最新2021年广东省中考数学总复习:圆的综合题

合集下载

2021中考数学复习圆的综合题专项训练3(填空题 附答案详解)

2021中考数学复习圆的综合题专项训练3(填空题  附答案详解)
2021中考数学复习圆的综合题专项训练3(填空题 附答案详解)
1.如图,在平面直角坐标系中,等边 的边 在 轴正半轴上,点 , ,点 、 分别从 、 出发以相同的速度向 、 运动,连接 、 交于点 , 是 轴上一点,则 的最小值为______.
2.如图,PT是⊙O的切线,T为切点,PA是割线,交⊙O于A、B两点,与直径CT交于点D.已知CD=2,AD=3,BD=4,那PB=___________.
14.如图,AB是⊙O的一条弦,点C是⊙O上一动点,且∠ACB=30°,点E、F分别是AC、BC的中点,直线EF与⊙O交于G、H两点,若⊙O的半径为7,则GE+FH的最大值为.
15.如图,⊙ 上三点 , , ,半径 , ,⊙ 的切线 交 延长线于点 ,从现图中选取一条以P为端点的线段,此线段的长为_____.(注明选取的线段)
∴点F是经过点A,B,F的圆上的点,记圆心为O’,在圆O’上取一点N,使
点N和点F在弦AB的两侧,连接AN,BN,
∴∠ANB=180°-∠AFB=60°,
连接O’A,O’B,
∴∠AO’B=2∠ANB=120°,
∵O’A=O’B,
∴∠ABO’=∠BAO’,
∴∠ABO’= (180°-∠AO’B)= (180°-120°)=30°,
30.在 中, , , ,圆 在 内自由移动.若 的半径为1,则圆心 在 内所能到达的区域的面积为______.
参考答案
1.
【解析】
【分析】
先证明 ,即可得出∠AFB=120°,即可判断出点F的轨迹是以O’为圆心的圆上的一段弧(劣弧AB),然后确定出圆心O’的位置及其坐标,即可确定点M和点F的位置,使FM的长度最小.
25.如图,⊙P的半径为10,A、B是圆上任意两点,且AB=12,以AB为边作正方形ABCD(点D、P在直线AB两侧),若AB边绕点P旋转一周,则CD边扫过的面积为_____

2020-2021中考数学压轴题专题复习——圆的综合的综合及详细答案

2020-2021中考数学压轴题专题复习——圆的综合的综合及详细答案

2020-2021中考数学压轴题专题复习——圆的综合的综合及详细答案一、圆的综合1.如图,⊙O的半径为6cm,经过⊙O上一点C作⊙O的切线交半径OA的延长于点B,作∠ACO的平分线交⊙O于点D,交OA于点F,延长DA交BC于点E.(1)求证:AC∥OD;(2)如果DE⊥BC,求»AC的长度.【答案】(1)证明见解析;(2)2π.【解析】试题分析:(1)由OC=OD,CD平分∠ACO,易证得∠ACD=∠ODC,即可证得AC∥OD;(2)BC切⊙O于点C,DE⊥BC,易证得平行四边形ADOC是菱形,继而可证得△AOC是等边三角形,则可得:∠AOC=60°,继而求得弧AC的长度.试题解析:(1)证明:∵OC=OD,∴∠OCD=∠ODC.∵CD平分∠ACO,∴∠OCD=∠ACD,∴∠ACD=∠ODC,∴AC∥OD;(2)∵BC切⊙O于点C,∴BC⊥OC.∵DE⊥BC,∴OC∥DE.∵AC∥OD,∴四边形ADOC 是平行四边形.∵OC=OD,∴平行四边形ADOC是菱形,∴OC=AC=OA,∴△AOC是等边三角形,∴∠AOC=60°,∴弧AC的长度=606180π⨯=2π.点睛:本题考查了切线的性质、等腰三角形的判定与性质、菱形的判定与性质以及弧长公式.此题难度适中,注意掌握数形结合思想的应用.2.如图,AB是⊙O的直径,弦CD⊥AB,垂足为H,连结AC,过»BD上一点E作EG∥AC 交CD的延长线于点G,连结AE交CD于点F,且EG=FG,连结CE.(1)求证:∠G=∠CEF;(2)求证:EG是⊙O的切线;(3)延长AB交GE的延长线于点M,若tanG =34,AH=33,求EM的值.【答案】(1)证明见解析;(2)证明见解析;(3)253 8.【解析】试题分析:(1)由AC∥EG,推出∠G=∠ACG,由AB⊥CD推出»»AD AC=,推出∠CEF=∠ACD,推出∠G=∠CEF,由此即可证明;(2)欲证明EG是⊙O的切线只要证明EG⊥OE即可;(3)连接OC.设⊙O的半径为r.在Rt△OCH中,利用勾股定理求出r,证明△AHC∽△MEO,可得AH HCEM OE=,由此即可解决问题;试题解析:(1)证明:如图1.∵AC∥EG,∴∠G=∠ACG,∵AB⊥CD,∴»»AD AC=,∴∠CEF=∠ACD,∴∠G=∠CEF,∵∠ECF=∠ECG,∴△ECF∽△GCE.(2)证明:如图2中,连接OE.∵GF=GE,∴∠GFE=∠GEF=∠AFH,∵OA=OE,∴∠OAE=∠OEA,∵∠AFH+∠FAH=90°,∴∠GEF+∠AEO=90°,∴∠GEO=90°,∴GE⊥OE,∴EG是⊙O的切线.(3)解:如图3中,连接OC.设⊙O的半径为r.在Rt△AHC中,tan∠ACH=tan∠G=AHHC=34,∵AH=33∴HC=3Rt△HOC中,∵OC=r,OH=r﹣33HC=43∴222(33)(43)r r-+=,∴r=2536,∵GM∥AC,∴∠CAH=∠M,∵∠OEM=∠AHC,∴△AHC∽△MEO,∴AH HCEM OE=,∴33432536EM=,∴EM=2538.点睛:本题考查圆综合题、垂径定理、相似三角形的判定和性质、锐角三角函数、勾股定理等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题,正确寻找相似三角形,构建方程解决问题吗,属于中考压轴题.3.图1和图2,半圆O的直径AB=2,点P(不与点A,B重合)为半圆上一点,将图形延BP折叠,分别得到点A,O的对称点A′,O′,设∠ABP=α.(1)当α=15°时,过点A′作A′C∥AB,如图1,判断A′C与半圆O的位置关系,并说明理由.(2)如图2,当α= °时,BA′与半圆O相切.当α= °时,点O′落在上.(3)当线段BO′与半圆O只有一个公共点B时,求α的取值范围.【答案】(1)A′C与半圆O相切;理由见解析;(2)45;30;(3)0°<α<30°或45°≤α<90°.【解析】试题分析:(1)过O作OD⊥A′C于点D,交A′B于点E,利用含30°角的直角三角形的性质可求得DE+OE=A′B=AB=OA,可判定A′C与半圆相切;(2)当BA′与半圆相切时,可知OB⊥A′B,则可知α=45°,当O′在上时,连接AO′,则可知BO′=AB,可求得∠O′BA=60°,可求得α=30°;(3)利用(2)可知当α=30°时,线段O′B与圆交于O′,当α=45°时交于点B,结合题意可得出满足条件的α的范围.试题解析:(1)相切,理由如下:如图1,过O作OD过O作OD⊥A′C于点D,交A′B于点E,∵α=15°,A′C∥AB,∴∠ABA′=∠CA′B=30°,∴DE=A′E,OE=BE,∴DO=DE+OE=(A′E+BE)=AB=OA,∴A′C与半圆O相切;(2)当BA′与半圆O相切时,则OB⊥BA′,∴∠OBA′=2α=90°,∴α=45°,当O′在上时,如图2,连接AO′,则可知BO′=AB,∴∠O′AB=30°,∴∠ABO′=60°,∴α=30°,(3)∵点P,A不重合,∴α>0,由(2)可知当α增大到30°时,点O′在半圆上,∴当0°<α<30°时点O′在半圆内,线段BO′与半圆只有一个公共点B;当α增大到45°时BA′与半圆相切,即线段BO′与半圆只有一个公共点B.当α继续增大时,点P逐渐靠近点B,但是点P,B不重合,∴α<90°,∴当45°≤α<90°线段BO′与半圆只有一个公共点B.综上所述0°<α<30°或45°≤α<90°.考点:圆的综合题.4.如图,在△ABP中,C是BP边上一点,∠PAC=∠PBA,⊙O是△ABC的外接圆,AD是⊙O的直径,且交BP于点E.(1)求证:PA是⊙O的切线;(2)过点C作CF⊥AD,垂足为点F,延长CF交AB于点G,若AG•AB=12,求AC的长.【答案】(1)证明见解析(2)23【解析】试题分析:(1)根据圆周角定理得出∠ACD=90°以及利用∠PAC=∠PBA得出∠CAD+∠PAC=90°进而得出答案;(2)首先得出△CAG∽△BAC,进而得出AC2=AG·AB,求出AC即可.试题解析:(1)连接CD,如图,∵AD是⊙O的直径,∴∠ACD=90°,∴∠CAD+∠D=90°,∵∠PAC=∠PBA,∠D=∠PBA,∴∠CAD+∠PAC=90°,即∠PAD=90°,∴PA⊥AD,∴PA是⊙O的切线;(2)∵CF⊥AD,∴∠ACF+∠CAF=90°,∠CAD+∠D=90°,∴∠ACF=∠D,∴∠ACF=∠B,而∠CAG=∠BAC,∴△ACG∽△ABC,∴AC:AB=AG:AC,∴AC 2=AG •AB =12,∴AC =23.5.如图,CD 为⊙O 的直径,点B 在⊙O 上,连接BC 、BD ,过点B 的切线AE 与CD 的延长线交于点A ,AEO C =∠∠,OE 交BC 于点F .(1)求证:OE ∥BD ;(2)当⊙O 的半径为5,2sin 5DBA ∠=时,求EF 的长.【答案】(1)证明见解析;(2)EF 的长为212【解析】 试题分析:(1)连接OB ,利用已知条件和切线的性质证明;(2)根据锐角三角函数和相似三角形的性质,直接求解即可.试题解析:(1)连接OB , ∵CD 为⊙O 的直径 , ∴ 90CBD CBO OBD ∠=∠+∠=︒. ∵AE 是⊙O 的切线,∴ 90ABO ABD OBD ∠=∠+∠=︒. ∴ ABD CBO ∠=∠. ∵OB 、OC 是⊙O 的半径,∴OB=OC . ∴C CBO ∠=∠. ∴C ABD ∠=∠.∵E C ∠=∠,∴E ABD ∠=∠. ∴ OE ∥BD .(2)由(1)可得sin ∠C = ∠DBA= 25,在Rt △OBE 中, sin ∠C =25BD CD =,OC =5, 4BD =∴90CBD EBO ∠=∠=︒∵E C ∠=∠,∴△CBD ∽△EBO .∴BD CD BO EO= ∴252EO =. ∵OE ∥BD ,CO =OD ,∴CF =FB .∴122OF BD ==. ∴212EF OE OF =-=6.已知:如图,△ABC中,AC=3,∠ABC=30°.(1)尺规作图:求作△ABC的外接圆,保留作图痕迹,不写作法;(2)求(1)中所求作的圆的面积.【答案】(1)作图见解析;(2)圆的面积是9π.【解析】试题分析:(1)按如下步骤作图:①作线段AB的垂直平分线;②作线段BC的垂直平分线;③以两条垂直平分线的交点O为圆心,OA长为半圆画圆,则圆O即为所求作的圆.如图所示(2)要求外接圆的面积,需求出圆的半径,已知AC=3,如图弦AC所对的圆周角是∠ABC=30°,所以圆心角∠AOC=60°,所以∆AOC是等边三角形,所以外接圆的半径是3故可求得外接圆的面积.(2)连接OA,OB.∵AC=3,∠ABC=30°,∴∠AOC=60°,∴△AOC是等边三角形,∴圆的半径是3,∴圆的面积是S=πr2=9π.7.已知:如图1,∠ACG=90°,AC=2,点B为CG边上的一个动点,连接AB,将△ACB沿AB边所在的直线翻折得到△ADB,过点D作DF⊥CG于点F.(1)当23时,判断直线FD与以AB为直径的⊙O的位置关系,并加以证明;(2)如图2,点B在CG上向点C运动,直线FD与以AB为直径的⊙O交于D、H两点,连接AH,当∠CAB=∠BAD=∠DAH时,求BC的长.【答案】(1)直线FD与以AB为直径的⊙O相切,理由见解析;(2)222.【解析】试题分析:(1)根据已知及切线的判定证明得,直线FD与以AB为直径的⊙O相切;(2)根据圆内接四边形的性质及直角三角形的性质进行分析,从而求得BC的长.试题解析:(1)判断:直线FD与以AB为直径的⊙O相切.证明:如图,作以AB为直径的⊙O;∵△ADB是将△ACB沿AB边所在的直线翻折得到的,∴△ADB≌△ACB,∴∠ADB=∠ACB=90°.∵O为AB的中点,连接DO,∴OD=OB=AB,∴点D在⊙O上.在Rt△ACB中,BC=,AC=2;∴tan∠CAB==,∴∠CAB=∠BAD=30°,∴∠ABC=∠ABD=60°,∴△BOD是等边三角形.∴∠BOD=60°.∴∠ABC=∠BOD,∴FC∥DO.∵DF⊥CG,∴∠ODF=∠BFD=90°,∴OD⊥FD,∴FD为⊙O的切线.(2)延长AD交CG于点E,同(1)中的方法,可证点C在⊙O上;∴四边形ADBC是圆内接四边形.∴∠FBD=∠1+∠2.同理∠FDB=∠2+∠3.∵∠1=∠2=∠3,∴∠FBD=∠FDB,又∠DFB=90°.∴EC=AC=2.设BC=x,则BD=BC=x,∵∠EDB=90°,∴EB=x .∵EB+BC=EC,∴x+x=2,解得x=2﹣2,∴BC=2﹣2.8.如图1,等腰直角△ABC中,∠ACB=90°,AC=BC,过点A,C的圆交AB于点D,交BC 于点E,连结DE(1)若AD=7,BD=1,分别求DE,CE的长(2)如图2,连结CD,若CE=3,△ACD的面积为10,求tan∠BCD(3)如图3,在圆上取点P使得∠PCD=∠BCD(点P与点E不重合),连结PD,且点D 是△CPF的内心①请你画出△CPF,说明画图过程并求∠CDF的度数②设PC=a,PF=b,PD=c,若(2)(2c)=8,求△CPF的内切圆半径长.【答案】(1)DE=1,CE=32;(2)tan ∠BCD=14;(3)①135°;②2. 【解析】【分析】 (1)由A 、C 、E 、D 四点共圆对角互补为突破口求解;(2)找∠BDF 与∠ODA 为对顶角,在⊙O 中,∠COD=2∠CAD ,证明△OCD 为等腰直角三角形,从而得到∠EDC+∠ODA=45°,即可证明∠CDF=135°;(3)过点D 做DH CB ⊥于点H ,以D 为圆心,DH 为半径画圆,过点P 做D e 切线PF 交CB 的延长线于点F ,结合圆周角定理得出∠CPD=∠CAD=45°,再根据圆的内心是三角形三个内角角平分线的交点,得出∠CPF=90°,然后根据角平分线性质得出114522DCF CFD PCF PFC ∠+∠=∠+∠=︒,最后再根据三角形内角和定理即可求解;证明∠DCF+∠CFD=45°,从而证明∠CPF 是直角,再求证四边形PKDN 是正方形,最后以△PCF 面积不变性建立等量关系,结合已知(a-2c )(b-2c )=8,消去字母a ,b 求出c 值,即求出△CPF 的内切圆半径长为22c . 【详解】(1)由图可知:设BC=x .在Rt △ABC 中,AC=BC .由勾股定理得:AC 2+BC 2=AB 2,∵AB=AD+BD ,AD=7,BD=1,∴x 2+x 2=82,解得:x=2.∵⊙O 内接四边形,∠ACD=90°,∴∠ADE=90°,∴∠EDB=90°,∵∠B=45°,∴△BDE 是等腰直角三形.∴DE=DB ,又∵DB=1,∴DE=1,又∵CE=BC-BE ,∴CE=42232-=.(2)如图所示:在△DCB 中过点D 作DM ⊥BE ,设BE=y ,则DM=12y , 又∵CE=3,∴BC=3+y ,∵S △ACB =S ACD +S DCB , ∴()1114242103y y 222⨯=+⨯+⨯, 解得:y=2或y=-11(舍去).∴EM=1,CM=CE+ME=1+3=4,又∵∠BCD=∠MCD ,∴tan ∠BCD=tan ∠MCD , 在Rt △DCM 中,tan ∠MCD=DM CM =14, ∴tan ∠BCD=14. (3)①如下图所示:过点D 做DH CB ⊥于点H ,以D 为圆心,DH 为半径画圆,过点P 做D e 切线PF 交CB 的延长线于点F .∵∠CAD=45°,∴∠CPD=∠CAD=45°,又∵点D 是CPF ∆的内心,∴PD 、CD 、DF 都是角平分线,∴∠FPD=∠CPD =45°,∠PCD=∠DCF ,∠PFD=∠CFD∴∠CPF=90°∴∠PCF+∠PFC=90° ∴114522DCF CFD PCF PFC ∠+∠=∠+∠=︒ ∴∠CDF=180°-∠DCF-∠CFD F=90°+45°=135°,即∠CDF 的度数为135°.