学试题

模块综合评价(二)(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项符合题目要求)1.(1+i)16-(1-i)16=() A .-256B .256i C .0 D .256解析:(1+i)16-(1-i)16=[(1+i)2]8-[(1-i)2]8=(2i)8-(-2i)8=0. 答案:C2.已知函数f (x )=ln x -x ,则函数f (x )的单调递减区间是() A .(-∞,1) B .(0,1)C .(-∞,0),(1,+∞)D .(1,+∞)解析:f ′(x )=1x -1=1-xx,x >0.令f ′(x )<0,解得x >1.答案:D3.设f (x )=10x+lg x ,则f ′(1)等于( ) A .10 B .10ln 10+lg e C.10ln 10+ln 10 D .11ln 10解析:f ′(x )=10x ln 10+1x ln 10,所以f ′(1)=10ln 10+1ln 10=10ln 10+lg e. 答案:B4.若函数f (x )满足f (x )=e xln x +3xf ′(1)-1,则f ′(1)=() A .-e 2B .-e3C .-eD .e解析:由已知可得f ′(x )=e xln x +exx+3f ′(1),令x =1,则f ′(1)=0+e +3f ′(1),解得f ′(1)=-e2.答案:A5.用反证法证明命题:“若a ,b ∈N ,ab 能被3整除,那么a ,b 中至少有一个能被3整除”时,假设应为( )A .a ,b 都能被3整除B .a ,b 都不能被3整除C .a ,b 不都能被3整除D .a 不能被3整除解析:因为“至少有一个”的否定为“一个也没有”. 答案:B6.若a >0,b >0,且函数f (x )=4x 3-ax 2-2bx +2在x =1处有极值,则ab 的最大值等于( )A .2B .3C .6D .9解析:因为f ′(x )=12x 2-2ax -2b ,又因为在x =1处有极值,所以a +b =6,因为a >0,b >0,所以ab ≤⎝⎛⎭⎪⎫a +b 22=9,当且仅当a =b =3时取等号,所以ab 的最大值等于9.答案:D7.观察数列1,2,2,3,3,3,4,4,4,4,…的特点,按此规律,则第100项为( ) A .10B .14C .13D .100解析:设n ∈N *,则数字n 共有n 个,所以n (n +1)2≤100,即n (n +1)≤200,又因为n ∈N *,所以n =13,到第13个13时共有13×142=91项,从第92项开始为14,故第100项为14.答案:B8.某工厂要建造一个长方体的无盖箱子,其容积为48 m 3,高为3 m ,如果箱底每平方米的造价为15元,箱侧面每平方米的造价为12元,则箱子的最低总造价为()A .900元B .840元C .818元D .816元解析:设箱底一边的长度为x m ,箱子的总造价为l 元,根据题意,得l =15×483+12×2⎝ ⎛⎭⎪⎫3x +48x =240+72⎝ ⎛⎭⎪⎫x +16x (x >0),l ′=72⎝ ⎛⎭⎪⎫1-16x 2.令l ′=0,解得x =4或x =-4(舍去).当0<x <4时,l ′<0;当x >4时,l ′>0.故当x =4时,l 有最小值816.因此,当箱底是边长为4 m 的正方形时,箱子的总造价最低,最低总造价为816元.故选D.答案:D8.某工厂要建造一个长方体的无盖箱子,其容积为48 m 3,高为3 m ,如果箱底每平方米的造价为15元,箱侧面每平方米的造价为12元,则箱子的最低总造价为()A .900元B .840元C .818元D .816元解析:设箱底一边的长度为x m ,箱子的总造价为l 元,根据题意,得l =15×483+12×2⎝ ⎛⎭⎪⎫3x +48x =240+72⎝ ⎛⎭⎪⎫x +16x (x >0),l ′=72⎝ ⎛⎭⎪⎫1-16x 2.令l ′=0,解得x =4或x =-4(舍去).当0<x <4时,l ′<0;当x >4时,l ′>0.