②如下图所示过点D 分别作DK ⊥PC ,DM ⊥CF ,DN ⊥PF 于直线PC ,CF 和PF 于点K ,M ,N 三点, 设△PCF 内切圆的半径为m ,则DN=m ,∵点D 是△PCF 的内心,∴DM=DN=DK ,又∵∠DCF+∠CFD+∠FDC=180°,∠FDC=45°,∴∠DCF+∠CFD=45°,又∵DC ,DF 分别是∠PCF 和∠PFC 的角平分线,∴∠PCF=2∠DCF ,∠PFC=2∠DFC ,∴∠PCF+∠PFC=90°,∴∠CPF=90°.在四边形PKDN 中,∠PND=∠NPK=∠PKD=90°,∴四边形PKDN 是矩形,又∵KD=ND ,∴四边形PKDN 是正方形.又∵∠MBD=∠BDM=45°,∠BDM=∠KDP ,∴∠KDP=45°.∵PC=a ,PF=b ,PD=c ,∴PN=PK=C 2,∴NF=b c 2-,CK=a c 2-, 又∵CK=CM ,FM=FN ,CF=CM+FM ,∴CF=a b +,又∵S △PCF =S △PDF +S △PDC +S △DCF ,∴1111ab a c b c (a b 222222=⨯+⨯++-)×c 2,化简得:)2a b c c +-------(Ⅰ),又∵若(c )(c )=8化简得:()2ab a b 2c 8++=------(Ⅱ), 将(Ⅰ)代入(Ⅱ)得:c 2=8,解得:c =c =-∴2==, 即△CPF 的内切圆半径长为2.【点睛】本题考查圆的内接四边形性质,圆的内心,圆心角、圆周角,同弧(或等弧)之间的相互关系,同时也考查直角三角形,勾股定理,同角或等角的三角函数值相等和三角形的面积公式,正方形,对顶角和整式的运算等知识点;难点是作辅助线和利用等式求△CPF 的内切圆半径长.9.如图1,AB 为半圆O 的直径,半径OP ⊥AB ,过劣弧AP 上一点D 作DC ⊥AB 于点C .连接DB ,交OP 于点E ,∠DBA =22.5°.⑴ 若OC =2,则AC 的长为 ;⑵ 试写出AC 与PE 之间的数量关系,并说明理由;⑶ 连接AD 并延长,交OP 的延长线于点G ,设DC =x ,GP =y ,请求出x 与y 之间的等量关系式. (请先补全图形,再解答)【答案】⑴ 222-;⑵ 见解析;⑶ y =2x【解析】【分析】(1)如图,连接OD ,则有∠AOD=45°,所以△DOC 为等腰直角三角形,又OC=2,所以DO=AO=22,故可求出AC 的长;(2)连接AD ,DP ,过点D 作DF ⊥OP ,垂足为点F . 证AC=PF 或AC=EF ,证DP=DE证PF=EF=12PE ,故可证出PE =2AC ; (3)首先求出22OD CD x ==,再求AB=22x ,再证△DGE ≌△DBA,得GE =AB =22x ,由PE=2AC 得PE =2(2)x x -,再根据GP =GE -PE 可求结论.【详解】(1)连接OD ,如图,∵∠B=22.5°,∴∠DOC=45°,∵DC ⊥AB∴△DOC 为等腰直角三角形,∵OC=2,∴2∴2,∴AC=AO-OC=2.⑵连接AD,DP,过点D作DF⊥OP,垂足为点F.∵OP⊥AB,∴∠POD=∠DOC=45°,∴AD=PD,∵△DOC为等腰直角三角形,∴DC=CO,易证DF=CO,∴DC=DF,∴Rt△DAC≌Rt△DPF,∴PF=AC,∵DO=AO,∠DOA=45°∴∠DAC=67.5°∴∠DPE=67.5°,∵OD=OB,∠B=22.5°,∴∠ODE=22.5°∴∠DEP=22.5°+45°=67.5°∴∠DEP=∠DPE∴PF=EF=1PE2∴PE=2AC(3)如图2,由∠DCO=90°,∠DOC=45°得OD==∴AB=2OD=∵AB是直径,∴∠ADB=∠EDG=90°,由(2)得AD=ED,∠DEG=∠DAC∴△DGE≌△DBA∴GE=AB=∵PE=2AC∴PE=2)x--∴GP=GE-PE=-)x即:y=2x【点睛】本题是一道圆的综合题,涵盖的知识点较多,难度较大,主要考查了圆周角定理,等腰三角形的性质,三角形全等的判定与性质等知识,熟练掌握并运用这些知识是解题的关键.10.如图,在Rt△ABC中,∠ACB=60°,☉O是△ABC的外接圆,BC是☉O的直径,过点B作☉O 的切线BD,与CA的延长线交于点D,与半径AO的延长线交于点E,过点A作☉O的切线AF,与直径BC的延长线交于点F.(1)连接EF,求证:EF是☉O的切线;(2)在圆上是否存在一点P,使点P与点A,B,F构成一个菱形?若存在,请说明理由.【答案】(1)见解析;(2)存在,理由见解析【解析】【分析】(1)过O作OM⊥EF于M,根据SAS证明△OAF≌△OBE,从而得到OE=OF,再证明EO平分∠BEF,从而得到结论;(2)存在,先证明△OAC为等边三角形,从而得出∠OAC=∠AOC=60°,再得到AB=AF,再证明AB=AF=FP=BP,从而得到结论.【详解】(1)证明:如图,过O作OM⊥EF于M,∵OA=OB,∠OAF=∠OBE=90°,∠BOE=∠AOF,∴△OAF≌△OBE,∴OE=OF,∵∠EOF=∠AOB=120°,∴∠OEM=∠OFM=30°,∴∠OEB=∠OEM=30°,即EO平分∠BEF,又∠OBE=∠OME=90°,∴OM=OB,∴EF为☉O的切线.(2)存在.∵BC为☉O的直径,∴∠BAC=90°,∵∠ACB=60°,∴∠ABC=30°,又∵∠ACB=60°,OA=OC,∴△OAC为等边三角形,即∠OAC=∠AOC=60°,∵AF为☉O的切线,∴∠OAF=90°,∴∠CAF=∠AFC=30°,∴∠ABC=∠AFC,∴AB=AF.当点P在(1)中的点M位置时,此时∠OPF=90°,∴∠OAF=∠OPF=90°,又∵OA=OP,OF为公共边,∴△OAF≌△OPF,∴AF=PF,∠BFE=∠AFC=30°.又∵∠FOP=∠OBP=∠OPB=30°,∴BP=FP,∴AB=AF=FP=BP,∴四边形AFPB是菱形.【点睛】考查了切线的判定定理和菱形的判定,经过半径的外端且垂直于这条半径的直线是圆的切线.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.11.如图,在中,,以为直径作,交边于点,交边于点,过点作的切线,交的延长线于点,交于点.(1)求证:;(2)若,,求的半径.【答案】(1)证明见解析;(2)4.【解析】试题分析:(1)连接AD,根据等腰三角形三线合一即可证明.(2)设⊙O的半径为R,则FO=4+R,FA=4+2R,OD=R,连接OD,由△FOD∽△FAE,得列出方程即可解决问题.试题解析:(1)连接AD,∵AB是直径,∴∠ADB=90°,∵AB=AC,AD⊥BC,∴BD=DC.(2)设⊙O的半径为R,则FO=4+R,FA=4+2R,OD=R,连接OD、∵AB=AC,∴∠ABC=∠C,∵OB=OD,∴∠ABC=∠ODB,∴∠ODB=∠C,∴OD∥AC,∴△FOD∽△FAE,∴,∴,整理得R2﹣R﹣12=0,∴R=4或(﹣3舍弃).∴⊙O的半径为4.考点:切线的性质、等腰三角形的性质等知识.12.如图,AB是⊙O的直径,AD是⊙O的弦,点F是DA延长线上的一点,过⊙O上一点C作⊙O的切线交DF于点E,CE⊥DF.(1)求证:AC平分∠FAB;(2)若AE=1,CE=2,求⊙O的半径.【答案】(1)证明见解析;(2)5 2【解析】试题分析:(1)连接OC ,根据切线的性质和圆周角定理,得出∠OCA =∠OAC 与∠CAE =∠OCA ,然后根据角平分线的定义可证明;(2)由圆周角定理得到∠BCA=90°,由垂直的定义,可求出∠CEA=90°,从而根据两角对应相等的两三角形相似可证明△ACB ∽△AEC ,再根据相似三角形的对应边成比例求得AB 的长,从而得到圆的半径.试题解析:(1)证明:连接OC .∵CE 是⊙O 的切线,∴∠OCE =90°∵CE ⊥DF ,∴∠CEA =90°,∴∠ACE +∠CAE =∠ACE +∠OCA =90°,∴∠CAE =∠OCA∵OC =OA ,∴∠OCA =∠OAC .∴∠CAE =∠OAC ,即AC 平分∠FAB(2)连接BC .∵AB 是⊙O 的直径,∴∠ACB =∠AEC =90°.又∵∠CAE =∠OAC ,∴△ACB ∽△AEC ,∴AB AC AC AE =. ∵AE =1,CE =2,∠AEC =90°,∴2222125AC AE CE =+=+= ∴()22551AC AB AE ===,∴⊙O 的半径为52.13.如图,已知,,BAC AB AC O ∆=为ABC ∆外心,D 为O e 上一点,BD 与AC 的交点为E ,且2·BC AC CE =.①求证:CD CB =;②若030A ∠=,且O e 的半径为33+,I 为BCD ∆内心,求OI 的长.【答案】①证明见解析; ②3【解析】【分析】①先求出BC CE AC BC=,然后求出△BCE 和△ACB 相似,根据相似三角形对应角相等可得∠A=∠CBE,再根据在同圆或等圆中,同弧所对的圆周角相等可得∠A=∠D,然后求出∠D=∠CBE,然后根据等角对等边即可得证;②连接OB、OC,根据在同圆或等圆中,同弧所对的圆心角等于圆周角的2倍求出∠BOC=60°,然后判定△OBC是等边三角形,再根据等腰三角形三线合一的性质以及三角形的内心的性质可得OC经过点I,设OC与BD相交于点F,然后求出CF,再根据I是三角形的内心,利用三角形的面积求出IF,然后求出CI,最后根据OI=OC﹣CI计算即可得解.【详解】①∵BC2=AC•CE,∴BC CE AC BC=.∵∠BCE=∠ECB,∴△BCE∽△ACB,∴∠CBE=∠A.∵∠A=∠D,∴∠D=∠CBE,∴CD=CB;②连接OB、OC.∵∠A=30°,∴∠BOC=2∠A=2×30°=60°.∵OB=OC,∴△OBC是等边三角形.∵CD=CB,I是△BCD的内心,∴OC经过点I,设OC与BD相交于点F,则CF=BC×sin30°12=BC,BF=BC•cos30°3=BC,所以,BD=2BF=23⨯BC3=BC,设△BCD内切圆的半径为r,则S△BCD12=BD•CF12=(BD+CD+BC)•r,即12•3BC•12BC12=(3BC+BC+BC)•r,解得:r3223=+()BC2332-=BC,即IF2332-=BC,所以,CI=CF﹣IF12=BC233--BC=(23-)BC,OI=OC﹣CI=BC﹣(23-)BC=(3-1)BC.∵⊙O的半径为33+,∴BC=33+,∴OI=(3-1)(33+)=33+3﹣3323-=.【点睛】本题是圆的综合题,主要考查了相似三角形的判定与性质,等腰三角形的判定与性质,圆周角定理,等边三角形的判定与性质,三角形的内心的性质,(2)作辅助线构造出等边三角形并证明得到OC经过△BCD的内心I是解题的关键.14.对于平面内的⊙C 和⊙C 外一点Q ,给出如下定义:若过点Q 的直线与⊙C 存在公共点,记为点A ,B ,设AQ BQ k CQ +=,则称点A (或点B )是⊙C 的“K 相关依附点”,特别地,当点A 和点B 重合时,规定AQ=BQ ,2AQ k CQ =(或2BQ CQ ). 已知在平面直角坐标系xoy 中,Q(-1,0),C(1,0),⊙C 的半径为r .(1)如图1,当2r =时,①若A 1(0,1)是⊙C 的“k 相关依附点”,求k 的值.②A 2(1+2,0)是否为⊙C 的“2相关依附点”.(2)若⊙C 上存在“k 相关依附点”点M ,①当r=1,直线QM 与⊙C 相切时,求k 的值.②当3k =时,求r 的取值范围.(3)若存在r 的值使得直线3y x b =-+与⊙C 有公共点,且公共点时⊙C 的“3相关依附点”,直接写出b 的取值范围.【答案】(1)2.②是;(2)①3k =②r 的取值范围是12r <≤;(3)333b -<. 【解析】【分析】(1)①如图1中,连接AC 、1QA .首先证明1QA 是切线,根据2AQ k CQ =计算即可解决问题;②根据定义求出k 的值即可判断;(2)①如图,当1r =时,不妨设直线QM 与C e 相切的切点M 在x 轴上方(切点M 在x 轴下方时同理),连接CM ,则QM CM ⊥,根据定义计算即可;②如图3中,若直线QM 与C e 不相切,设直线QM 与C e 的另一个交点为N (不妨设QN QM <,点N ,M 在x 轴下方时同理),作CD QM ⊥于点D ,则MD ND =,可得()222MQ NQ MN NQ NQ ND NQ DQ +=++=+=,2CQ =,推出2MQ NQ DQ k DQ CQ CQ +===,可得当3k =时,3DQ =,此时221CD CQ DQ =-=,假设C e 经过点Q ,此时2r =,因为点Q 早C e 外,推出r 的取值范围是12r <…; (3)如图4中,由(2)可知:当3k =时,12r <….当2r =时,C e 经过点(1,0)Q -或(3,0)E ,当直线3y x b =-+经过点Q 时,3b =-,当直线3y x b =-+经过点E 时,33b =,即可推出满足条件的b 的取值范围为333b -<<.【详解】(1)①如图1中,连接AC 、1QA .由题意:1OC OQ OA ==,∴△1QA C 是直角三角形,190CA Q ∴∠=︒,即11CA QA ⊥,1QA ∴是C e 的切线,122222QA k QC ∴=== ②Q 2(12,0)A +在C e 上,221212k -+++∴==,2A ∴是C e 的“2相关依附点”.2 (2)①如图2,当1r =时,不妨设直线QM 与C e 相切的切点M 在x 轴上方(切点M 在x 轴下方时同理),连接CM ,则QM CM ⊥.(1,0)Q -Q ,(1,0)C ,1r =,2CQ ∴=,1CM =,∴3MQ =,此时23MQ k CQ= ②如图3中,若直线QM 与C e 不相切,设直线QM 与C e 的另一个交点为N (不妨设QN QM <,点N ,M 在x 轴下方时同理),作CD QM ⊥于点D ,则MD ND =,()222MQ NQ MN NQ NQ ND NQ DQ ∴+=++=+=,2CQ =Q ,∴2MQ NQ DQ k DQ CQ CQ +===,∴当3k =3DQ =221CD CQ DQ =-,假设C e 经过点Q ,此时2r =,Q 点Q 早C e 外,r ∴的取值范围是12r <….(3)如图4中,由(2)可知:当3k =时,12r <….当2r =时,C e 经过点(1,0)Q -或(3,0)E ,当直线3y x b =-+经过点Q 时,3b =-,当直线3y x b =-+经过点E 时,33b =,∴满足条件的b 的取值范围为333b -<<.【点睛】本题考查了一次函数综合题、圆的有关知识、勾股定理、切线的判定和性质、点A (或点)B 是C e 的“k 相关依附点”的定义等知识,解题的关键是理解题意,灵活运用所学知识解决问题,学会考虑特殊位置解决问题,属于中考压轴题.15.如图1,⊙O 的直径AB =12,P 是弦BC 上一动点(与点B ,C 不重合),∠ABC =30°,过点P 作PD ⊥OP 交⊙O 于点D .(1)如图2,当PD ∥AB 时,求PD 的长;(2)如图3,当弧DC =弧AC 时,延长AB 至点E ,使BE =12AB ,连接DE .①求证:DE是⊙O的切线;②求PC的长.【答案】(1)26;(2)①证明见解析;②33﹣3.【解析】试题分析:(1)根据题意首先得出半径长,再利用锐角三角三角函数关系得出OP,PD的长;(2)①首先得出△OBD是等边三角形,进而得出∠ODE=∠OFB=90°,求出答案即可;②首先求出CF的长,进而利用直角三角形的性质得出PF的长,进而得出答案.试题解析:(1)如图2,连接OD,∵OP⊥PD,PD∥AB,∴∠POB=90°,∵⊙O的直径AB=12,∴OB=OD=6,在Rt△POB中,∠ABC=30°,∴OP=OB•tan30°=6×=2,在Rt△POD中,PD===;(2)①如图3,连接OD,交CB于点F,连接BD,∵,∴∠DBC=∠ABC=30°,∴∠ABD=60°,∵OB=OD,∴△OBD是等边三角形,∴OD⊥FB,∵BE=AB,∴OB=BE,∴BF∥ED,∴∠ODE=∠OFB=90°,∴DE是⊙O的切线;②由①知,OD⊥BC,∴CF=FB=OB•cos30°=6×=3,在Rt△POD中,OF=DF,∴PF=DO=3(直角三角形斜边上的中线,等于斜边的一半),∴CP=CF﹣PF=3﹣3.考点:圆的综合题。

2021年九年级数学中考复习专题之圆:切线长定理综合运用(一)

2021年九年级数学中考复习专题之圆:切线长定理综合运用(一)

2021年九年级数学中考复习专题之圆:切线长定理综合运用(一)一.选择题1.如图所示,P是⊙O外一点,PA,PB分别和⊙O切于A,B两点,C是上任意一点,过C作⊙O的切线分别交PA,PB于D,E.若△PDE的周长为12,则PA的长为()A.12 B.6 C.8 D.42.如图,△MBC中,∠B=90°,∠C=60°,MB=,点A在MB上,以AB为直径作⊙O与MC相切于点D,则CD的长为()A.B.C.2 D.33.如图中,CA,CD分别切圆O1于A,D两点,CB、CE分别切圆O2于B,E两点.若∠1=60°,∠2=65°,判断AB、CD、CE的长度,下列关系何者正确()A.AB>CE>CD B.AB=CE>CD C.AB>CD>CE D.AB=CD=CE4.如图,AB、AC是⊙O的切线,B、C为切点,∠A=50°,点P是圆上异于B、C,且在上的动点,则∠BPC的度数是()A.65°B.115°C.115°或65°D.130°或65°5.如图,半圆O的直径在梯形ABCD的底边AB上,且与其余三边BC、CD、DA相切,若BC=2,DA=3,则AB的长()A.等于4 B.等于5 C.等于6 D.不能确定6.如图,已知PA,PB分别切⊙O于点A、B,∠P=60°,PA=8,那么弦AB的长是()A.4 B.8 C.4D.87.如图所示,PA,PB是⊙O的切线,且∠APB=40°,下列说法不正确的是()A.PA=PB B.∠APO=20°C.∠OBP=70°D.∠AOP=70°8.如图,⊙O是△ABC的内切圆,点D、E分别为边AC、BC上的点,且DE为⊙O的切线,若△ABC的周长为25,BC的长是9,则△ADE的周长是()A.7 B.8 C.9 D.169.如图,半圆O的直径在梯形ABCD的底边AB上,且与其余三边BC,CD,DA相切,若AB=10,BC=4,则AD的长()A.4 B.5 C.6 D.710.已知:如图,以定线段AB为直径作半圆O,P为半圆上任意一点(异于A、B),过点P作半圆O的切线分别交过A、B两点的切线于D、C,连接OC、BP,过点O作OM∥CD分别交BC与BP于点M、N.下列结论:①S四边形ABCD=AB•CD;②AD=AB;③AD=ON;④AB为过O、C、D三点的圆的切线.其中正确的个数有()A.1个B.2个C.3个D.4个二.填空题11.如图,⊙O是四边形ABCD的内切圆,连接OA、OB、OC、OD.若∠AOB=108°,则∠COD的度数是.12.一个菱形的周长是20cm,两对角线之比是4:3,则该菱形的内切圆的半径是cm.13.如图,P是⊙O的直径AB的延长线上一点,PC、PD切⊙O于点C、D.若PA=6,⊙O的半径为2,则∠CPD=.14.如图,已知:PA、PB、EF分别切⊙O于A、B、D,若PA=10cm,那么△PEF周长是cm.若∠P=35°,那么∠AOB=,∠EOF=.15.如图,P是⊙O外的一点,PA、PB分别与⊙O相切于点A、B,C是上的任意一点,过点C的切线分别交PA、PB于点D、E,若△PDE的周长是10,则PA=.三.解答题16.已知:如图,PA、PB是⊙O的切线,切点分别是A、B,Q为AB上一点,过Q点作⊙O的切线,交PA、PB于E、F点,已知PA=12cm,求△PEF的周长.17.如图,AC是⊙O的直径,∠ACB=60°,连接AB,分别过A、B作圆O的切线,两切线交于点P,若已知⊙O的半径为1,求△PAB的周长.18.如图,点B在⊙O外,以B点为圆心,OB长为半径画弧与⊙O相交于两点C,D,与直线OB相交A点.当AC=5时,求AD的长.19.如图所示,在梯形ABCD中,AD∥BC,AB⊥BC,以AB为直径的⊙O与DC相切于E.已知AB=8,边BC比AD大6.(1)求边AD、BC的长;(2)在直径AB上是否存在一动点P,使以A、D、P为顶点的三角形与△BCP相似?若存在,求出AP的长;若不存在,请说明理由.20.如图,P是⊙O外的一点,PA、PB分别与⊙O相切于点A、B,C是上的任意一点,过点C的切线分别交PA、PB于点D、E.(1)若PA=4,求△PED的周长;(2)若∠P=40°,求∠AFB的度数.参考答案一.选择题1.解:∵PA,PB分别和⊙O切于A,B两点,∴PA=PB,∵DE是⊙O的切线,∴DA=DC,EB=EC,∵△PDE的周长为12,即PD+DE+PE=PD+DC+EC+PE=PD+AD+EB+PE=PA+PB=2PA=12,∴PA=6.故选:B.2.解:在直角△BCM中,tan60°==,得到BC==2,∵AB为圆O的直径,且AB⊥BC,∴BC为圆O的切线,又CD也为圆O的切线,∴CD=BC=2.故选:C.3.解:∵∠1=60°,∠2=65°,∴∠ABC=180°﹣∠1﹣∠2=180°﹣60°﹣65°=55°,∴∠2>∠1>∠ABC,∴AB>BC>AC,∵CA,CD分别切圆O1于A,D两点,CB、CE分别切圆O2于B,E两点,∴AC=CD,BC=CE,∴AB>CE>CD.故选:A.4.解:如图,连接OB、OC,∵AB、AC是⊙O的切线,∴∠OBA=∠OCA=90°,∵∠A=50°,∴∠BOC=130°,∵∠BOC=2∠P,∴∠BPC=65°;故选:C.5.解:如图,连接OC,OD,设⊙O的半径为r,∵BC、CD、DA与半⊙O相切,∴AD边上的高和AO边上的高都为r,∴AO=AD,同理BO=BC,∴AB=AO+BO=AD+BC=2+3=5.故选:B.6.解:∵PA,PB分别切⊙O于点A、B,∴PA=PB,又∠P=60°,∴△APB是等边三角形,∴AB=PA=8.故选:B.7.解:∵PA,PB是⊙O的切线,且∠APB=40°,∴PA=PB,∠APO=∠BPO,∠A=∠B=90°,∴∠OBP=∠OAP,∴C是错误的.故选:C.8.解:∵AB、AC、BC、DE都和⊙O相切,∴BI=BG,CI=CH,DG=DF,EF=EH.∴BG+CH=BI+CI=BC=9,∴C△ADE=AD+AE+DE=AD+AE+DF+EF=AD+DG+EH+AE=AG+AH=C△ABC﹣(BG+EH+BC)=25﹣2×9=7.故选:A.9.解:连接OC,OD,设⊙O的半径为r,∵BC、CD、DA与半⊙O相切,∴AD和AO的高为r,∴AO=AD,同理BO=BC,∴AB=AO+BO=AD+BC,又知AB=10,BC=4,故知AD=6,故选:C.10.解:连接OD、AP,∵DA、DP、BC分别是圆的切线,切点分别是A、P、B,∴DA=DP,CP=CB,∠A=90°=∠B=∠DPO,∴AD+BC=DP+CP=CD,∴S四边形ABCD=(AD+BC)•AB=AB•CD,∴①正确;∵AD=DP<OD,∵四边形ODPN是平行四边形,得到OD=NP<BP<AB,则AD<AB,∴②错误;∵AB是圆的直径,∴∠APB=90°,∵DP=AD,AO=OP,∴D、O在AP的垂直平分线上,∴OD⊥AP,∵∠DPO=∠APB=90°,∴∠OPB=∠DPA=∠DOP,∵OM∥CD,∴∠POM=∠DPO=90°,在△DPO和△NOP中∠PON=∠DPO,OP=OP,∠DOP=∠OPN,∴△DPO≌△NOP,∴ON=DP=AD,∴③正确;∵AP⊥OD,OA=OP,∴∠AOD=∠POD,同理∠BOC=∠POC,∴∠DOC=×180°=90°,∴△CDO的外接圆的直径是CD,∵∠A=∠B=90°,取CD的中点Q,连接OQ,∵OA=OB,∴AD∥OQ∥BC,∴∠AOQ=90°,∴④正确.故选:C.二.填空题(共5小题)11.解:如图所示:连接圆心与各切点,在Rt△DEO和Rt△DFO中,∴Rt△DEO≌Rt△DFO(HL),∴∠1=∠2,同理可得:Rt△AFO≌Rt△AMO,Rt△BMO≌Rt△BNO,Rt△CEO≌Rt△CNO,∴∠3=∠4,∠5=∠7,∠6=∠8,∴∠5+∠6=∠7+∠8=108°,∴2∠2+2∠3=360°﹣2×108°,∴∠2+∠3=∠DOC=72°.故答案为:72°.12.解:如图所示:菱形ABCD,对角线AC,BD,可得菱形内切圆的圆心即为对角线交点,设AB与圆相切于点E,可得OE⊥AB,∵一个菱形的周长是20cm,两对角线之比是4:3,∴AB=5cm,设BO=4x,则AO=3x,故(4x)2+(3x)2=25,解得:x=1,则AO=3,BO=4,故EO•AB=AO•BO,解得:EO=.故答案为:.13.解:∵PA=6,⊙O的半径为2,∴PB=PA﹣AB=6﹣4=2,∴OP=4,∵PC、PD切⊙O于点C、D.∴∠OPC=∠OPD,∴CO⊥PC,∴sin∠OPC==,∴∠OPC=30°,∴∠CPD=60°,故答案为:60°.14.解:∵PA、PB、EF分别切⊙O于A、B、D.∴AE=ED,DF=FR∴△PEF周长是PE+PF+EF=PE+EA+PF+FR=PA+PR=2PA=20cm;∵PA、PB、EF分别切⊙O于A、B∴∠PAO=∠PRO=90°∴∠AOB=360°=90°﹣90°﹣35°=145°;∴∠EOF=∠AOB=72.5°故答案是:20,145°,72.5°.15.解:∵DA,DC都是圆O的切线,∴DC=DA,同理EC=EB,PA=PB,∴△PDE的周长=PD+PE+DE=PD+DC+PE+BE=PA+PB=2PA=10,∴PA=5;故答案为5.三.解答题(共5小题)16.解:∵PA、PB是⊙O的切线,切点分别是A、B,∴PA=PB=12,∵过Q点作⊙O的切线,交PA、PB于E、F点,∴EB=EQ,FQ=FA,∴△PEF的周长是:PE+EF+PF=PE+EQ+FQ+PF,=PE+EB+PF+FA=PB+PA=12+12=24,答:△PEF的周长是24.17.解:∵PA,PB是圆O的切线.∴PA=PB,∠PAB=60°∴△PAB是等边三角形.在直角△ABC中,AB=AC•sin60°=2×=∴△PAB的周长为PA+PB+AB=3.18.解:连接OC、OD.∵OA是⊙B的直径,∴∠OCA=∠ODA=90°,∴AC、AD都是⊙O的切线.∴AD=AC=5.19.解:(1)方法1:过D作DF⊥BC于F,在Rt△DFC中,DF=AB=8,FC=BC﹣AD=6,∴DC2=62+82=100,即DC=10.(1分)设AD=x,则DE=AD=x,EC=BC=x+6,∴x+(x+6)=10.∴x=2.∴AD=2,BC=2+6=8.(4分)方法2:连OD、OE、OC,由切线长定理可知∠DOC=90°,AD=DE,CB=CE,设AD=x,则BC=x+6,由射影定理可得:OE2=DE•EC.(2分)即:x(x+6)=16,解得x1=2,x2=﹣8,(舍去)∴AD=2,BC=2+6=8.(4分)(2)存在符合条件的P点.设AP=y,则BP=8﹣y,△ADP与△BCP相似,有两种情况:①△ADP∽△BCP时,∴y=;(6分)②△ADP∽△BPC时,∴y=4.(7分)故存在符合条件的点P,此时AP=或4.(8分)20.解:(1)∵DA,DC都是圆O的切线,∴DC=DA,同理EC=EB,∵P是⊙O外的一点,PA、PB分别与⊙O相切于点A、B∴PA=PB,∴三角形PDE的周长=PD+PE+DE=PD+DC+PE+BE=PA+PB=2PA=8,即三角形PDE的周长是8;(2)连接AB,∵PA=PB,∴∠PAB=∠PBA,∵∠P=40°,∴∠PAB=∠PBA=(180﹣40)=70°,∵BF⊥PB,BF为圆直径∴∠ABF=∠PBF=90°﹣70°=20°∴∠AFB=90°﹣20°=70°.答:(1)若PA=4,△PED的周长为8;(2)若∠P=40°,∠AFB的度数为70°.。

2021年中考数学专题复习:圆的综合题

2021年中考数学专题复习:圆的综合题

2021年中考数学专题复习:圆的综合题1.如图,在平面直角坐标系xOy中,直线AB过点A(﹣3,0),B(0,3),⊙O 的半径为1(O为坐标原点),点P在直线AB上,过点P作⊙O的一条切线PQ,Q为切点,则切线长PQ的最小值为()A.B.2C.3 D.2.如图,AB是⊙O的直径,弦CD⊥AB于点E,∠CDB=30°,⊙O的半径为3cm,则CD 弦长为()A.cm B.cm C.3cm D.6cm3.如图,从一圆形纸片上剪出一个半径为R,圆心角为90°的扇形和一半径为r的圆,使之恰好围成如图所示的圆锥,则R与r的关系为()A.R=2r B.R=4r C.R=2r D.R=6r4.如图,已知四边形ABCD为⊙O的内接四边形,BD平分∠ABC,DH⊥AB于点H,DH =,∠ABC=120°,则AB+BC的值为()A.B.C.2 D.5.如图,⊙O分别切∠BAC的两边AB,AC于点E,F,点P在优弧()上,若∠BAC =66°,则∠EPF等于()A.66°B.77°C.84°D.57°6.如图,四边形ABCD是⊙O的内接四边形,若∠BOD=90°,则∠BCD的度数是()A.45°B.90°C.135°D.150°7.如图,△ABC内接于半径为的半⊙O,AB为直径,点M是的中点,连结BM交AC于点E,AD平分∠CAB交BM于点D,且D为BM的中点,则BC的长为()A.B.C.D.8.如图,在等腰Rt△ABC中,AB=BC=4,点P在以斜边AC为直径的圆上,M为PB 的中点,当点P沿圆从点A开始运动一周,则CM的最小值是()A.2﹣2 B.2+2 C.2D.2+29.如图,AB是圆O的直径,点C是半圆O上不同于A,B的一点,点D为弧AC的中点,连结OD,BD,AC,设∠CAB=β,∠BDO=α,则()A.α=βB.α+2β=90°C.2α+β=90°D.α+β=45°10.如图,在菱形ABCD中,∠A=60°,AB=3,⊙A,⊙B的半径分别为2和1,P,E,F 分别是CD边、⊙A和⊙B上的动点,则PE+PF的最小值是()A.B.2 C.3 D.311.如图,圆上有五个点,这五个点将圆分成五等份(每一份称为一段弧长),把这五个点按顺时针方向依次编号为1,2,3,4,5,若从某一点开始,沿圆周顺时针方向行走,点的编号是数字几,就走几段弧长,我们把这种走法称为一次“移位”.如:小明在编号为3的点,那么他应走3段弧长,即从3→4→5→1为第1次“移位”,这时他到达编号为1的点,那么他应走1段弧长,即从1→2为第2次“移位”.若小明从编号为4的点开始,经过2019次“移位”后,他到达编号为()A.1 B.2 C.4 D.512.如图,A、B、C三点在⊙O上,若∠ACB=∠AOB,则∠AOB的度数是()A.60°B.90°C.100°D.120°13.如图,矩形ABCD的边长AB=1,BC=2.把BC绕B逆时针旋转,使C恰好落在AD 上的点E处,线段BC扫过部分为扇形BCE.若扇形BCE正好是一个圆锥的侧面展开图,则该圆锥的底面圆的半径是()A.B.C.D.14.如图AB为⊙O的直径,∠BED=40°,则∠ACD=()A.40°B.45 C.50°D.55°15.如图,AB为⊙O的直径,C、D为⊙O上两点,若∠CAB=35°,则∠D等于()A.35°B.55°C.65°D.70°16.如图,四边形ABCD内接于⊙O,AE⊥CB交CB的延长线于点E,若BA平分∠DBE,AD=7,CE=5,则AE=()A.3 B.C.D.17.如图,在矩形ABCD中,AB=4、AD=8,点E是AB的中点,延长CB到点F,使BF =BC,连接EF.连接点D与线段EF的中点G.如果将△BEF绕点B顺时针旋转,那么在旋转的过程中,线段DG长的最大值是()A.5B.6C.3D.818.如图,△ABC中,AB=AC,⊙O是△ABC的外接圆,BO的延长线交边AC于点D.若AD=2,CD=3,则BC的长为()A.3B.C.D.219.如图,∠MPN=60°,点O是∠MPN的角平分线上的一点,半径为4的⊙O经过点P,将⊙O向左平移,当⊙O与射线PM相切时,⊙O平移的距离是()A.2 B.C.D.220.如图,AB为半圆O的直径,M,C是半圆上的三等分点,AB=8,BD与半圆O相切于点B.点P为上一动点(不与点A,M重合),直线PC交BD于点D,BE⊥OC于点E,延长BE交PC于点F,则下列结论正确的是:①PB=PD;②的长为π;③∠DBE =45°;④当P为中点时,EC=EF;⑤∠DFB=∠CBP.其中正确的个数为()A.5 B.4 C.3 D.2参考答案1.解:连接OP、OQ.∵PQ是⊙O的切线,∴OQ⊥PQ;根据勾股定理知PQ2=OP2﹣OQ2,∵当PO⊥AB时,线段PQ最短;又∵A(﹣3,0),B(0,3),∴OA=OB=3,∴AB==6,∴OP=AB=3,∴PQ==2.故选:B.2.解:∵∠CDB=30°,∴∠COB=60°,又∵OC=3cm,CD⊥AB于点E,∴OE=,解得CE=cm,∴CD=3cm.故选:C.3.解:∵恰好围成图2所示的一个圆锥模型,∴圆锥的侧面展开扇形的弧长等于圆锥的底面周长,∴=2πr,解得:R=4r,故选:B.4.解:延长BA到E,使AE=BC,连接DE,如图,∵BD平分∠ABC,∴∠ABD=∠CBD=∠ABC=×120°=60°,∵∠DAC=∠DBC=60°,∠DCA=∠DBA=60°,∴△DAC为等边三角形,∴DA=DC,在△ADE和△BCD中,,∴△ADE≌△BCD(SAS),∴∠E=∠DBC=60°,而∠DBA=60°,∴△DBE为等边三角形,∵DH⊥AB,∴BH=EH,在Rt△BDH中,BH=DH=×=1,∴BE=2BH=2,∴AB+BC=2.故选:C.5.解:连接OE、OF,如图,∵⊙O分别切∠BAC的两边AB,AC于点E,F,∴OE⊥AB,OF⊥AC,∴∠OEA=∠OFA=90°,∴∠EOF=180°﹣∠A=180°﹣66°=114°,∴∠EPF=∠EOF=×114°=57°.故选:D.6.解:∵=,∴∠A=∠DOB=×90°=45°,∵∠A+∠C=180°,∴∠C=180°﹣45°=135°,故选:C.7.解:如图,作MH⊥AB于H,连接AM,OM,OM交AC于F.∵AB是直径,∴∠AMB=90°,∠ACB=90°,∴∠CAB+∠CBA=90°,∵=,∴∠CBM=∠ABM,∵∠CAD=∠BAD,∴∠DAB+∠DBA=(∠CAB+∠CBA)=45°,∴∠ADB=180°﹣(∠DAB+∠DBA)=135°,∵∠ADM=180°﹣∠ADB=45°,∴MA=MD,∵DM=DB,∴BM=2AM,设AM=x,则BM=2x,∵AB=2,∴x2+4x2=20,∴x=2(负根已经舍弃),∴AM=2,BM=4,∵•AM•BM=•AB•MH,∴MH=,∴OH=,∵,∴OM⊥AC,∴AF=FC,∵OA=OB,∴BC=2OF,∵∠OHM=∠OFA=90°,∠AOF=∠MOH,OA=OM,∴△OAF≌△OMH(AAS),∴OF=OH=,∴BC=2OF=.故选:C.8.解:如图,取AC的中点O、连结OM.∵M为PB的中点,∴OM⊥PB,∴∠BMO=90°,∴点M在以OB为直径的圆上,设圆心为Q,连接QM,当Q、M、C共线时,CM最小,在等腰Rt△ABC中,AB=BC=4,∴AC==8,∴OB=OC=AC=4,∴OQ=OM=2,∵OA=OC,AB=BC,∴BO⊥AC,∴CQ===2,∴CM的最小值是2﹣2,故选:A.9.解:如图,设AC与DO交点为E,如图,∵OD=OB,∴∠OBD=∠BDO=α,∴∠DOA=2∠OBD=2α,又∵D为中点,AB为⊙O直径,∴OD⊥AC,∴∠EAO+∠EOA=90°,即2α+β=90°.故选:C.10.解:作A点关于直线DC的对称点A′,连接BD,DA′,∵四边形ABCD是菱形,∴AB=AD,∵∠BDA=60°,∴△ADB是等边三角形,∴∠ADB=60°,∵∠BDC=∠ADB=60°,∴∠ADN=60°,∴∠A′DN=60°,∴∠ADB+∠ADA′=180°,∴A′,D,B在一条直线上,由题意可得出:此时P与D重合,E点在AD上,F在BD上,此时PE+PF最小,∵菱形ABCD中,∠A=60°,∴AB=AD,则△ABD是等边三角形,∴BD=AB=AD=3,∵⊙A、⊙B的半径分别为2和1,∴PE=1,DF=2,∴PE+PF的最小值是3.故选:C.11.解:从编号为4的点开始走4段弧:4→5→1→2→3,所以第一次“移位”他到达编号为3的点;第二次移位后:3→4→5→1,到编号为1的点;第三次移位后:1→2,到编号为2的点;第四次移位后:2→3→4,回到起点;可以发现:他的位置以“3,1,2,4,”循环出现,2019÷4=504…3,所以第2019次移位后他的编号与第三次相同,到达编号为2的点;故选:B.12.解:如图,在优弧AB上取一点D,连接AD,BD.∵∠ACB+∠ADB=180°,∠ACB=∠AOB=2∠ADB,∴2∠ADB+∠ADB=180°,∴∠ADB=60°,∴∠AOB=2∠ADB=120°,故选:D.13.解:∵线段CE由线段BC旋转而成,BC=2,∴BE=BC=2.∵AB=1,∠BAE=90°,∴∠AEB=30°.∵AD∥BC,∴∠EBC=∠AEB=30°,∴S阴影==,设围成的圆锥的底面半径为r,则2πr=,解得:r=.故选:A.14.解:连接OD,如图,∵∠BOD=2∠BED=2×40°=80°,∴∠AOD=180°﹣∠BOD=180°﹣80°=100°,∴∠ACD=∠AOD=×100°=50°.故选:C.15.解:∵AB为⊙O的直径,∴∠ACB=90°,∴∠B=90°﹣∠CAB=90°﹣35°=55°,∴∠D=∠B=55°.故选:B.16.解:连接AC,如图,∵BA平分∠DBE,∴∠ABE=∠ABD,∵∠ABE=∠CDA,∠ABD=∠ACD,∴∠ACD=∠CDA,∴AC=AD=7,∵AE⊥CB,∴∠AEC=90°,∴AE===2.故选:C.17.解:连接BC、BG,在矩形ABCD中,AB=4、AD=8,∴BD===4,∵点E是AB的中点,延长CB到点F,使BF=BC,∴BE=2、BF=4,∴EF===2,∴BG=EF=,∴G在⊙B上,且半径为,∴当D,B,G三点共线时,DG最大,∴DG的最大值为4+=5;故选:A.18.解:连接AO并延长交BC于点H,∵AB=AC,∴=,∴OH⊥BC,BH=CH,∴BH=,作AE∥BC交BD的延长线于E.∵AD=2,CD=3,∴,∴,设OB=OA=4a,OH=3a,∵BH2=AB2﹣AH2=OB2﹣OH2,∴25﹣49a2=16a2﹣9a2,∴a2=,∴BH=,∴BC=2BH=.故选:B.19.解:设⊙O'为⊙O向左平移后与PM相切的圆,切点为B,连接O'B交PO于D,过O 作OA⊥PM于A,OC⊥O'B于C,如图所示:则OO'即为⊙O平移的距离,O'B=OP=4,O'B⊥PM,∵∠MPN=60°,PO是∠MPN的平分线,∴∠MPO=∠OPN=∠MPN=30°,∵OA⊥OM,∴OA=OP=2,∵OA⊥PM,OC⊥O'B,O'B⊥PM,∴四边形OABC是矩形,∴BC=OA=2,∴O'C=O'B﹣BC=2,由平移的性质得:OO'∥PN,∴∠DOO'=∠OPN=30°,∵O'B⊥PM,∴∠O'BP=90°,∴∠BDP=90°﹣∠MPO=60°,∵∠BDP=∠DOO'+∠DO'O,∴∠DO'O=∠BDP﹣∠DOO'=30°,∴OC=O'C=,OO'=2OC=,即⊙O平移的距离为,故选:B.20.解:①连接AC,并延长AC,与BD的延长线交于点H,如图,∵M,C是半圆上的三等分点,∴∠BAH=30°,∵BD与半圆O相切于点B.∴∠ABD=90°,∴∠H=60°,∵∠ACP=∠ABP,∠ACP=∠DCH,∴∠PDB=∠H+∠DCH=∠ABP+60°,∵∠PBD=90°﹣∠ABP,若∠PDB=∠PBD,则∠ABP+60°=90°﹣∠ABP,∴∠ABP=15°,∴P点为的中点,这与P为上的一动点不完全吻合,∴∠PDB不一定等于∠ABD,∴PB不一定等于PD,故①错误;②∵M,C是半圆上的三等分点,∴∠BOC=×180°=60°,∵直径AB=8,∴OB=OC=4,∴的长度==π,故②正确;③∵∠BOC=60°,OB=OC,∴∠ABC=60°,OB=OC=BC,∵BE⊥OC,∴∠OBE=∠CBE=30°,∵∠ABD=90°,∴∠DBE=60°,故③错误;④∵=,∴∠ABP=15°,∵∠ABD=90°,∠DBE=60°,∴∠PBF=15°,∵∠BPC=30°,∴∠CFE=∠FPb+∠FBP=45°,∵∠FEC=90°,∴∠EFC=∠ECF=45°,∴EC=EF,故④正确,⑤∵∠CBF=∠CPB=30°,∠DFB=∠FBP+∠BPF,∠CBP=∠FBP+∠CBF,∴∠DFB=∠CBP,故⑤正确,故选:C.。