故当x =4时,l 有最小值816.因此,当箱底是边长为4 m 的正方形时,箱子的总造价最低,最低总造价为816元.答案:D10.证明不等式n 2+n ≤n +1(n ∈N *),某学生的证明过程如下: (1)当n =1时,12+1≤1+1,不等式成立;(2)假设n =k (k ∈N *且k ≥1)时,不等式成立,即 k 2+k ≤k +1,则当n =k +1时,(k +1)2+(k +1)= k 2+3k +2≤k 2+3k +2+(k +2)=(k +2)2=(k +1)+1.所以当n =k +1时,不等式成立.上述证法( ) A .过程全都正确 B .n =1时验证不正确 C .归纳假设不正确D .从n =k 到n =k +1的推理不正确解析:验证及归纳假设都正确,但从n =k 到n =k +1的推理中没有使用归纳假设,而是通过不等式的放缩法直接证明,不符合数学归纳法的证题要求.故应选D.答案:D11.已知函数f (x )满足f (0)=0,导函数f ′(x )的图象如图所示,则f (x )的图象与x 轴围成的封闭图形的面积为( )A.13B.43 C .2D.83解析:由f ′(x )的图象知,f ′(x )=2x +2, 设f (x )=x 2+2x +c ,由f (0)=0知,c =0, 所以f (x )=x 2+2x ,由x 2+2x =0得x =0或x =-2. 故所求面积S =-∫0-2(x 2+2x )d x =-⎝ ⎛⎭⎪⎫13x 3+x 2|0-2=43.答案:B12.已知定义在R 上的奇函数f (x ),设其导数为f ′(x ),当x ∈(-∞,0]时,恒有xf ′(x )<f (-x ),令F (x )=xf (x ),则满足F (3)>F (2x -1)的实数x 的取值X 围为()A .(-1,2) B.⎝⎛⎭⎪⎫-1,12C.⎝ ⎛⎭⎪⎫12,2D .(-2,1) 解析:因为f (x )是奇函数,所以不等式xf ′(x )<f (-x )等价于xf ′(x )<-f (x ),即xf ′(x )+f (x )<0,即F ′(x )<0.当x ∈(-∞,0]时,函数F (x )单调递减;由于F (x )=xf (x )为偶函数,所以F (x )在[0,+∞)上单调递增.所以F (3)>F (2x -1)等价于F (3)>F (|2x -1|), 即3>|2x -1|,解得-1<x <2. 答案:A二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上) 13.复数z =(1+2i)(3-i),其中i 为虚数单位,则z 的实部是________. 解析:因为z =(1+2i)(3-i)=3-i +6i -2i 2=5+5i ,所以z 的实部是5. 答案:514.在△ABC 中,D 为边BC 的中点,则AO →=12(AB →+AC →).将上述命题类比到四面体中去,得到一个类比命题:_______________.解析:将“△ABC ”类比为“四面体A ­BCD ”,将“D 为边BC 的中点”类比为“△BCD 的重心”,于是有类比结论:在四面体A ­BCD 中,G 为△BCD 的重心,则AG →=12(AB →+AC →+AD →).答案:在四面体A ­BCD 中,G 为△BCD 的重心,则AG →=12(AB →+AC →+AD →)15.若函数f (x )=x 2+ax +1在x =1处取得极值,则a =____________.解析:f ′(x )=2x (x +1)-(x 2+a )(x +1)2=x 2+2x -a (x +1)2,令f ′(x )=0,则x 2+2x -a =0,x ≠-1.又f (x )在x =1处取得极值,所以x =1是x 2+2x -a =0的根,所以a =3.答案:316.下列四个命题中,正确的为________(填上所有正确命题的序号). ①若实数a ,b ,c 满足a +b +c =3,则a ,b ,c 中至少有一个不小于1; ②若z 为复数,且|z |=1,则|z -i|的最大值等于2; ③对任意x ∈(0,+∞),都有x >sin x ; ④定积分∫π0π-x 2d x =π24.