2020-2021中考数学圆的综合综合题含答案解析

2020-2021中考数学圆的综合综合题含答案解析

2020-2021中考数学中考数学圆的综合圆的综合 综合题含答案解析综合题含答案解析一、圆的综合 1.如图,已知在△ABC 中,AB=15,AC=20,tanA=12,点P 在AB 边上,⊙P 的半径为定长.当点P 与点B 重合时,⊙P 恰好与AC 边相切;当点P 与点B 不重合时,⊙P 与AC 边相交于点M 和点N .(1)求⊙P 的半径;的半径;(2)当AP=65时,试探究△APM 与△PCN 是否相似,并说明理由. 【答案】(1)半径为35;(2)相似,理由见解析. 【解析】【分析】(1)如图,作BD ⊥AC ,垂足为点D ,⊙P 与边AC 相切,则BD 就是⊙P 的半径,利用解直角三角形得出BD 与AD 的关系,再利用勾股定理可求得BD 的长; (2)如图,过点P 作PH ⊥AC 于点H ,作BD ⊥AC ,垂足为点D ,根据垂径定理得出MN=2MH ,PM=PN ,再利用勾股定理求出PH 、AH 、MH 、MN 的长,从而求出AM 、NC 的长,然后求出AM MP、PNNC的值,得出AM MP=PN NC,利用两边对应成比例且夹角相等的两三角形相似即可证明.【详解】(1)如图,作BD ⊥AC ,垂足为点D ,∵⊙P 与边AC 相切, ∴BD 就是⊙P 的半径, 在Rt △ABD 中,tanA=1BD2AD, 设BD=x ,则AD=2x , ∴x 2+(2x)2=152, 解得:x=35, ∴半径为35;(2)相似,理由见解析,如图,过点P 作PH ⊥AC 于点H ,作BD ⊥AC ,垂足为点D ,∴PH 垂直平分MN , ∴PM=PN , 在Rt △AHP 中,tanA=12PH AH=,设PH=y ,AH=2y ,y 2+(2y )2=(65)2 解得:y=6(取正数), ∴PH=6,AH=12, 在Rt △MPH 中,MH=()22356-=3,∴MN=2MH=6, ∴AM=AH-MH=12-3=9, NC=AC-MN-AM=20-6-9=5,∴935535AM MP ==,355PN NC =, ∴AM MP =PN NC , 又∵PM=PN ,∴∠PMN=∠PNM , ∴∠AMP=∠PNC , ∴△AMP ∽△PNC.【点睛】本题考查了解直角三角形、垂径定理、相似三角形的判定与性质等,综合性较强,有一定的难度,正确添加辅助线、灵活应用相关的性质与定理是解题的关键.2.如图1,以边长为4的正方形纸片ABCD 的边AB 为直径作⊙O ,交对角线AC 于点E . (1)图1中,线段AE= ;(2)如图2,在图1的基础上,以点A 为端点作∠DAM=30°,交CD 于点M ,沿AM 将四边形ABCM 剪掉,使Rt △ADM 绕点A 逆时针旋转(如图3),设旋转角为α(0°<α<150°),在旋转过程中AD 与⊙O 交于点F . ①当α=30°时,请求出线段AF 的长;②当α=60°时,求出线段AF的长;判断此时DM与⊙O的位置关系,并说明理由;③当α= °时,DM与⊙O相切.【答案】(1)2(2)①2②2,相离③当α=90°时,DM与⊙O相切【解析】(1)连接BE,∵AC是正方形ABCD的对角线,∴∠BAC=45°,∴△AEB是等腰直角三角形,又∵AB=8,∴AE=4;(2)①连接OA、OF,由题意得,∠NAD=30°,∠DAM=30°,故可得∠OAM=30°,∠DAM=30°,则∠OAF=60°,又∵OA=OF,∴△OAF是等边三角形,∵OA=4,∴AF=OA=4;②连接B'F,此时∠NAD=60°,∵AB'=8,∠DAM=30°,∴AF=AB'cos∠DAM=8×=4; 此时DM与⊙O的位置关系是相离;③∵AD=8,直径的长度相等,∴当DM与⊙O相切时,点D在⊙O上,故此时可得α=∠NAD=90°.点睛:此题属于圆的综合题,主要是仔细观察每一次旋转后的图形,根据含30°角的直角三角形进行计算,另外在解答最后一问时,关键是判断出点D的位置,有一定难度.3.如图,P A、PB是⊙O的切线,A,B为切点,∠APB=60°,连接PO并延长与⊙O交于C 点,连接AC、BC.(Ⅰ)求∠ACB的大小;(Ⅱ)若⊙O半径为1,求四边形ACBP的面积.【答案】(Ⅰ)60°;(Ⅱ)332【解析】分析:(Ⅰ)连接AO,根据切线的性质和切线长定理,得到OA⊥AP,OP平分∠APB,然后根据角平分线的性质和三角形的外角的性质,30°角的直角三角形的性质,得到∠ACB的度数;(Ⅱ)根据30°角的直角三角形的性质和等腰三角形的性质,结合等底同高的性质求三角形的面积即可.详解:(Ⅰ)连接OA ,如图,∵P A 、PB 是⊙O 的切线, ∴OA ⊥AP ,OP 平分∠APB , ∴∠APO=12∠APB=30°,∴∠AOP=60°, ∵OA=OC , ∴∠OAC=∠OCA , ∴∠ACO=12AOP=30°,同理可得∠BCP=30°, ∴∠ACB=60°;(Ⅱ)在Rt △OPA 中,∵∠APO=30°, ∴AP=3OA=3,OP=2OA=2, ∴OP=2OC , 而S △OPA =12×1×3, ∴S △AOC =12S △PAO =34,∴S △ACP =334,∴四边形ACBP 的面积=2S △ACP =332.点睛:本题考查了切线的性质,解直角三角形,等腰三角形的判定,熟练掌握切线的性质是解题的关键.4.等腰Rt △ABC 和⊙O 如图放置,已知AB=BC=1,∠ABC=90°,⊙O 的半径为1,圆心O 与直线AB 的距离为5.1)若△ABC 以每秒2个单位的速度向右移动,⊙O 不动,则经过多少时间△ABC 的边与圆第一次相切? (2)若两个图形同时向右移动,△ABC 的速度为每秒2个单位,⊙O 的速度为每秒1个单位,则经过多少时间△ABC 的边与圆第一次相切? (3)若两个图形同时向右移动,△ABC 的速度为每秒2个单位,⊙O 的速度为每秒1个单位,同时△ABC 的边长AB 、BC 都以每秒0.5个单位沿BA 、BC 方向增大.△ABC 的边与圆第一次相切时,点B 运动了多少距离?【答案】(1)522-;(2) 52-;(3)20423- 【解析】分析:(1)分析易得,第一次相切时,与斜边相切,假设此时,△ABC 移至△AʹBʹCʹ处,AʹCʹ与⊙O 切于点E ,连OE 并延长,交BʹCʹ于F .由切线长定理易得CCʹ的长,进而由三角形运动的速度可得答案;(2)设运动的时间为t 秒,根据题意得:CCʹ=2t ,DDʹ=t ,则CʹDʹ=CD+DDʹCʹDʹ=CD+DDʹ--CCʹ=4+t CCʹ=4+t-2t=4-t -2t=4-t ,由第(1)的结论列式得出结果;(3)求出相切的时间,进而得出B 点移动的距离. 详解:(1)假设第一次相切时,△ABC 移至△AʹBʹCʹ处, 如图1,AʹCʹ与⊙O 切于点E ,连接OE 并延长,交BʹCʹ于F ,设⊙O 与直线l 切于点D ,连接OD ,则OE ⊥AʹCʹ,OD ⊥直线l , 由切线长定理可知CʹE=CʹD , 设CʹD=x ,则CʹE=x , ∵△ABC 是等腰直角三角形, ∴∠A=∠ACB=45°,∴∠AʹCʹBʹ=∠ACB=45°, ∴△EFCʹ是等腰直角三角形, ∴CʹF=2x ,∠OFD=45°, ∴△OFD 也是等腰直角三角形, ∴OD=DF , ∴2x+x=1,则x=2-1,∴CCʹ=BD CCʹ=BD-BC--BC--BC-CʹD=5CʹD=5CʹD=5-1--1-(2-1)=5-2,∴点C 运动的时间为522-;则经过522-秒,△ABC 的边与圆第一次相切; (2)如图2,设经过t 秒△ABC 的边与圆第一次相切,△ABC 移至△AʹBʹCʹ处,⊙O 与BC 所在直线的切点D 移至Dʹ处,AʹCʹ与⊙O 切于点E ,连OE 并延长,交BʹCʹ于F , ∵CCʹ=2t ,DDʹ=t ,∴CʹDʹ=CD+DDʹCʹDʹ=CD+DDʹ--CCʹ=4+t CCʹ=4+t-2t=4-t -2t=4-t , 由切线长定理得CʹE=CʹDʹ=4CʹE=CʹDʹ=4-t -t , 由(1)得:4-t=2-1, 解得:t=5-2,答:经过5-2秒△ABC 的边与圆第一次相切; (3)由(2)得CCʹ=(2+0.5)t=2.5t ,DDʹ=t , 则CʹDʹ=CD+DDʹCʹDʹ=CD+DDʹ--CCʹ=4+t CCʹ=4+t-2.5t=4-1.5t -2.5t=4-1.5t , 由切线长定理得CʹE=CʹDʹ=4CʹE=CʹDʹ=4-1.5t -1.5t , 由(1)得:4-1.5t=2-1,解得:t=10223-, ∴点B 运动的距离为2×10223-=20423-.点睛:本题要求学生熟练掌握圆与直线的位置关系,并结合动点问题进行综合分析,比较复杂,难度较大,考查了学生数形结合的分析能力.5.如图,在⊙O 中,直径AB ⊥弦CD 于点E ,连接AC ,BC ,点F 是BA 延长线上的一点,且∠FCA =∠B .(1)求证:CF 是⊙O 的切线; (2)若AE =4,tan ∠ACD =33,求FC 的长.【答案】(1)见解析【解析】分析:(1)利用圆周角定理以及等腰三角形的性质得出∠OCF=90°,进而得出答案; (2)根据正切的性质求出EC 的长,然后利用垂径定理求出圆的半径,再根据等边三角形的性质,利用勾股定理求出即可.详解:(1)证明:连接OC.∵AB 是⊙O 的直径, ∴∠ACB =90°,∴∠OCB +∠ACO =90°90°.. ∵OB =OC ,∴∠B =∠OCB. 又∵∠FCA =∠B ,∴∠FCA =∠OCB , ∴∠FCA +∠ACO =90°,即∠FCO =90°, ∴FC ⊥OC , ∴FC 是⊙O 切线. (2)解:∵AB ⊥CD ,∴∠AEC =90°,∴EC=AE 443tan ACE 33∠==, 设OA =OC =r ,则OE =OA -AE =r -4. 在Rt △OEC 中,OC 2=OE 2+CE 2, 即r 2=(r -4)2+(43)2,解得r =8. ∴OE =r -4=4=AE. ∵CE ⊥OA ,∴CA =CO =8, ∴△AOC 是等边三角形, ∴∠FOC =60°,∴∠F =30°30°.. 在Rt △FOC 中, ∵∠OCF =90°,OC =8,∠F =30°, ∴OF=2OC =16, ∴FC =22OF OC 83-=.点睛:此题主要考查了切线的判定、垂径定理的推论以及勾股定理等知识,得出BC 的长是解题关键.6.如图.在△ABC 中,∠C =90°,AC =BC ,AB =30cm ,点P 在AB 上,AP =10cm ,点E 从点P出发沿线段PA以2c m/s的速度向点A运动,同时点F从点P出发沿线段PB以1c m/s的速度向点B运动,点E到达点A后立刻以原速度沿线段AB向点B运动,在点E、F运动过程中,以EF为边作正方形EFGH,使它与△ABC在线段AB的同侧,设点E、F运动的时间为t (s)(0<t<20).(1)当点H落在AC边上时,求t的值;(2)设正方形EFGH与△ABC重叠部分的面积为S.①试求S关于t的函数表达式;②以点C为圆心,12t为半径作⊙C,当⊙C与GH所在的直线相切时,求此时S的值.【答案】(1)t=2s或10s;(2)①S=2229? (02)75050(210)240400? (1020)t tt t tt t t⎧<≤⎪⎪-+-<≤⎨⎪-+<<⎪⎩;②100cm2.【解析】试题分析:(1)如图1中,当0<t≤5时,由题意AE=EH=EF,即10﹣2t=3t,t=2;如图2中,当5<t<20时,AE=HE,2t﹣10=10﹣(2t﹣10)+t,t=10;(2)分四种切线讨论a、如图3中,当0<t≤2时,重叠部分是正方形EFGH,S=(3t)2=9t2.b、如图4中,当2<t≤5时,重叠部分是五边形EFGMN.c、如图5中,当5<t<10时,重叠部分是五边形EFGMN.d、如图6中,当10<t<20时,重叠部分是正方形EFGH.分别计算即可;②分两种情形分别列出方程即可解决问题.试题解析:解:(1)如图1中,当0<t≤5时,由题意得:AE=EH=EF,即10﹣2t=3t,t=2如图2中,当5<t<20时,AE=HE,2t﹣10=10﹣(2t﹣10)+t,t=10.综上所述:t=2s或10s时,点H落在AC边上.(2)①如图3中,当0<t≤2时,重叠部分是正方形EFGH,S=(3t)2=9t2如图4中,当2<t≤5时,重叠部分是五边形EFGMN,S=(3t)2﹣1(5t﹣10)2=﹣27t2+50t﹣50.21如图5中,当5<t<10时,重叠部分是五边形EFGMN,S=(20﹣t)2﹣(30﹣3t)2=﹣27t2+50t﹣50.2如图6中,当10<t<20时,重叠部分是正方形EFGH,S=(20﹣t)2=t2﹣40t+400.综上所述:S=2229? (02)75050(210)240400? (1020) t tt t tt t t⎧<≤⎪⎪-+-<≤⎨⎪-+<<⎪⎩.②如图7中,当<t≤5时,12t+3t=15,解得:t=307,此时S=100cm2,当5<t<20时,12t+20﹣t=15,解得:t=10,此时S=100.综上所述:当⊙C与GH所在的直线相切时,求此时S的值为100cm2点睛:本题考查了圆综合题、正方形的性质、等腰直角三角形的性质、切线的性质等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,注意不能漏解,属于中考压轴题.7.四边形ABCD内接于⊙O,点E为AD上一点,连接AC,CB,∠B=∠AEC.(1)如图1,求证:CE=CD;(2)如图2,若∠B+∠CAE=120°,∠ACD=2∠BAC,求∠BAD的度数;(3)如图3,在(2)的条件下,延长CE交⊙O于点G,若tan∠BAC= 5311,EG=2,求AE的长.【答案】(1)见解析;(2)60°;(3)7.【解析】试题分析:(1)利用圆的内接四边形定理得到∠CED=∠CDE.(2) 作CH⊥DE于H, 设∠ECH=α,由(1)CE=CD,用α表示∠CAE,∠BAC,而∠BAD=∠BAC+∠CAE.(3)连接AG,作GN⊥AC,AM⊥EG,先证明∠CAG=∠BAC,设NG=53m,可得AN=11m,利用直角n AGM, n AEM,勾股定理可以算出m的值并求出AE长.试题解析:(1)解:证明:∵四边形ABCD内接于⊙O.∴∠B+∠D=180°,∵∠B=∠AEC,∴∠AEC+∠D=180°,∵∠AEC+∠CED=180°,∴∠D=∠CED,∴CE=CD.(2)解:作CH⊥DE于H.设∠ECH=α,由(1)CE=CD,∴∠ECD=2α,∵∠B=∠AEC,∠B+∠CAE=120°,∴∠CAE+∠AEC=120°,∴∠ACE=180°﹣∠AEC﹣∠ACE=60°,60°++α)=30°﹣α, ∴∠CAE=90°﹣∠ACH=90°﹣(60°=60°+2+2α,∠ACD=∠ACH+∠HCD=60°∵∠ACD=2∠BAC,=30°++α,∴∠BAC=30°=30°++α+30°﹣α=60°.∴∠BAD=∠BAC+∠CAE=30°(3)解:连接AG,作GN⊥AC,AM⊥EG,∵∠CED=∠AEG,∠CDE=∠AGE,∠CED=∠CDE, ∴∠AEG=∠AGE,∴AE=AG,∴EM=MG=1EG=1,2∴∠EAG=∠ECD=2α,∴∠CAG=∠CAD+∠DAG=30°﹣α+2α=∠BAC,∵tan ∠BAC =5311,∴设NG=53m ,可得AN =11m ,AG =22AG AM -=14m ,∵∠ACG =60°,∴CN=5m,AM =83m ,MG =22AG AM -=2m =1,∴m =12,∴CE=CD =CG ﹣EG =10m ﹣2=3, ∴AE =22AM EM +=221+43()=7.8.阅读下列材料:如图1,⊙O 1和⊙O 2外切于点C ,AB 是⊙O 1和⊙O 2外公切线,A 、B 为切点, 求证:AC ⊥BC证明:过点C 作⊙O 1和⊙O 2的内公切线交AB 于D ,∵DA 、DC 是⊙O 1的切线 ∴DA=DC . ∴∠DAC=∠DCA . 同理∠DCB=∠DBC .又∵∠DAC+∠DCA+∠DCB+∠DBC=180°, ∴∠DCA+∠DCB=90°. 即AC ⊥BC .根据上述材料,解答下列问题:(1)在以上的证明过程中使用了哪些定理?请写出两个定理的名称或内容; (2)以AB 所在直线为x 轴,过点C 且垂直于AB 的直线为y 轴建立直角坐标系(如图2),已知A 、B 两点的坐标为(﹣4,0),(1,0),求经过A 、B 、C 三点的抛物线y=ax 2+bx+c 的函数解析式;(3)根据(2)中所确定的抛物线,试判断这条抛物线的顶点是否落在两圆的连心O 1O 2上,并说明理由.【答案】(1)见解析;(2)213222y x x=+- ;(3)见解析 【解析】试题分析:(1)由切线长相等可知用了切线长定理;由三角形的内角和是180°,可知用了三角形内角和定理;(2)先根据勾股定理求出C 点坐标,再用待定系数法即可求出经过、、A B C 三点的抛物线的函数解析式;(3)过C 作两圆的公切线,交AB 于点D ,由切线长定理可求出D 点坐标,根据,C D 两点的坐标可求出过,C D 两点直线的解析式,根据过一点且互相垂直的两条直线解析式的关系可求出过两圆圆心的直线解析式,再把抛物线的顶点坐标代入直线的解析式看是否适合即可.试题解析:(1)DA 、DC 是1O e 的切线, ∴DA =DC .应用的是切线长定理;180DAC DCA DCB DBC ∠+∠+∠+∠=o,应用的是三角形内角和定理 (2)设C 点坐标为(0,y ),则222AB AC BC =+, 即()()222224141y y --=-+++,即225172y =+,解得y =2(舍去)或y =−2.