解析:①若实数a ,b ,c 满足a +b +c =3,则用反证法证明,假设a ,b ,c 都小于1,则a +b +c <3,与已知矛盾,故可得a ,b ,c 中至少有一个不小于1,故①正确;②若z 为复数,且|z |=1,则由|z -i|≤|z |+|-i|=2,可得|z -i|的最大值等于2,故②正确;③令y =x -sin x ,其导数为y ′=1-cos x ,y ′≥0,所以y =x -sin x 在R 上为增函数,当x =0时,x -sin x =0,所以对任意x ∈(0,+∞),都有x -sin x >0,故③正确.④定积分∫π0π-x 2d x 表示以原点为圆心,π为半径的圆的面积的四分之一,故④正确.答案:①②③④三、解答题(本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)已知a ∈R,问复数z =(a 2-2a +4)-(a 2-2a +2)i 所对应的点在第几象限?复数z 对应点的轨迹是什么?解:由a 2-2a +4=(a -1)2+3≥3. -(a 2-2a +2)=-(a -1)2-1≤-1. 知z 的实部为正数,虚部为负数, 所以复数z 的对应点在第四象限.设z =x +y i(x ,y ∈R),则⎩⎪⎨⎪⎧x =a 2-2a +4,y =-(a 2-2a +2), 因为a 2-2a =(a -1)2-1≥-1, 所以x =a 2-2a +4≥3,消去a 2-2a ,得y =-x +2(x ≥3), 所以复数z 对应点的轨迹是一条射线, 其方程为y =-x +2(x ≥3). 18.(本小题满分12分)设函数f (x )=1x +2,a ,b ∈(0,+∞). (1)用分析法证明:f ⎝ ⎛⎭⎪⎫a b +f ⎝ ⎛⎭⎪⎫b a ≤23;(2)设a +b >4,求证:af (b ),bf (a )中至少有一个大于12.证明:(1)要证明f ⎝ ⎛⎭⎪⎫a b +f ⎝ ⎛⎭⎪⎫b a ≤23,只需证明1a b+2+1b a+2≤23, 只需证明b a +2b +ab +2a ≤23,即证b 2+4ab +a 22a 2+5ab +2b 2≤23,即证(a -b )2≥0,这显然成立,所以f ⎝ ⎛⎭⎪⎫a b +f ⎝ ⎛⎭⎪⎫b a ≤23.(2)假设af (b ),bf (a )都小于或等于12,即a b +2≤12,b a +2≤12,所以2a ≤b +2,2b ≤a +2,两式相加得a +b ≤4, 这与a +b >4矛盾,所以af (b ),bf (a )中至少有一个大于12.19.(本小题满分12分)已知函数f (x )=ex +2(x 2-3).(1)求曲线y =f (x )在点(0,f (0))处的切线方程; (2)求函数y =f (x )的极值. 解:(1)函数f (x )=e x +2(x 2-3),则f ′(x )=ex +2(x 2+2x -3)=ex +2(x +3)(x -1),故f ′(0)=-3e 2,又f (0)=-3e 2,故曲线y =f (x )在点(0,f (0))处的切线方程为y +3e 2=-3e 2(x -0),即3e 2x +y +3e 2=0.(2)令f ′(x )=0,可得x =1或x =-3, 如下表:↗↘↗所以当x =-3时,函数取极大值,极大值为f (-3)=e ,当x =1时,函数取极小值,极小值为f (1)=-2e 3.20.(本小题满分12分)已知函数f (x )=12x 2+ln x .(1)求函数f (x )在[1,e]上的最大值,最小值;(2)求证:在区间[1,+∞)上,函数f (x )的图象在函数g (x )=23x 3图象的下方.解:(1)由f (x )=12x 2+ln x 有f ′(x )=x +1x ,当x ∈[1,e]时,f ′(x )>0,所以f (x )max =f (e)=12e 2+1.f (x )min =f (1)=12.