故C 点坐标为(0,−2), 设经过、、A B C 三点的抛物线的函数解析式为2y ax bx c ,=++则164002,a b c a b c c -+=⎧⎪++=⎨⎪=-⎩ 解得12322a b c ⎧=⎪⎪⎪=⎨⎪=-⎪⎪⎩,故所求二次函数的解析式为2132.22y x x =+- (3)过C 作两圆的公切线CD 交AB 于D ,则AD =BD =CD ,由A (−4,0),B (1,0)可知3(,0)2D -, 设过CD 两点的直线为y =kx +b ,则3022k b b ⎧-+=⎪⎨⎪=-⎩, 解得432k b ⎧=-⎪⎨⎪=-⎩, 故此一次函数的解析式为423y x =--,∵过12,O O 的直线必过C 点且与直线423y x =--垂直,故过12,O O 的直线的解析式为324y x =-, 由(2)中所求抛物线的解析式可知抛物线的顶点坐标为325(,)28--,代入直线解析式得33252,428⎛⎫⨯--=- ⎪⎝⎭故这条抛物线的顶点落在两圆的连心12O O 上.9.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点G ,点F 是CD 上一点,且满足若13CF DF =,连接AF 并延长交⊙O 于点E ,连接AD 、DE ,若CF=2,AF=3.(1)求证:△ADF ∽△AED ; (2)求FG 的长; (3)求tan ∠E 的值. 【答案】(1)证明见解析;(2)FG =2;(3)54. 【解析】分析:(1)由AB 是 O 的直径,弦CD ⊥AB ,根据垂径定理可得:弧AD=弧AC ,DG=CG ,继而证得△ADF ∽△AED ;(2)由13CF FD = ,CF=2,可求得DF 的长,继而求得CG=DG=4,则可求得FG=2;(3)由勾股定理可求得AG 的长,即可求得tan ∠ADF 的值,继而求得tan ∠E=54 .本题解析:①∵AB 是⊙O 的直径,弦CD ⊥AB , ∴DG=CG ,∴»»AD AC =,∠ADF=∠AED ,∵∠FAD=∠DAE (公共角),∴△ADF ∽△AED ;②∵13CF FD=,CF=2,∴FD=6,∴CD=DF+CF=8,∴CG=DG=4,∴FG=CG-CF=2;③∵AF=3,FG=2,∴AG=225AF FG -=,点睛:本题考查了相似三角形的判定与性质、圆周角定理、垂径定理、勾股定理以及三角函数等知识点,考查内容较多,综合性较强,难度适中,注意掌握数形结合的思想.10.如图,AB 是半圆O 的直径,半径OC ⊥AB ,OB =4,D 是OB 的中点,点E 是弧BC 上的动点,连接AE ,DE .(1)当点E 是弧BC 的中点时,求△ADE 的面积;(2)若3tan 2AED ∠= ,求AE 的长;(3)点F 是半径OC 上一动点,设点E 到直线OC 的距离为m ,当△DEF 是等腰直角三角形时,求m 的值.【答案】(1)62ADES=;(2)1655AE =;(3)23m = ,22m =,71m =-.【解析】 【分析】(1)作EH ⊥AB ,连接OE ,EB ,设DH =a ,则HB =2﹣a ,OH =2+a ,则EH =OH =2+a ,根据Rt △AEB 中,EH 2=AH•BH ,即可求出a 的值,即可求出S △ADE 的值;(2)作DF ⊥AE ,垂足为F ,连接BE ,设EF =2x ,DF =3x ,根据DF ∥BE 故AF AD EF BD=,得出AF =6x ,再利用Rt △AFD 中,AF 2+DF 2=AD 2,即可求出x ,进而求出AE 的长; (3)根据等腰直角三角形的不同顶点进行分类讨论,分别求出m 的值.【详解】解:(1)如图,作EH ⊥AB ,连接OE ,EB , 设DH =a ,则HB =2﹣a ,OH =2+a , ∵点E 是弧BC 中点, ∴∠COE =∠EOH =45°, ∴EH =OH =2+a ,在Rt △AEB 中,EH 2=AH•BH , (2+a )2=(6+a )(2﹣a ), 解得a =222±-, ∴a =222-,EH=22,S △ADE =1622AD EH =n n ;(2)如图,作DF ⊥AE ,垂足为F ,连接BE设EF =2x ,DF =3x ∵DF ∥BE ∴AF ADEF BD = ∴622AF x ==3 ∴AF =6x在Rt △AFD 中,AF 2+DF 2=AD 2 (6x )2+(3x )2=(6)2 解得x =255 AE =8x =1655(3)当点D 为等腰直角三角形直角顶点时,如图设DH =a由DF=DE,∠DOF=∠EHD=90°,∠FDO+∠DFO=∠FDO+∠EDH , ∴∠DFO=∠EDH ∴△ODF ≌△HED ∴OD =EH =2在Rt △ABE 中,EH 2=AH•BH (2)2=(6+a )•(2﹣a )解得a=±232-m=23当点E为等腰直角三角形直角顶点时,如图同理得△EFG≌△DEH设DH=a,则GE=a,EH=FG=2+a在Rt△ABE中,EH2=AH•BH(2+a)2=(6+a)(2﹣a)解得a=222±-∴m=22当点F为等腰直角三角形直角顶点时,如图同理得△EFM≌△FDO设OF=a,则ME=a,MF=OD=2∴EH=a+2在Rt△ABE中,EH2=AH•BH(a+2)2=(4+a)•(4﹣a)-解得a=±71m=71-【点睛】此题主要考查圆内综合问题,解题的关键是熟知全等三角形、等腰三角形、相似三角形的判定与性质.11.如图1,等腰直角△ABC中,∠ACB=90°,AC=BC,过点A,C的圆交AB于点D,交BC 于点E,连结DE(2)如图2,连结CD,若CE=3,△ACD的面积为10,求tan∠BCD1)若AD=7,BD=1,分别求DE,CE的长是△CPF的内心(3)如图3,在圆上取点P使得∠PCD=∠BCD(点P与点E不重合),连结PD,且点D ①请你画出△CPF,说明画图过程并求∠CDF的度数②设PC=a ,PF=b ,PD=c ,若(a-2c )(b-2c )=8,求△CPF 的内切圆半径长.【答案】(1)DE=1,CE=32;(2)tan ∠BCD=14;(3)①135°;②2. 【解析】 【分析】(1)由A 、C 、E 、D 四点共圆对角互补为突破口求解;(2)找∠BDF 与∠ODA 为对顶角,在⊙O 中,∠COD=2∠CAD ,证明△OCD 为等腰直角三角形,从而得到∠EDC+∠ODA=45°,即可证明∠CDF=135°;(3)过点D 做DH CB ⊥于点H ,以D 为圆心,DH 为半径画圆,过点P 做D e 切线PF 交CB 的延长线于点F ,结合圆周角定理得出∠CPD=∠CAD=45°,再根据圆的内心是三角形三个内角角平分线的交点,得出∠CPF=90°,然后根据角平分线性质得出114522DCF CFD PCF PFC ∠+∠=∠+∠=︒,最后再根据三角形内角和定理即可求解;证明∠DCF+∠CFD=45°,从而证明∠CPF 是直角,再求证四边形PKDN 是正方形,最后以△PCF 面积不变性建立等量关系,结合已知(a-2c )(b-2c )=8,消去字母a ,b 求出c 值,即求出△CPF 的内切圆半径长为22c . 【详解】(1)由图可知:设BC=x .在Rt △ABC 中,AC=BC .由勾股定理得: AC 2+BC 2=AB 2,∵AB=AD+BD ,AD=7,BD=1, ∴x 2+x 2=82, 解得:x=42.∵⊙O 内接四边形,∠ACD=90°,∴∠ADE=90°, ∴∠EDB=90°,∵∠B=45°,∴△BDE 是等腰直角三形.∴DE=DB ,又∵DB=1, ∴DE=1,又∵CE=BC-BE ,∴CE=42232-=.(2)如图所示:在△DCB 中过点D 作DM ⊥BE ,设BE=y ,则DM=12y , 又∵CE=3,∴BC=3+y ,∵S △ACB =S ACD +S DCB , ∴()1114242103y y 222⨯⨯=+⨯+⨯, 解得:y=2或y=-11(舍去).∴EM=1,CM=CE+ME=1+3=4,又∵∠BCD=∠MCD , ∴tan ∠BCD=tan ∠MCD ,在Rt △DCM 中,tan ∠MCD=DM CM =14,∴tan ∠BCD=14. (3)①如下图所示: 过点D 做DH CB ⊥于点H ,以D 为圆心,DH 为半径画圆,过点P 做D e 切线PF 交CB 的延长线于点F .∵∠CAD=45°,∴∠CPD=∠CAD=45°,又∵点D 是CPF ∆的内心,∴PD 、CD 、DF 都是角平分线,∴∠FPD=∠CPD =45°,∠PCD=∠DCF ,∠PFD=∠CFD ∴∠CPF=90°∴∠PCF+∠PFC=90°∴114522DCF CFD PCF PFC ∠+∠=∠+∠=︒ ∴∠CDF=180°CDF=180°--∠DCF-∠CFD F=90°CFD F=90°+45°+45°+45°=135°=135°, 即∠CDF 的度数为135°.②如下图所示过点D 分别作DK ⊥PC ,DM ⊥CF ,DN ⊥PF 于直线PC ,CF 和PF 于点K ,M ,N 三点, 设△PCF 内切圆的半径为m ,则DN=m ,∵点D 是△PCF 的内心,∴DM=DN=DK ,又∵∠DCF+∠CFD+∠FDC=180°,∠FDC=45°,∴∠DCF+∠CFD=45°,又∵DC ,DF 分别是∠PCF 和∠PFC 的角平分线,∴∠PCF=2∠DCF ,∠PFC=2∠DFC ,∴∠PCF+∠PFC=90°,∴∠CPF=90°.在四边形PKDN 中,∠PND=∠NPK=∠PKD=90°,∴四边形PKDN 是矩形,又∵KD=ND ,∴四边形PKDN 是正方形.又∵∠MBD=∠BDM=45°,∠BDM=∠KDP , ∴∠KDP=45°.∵PC=a ,PF=b ,PD=c , ∴PN=PK=2C 2, ∴NF=2b c 2-,CK=2a c 2-, 又∵CK=CM ,FM=FN ,CF=CM+FM ,∴CF=a b 2c +-, 又∵S △PCF =S △PDF +S △PDC +S △DCF ,∴112121ab a c b c (a b 2222222=⨯+⨯++-c )×2c 2, 化简得:ab=()22a b c c +-------(Ⅰ),又∵若(a-2c )(b-2c )=8化简得:()2ab 2c a b 2c 8-++=------(Ⅱ),将(Ⅰ)代入(Ⅱ)得:c 2=8,解得:c 22=,或c 22=-(舍去),∴m=22c 22222=⨯=, 即△CPF 的内切圆半径长为2. 【点睛】本题考查圆的内接四边形性质,圆的内心,圆心角、圆周角,同弧(或等弧)之间的相互关系,同时也考查直角三角形,勾股定理,同角或等角的三角函数值相等和三角形的面积公式,正方形,对顶角和整式的运算等知识点;难点是作辅助线和利用等式求△CPF 的内切圆半径长.12.如图1,AB 为半圆O 的直径,半径OP ⊥AB ,过劣弧AP 上一点D 作DC ⊥AB 于点C .连接DB ,交OP 于点E ,∠DBA =22.5°.⑴若OC =2,则AC 的长为的长为 ; ⑵试写出AC 与PE 之间的数量关系,并说明理由; ⑶连接AD 并延长,交OP 的延长线于点G ,设DC =x ,GP =y ,请求出x 与y 之间的等量关系式. (请先补全图形,再解答)【答案】⑴ 222-;⑵见解析;⑶ y =2x 【解析】【分析】(1)如图,连接OD ,则有∠AOD=45°,所以△DOC 为等腰直角三角形,又OC=2,所以DO=AO=22,故可求出AC 的长;(2)连接AD ,DP ,过点D 作DF ⊥OP ,垂足为点F . 证AC=PF 或AC=EF ,证DP=DE证PF=EF=12PE ,故可证出PE =2AC ; (3)首先求出22OD CD x ==,再求AB=22x ,再证△DGE ≌△DBA,得GE =AB =22x ,由PE=2AC 得PE =2(2)x x -,再根据GP =GE -PE 可求结论.【详解】(1)连接OD ,如图,∵∠B=22.5°,∴∠DOC=45°DOC=45°,, ∵DC ⊥AB∴△DOC 为等腰直角三角形,∵OC=2,∴OD=22,∴AO=22,∴AC=AO-OC=222- ⑵连接AD ,DP ,过点D 作DF ⊥OP ,垂足为点F . ∵OP ⊥AB ,∴∠POD=∠DOC=45°,∴AD=PD ,∵△DOC 为等腰直角三角形, ∴DC=CO,易证DF=CO ,∴DC=DF ,∴Rt △DAC ≌Rt △DPF ,∴PF=AC, ∵DO=AO,∠DOA=45°∴∠DAC=67.5°∴∠DPE=67.5°DPE=67.5°,, ∵OD=OB ,∠B=22.5°,∴∠ODE=22.5° ∴∠DEP=22.5°DEP=22.5°+45°+45°+45°=67.5°=67.5° ∴∠DEP=∠DPE∴PF=EF=12PE ∴PE =2AC(3)如图2,由∠DCO =90°,∠DOC =45°得22OD CD x == ∴ AB =2OD=22x∵AB 是直径,∴∠ADB=∠EDG=90°,由(2)得AD=ED,∠DEG=∠DAC ∴△DGE ≌△DBA∴ GE =AB =22x∵PE =2AC ∴PE =2(2)x x - ∴ GP =GE -PE =222(2-)x x x -即:y =2x【点睛】 本题是一道圆的综合题,涵盖的知识点较多,难度较大,主要考查了圆周角定理,等腰三角形的性质,三角形全等的判定与性质等知识,熟练掌握并运用这些知识是解题的关键.13.已知四边形ABCD 是⊙O 的内接四边形,∠DAB =120°,BC =CD ,AD =4,AC =7,求AB 的长度.【答案】AB =3.【解析】【分析】 作DE ⊥AC ,BF ⊥AC ,根据弦、弧、圆周角、圆心角的关系,求得BC CD=u u u r u u u r ,进而得到∠DAC =∠CAB =60°,在Rt △ADE 中,根据60°锐角三角函数值,可求得DE =23,AE =2,再由Rt △DEC 中,根据勾股定理求出DC 的长,在△BFC 和△ABF 中,利用60°角的锐角三角函数值及勾股定理求出AF 的长,然后根据求出的两个结果,由AB =2AF ,分类讨论求出AB 的长即可.【详解】作DE ⊥AC ,BF ⊥AC ,∵BC =CD ,∴BC CD =u u u r u u u r ,∴∠CAB =∠DAC ,∵∠DAB =120°,∴∠DAC =∠CAB =60°,∵DE ⊥AC ,∴∠DEA =∠DEC =90°, ∴sin60°=4DE ,cos60°=4AE , ∴DE =23,AE =2,∵AC =7,∴CE =5,∴DC =()2223537+=,∴BC =37,∵BF ⊥AC ,∴∠BFA =∠BFC =90°, ∴tan60°=BF AF,BF 2+CF 2=BC 2, ∴BF =3AF ,∴()()()2223737AF +-=,∴AF =2或AF =32, ∵cos60°=AF AB, ∴AB =2AF ,当AF =2时,AB =2AF =4,∴AB =AD ,∵DC =BC ,AC =AC ,∴△ADC ≌△ABC (SSS ),∴∠ADC =∠ABC ,∵ABCD 是圆内接四边形,∴∠ADC+∠ABC =180°,∴∠ADC =∠ABC =90°,但AC 2=49,()222243753AD DC +=+=,AC 2≠AD 2+DC 2, ∴AB =4(不合题意,舍去),当AF =32时,AB =2AF =3, ∴AB =3. 【点睛】此题主要考查了圆的相关性质和直角三角形的性质,解题关键是构造直角三角形模型,利用直角三角形的性质解题.14.如图,已知AB 是⊙O 的直径,点C 、D 在⊙O 上,∠D =60°且AB =6,过O 点作OE ⊥AC ,垂足为E .(1)求OE 的长;(2)若OE 的延长线交⊙O 于点F ,求弦AF 、AC 和弧CF 围成的图形(阴影部分)的面积.(结果保留π)【答案】(1)OE的长为32;(2)阴影部分的面积为32π【解析】(1)OE=32(2)S=32π15.已知:如图,以等边三角形ABC一边AB为直径的⊙O与边AC、BC分别交于点D、E,过点D作DF⊥BC,垂足为F.(1)求证:DF为⊙O的切线;(2)若等边三角形ABC 的边长为4,求图中阴影部分的面积.【答案】(1)见解析)见解析(2)33223π-【解析】试题分析:(1)连接DO,要证明DF为⊙O的切线只要证明∠FDP=90°即可;(2)首先由已知可得到CD,CF的长,从而利用勾股定理可求得DF的长;再连接OE,求得CF,EF的长,从而利用S直角梯形FDOE﹣S扇形OED求得阴影部分的面积.试题解析:(1)证明:连接DO.∵△ABC是等边三角形,∴∠A=∠C=60°.∵OA=OD,∴△OAD是等边三角形.∴∠ADO=60°,∵DF⊥BC,∴∠CDF=90°﹣∠C=30°,∴∠FDO=180°﹣∠ADO﹣∠CDF=90°,∴DF为⊙O的切线;(2)∵△OAD是等边三角形,∴AD=AO=AB=2.Rt△CDF中,∴CD=AC﹣AD=2.∵∠CDF=30°,∴CF=CD=1.∴DF=,连接OE,则CE=2.∴CF=1,∴EF=1.∴S直角梯形FDOE=(EF+OD)•DF=,∴S扇形OED==,∴S阴影=S直角梯形FDOE﹣S扇形OED=﹣.【点睛】此题考查学生对切线的判定及扇形的面积等知识点的掌握情况,当已知条件中明确指出直线与圆有公共点时,常连接过该公共点的半径,证明该半径垂直于这条直线.也考查了等边三角形的性质和利用割补法计算补规则图形的面积.。

2021年中考数学高频考点:《圆的综合》解答题专题练习(二)含答案

2021年中考数学高频考点:《圆的综合》解答题专题练习(二)含答案

2021年中考数学复习高频考点精准练:《圆的综合》解答题专题练习(二)1.在Rt△ABC中,∠ABC=90°,tan A=,AC=5,点M是射线AB上一点,以MC为半径的⊙M交直线AC于点D.(1)如图,当MC=AC时,求CD的长;(2)当点D在线段AC的延长线上时,设BM=x,四边形CBMD的面积为y,求y关于x的函数解析式,并写出它的定义域;(3)如果直线MD与射线BC相交于点E,且△ECD与△EMC相似,求线段BM的长.2.如图,PA、PB为⊙O的切线,A、B为切点,点C为半圆弧的中点,连AC交PO于E 点.(1)求证:PB=PE;(2)若tan∠CPO=,求sin∠PAC的值.3.在梯形ABCD中,AD∥BC,AB⊥BC,AD=3,CD=5,cos C=(如图).M是边BC 上一个动点(不与点B、C重合),以点M为圆心,CM为半径作圆,⊙M与射线CD、射线MA分别相交于点E、F.(1)设CE=,求证:四边形AMCD是平行四边形;(2)联结EM,设∠FMB=∠EMC,求CE的长;(3)以点D为圆心,DA为半径作圆,⊙D与⊙M的公共弦恰好经过梯形的一个顶点,求此时⊙M的半径长.4.已知如图,⊙O的直径BC=4,==,点P是射线BD上的一个动点.(1)如图1,求BD的长;(2)如图1,若PB=8,连接PC,求证PC为⊙O的切线;(3)如图2,连接AP,点P在运动过程中,求AP+PB的最小值.5.如图,P是⊙O外一点,PA是⊙O的切线,A是切点,B是⊙O上一点,且PB=PA,射线PO交⊙O于C、D两点.(1)求证:PB是⊙O的切线;(2)求证:AC平分∠PAB;(3)若⊙O的直径是6,AB=2,则点D与△PAB的内切圆上各点之间距离的最大值为.6.国庆假期,小明做数学题时遇到了如下问题:如图1,四边形ABCD是⊙O的内接四边形,BC是⊙O的直径,直线l经过点A,∠ABD =∠DAE=30°.试说明直线l与⊙O相切.小明添加了适当的辅助线后,得到了图2的图形,并利用它解决了问题.(1)请你根据小明的思考,写出解决这一问题的过程;(2)图2中,若AD=,AB=4,求DC的长.7.如图,直线l1⊥l2,O为垂足,以O圆心,的半径作圆,交l1于点M,N,交l2于点P,Q.在⊙O上任取一点A,作△ABC,使∠A=90°,∠ACB=30°,顶点A,B,C按顺时针方向分布,点C落在射线ON上,且不在⊙O内.若△ABC的某一边所在直线与⊙O相切,我们称该边为⊙O的“相伴切边”.(1)如图1,CA为⊙O的“相伴切边”,CA平分∠OCB,求OC的长;(2)是否存在△ABC三边中两边都是⊙O的“相伴切边”的情形?若存在,请求出AC的长;若不存在,请说明理由.8.如图,AB是半圆O的直径,C,D是半圆O上不同于A,B的两点,AC平分∠DAB,AC 与BD相交于点F,延长AC到点E,使CE=CF.(1)求证:BE是半圆O所在圆的切线;(2)若BC=AD=6,求⊙O的半径.9.如图,在Rt△ABC中,∠ACB=90°,点D在AC边上,以AD为直径作⊙O交AB于点E,连接CE,且CB=CE.(1)求证:CE是⊙O的切线;(2)若CD=2,AB=4,求⊙O的半径.10.如图,⊙O的直径AB=10cm,弦AC=6cm,∠ACB的平分线交⊙O于D.(1)判断△ABD的形状,并说明理由;(2)求点O到弦BD的距离.(3)求CD的长.11.如图,射线PG平分∠EPF,O为射线PG上一点,以O为圆心,10为半径作⊙O,分别与∠EPF两边相交于A、B和C、D,连接OA,此时有OA∥PE.(1)求证:AP=AO;(2)若,求弦AB的长;12.如图,在Rt△ABC中,∠ABC=90°.以AB为直径作⊙O交AC于点D,过点D作DE ⊥AB于点E,F为DE中点,连接AF并延长交BC于点G,连接DG.求证:(1)BG=CG;(2)DG是⊙O的切线.13.如图,直线AF与⊙O相切于点A,弦BC∥AF,连接BO并延长,交⊙O于点E,连接CE并延长,交AF于点D.(1)求证:CE∥OA;(2)若⊙O的半径R=13,BC=24,求DE的长.14.如图,在等腰△ABC中,AB=AC,以AB为直径作⊙O,交BC于E,过点B作∠CBD =∠A,过点C作CD⊥BD于D.(1)求证:BD是⊙O的切线;(2)若CD=2,BC=2,求⊙O的直径.15.如图,AB是⊙O的直径.四边形ABCD内接于⊙O,AD=CD,对角线AC与BD交于点E,在BD的延长线上取一点F,使DF=DE,连接AF.(1)求证:AF是⊙O的切线.(2)若AD=5,AC=8,求⊙O的半径.参考答案1.解:在Rt△ABC中,tan A=,AC=5,设∠A=α,则BC=3,AB=4=BM,sin A==sinα,cos A==cosα,(1)如图1,∵MC=MA=5,过点M作MN⊥CD于点N,∵MC=MD,则CN=CD,在Rt△AMN中,MN=AM sin A=(4+4)×=,则CD=2CN=2=2=;(2)如图1,设CD=2m,则CM2=BC2+MB2=9+x2,则MN2=CM2﹣m2=x2+9﹣m2,在Rt△AMN中,AN2+MN2=AM2,即(5+m)2+9+x2﹣m2=(4+x)2,解得m=(4x﹣9),则MN==(x+4);则S=CD•MN+×AM•BC=(8x2+39x﹣72);∵m=(4x﹣9)>0,∴x>;(3)如图2,过点M作MN⊥CD于点N,过点P作PD⊥CM于点P,设圆的半径为r,∵△ECD与△EMC相似,则∠ECD=∠EMC=∠ACB=α,在Rt△DPM中,DP=DM sin∠EMC=r sinα=r,MP=r cosα=r,则CP=r﹣MP=r﹣r=r,CD==r=2CN,∴MN==r,∵tan A==,解得r=3,则BM===6.2.(1)证明:连接OA,OC,∵OA=OC,∴∠OAC=∠OCA,∵点C为半圆弧的中点,∴∠COE=90°,∴∠OCA+∠OEC=90°,∵PA为⊙O的切线,∴∠PAO=90°,∴∠OAC+∠PAE=90°,∴∠PAE=∠OEC,∵∠OEC=∠AEP,∴∠PAE=∠AEP,∵PA、PB为⊙O的切线,∴PA=PE=PB;(2)解:∵tan∠CPO==,设OC=3k,OP=5k,∴OA=OC=3k,∴PA=PE=4k,过A作AH⊥PO于H,∴OP•AH=PA•OA,∴AH==k,∴OH==k,∵∠AHE=∠COE=90°,∠AEH=∠CEO,∴△AHE∽△COE,∴,∴OE=k,∴CE==k,∴sin∠PAC=sin∠CEO===.3.(1)证明:如图1中,连接EM,过点M作MG⊥CD于G,则EG=CG=,在Rt△CGM中,CM===3,∴AD=CM,∵AD∥CM,∴四边形AMCD是平行四边形.(2)解:如图2中,过点E作EH⊥BC于H,过点M作MT⊥EC于T.∵ME=MC,MT⊥EC,∴CT=ET,∴cos C==,设EC=6k,则CT=ET=3k,MC=ME=5k,在Rt△CEH中,EH=CE=k,CH=EC=k,∴MH=CM﹣CH=k,∴tan∠EMH=,∵∠FMB=∠EMC,∴tan∠FMB===,∴BM=,∴CM=BC﹣BM==5k,∴CE=6k=.(3)如图3﹣1中,当公共弦经过点A时,过点D作DP⊥BC于P,则四边形ABPD是矩形.∴AD=BP=3,在Rt△CDP中,cos C==,∵CD=5,∴PC=3,AB=PD=4,∴BC=3+3=6,设CM=AM=x,在Rt△ABM中,则有x2=42+(6﹣x)2,解得x=,∴⊙M的半径为.如图3﹣2中,当公共弦经过点D时,连接MD,MP,过点M作MN⊥AD于N.设CM=ME=MP=x,则DN=x﹣3,∵DM2=MN2+DN2=MP2﹣DP2,∴42+(x﹣3)2=x2﹣32,∴x=,综上所述,满足条件的⊙M的半径为或.4.解:(1)∵BC是直径,==,则、、均为60°的弧,则∠DBC=30°,连接OA交BD于点H,∵BC=4,则BO=CO=2,在Rt△BOH中,BH=BO cos∠DBC=2×=3,则BD=2BH=6;(2)在Rt△BCD中,BC=4,∠DBC=30°,则CD=CB=2,PD=PB﹣BD=8﹣6=2,在Rt△CDP中,PC2=CD2+PD2=4+(2)2=16,在△BCP中,BC2=(4)2=48,BP2=64,则PB2=CB2+PC2,故△BPC为直角三角形,故PC⊥CB,故PC为⊙O的切线;(3)过点A作AH⊥BC交BD于点P,在Rt△PBH中,∠DBC=30°,则PH=PB,即AP+PB=AP+PH=AH为最小,∵、均为60°的弧,则∠ABO=60°,而AO=BO,故△ABO为边长为2的等边三角形,则AH=AB sin60°=2×=3,即AP+PB的最小值为3.5.(1)证明:如图1中,连接OA,OB.∵PA是切线,∴PA⊥OA,∴∠PAO=90°,在△PAO和△PBO中,,∴△PAO≌△PBO(SSS),∴∠PBO=∠PAO=90°,∴PB⊥OB,∴PB是⊙O的切线.(2)证明:如图1中,设∠PAC=α.∵∠PAO=90°,∴∠OAC=90°﹣α,∵OA=OC,∴∠OCA=∠OAC=90°﹣α,∵PA=PB,OA=OB,∴PO垂直平分线段AB,∴∠CAB=90°∠ACO=90°﹣(90°﹣α)=α,∴∠PAC=∠CAB,∴AC平分∠PAB.(3)解:如图2中,设AB交OP于点M.∵PA,PB是⊙O的切线,∴OP平分∠APB,∵AC平分∠PAB,∴点C是△PAB的内心,设△PAB的内切圆⊙C交PC于H,∵⊙O的直径为6,∴OA=3,∵OP垂直平分线AB,AB=2,∴AM=BM=,∴OM===2,∵OC=3,∴CH=CM=3﹣2=1,∵点D到⊙C上各点的最大距离为DH,∴最大距离DH=CD+CH=6+1=7.故答案为7.6.(1)证明:过A作直径AF,连接DF,如图2所示:∵AF是⊙O的直径,∴∠ADF=90°,∴∠AFD+∠FAD=90°,∵∠ABD=∠AFD,∠ABD=∠DAE,∴∠AFD=∠DAE,∴∠DAE+∠DAF=90°,即∠OAE=90°,∴OA⊥AE,∵点A是半径OA的外端,∴直线l与⊙O相切;(2)解:过点A作AG⊥BD,垂足为点G,∴∠AGB=∠AGD=90°,∵∠ABD=30°,∴∠AFD=30°,∴直径AF=2AD==BC,∵∠ABD=30°,AB=4,∴AG==2,BG=AG=2,∴DG===,∴BD=BG+DG=,∵BC是直径,∴∠BDC=90°,∴.7.解:(1)如图1,连接OA,则OA=,∵CA为⊙O的“相伴切边”,∴OA⊥AC,即∠OAC=90°,∵∠ACB=30°,CA平分∠OCB,∴∠OCA=∠ACB=30°,则在Rt△AOC中,OC=2OA=2;(2)存在.由题意可分三种情况,①当边AB,BC都是⊙O的“相伴切边”时,即OA⊥AB,∵∠BAC=90°,即AC⊥AB,∴O,A,C三点共线,又∵点C落在射线ON上,且不在⊙O内,∴点A只能在点M或点N处,如图2,当点A在点N处时,设BC与⊙O相切于点D,连接OD,则OD⊥CD,∵∠ACB=30°,∴OC=2OD=2,∴AC=OC﹣AO=,当点A在点M处时,如图3,设BC与⊙O相切于点D,连接OD,则OD⊥CD,∵∠ACB=30°,∴OC=2OD=2,∴AC=OC+AO=3,②当边AC,BC都是⊙O的“相伴切边”时,则OA⊥AC,∵∠BAC=90°,∴∠OAB=180°,即O,A,B三点共线,如图4,设BC与⊙O相切于点D,连接OD,则OD⊥CD,设AB=x,则BC=2x,AC==x,∴OB=OA+AB=+x,∵∠BAC=∠BDO=90°,∠B=∠B,∴△ABC∽△DBO,∴,即,解得,x=2﹣或x=0(舍去),经检验,x=2﹣是所列方程的解.∴AC=x=2﹣3.③当边AC,AB都是⊙O的“相伴切边”时,∵AC是⊙O的“相伴切边”,∴OA⊥AC,即∠OAC=90°,∵∠BAC=90°,∴∠OAB=180°,即O,A,B三点共线,∴AB不可能是⊙O的“相伴切边”,则AC,AB不能同时是⊙O的“相伴切边”;综上可得,AC的长是或3或2﹣3.8.(1)证明:∵AB是半圆O的直径,∴∠ACB=∠ADB=90°,∵CE=CF,∴BE=BF,∴∠E=∠BFE,∵AC平分∠DAB,∴∠DAF=∠BAF,∵∠DAF+∠AFD=90°,∴∠BAF+∠E=90°,∴BE是半圆O所在圆的切线;(2)解:∵∠DAF=∠BAF,∴=,∵BC=AD,∴=,∴==,∴∠CAB=30°,∴AB=2BC=12,∴⊙O的半径为6.9.(1)证明:如图,连接OE,DE,∵∠ACB=90°,∴∠A+∠B=90°,∵AD是⊙O的直径,∴∠AED=∠DEB=90°,∴∠DEC+∠CEB=90°,∵CE=BC,∴∠B=∠CEB,∴∠A=∠DEC,∵OE=OD,∴∠OED=∠ODE,∵∠A+∠ADE=90°,∴∠DEC+∠OED=90°,即∠OEC=90°,∴OE⊥CE.∵OE是⊙O的半径,∴CE是⊙O的切线;(2)解:在Rt△ABC中,∠ACB=90°,CD=2,AB=4,BC=CE,设⊙O的半径为r,则OD=OE=r,OC=r+2,AC=2r+2,∴AC2+BC2=AB2,∴(2r+2)2+BC2=(4)2,在Rt△OEC中,∠OEC=90°,∴OE2+CE2=OC2,∴r2+BC2=(r+2)2,∴BC2=(r+2)2﹣r2,∴(2r+2)2+(r+2)2﹣r2=(4)2,解得r=3,或r=﹣6(舍去).∴⊙O的半径为3.10.解:(1)△ABD是等腰直角三角形,理由如下:∵AB是⊙O的直径,∴∠ACB=∠ADB=90°,∵∠ACB的平分线交⊙O于D,∴∠ACD=∠BCD=45°,∴,∴AD=BD,∴△ABD是等腰直角三角形;(2)过O作OE⊥DB于E,如图所示:则∠OEB=90°,∵AB=10cm,∴OB=AB=5(cm),由(1)得:△ABD是等腰直角三角形,∴∠ABD=45°,∴△OBE是等腰直角三角形,∴OE=OB=(cm),即点O到弦BD的距离为cm;(3)过B作BF⊥CD于F,如图所示:则∠BFC=∠BFD=90°,∵∠ACB=90°,∴BC===8(cm),∵∠BCD=45°,∴△BCF是等腰直角三角形,∴CF=BF=BC=4(cm),由(1)得:△ABD是等腰直角三角形,∴BD=AB=5(cm),∴DF===3,∴CD=CF+DF=4+3=7(cm).11.(1)证明:∵PG平分∠EPF,∴∠DPO=∠BPO,∵OA∥PE,∴∠DPO=∠POA,∴∠BPO=∠POA,∴PA=OA;(2)过点O作OH⊥AB于点H,如图,则AH=BH,在Rt△OPH中,tan∠OPH==,设OH=x,则PH=2x,由(1)可知PA=OA=10,∴AH=PH﹣PA=2x﹣10,∵AH2+OH2=OA2,∴(2x﹣10)2+x2=102解得x1=0(不合题意,舍去),x2=8,∴AH=6,∴AB=2AH=12.12.证明:(1)∵DE⊥AB,∴∠AED=∠ABC=90°,∴DE∥BC,∴△AEF∽△ABG,△ADF∽△ACG,∴,=,∴,∵F为DE中点,∴EF=DF,∴BG=CG;(2)连接OD,BD,OG,∵AB为⊙O的直径,∴AD⊥BD,∵AO=BO,BG=CG,∴OG∥AC,∴OG⊥BD,∴BF=DF,∴DG=BG,在△ODG与△OBG中,,∴△ODG≌△OBG(SSS),∴∠ODG=∠OBG=90°,∴DG是⊙O的切线.13.(1)证明:∵BE是⊙O的直径,∴∠BCE=90°,∵BC∥AF,∴∠CDF=∠ACE=90°,∵AF与⊙O相切于点A,∴∠OAF=90°,∴∠OAF=∠CDF,∴CE∥OA;(2)解:如图,作OH⊥CE于点H,由垂径定理知:CH=EH,∵OB=OE,∴OH是△ECB的中位线,∴OH=BC=24=12,在Rt△OEH中,根据勾股定理,得EH===5,∵OH⊥CE,∴∠OHD=90°,由(1)知:∠CDA=∠OAD=90°,∴四边形OADH是矩形,∴DH=OA=13,∴DE=DH﹣EH=13﹣5=8.14.解:(1)如图,连接AE,∵AB为直径,∴∠AEB=90°,∵△ABC是等腰三角形,AB=AC,∴∠BAE=BAC,∵∠CBD=∠BAC,∴∠BAE=∠CBD,∵∠ABE+∠BAE=90°,∴∠ABE+∠CBD=90°,∴∠ABD=90°,∴AB⊥BD,∵AB为直径,∴BD是⊙O的切线;(2)由(1)知:△ABC是等腰三角形,AE⊥BC,∴BE=CE=BC=,∵CD⊥BD,∴∠CDB=∠AEB=90°,∵∠CBD=∠BAE,∴△CBD∽△BAE,∴=,∴=,∴AB=3.∴⊙O的直径为3.15.解:(1)证明:∵AB是⊙O的直径,∴∠ADB=90°,∴AD⊥EF,∠BAD+∠ABD=90°,又∵DF=DE,∴AF=AE,∴∠FAD=∠EAD.∴∠FAD=∠EAD=∠ACD=∠ABD,∴∠FAB=∠FAD+∠BAD=∠BAD+∠ABD=90°,∴AF是⊙O的切线.(2)如图,连接OD交AC于M,∵AD=CD,∴,∴OD⊥AC,AM=CM=AC=4,∴AD=CD=5,在Rt△DMC中,DM==3.设⊙O的半径为x,则OM=x﹣3,∵OM2+AM2=OA2,∴(x﹣3)2+42=x2,∴x=.⊙O的半径即OA=.。

第19讲 圆综合压轴题-广东省深圳市2021年中考数学(北师大版)考点题型专项复习训练

第19讲 圆综合压轴题-广东省深圳市2021年中考数学(北师大版)考点题型专项复习训练

《深圳中考专项复习》第19讲之圆综合压轴题【考点介绍】每年深圳中考两题解答压轴题之一,考查圆与其它几何图形知识的综合运用,难度极大,其中第(2)小题中等难度,第(3)小题高难度。

【最近五年深圳中考实题详解】1.(2019∙深圳) 已知在平面直角坐标系中,点A (3,0)、B (-3,0)、C (-3,8),以线段BC 为直径作圆,圆心为E ,直线AC 交⊙E 于点D ,连接OD. (1)求证:直线OD 是⊙E 的切线;(2)点F 为x 轴上任意一动点,连接CF 交⊙E 于点G ,连接BG ;①当tan ∠ACF=17时,求所有F 点的坐标__________________(直接写出);②求BG CF的最大值;【思路分析】(1)证切线,必连DE ,双切线,必连EO ,由O 、E 是中点可知OE 是中位线,可得OE//CA,由数学典型模型“等腰三角形+平行线=角平分线”易得OE 是角平分线,则△OBE ≌△ODE ,可得∠EDO=90º,OD 是切线; (2)利用三角函数差角公式求解,分点F 在A 点左侧及右侧两种情况代入计算;(3)用代数方法求解,设F 点坐标,用代数式表示出BG :CF ,再利用”a 2+b 2≥2ab ”求最值; 【解题过程】GFACEDBOyx321图1A CE DBOyx(1)连接DE 、OE ,∵OB=OA,EC=EB ,∴OE 是△BAC 的中位线,∴OE//CA ,∴∠1=∠C,∠2=∠3,∵EC=ED,∴∠C=∠3,∴∠1=∠2,∵BE=DE,EO=EO,∴△OBE ≌△ODE ,∴∠EBO=∠ODE=90º,∴直线OD 是⊙E 的切线; (2)三角函数和角公式求解:tan (α−β)=tanα−tanβ1+tanα∙tanβ, ①当F 点在A 点左侧时,tan ∠ACF=tan(∠BCA-∠BCF)=tan ∠BCA−tan ∠BCF1+tan ∠BCA∙tan ∠BCF=BA BC −BFBC 1+BA BC ×BF BC=68−BF 81+68×BF 8=17,解得BF=13631,∵OB=3,∴F 点的坐标为(4331,0)②当F 点在A 点右侧时,tan ∠ACF=tan(∠BCF-∠BCA)=tan ∠BCF−tan ∠BCA1+tan ∠BCF∙tan ∠BCA=BF BC −BABC 1+BF BC ×BA BC=BF 8−681+BF 8×68=17,解得BF=8,∵OB=3,∴F 点的坐标为(5,0)综上所述,当tan ∠ACF=17时,F 点的坐标是(4331,0)或(5,0)(3)∵∠CBF=∠BGC=90°,故BG ∙CF =BC ∙BF ,∴BG =BC∙BF CF,∴BG CF=BC∙BF CF 2,设F 点坐标为(m ,0),则BF=|m+3|,CF 2=64+(m +3)2,∴BG CF=8|m+3|64+(m+3)2=864|m+3|+|m+3|,当64|m+3|+|m +3|有最小值时,BG CF有最大值。