(2)设F (x )=12x 2+ln x -23x 3,则F ′(x )=x +1x -2x 2=(1-x )(1+x +2x 2)x,当x ∈[1,+∞)时,F ′(x )<0,且F (1)=-16<0故x ∈[1,+∞)时F (x )<0,所以12x 2+ln x <23x 3,得证.21.(本小题满分12分)已知函数f (x )=12x 2+(1-a )x -a ln x .(1)讨论f (x )的单调性;(2)设a >0,证明:当0<x <a 时,f (a +x )<f (a -x ); (3)设x 1,x 2是f (x )的两个零点,证明:f ′⎝ ⎛⎭⎪⎫x 1+x 22>0.解:(1)f (x )的定义域为(0,+∞),由已知,得f ′(x )=x +1-a -a x =x 2+(1-a )x -ax=(x +1)(x -a )x.若a ≤0,则f ′(x )>0,此时f (x )在(0,+∞)上单调递增. 若a >0,则令f ′(x )=0,得x =a .当0<x <a 时,f ′(x )<0;当x >a 时,f ′(x )>0.此时f (x )在(0,a )上单调递减,在(a ,+∞)上单调递增.综上,当a ≤0时,f (x )在(0,+∞)上单调递增;当a >0时,f (x )在(0,a )上单调递减,在(a ,+∞)上单调递增.(2)令g (x )=f (a +x )-f (a -x ),则g (x )=12(a +x )2+(1-a )(a +x )-a ln(a +x )- [12(a -x )2+(1-a )(a -x )-a ln(a -x )]=2x -a ln(a +x )+a ln(a -x ).所以g ′(x )=2-a a +x -aa -x =2x2x 2-a 2.当0<x <a 时,g ′(x )<0,所以g (x )在(0,a )上是减函数. 而g (0)=0,所以g (x )<g (0)=0.故当0<x <a 时,f (a +x )<f (a -x ).(3)由(1)可知,当a ≤0时,函数f (x )至多有一个零点, 故a >0,从而f (x )的最小值为f (a ),且f (a )<0. 不妨设0<x 1<x 2,则0<x 1<a <x 2,所以0<a -x 1<a . 由(2)得f (2a -x 1)<f (x 1)=0=f (x 2), 从而x 2>2a -x 1,于是x 1+x 22>a .由(1)知,f ′⎝⎛⎭⎪⎫x 1+x 22>0.22.(本小题满分12分)已知数列{a n }的前n 项和为S n ,且a 1=1,S n =n 2a n (n ∈N *). (1)试求出S 1,S 2,S 3,S 4,并猜想S n 的表达式; (2)用数学归纳法证明你的猜想,并求出a n 的表达式. 解:(1)因为a n =S n -S n -1(n ≥2) 所以S n =n 2(S n -S n -1),所以S n =n 2n 2-1S n -1(n ≥2) 因为a 1=1,所以S 1=a 1=1. 所以S 2=43,S 3=32=64,S 4=85,猜想S n =2n n +1(n ∈N *). (2)①当n =1时,S 1=1成立.②假设n =k (k ≥1,k ∈N *)时,等式成立,即S k =2k k +1, 当n =k +1时,S k +1=(k +1)2·a k +1=a k +1+S k =a k +1+2k k +1, 所以a k +1=2(k +2)(k +1),所以S k +1=(k +1)2·a k +1=2(k +1)k +2=2(k +1)(k +1)+1.所以n =k +1时等式也成立,得证.所以根据①、②可知,对于任意n ∈N *,等式均成立. 由S n =n 2a n ,得2n n +1=n 2a n ,所以a n =2n (n +1).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学选修2-2综合测试题(全册含答案)1.复数就像平面上的点,有实部和虚部。