2021年广东省中考数学总复习《圆》压轴题200道

2021年广东省中考数学总复习《圆》压轴题200道

2021年广东省中考数学总复习《圆》压轴题200道
第一组
1.⊙O是△ABC的外接圆,AB是直径,过的中点P作⊙O的直径PG交弦BC于点D,连接AG、CP、PB.
(1)如图1,若D是线段OP的中点,求∠BAC的度数;
(2)如图2,在DG上取一点K,使DK=DP,连接CK,求证:四边形AGKC是平行四边形;
(3)如图3,取CP的中点E,连接ED并延长ED交AB于点H,连接PH,求证:PH ⊥AB.
【分析】(1)由垂径定理得出PG⊥BC,CD=BD,再由三角函数求出∠BOD=60°,证出AC∥PG,得出同位角相等即可;
(2)先由SAS证明△PDB≌△CDK,得出CK=BP,∠OPB=∠CKD,证出AG=CK,再证明AG∥CK,即可得出结论;
(3)先证出DH∥AG,得出∠OAG=∠OHD,再证OD=OH,由SAS证明△OBD≌△HOP,得出∠OHP=∠ODB=90°,即可得出结论.
【解答】(1)解:∵点P为的中点,AB为⊙O直径,
∴BP=PC,PG⊥BC,CD=BD,
∴∠ODB=90°,
∵D为OP的中点,
∴OD=OP=OB,
∴cos∠BOD==,
∴∠BOD=60°,
∵AB为⊙O直径,
1/ 519。

【2021中考数学冲刺】圆的综合必刷题(一)含答案

【2021中考数学冲刺】圆的综合必刷题(一)含答案

2021年中考二轮复习专题数学圆的综合(一)1.如图,在△ACE中,以AC为直径的⊙O交CE于点D,连接AD,且∠DAE=∠ACE,连接OD并延长交AE的延长线于点P,PB与⊙O相切于点B.(1)求证:AP是⊙O的切线;(2)连接AB交OP于点F,求证:△FAD∽△DAE;(3)若tan∠OAF=,求的值.2.如图,AC为⊙O的直径,AP为⊙O的切线,M是AP上一点,过点M的直线与⊙O交于点B,D两点,与AC交于点E,连接AB,AD,AB=BE.(1)求证:AB=BM;(2)若AB=3,AD=,求⊙O的半径.3.如图,在Rt△ABC中,∠ACB=90°,以斜边AB上的中线CD为直径作⊙O,与BC交于点M,与AB的另一个交点为E,过M作MN⊥AB,垂足为N.(1)求证:MN是⊙O的切线;(2)若⊙O的直径为5,sin B=,求ED的长.4.已知∠MPN的两边分别与⊙O相切于点A,B,⊙O的半径为r.(1)如图1,点C在点A,B之间的优弧上,∠MPN=80°,求∠ACB的度数;(2)如图2,点C在圆上运动,当PC最大时,要使四边形APBC为菱形,∠APB的度数应为多少?请说明理由;(3)若PC交⊙O于点D,求第(2)问中对应的阴影部分的周长(用含r的式子表示).5.如图,AB为⊙O的直径,点C在⊙O上,AD与过点C的切线互相垂直,垂足为D.连接BC并延长,交AD的延长线于点E.(1)求证:AE=AB;(2)若AB=10,BC=6,求CD的长.6.如图,AB为⊙O的直径,C为⊙O上一点,AD与过C点的直线互相垂直,垂足为D,AC 平分∠DAB.(1)求证:DC为⊙O的切线.(2)若AD=3,DC=,求⊙O的半径.7.如图,AB是⊙O的弦,C是⊙O外一点,OC⊥OA,CO交AB于点P,交⊙O于点D,且CP =CB.(1)判断直线BC与⊙O的位置关系,并说明理由;(2)若∠A=30°,OP=1,求图中阴影部分的面积.8.如图,在△ABC中,AC=BC,D是AB上一点,⊙O经过点A、C、D,交BC于点E,过点D 作DF∥BC,交⊙O于点F.求证:(1)四边形DBCF是平行四边形;(2)AF=EF.9.如图,已知AB是⊙O的直径,C,D是⊙O上的点,OC∥BD,交AD于点E,连接BC.(1)求证:AE=ED;(2)若AB=6,∠ABC=30°,求图中阴影部分的面积.10.如图,在△ABC中,AB=AC,以AC边为直径作⊙O交BC边于点D,过点D作DE⊥AB于点E,ED、AC的延长线交于点F.(1)求证:EF是⊙O的切线;(2)若AC=10,CD=6,求DE的长.11.如图1,在矩形ABCD中,AB=6cm,BC=8cm,点P从点B出发,沿AB边向终点A以每秒1cm的速度运动,同时点Q从点C出发沿C→B→A向终点A以每秒3cm的速度运动,P、Q其中一点到达终点时,另一点随之停止运动,设运动时间为t秒.解答下列问题:(1)当Q在BC边时,①当t为秒时,PQ的长为2cm?②连接AQ,当t为几秒时,△APQ的面积等于16cm2?(2)如图2,以P为圆心,PQ长为半径作⊙P,在整个运动过程中,是否存在这样的t 值,使⊙P正好与△ABD的一边(或边所在的直线)相切?若存在,求出t值;若不存在,请说明理由.12.如图,AB是半圆O的直径,C是的中点,点D在上,AC、BD相交于点E,F是BD 上一点,且BF=AD.(1)求证:CF⊥CD;(2)连接AF,若∠CAF=2∠ABF;①求证:AC=AF;②当△ACF的面积为12时,求AC的长.13.如图,在△ABC中,AB=AC,以AC为直径的⊙O与BC交于点D,DE⊥AB,垂足为E,ED 的延长线与AC的延长线交于点F.(1)求证:DE是⊙O的切线;(2)若⊙O的半径为2,BE=1,求CF的长.14.已知AB是⊙O的直径,C是圆外一点,直线CA交⊙O于点D,B、D不重合,AE平分∠CAB交⊙O于点E,过E作EF⊥CA,垂足为F.(1)判断EF与⊙O的位置关系,并说明理由;(2)若EF=2AF,⊙O的直径为10,求AD.15.如图,在Rt△ABC中,∠C=90°,点O在斜边AB上,以O为圆心,OB为半径作⊙O,分别与BC、AB相交于点D、E,连接AD,已知∠CAD=∠B.(1)求证:AD是⊙O的切线;(2)若∠B=30°,AO=,求的长;(3)若AC=2,BD=3,求AE的长.参考答案1.解:(1)∵AC为直径,∴∠ADC=90°,∴∠ACD+∠DAC=90°,∵∠DAE=∠ACE,∴∠DAC+∠DAE=90°,即∠CAE=90°,∴AP是⊙O的切线;(2)连接DB,如图1,∵PA和PB都是切线,∴PA=PB,∠OPA=∠OPB,PO⊥AB,∵PD=PD,∴△DPA≌△DPB(SAS),∴AD=BD,∴∠ABD=∠BAD,∵∠ACD=∠ABD,又∠DAE=∠ACE,∴∠DAF=∠DAE,∵AC是直径,∴∠ADE=∠ADC=90°,∴∠ADE=∠AFD=90°,∴△FAD∽△DAE;(3)∵∠AFO=∠OAP=90°,∠AOF=∠POA,∴△AOF∽△POA,∴,∴,∴PA=2AO=AC,∵∠AFD=∠CAE=90°,∠DAF=∠ABD=∠ACE,∴△AFD∽△CAE,∴,∴,∵,不妨设OF=x,则AF=2x,∴,∴,∴,∴.2.解:(1)∵AP为⊙O的切线,AC为⊙O的直径,∴AP⊥AC,∴∠CAB+∠PAB=90°,∴∠AMD+∠AEB=90°,∵AB=BE,∴∠AEB=∠CAB,∴∠AMD=∠PAB,∴AB=BM.(2)连接BC,∵AC为直径,∴∠ABC=90°,∴∠C+∠CAB=90°,∵∠CAB+∠PAB=90°∴∠C=∠PAB,∵∠AMD=∠MAB,∠C=∠D,∴∠AMD=∠D=∠C,∴AM=AD=,∵AB=3,AB=BM=BE,∴EM=6,∴由勾股定理可知:AE==,∵∠AMD=∠C,∠EAM=∠ABC=90°,∴△MAE∽△CBA,∴=,∴,∴CA=5,∴⊙O的半径为2.5.3.(1)证明:连接OM,如图1,∵OC=OM,∴∠OCM=∠OMC,在Rt△ABC中,CD是斜边AB上的中线,∴CD=AB=BD,∴∠DCB=∠DBC,∴∠OMC=∠DBC,∴OM∥BD,∵MN⊥BD,∴OM⊥MN,∵OM过O,∴MN是⊙O的切线;(2)解:连接DM,CE,∵CD是⊙O的直径,∴∠CED=90°,∠DMC=90°,即DM⊥BC,CE⊥AB,由(1)知:BD=CD=5,∴M为BC的中点,∵sin B=,∴cos B=,在Rt△BMD中,BM=BD•cos B=4,∴BC=2BM=8,在Rt△CEB中,BE=BC•cos B=,∴ED=BE﹣BD=﹣5=.4.解:(1)如图1,连接OA,OB,∵PA,PB为⊙O的切线,∴∠PAO=∠PBO=90°,∵∠APB+∠PAO+∠PBO+∠AOB=360°,∴∠APB+∠AOB=180°,∵∠APB=80°,∴∠AOB=100°,∴∠ACB=50°;(2)如图2,当∠APB=60°时,四边形APBC是菱形,连接OA,OB,由(1)可知,∠AOB+∠APB=180°,∵∠APB=60°,∴∠AOB=120°,∴∠ACB=60°=∠APB,∵点C运动到PC距离最大,∴PC经过圆心,∵PA,PB为⊙O的切线,∴PA=PB,∠APC=∠BPC=30°,又∵PC=PC,∴△APC≌△BPC(SAS),∴∠ACP=∠BCP=30°,AC=BC,∴∠APC=∠ACP=30°,∴AP=AC,∴AP=AC=PB=BC,∴四边形APBC是菱形;(3)∵⊙O的半径为r,∴OA=r,OP=2r,∴AP=r,PD=r,∵∠AOP=90°﹣∠APO=60°,∴的长度==,∴阴影部分的周长=PA+PD+=r+r+r=(+1+)r.5.(1)证明:连接AC、OC,如图,∵CD为切线,∴OC⊥CD,∵CD⊥AD,∴OC∥AD,∴∠OCB=∠E,∵OB=OC,∴∠OCB=∠B,∴∠B=∠E,∴AE=AB;(2)解:∵AB为直径,∴∠ACB=90°,∴AC==8,∵AB=AE=10,AC⊥BE,∴CE=BC=6,∵CD•AE=AC•CE,∴CD==.6.解:(1)如图,连接OC,∵OA=OC,∴∠OAC=∠OCA,∵AC平分∠DAB,∴∠DAC=∠OAC,∴∠OCA=∠DAC,∴AD∥OC,∵AD⊥DC,∴OC⊥DC,又OC是⊙O的半径,∴DC为⊙O的切线;(2)过点O作OE⊥AC于点E,在Rt△ADC中,AD=3,DC=,∴tan∠DAC==,∴∠DAC=30°,∴AC=2DC=2,∵OE⊥AC,根据垂径定理,得AE=EC=AC=,∵∠EAO=∠DAC=30°,∴OA==2,∴⊙O的半径为2.7.解:(1)CB与⊙O相切,理由:连接OB,∵OA=OB,∴∠OAB=∠OBA,∵CP=CB,∴∠CPB=∠CBP,∵∠CPB=∠APO,∴∠CBP=∠APO,在Rt△AOP中,∵∠A+∠APO=90°,∴∠OBA+∠CBP=90°,即:∠OBC=90°,∴OB⊥CB,又∵OB是半径,∴CB与⊙O相切;(2)∵∠A=30°,∠AOP=90°,∴∠APO=60°,∴∠BPD=∠APO=60°,∵PC=CB,∴△PBC是等边三角形,∴∠PCB=∠CBP=60°,∴∠OBP=∠POB=30°,∴OP=PB=PC=1,∴BC=1,∴OB==,∴图中阴影部分的面积=S△OBC ﹣S扇形OBD=1×﹣=﹣.8.证明:(1)∵AC=BC,∴∠BAC=∠B,∵DF∥BC,∴∠ADF=∠B,∵∠BAC=∠CFD,∴∠ADF=∠CFD,∴BD∥CF,∵DF∥BC,∴四边形DBCF是平行四边形;(2)连接AE,∵∠ADF=∠B,∠ADF=∠AEF,∴∠AEF=∠B,∵四边形AECF是⊙O的内接四边形,∴∠ECF+∠EAF=180°,∵BD∥CF,∴∠ECF+∠B=180°,∴∠AEF=∠EAF,∴AF=EF.9.(1)证明:∵AB是⊙O的直径,∴∠ADB=90°,∵OC∥BD,∴∠AEO=∠ADB=90°,即OC⊥AD,又∵OC为半径,∴AE=ED,(2)解:连接CD,OD,∵OC=OB,∴∠OCB=∠ABC=30°,∴∠AOC=∠OCB+∠ABC=60°,∵OC⊥AD,∴=,∴∠COD=∠AOC=60°,∴∠AOD=120°,∵AB=6,∴BD=3,AD=3,∵OA=OB,AE=ED,∴OE==,∴S阴影=S扇形AOD﹣S△AOD=﹣×=3π﹣.10.(1)证明:连接OD,如图所示:∵AB=AC,∵OC=OD,∴∠ODC=∠OCD,∴∠B=∠ODC,∴OD∥AB,∵DE⊥AB,∴EF⊥OD,又∵OD是⊙O的半径,∴EF是⊙O的切线;(2)解:连接AD,∵AC为⊙O的直径,∴∠ADC=90°,∴AD⊥BC,∵AB=AC,∴BD=CD=6.在Rt△ACD中,AC=10,CD=6,∴AD===8,又∵DE⊥AB,AB=AC=10,=AB•DE=AD•BD,∴S△ABD即×10×DE=×8×6,∴DE=4.8.11.解:(1)①由题意得:BP=t,CQ=3t,则AP=6﹣t,BQ=BC﹣CQ=8﹣3t,∵四边形ABCD是矩形,∴∠ABC=90°,在Rt△BCP中,由勾股定理得:BP2+BQ2=PQ2,即t2+(8﹣3t)2=(2)2,解得:t=2,或t=(不合题意舍去),∴t=2,即当t为2秒时,PQ的长为2cm,故答案为:2;②如图1所示:由题意得:点Q在BC边上,∵△APQ的面积=AP×BQ=16,∴×(6﹣t)(8﹣3t)=16,解得:t=,或t=8(不合题意舍去),∴当t为秒时,△APQ的面积等于16cm2;(2)存在这样的t值,使⊙P正好与△ABD的边AD或BD相切,此时Q在AB上,且t>s,理由如下:①若与BD相切,过P作PK⊥BD于K,如图3所示:则∠PKB=90°,PK=PQ=PB﹣BQ=t﹣(3t﹣8)=8﹣2t,∵四边形ABCD是矩形,∴∠BAD=90°=∠PKB,AD=BC=8,∴BD===10,∵∠PBK=∠DBA,∴△PBK∽△DBA,∴=,即=,解得:t=;②若与AD相切,Q在BC上,PQ=PA,Q在BC上,如图2﹣1所示:则PQ=PA=6﹣t,在Rt△PBQ中,由勾股定理得:t2+(8﹣3t)2=(6﹣t)2,解得:t=,或t=(不合题意舍去),∴t=;③若与AD相切,当P、Q两点中Q先到A点时,如图4所示:此时t=,∴⊙P的半径为6﹣=;④若与AD相切,当点Q未到达点A时,如图5所示:则PA=PQ,∴6﹣t=t﹣(3t﹣8),解得:t=2,当t=2时,PB=2,则AP=6﹣2=4≠PQ,故舍去;综上所述,t的值为秒或秒或秒.12.(1)证明:∵AB是直径,∴∠ACB=90°,∵C是的中点,∴=,∴∠AC=CB,∵∠CBF=∠CAD,BF=AD,∴△CBF≌△CAD(SAS),∴∠BCF=∠ACD,∴∠FCD=∠ACB=90°,∴CF⊥CD.(2)①证明:过点A作AG⊥CF于点G,则∠FGA=∠FCD=90°,∴AG∥CD,∴∠CAG=∠ACD=∠ABF,∵∠CAF=2∠ABF,∴∠CAF=2∠CAG,即∠CAG=∠FAG,∵∠CAG+∠ACG=90°,∠FAG+∠AFG=90°,∴∠ACG=∠AFG,∴AC=AF.②过点A作AG⊥CF于点G,过点B作BH⊥CF交CF的延长线于点H.则∠BHC=∠CGA=90°.∴∠CAG+∠GCA=90°,∵∠BCH+∠GCA=90°,∴∠BCH=∠CAG,∵CB=CA,∴△BCH≌△CAG(AAS),∴CH=AG,BH=CG,∵∠FCD=90°,CF=CD,∴∠CFD=∠CDF=45°,∵∠BHF=90°,∴∠BFH=45°=∠FBH,∴BH=HF,∴HF=CG,∵AC=AF,AG⊥CF,∴CF=2CG,∴AG=CH=3CG,设CG=x,则CF=2x,AG=3x,=•CF•AG=×2x×3x=12,则有,S△ACF∴x=2或﹣2(舍弃),∴CG=2,AG=6,∵∠AGC=90°,∴AC===2.13.(1)证明:如图,连接OD,AD,∵AC是直径,∴AD⊥BC,又∵在△ABC中,AB=AC,∴BD=CD,∵AO=OC,∴OD∥AB,又∵DE⊥AB,∴DE⊥OD,∵OD为⊙O半径,∴DE是⊙O的切线;(2)解:∵⊙O的半径为2,AB=AC,∴AC=AB=2+2=4,∵BE=1,∴AE=4﹣1=3,过O作OH⊥AB于H,则四边形ODEH是矩形,∴EH=OD=2,∴AH=1,∴AH=AO,∴∠AOH=30°,∴∠BAC=60°,∴AF=2AE=6,∴CF=AF﹣AC=2.∵DE⊥AB,AD⊥BC,∴∠AED=∠BED=∠ADB=90°,∴∠DAE+∠ADE=90°,∠ADE+∠BDE=90°,∴∠DAE=∠BDE,∴△AED∽△DEB,∴=,∴=,解得:DE=,∵OD∥AB,∴△FOD∽△FAE,∴=,∴=,解得:FD=2,在Rt△FOD中,FO===4,∴CF=FO﹣OC=4﹣2=2.14.解:(1)EF 与⊙O 相切,理由如下:连接OE ,∵OA =OE ,∴∠OAE =∠OEA ,∵AE 平分∠CAB ,∴∠CAE =∠OAE ,∴∠CAE =∠OEA ,∴OE ∥CD ,∵EF ⊥CA ,∴OE ⊥EF ,∴EF 与⊙O 相切;(2)过O 作OH ⊥AD 于H ,∵EF ⊥CA ,OE ⊥EF ,∴四边形OEFH 是矩形,设AF =x ,则EF =OH =2x ,AH =5﹣x , 在Rt △OAH 中,AH 2+OH 2=OA 2,∴(5﹣x )2+(2x )2=52,解得x 1=2,x 2=0(舍去),∴AH =5﹣2=3,∴AD =2AH =6.15.解:(1)如图1,连接OD,∵∠ACB=90°,∴∠CAD+∠ADC=90°,∵OB=OD,∴∠B=∠ODB,∵∠CAD=∠B,∴∠CAD=∠ODB,∴∠ODB+∠ADC=90°,∴∠ADO=90°,又∵OD是半径,∴AD是⊙O的切线;(2)∵∠B=30°,∠ACB=90°,∴∠CAD=30°,∠CAB=60°,∴∠DAB=30°,∴OD=AO,∴OD=,∵OD=OB,∠B=30°,∴∠B=∠ODB=30°,∴∠DOB=120°,∴劣弧BD的长==π;(3)如图2,连接DE,∵BE是直径,∴∠BDE=90°,∴∠ACB=∠EDB=90°,∴AC∥DE,∵∠B=∠CAD,∠ACD=∠EDB,∴△ACD∽△BDE,∴,∴设CD=2x,DE=3x,∵AC∥DE,∴,∴,∴x=,∴CD=1,BC=BD+CD=4,∴AB===2,∵DE∥AC,∴,∴AE=×2=.。