2.复数就像向量,有大小和方向。

3.复数就像计算机中的复数类型,有实部和虚部。

4.复数就像两个数字的有序对,有序对的第一个数字是实部,第二个数字是虚部。

改写:关于复数的四种类比推理,可以用不同的比喻来描述复数的实部和虚部。

一种比喻是将复数看作平面上的点,实部和虚部分别对应点的横坐标和纵坐标;另一种比喻是将复数看作向量,实部和虚部分别对应向量的大小和方向;还可以将复数看作计算机中的复数类型,实部和虚部分别对应类型中的两个数;最后一种比喻是将复数看作有序对,实部和虚部分别对应有序对的第一个数字和第二个数字。

①复数的加减法运算可以类比多项式的加减法运算法则。

②由向量a的性质|a|²=a²,可以类比得到复数z的性质:|z|²=z²。

③方程ax²+bx+c=0 (a,b,c∈R,且a≠0)有两个不同的实数根的条件是b²-4ac>0,类比可得方程ax²+bx+c=0 (a,b,c∈C且a≠0)有两个不同的复数根的条件是b²-4ac>0.④由向量加法的几何意义,可以类比得到复数加法的几何意义。

其中类比得到的结论正确的是:A。

①③B。

②④C。

②③D。

①④2.删除明显有问题的段落。

3.填空题:11.若复数z满足z+i=0,则|z|=1.12.直线y=kx+1与曲线y=x³+ax+b相切于点A(1,3),则2a+b的值为4.13.第n个正方形数是n²。

14.++=AA′BB′CC′;+++=AA′BB′CC′DD′。

4.解答题:15.1) F(x)的单调区间为(-∞。

0)和(2.+∞)。

2) F(x)在[1,5]上的最小值为-5,最大值为9.16.因为AD⊥BC,所以AB²=AD²+DB²。

又因为AB⊥AC,所以AC²=AD²+DC²。

将两个式子相加得到AB²+AC²=2AD²+DB²+DC²。

因为AB=BC,所以AB²=BC²,代入得到BC²+AC²=2AD²+DB²+DC²。

因为AD⊥BC,所以AD²=DB·DC。

代入得到BC²+AC²=2AD²+AD²,即BC²+AC²=2AB²。

所以结论成立。

在四面体A-BCD中,类比上述结论,可以得到AB²+AC²+AD²=2BC²+2CD²+2BD²,即AB²+AC²+AD²=4(BD²+CD²)。

17.已知函数f(x)=x^3+ax^2-3x(a∈R)。

1) 若函数f(x)在区间[1.+∞)上是增函数,则a的取值范围为a≤-2.2) 若x=是函数f(x)的极值点,是否存在实数b,使得函数g(x)=bx的图像与函数f(x)的图像恰有3个交点?若存在,求出b的取值范围;若不存在,说明理由。

不存在。

因为函数f(x)的极值点为x=,而f(x)的导数f'(x)=3x^2+2ax-3=3(x-)(x+a/3+1)。

当x时,f'(x)>0,故函数f(x)在(-∞,-a/3-1)和(,∞)上均单调递增,不存在与函数g(x)=bx的图像恰有3个交点的情况。

18.已知数列{an}满足a1=a,an+1=。

1) 求a2,a3,a4;a2=a+,a3=a+,a4=a+。

2) 猜想数列{an}的通项公式为an=a+(-1)n-1n(a-1),其中n∈N*。

证明:当n=1时,a1=a+(-1)^0×1×(a-1)=a,命题成立。

假设当n=k(k∈N*,且k≥1)时,命题成立,即ak=a+(-1)k-1k(a-1)。

则当n=k+1时,ak+1=ak+(-1)k= a+(-1)k-1k(a-1)+(-1)k= a+(-1)k k+1(a-1)。

故当n=k+1时,命题也成立。

由数学归纳法可知,对于任意的n∈N*,都有an=a+(-1)n-1n(a-1),即数列{an}的通项公式为an=a+(-1)n-1n(a-1)。

8.选D②中,当$z^2$为实数时,$|z|^2$为实数,但$z^2$不一定是实数。

③中,复数集不能比较大小,也不能用$b^2-4ac$来确定根的个数。

9.选C。

根据题意,$x+y/x+y+x+y/x+y+x+y/x+y=1+x/1+y+1+x/1+y+1+x/1+y$。

因此,$1+x/1+y+1+x/1+y+1+x/1+y>1$,即$x+y/x+y+x+y/x+y+x+y>x+y/1+y+x+y/1+y+x+y/1+y$,即$x+y/1+y1,y1$。

10.选C。

由题意可得,$f(x)$在$x=-2$处取得极小值,因此$x-2$时,$f(x)$单调递增或递减,$x=-2$时,$f(x)$取得极小值。

又因为$f'(x)0$时$f(x)$单调递增,因此当$x0$;当$-20$,$xf'(x)0$时,$f'(x)>0$,$xf'(x)>0$。

11.解析:由题意可得,$z=-i=-i^2-3i-i=1-4i$,因此$|z|=\sqrt{1^2+4^2}=17$。

12.解析:由题意可得,直线$y=kx+1$与曲线$y=x^3+ax+b$相切于点$A(1,3)$,因此$k=3+a$,$3=1+a+b$,$k=3a^2$。

解得$a=-1,b=3$,因此$2a+b=1$。

13.解析:观察前5个正方形数,发现它们恰好是序号的平方,因此第$n$个正方形数为$n^2$。

14.解析:根据面积公式,在$\triangle ABC$中,$S_{\triangle OBC}=1-\frac{OA'}{AA'}$,$S_{\text{四边形}ABOC}=\frac{S_{\triangle ABC}}{3}$。

因此,$S_{\triangle OBC}+S_{\triangle OAC}+S_{\triangle OAB}=3-\frac{S_{\triangle ABC}}{3}=2S_{\triangle ABC}$。

根据体积分割方法,同理可得在四面体$ABCD$中,$V_{\text{四面体}ABCD}=4V_{\triangle ABCD}-V_{\triangle ABC}$,因此$V_{\text{四面体}ABCD}+V_{\text{四面体}AA'BB'CC'DD'}=3V_{\triangle ABCD}=2V_{\text{四面体}ABCD}$。

解得$V_{\text{四面体}ABCD}=2V_{\triangle ABCD}=2/3V_{\triangle ABC}=2/3(3/4S_{\triangleABC})=1/2S_{\triangle ABC}=2$。

15.解:$F(x)=\int_{-1}^x\frac{3t-2t^2}{t^2-4t}dt=\int_{-1}^x\frac{3(t-2)-6}{t-4}dt=3\int_{-1}^x\frac{dt}{t-4}-2\int_{-1}^x\frac{dt}{t-2}=\frac{3}{2}\ln|t-4|-2\ln|t-2|+C$。

因此,$F'(x)=\frac{3}{2}\cdot\frac{1}{x-4}-\frac{2}{x-2}$。

当$F'(x)>0$时,$x4$;当$F'(x)<0$时,$2<x<4$。

因此,$F(x)$的单调递增区间为$(-\infty,2)$和$(4,+\infty)$,单调递减区间为$(2,4)$。

又因为$F(1)=\frac{1}{3}\int_{-1}^1\frac{3t-2t^2}{t^2-4t}dt=\frac{1}{3}\int_{-1}^1\frac{3(t-2)-6}{t-4}dt=-2$,因此$F(5)=F(1)+\int_1^5F'(x)dx=-2+\int_1^4\left(\frac{3}{2}\cdot\frac{1}{x-4}-\frac{2}{x-2}\right)dx=-\frac{11}{3}$。

因此,$F(5)=\frac{1}{3}(3-F(1))=\frac{7}{3}$。

18.解:1) 由 $a_{n+1}=\frac{2}{2-a_n}$ 可得a_2=\frac{2}{2-a_1},\quad a_3=\frac{2}{2-a_2}=\frac{2}{2-\frac{2}{2-a_1}},\quad a_4=\frac{2}{2-a_3}=\frac{2}{2-\frac{2}{2-\frac{2}{2-a_1}}},\cdots$$推导可得a_n=\frac{2^n-2^{1-n}}{2^n+2^{1-n}}=\frac{1-\frac{1}{2^n}}{1+\frac{1}{2^n}}$$2) 略。

下面使用数学归纳法证明:对于任意的$n\in\mathbb{N}^*$,都有$n-(n-1)a=\frac{a}{n}$。

当$n=1$时,左边为$a$,右边为$\frac{a}{1}=a$,结论成立。

假设当$n=k$时等式成立,即$k-(k-1)a=\frac{a}{k}$,则当$n=k+1$时,有:begin{align*}k+1)-ka\\k+1)-(k-(k-1)a)a\\k+1)-(k+1)a+(k-1)a^2\\frac{a}{k}-(k+1)a+(k-1)a^2\\frac{a}{k}-ka+a-2a+(k-1)a^2\\frac{a}{k}-\frac{ka}{k}+\frac{a}{k}-2a+(k-1)a^2\\frac{2a-ka}{k}-2a+(k-1)a^2\\frac{(2-k)a}{k}+(k-1)a^2\\frac{a}{k+1}end{align*}因此,当$n=k+1$时,等式也成立。

由数学归纳法可知,对于任意的$n\in\mathbb{N}^*$,都有$n-(n-1)a=\frac{a}{n}$。

相关文档
最新文档