2021年中考数学高频考点:《圆的综合》解答题专题练习(一)含答案

2021年中考数学高频考点:《圆的综合》解答题专题练习(一)含答案

2021年中考数学复习高频考点精准练:《圆的综合》解答题专题练习(一)1.如图1,在△ABC中,AB=AC=5,以AB为直径作⊙O,分别交AC,BC于点E,F,连接EF,OE.(1)求证:∠OEF=∠ABC;(2)如图2,连接BE,若点D是线段BE上的一个动点,且tan∠CFE=2,求CD+BD 的最小值.2.在⊙O中,AB为直径,点P在BA的延长线上,PC为⊙O的切线,过点A作AH⊥PC于点H,交⊙O于点D,连接BC、BD、AC.(1)如图1,求证:∠CAH=∠CAB;(2)如图2,过点C作CE⊥AB于点E,求证:BD=2CE;(3)如图3,在(2)的条件下,点F在BC上,连接DF、EF,若BG=2AE,∠CFE=45°,OG=1,求线段EF的长.3.如图,在⊙O中,弦BC⊥半径OA于点D,点F是CD上一点,AF交⊙O于点E,点P为BC延长线上一点,PF=PE.(1)求证:PE是⊙O的切线;(2)若AD=2,BC=8,DF=1,求PE的长.4.如图,点E是△ABC的内心,AE的延长线和△ABC的外接圆⊙O相交于点D,过D作直线DG∥BC.(1)求证:DG是⊙O的切线;(2)若DE=6,BC=6,求阴影部分的面积.5.在等边三角形ABC中,经过点B有一个圆与AC,AB,BC分别交于点D,E,F,连接BD,DE,DF.(1)如图(1),若BD是圆的直径,AE=CF时,求证:DE=DF;(2)如图(2),若=,AD=4时,求AB的长.6.如图,AB是⊙O的直径,D是AB延长线上的一点,点C在⊙O上,BC=BD,AE⊥CD交DC 的延长线于点E,AC平分∠BAE.(1)求证:CD是⊙O的切线;(2)若CD=6,求⊙O的直径.7.如图,AB是⊙O的直径,点C在⊙O上,点D为弦BC的中点,射线OD与圆周及切线BE 分别交于点M和点E,连接CE.(1)求证:直线CE是⊙O的切线;(2)若直径AB=4,填空:①连接CM,CO,当∠ABC=°时,四边形ACMO是菱形;②当ME=时,四边形OCEB是正方形.8.如图,AB是⊙O的弦,连接OA,过点O作OC⊥OA,OC交AB于点P,延长OP到C,连接BC,且CP=CB.(1)求证:BC是⊙O的切线;(2)若∠BAO=25°,OA=18,点Q是上的一点,求的长(结果用π表示).9.(1)如图1,求证:∠AOD=2∠ACD;(2)如图2,AC⊥BD,M是AB中点,求证:①EM⊥CD;②CD=2OM.10.如图,直线AB经过⊙O上的点C,直线AO与⊙O交于点E和点D,OB与⊙O交于点F,连接DF、DC.已知OA=OB,CA=CB.(1)求证:直线AB是⊙O的切线;(2)求证:∠FDC=∠EDC;(3)已知:DE=10,DF=6,求DC的长.11.如图,A,P,B,C是圆上的四个点,∠APC=∠CPB=60°,AP,CB的延长线相交于点D.(1)求证:△ABC是等边三角形;(2)若∠PAC=90°,AB=2,求PD的长.12.如图,AB为⊙O的直径,直线l与⊙O相切于D,⊙O的弦BC∥l,连接AD、AC,过D 作DE⊥AB于E点.(1)求证:BC=2DE;(2)过D作DG∥AB交AC于点G,GF⊥AB于点F.且BC=BF,求tan∠DAB的值.13.如图,AB是⊙O的直径,C是圆上一点,弦CD⊥AB于点E,且DC=AD.过A作⊙O的切线,过C作DA的平行线,两直线交于F,FC的延长线交AB的延长线于点G.(1)填空:∠D=°;(2)求证:FG与⊙O相切;(3)连接EF,求tan∠EFC的值.14.如图.⊙O过长方形ABCD的顶点D和BC上一点E.且与BA相切于点F,⊙O分别交AD,CD于G,H两点,BF=BE.(1)求证:BC是⊙O的切线;(2)连接FE,ED.若AG=1,BF=5,CH=2.求tan∠FED的值.15.在锐角△ABC中,AB=AC,以AB为直径的⊙O分别交边BC、AC于点D、E,AF⊥DE于点F.(1)求证:∠EDC=2∠CAF;(2)若直线AF是⊙O的切线,试判断△ABC的形状,并说明理由;(3)若=,求的值.参考答案1.(1)证明:如图1中,连接AF,OF.∵AB是直径,∴∠AFB=90°,∴AF⊥BC,∵AB=AC,∴∠EAF=∠FAB,∵∠EOF=2∠EAF,∠FOB=2∠FAB,∴∠EOF=∠FOB,∵OE=OF=OB,∴∠OEF=∠OFE=∠OFB=∠ABC,∴∠OEF=∠ABC.(2)解:如图2中,连接AF,过点C作CM⊥AB于M,过点D作DH⊥AB于H.∵四边形ABFE是圆内接四边形,∵∠CFE+∠EFB=180°,∴∠CFE=∠CAB,在Rt△AEB中,tan∠CAB=,tan∠CFE=2,∴=2,设AE=k,则BE=2k,∵AE2+BE2=AB2,∴k2+(2k)2=52,解得k=或﹣(舍弃),∴AE=,BE=2,∵AB=AC=5,AF⊥BC,BE⊥AC,又∵S=•AB•CM=•AC•BE,△ABC∴CM=BE=2,∵∠DHB=∠AEB=90°,∴sin∠DBH===,∴DH=BD,∵CD+DH≥CM=2,∴CD+BD=(CD+DH)≥×=10,∴CD+BD的最小值为10.2.(1)证明:连接OC,∵PC为⊙O的切线,∴OC⊥PC,∴∠PCO=90°,∵AH⊥PC,∴OC∥AH,∴∠CAH=∠ACO,∵OA=OC,∴∠OAC=∠OCA,∴∠CAH=∠CAB;(2)证明:连接OC,延长CO交BD于点M,∵∠CAH=∠CAB,CH⊥AH,CE⊥AB,∴CE=CH,∵AB为⊙O的直径,∴∠ADB=90°,∴∠DHC=∠HCM=∠ADB=90°,∴四边形HDMC为矩形,∴HC=DM,∠CMD=90°,CM⊥BD,∴BD=2DM=2CH=2CE;(3)解:连接CD,过点E作ES⊥BC于点S,ET⊥DF于点T,在Rt△CAH和Rt△CAE中,AC=AC,CH=CE,∴Rt△CAH≌Rt△CAE(HL),∴AH=AE,∵=,∴∠ABC=∠ADC,∵∠CAH=∠CEB=90°,CH=CE,∴△CHD≌△CEB(AAS),∴DH=BE,∵BG=2AE,设AE=a,则AH=AE=a,∵OG=1,∴OA=OB=2a+1,∴EO=OA﹣AE=a+1,EG=EO+OG=a+2,AG=OA+OG=2a+2,∴DH=BE=EG+BG=3a+2,∴AD=DH﹣AH=2a+2,∴AD=AG,∴∠ADG=∠AGD,∵∠HAE=∠ADG+∠AGD,∠HAE=∠HAC+∠EAC,由(1)知∠HAC=∠EAC,∴∠HAC=∠EAC=∠ADG=∠AGD,∴AC∥DF,∵AB为⊙O的直径,∴∠ACB=90°,∴∠DFC=∠DFB=∠ACB=90°,∵∠CFE=45°,∴∠EFC=∠EFD=45°,∵ES⊥BC,ET⊥DF,∴ES=ET,∠ESC=∠ETG=90°,∵∠CEG+∠CFG=180°,∴∠ECF+∠FGE=180°,∵∠EGT+∠EGF=180°,∴∠EGT=∠ECF.∴△ECS≌△EGT(AAS),∴CE=EG=a+2,在Rt△ADB中,AB=2OA=4a+2,BD=2CE=2a+4,AD=2a+2,∵AD2+BD2=AB2,∴(2a+2)2+(2a+4)2=(4a+2)2,解得a=2(a=﹣1舍去),∴CE=a+2=4,BE=3a+2=8,∴tan∠EBC==,∵BE=8,设ES=m,BS=2m,∴m2+(2m)2=82,解得m=(负值舍去),∴ES=,∵∠CFE=45°,∴EF=ES=.3.(1)证明:如图,连接OE,∵OA=OE,∴∠A=∠OEA,∵OA⊥BC,∴∠ADF=90°,∴∠A+∠AFD=90°,∵∠AFD=∠PFE,∴∠A+∠PFE=90°,∵PF=PE,∴∠PFE=∠PEF,∴∠A+∠PEF=∠OEA+∠PEF=90°,∴∠OEP=90°,∴OE⊥PE,OE是⊙O的半径,∴PE是⊙O的切线;(2)解:连接OC,OP,设OC=x,则OD=OA﹣AD=x﹣2,∵OA⊥BC,∴BD=CD=BC=4,在Rt△ODC中,根据勾股定理,得OC2=OD2+CD2,∴x2=(x﹣2)2+42,解得x=5,∴OC=5,OD=3,∵PE=PF,∴PD=PF+DF=PE+1,在Rt△OPD和Rt△OPE中,根据勾股定理,得OP2=OD2+PD2=OE2+PE2,∴9+(PE+1)2=25+PE2,解得PE=.4.(1)证明:连接OD交BC于H,连接OB、OC,如图,∵点E是△ABC的内心∴AD平分∠BAC,即∠BAD=∠CAD,∴∠BOD=∠COD,∴=,∴OD⊥BC,BH=CH,∵DG∥BC,∴OD⊥DG,∴DG是⊙O的切线;(2)解:∵点E是△ABC的内心,∴∠ABE=∠CBE,∵∠DBC=∠BAD,∴∠DEB=∠BAD+∠ABE=∠DBC+∠CBE=∠DBE,∴DB=DE=6,∵BH=BC=3,在Rt△BDH中,sin∠BDH===,∴∠BDH=45°,∵OB=OD,∴△OBD为等腰直角三角形,∴∠BOD=90°,∵BD=6,∴OB=OD=3,∵∠DOC=∠BOD=90°,∴阴影部分的面积=S扇形DOC ﹣S△DOC=﹣3×3=π﹣9.5.(1)证明:如图1中,∵BD是直径,∴∠BED=∠BFD=90°,∵△ABC是等边三角形,∴BA=BC,∵AE=CF,∴BE=BF,∵BD=BD,∴Rt△BDE≌Rt△BDF(HL),∴DE=DF.(2)解:如图2中,过点D作DM⊥AB于M,DN⊥BC于N.∵∠AED+∠BED=180°,∠BED+∠BFD=180°,∴∠AED=∠DFB,∵∠DME=∠DNF=90°,∴△DME∽△DNF,∴==,在Rt△ADM中,∠AMD=90°,∠A=60°,AD=4,∴DM=AD•sin60°=2,∴DN=5,在Rt△DCN中,∠DNC=90°,∠C=60°,∴CD==10,∴AB=AC=AD+DC=4+10=14.6.(1)证明:连接OC,如图,∵AC平分∠EAB,∴∠OAC=∠EAC,∵OA=OC,∴∠OAC=∠OCA,∴∠EAC=∠ACO,∴OC∥AE,∵AE⊥DC,∴OC⊥CD,∴CD是⊙O的切线;(2)解:∵BC=BD,∴∠BCD=∠BDC,∵AB是⊙O的直径,∴∠ACB=∠ACO+∠OCB=90°,由(1)知OC⊥CD,∴∠OCD=∠BCD+∠OCB=90°,∴∠OAC=∠OCA=∠BCD=∠BDC,∵OC=OB,∴∠OBC=∠OCB,而∠OBC=∠BCD+∠D=2∠BCD,∴∠OCB=2∠BCD,而∠OCD=∠BCD+∠OCB=3∠BCD=90°,∴∠OAC=∠OCA=∠BCD=∠D=30°,设OC=x,则OD=2x,由勾股定理得4x2﹣x2=62,解得,所以.7.(1)证明:连接OC,∵BE为⊙O的切线,∴∠ABE=90°,∵点O为BC的中点,∴依据垂径定理得OE垂直平分BC,∴EC=EB,在△OEC和△OEB中,∵EC=EB,EO=EO,CO=BO,∴△OEC≌△OBC(SSS),∴∠ECO=∠EBO=90°,∵OC为半径,∴直线CE是⊙O的切线;(2)解:①30°;②,理由如下:①∵四边形ACMO为菱形,∴AC=AO,∵OC=OA,∴△CAO为等边三角形,∴∠CAO=60°,∴∠ABC=90°﹣60°=30°;②∵四边形OCEB为正方形,AB=4,∴OC=CE=2,∴,∵CM=2,∴ME=2﹣2,故答案为①30°;②.8.(1)证明:连接OB,∵OA,OB是⊙O的半径,∴∠OBA=∠OAB,∵CP=CB,∴∠CBP=∠CPB.∵∠CPB与∠APO是对顶角,∴∠APO=∠CPB,∴∠CBP=∠APO,∵OC⊥OA,交AB于点P,∴∠APO+∠PAO=90°,∴∠CBP+∠OBA=90°.∴OB⊥BC,∴BC是⊙O的切线.(2)解:∵∠BAO=25°,∴∠AOB=130°.∴所对的圆心角为230°,∵OA=18,∴.9.(1)证明:如图1中,连接CO,延长CO到T.∵∠TOD=∠D+∠DCO,∠AOT=∠A+∠AOC,∴∠AOD=∠TOD+∠TOA=∠D+∠DCO+∠ACO+∠A,∵OD=OC=OA,∴∠D=∠OCD,∠A=∠ACO,∴∠AOD=2∠ACD.(2)①证明:如图2﹣1中,延长ME交CD于H.∵AC⊥BD,∴∠AEB=90°,∵AM=BM,∴ME=AM=BM,∴∠A=∠D=∠AEM,∵∠AEM+∠MEB=90°,∠MEB=∠DEH,∴∠D+∠DEH=90°,∴∠DHE=90°,∴ME⊥CD.②证明:如图2﹣2中,延长BO交⊙O于P,连接PD,PA,AD.∵AM=MB,OP=OB,∴AP=2OM,∵PB是直径,∴∠PDB=90°,∵AC⊥BD,∴∠AEB=∠PDB=90°,∴PD∥AC,∴∠ADP=∠DAC,∴=,∴CD=AP,∴CD=2OM.10.(1)证明:连接OC,∵OA=OB,AC=CB,∴OC⊥AB,∵点C在⊙O上,∴AB是⊙O切线;(2)证明:∵OA=OB,AC=CB,∴∠AOC=∠BOC,∵OD=OF,∴∠ODF=∠OFD,∵∠AOB=∠ODF+∠OFD=∠AOC+∠BOC,∴∠BOC=∠OFD,∴OC∥DF,∴∠CDF=∠OCD,∵OD=OC,∴∠ODC=∠OCD,∴∠ADC=∠CDF;(3)解:作ON⊥DF于N,延长DF交AB于M.∵ON⊥DF,∴DN=NF=3,在Rt△ODN中,∵∠OND=90°,OD=5,DN=3∴,∵∠OCM+∠CMN=180°,∠OCM=90°,∴∠OCM=∠CMN=∠MNO=90°,∴四边形OCMN是矩形,∴ON=CM=4,MN=OC=5,在Rt△CDM中,∵∠DMC=90°,CM=4,DM=DN+MN=9,∴.11.(1)证明:∵∠ABC=∠APC,∠BAC=∠BPC,∠APC=∠CPB=60°,∴∠ABC=∠BAC=60°,∴△ABC是等边三角形.(2)解:∵△ABC是等边三角形,AB=2,∴AC=BC=AB=2,∠ACB=60°.在Rt△PAC中,∠PAC=90°,∠APC=60°,AC=2,∴AP==.在Rt△DAC中,∠DAC=90°,AC=2,∠ACD=60°,∴AD=AC•tan∠ACD=2.∴PD=AD﹣AP=.12.(1)证明:连接OD,交BC于M,∵l是⊙O的切线,∴OD⊥l,∵BC∥l,∴BC⊥OD,∵O为AB的中点,∴M为BC中点,∴BC=2BM,在△OBM和△ODE中,,∴△OBM≌△ODE(ASA),∴DE=BM,∴BC=2DE;(2)解:连接BG,在Rt△BGC和Rt△BGF中,,∴Rt△BGC≌Rt△BGF(HL),∴BG平分∠CBF,CG=GF,设CG=GF=DE=a,则BC=BF=2a,∵∠GAF=∠CAB,∠AFG=∠ACB,∴△AFG∽△ACB,∴,∴,∴2AF=a+AG,又∵AG2=AF2+GF2,解得AF=a,AG=a,由(1)知,AD平分∠BAC,∴AG=GD=a,∴AE=a=3a,∴tan∠DAB==.13.解(1)∵AB是⊙O的直径,C是圆上一点,弦CD⊥AB于点E,∴DE=DC,∵DC=AD,∴DE=AD,∴∠DAE=30°,∴∠D=60°;故答案为:60°;(2)如答图:连接OD、OC,∵OA=OD,∠DAE=30°,∴∠ADO=30°,∵∠ADC=60°,AD∥FG,∴∠CDO=30°,∠DCG=60°,∵OD=OC,∴∠DCO=30°,∴∠GCO=∠DCG+∠DCO=90°,∴OC⊥FG,∴FG与⊙O相切;(3)如答图2:连接EF、OF、OC,过E作EH⊥FG于H,设⊙O半径为R,∵AD∥FG,∠DAE=30°,FG与⊙O相切,∴∠G=30°,∠OCG=90°,∴OG=2R,CG=R,∵CD⊥AB,∴∠GEC=90°,GE=CG=R,∵EH⊥FG于H,∴EH=GE=R,∵∠DCG=60°,EH⊥FG于H,∴CH==R,∵CD⊥AB,AF是⊙O的切线,∴∠GEC=∠GAF=90°,∴CD∥AF,∴∠AFC=∠DCG=60°,∵FG、FA是是⊙O的切线,∴FA=FC,∠OCF=∠OAF,又OF=OF,∴△AOF≌△COF(HL),∴∠OFC=∠OFA=30°,∴CF=R,∴HF=CF+CH=R,在Rt△EHF中,tan∠EFC===.14.(1)证明:连接OF,OE,EF,如图1所示:∵⊙O与BA相切于点F,∴AB⊥OF,∴∠OFB=90°,∵四边形ABCD是矩形,∴∠B=90°,∵BF=BE,∴△BEF是等腰直角三角形,∴∠BFE=∠BEF=45°,∴∠OFE=90°45°=45°,又∵OE=OF,∴∠OEF=∠OFE=45°,∴∠OEB=45°+45°=90°,∴BC⊥OE,∴BC是⊙O的切线;(2)解:连接OG、FG,连接EO并延长交AD于P,如图2所示:则EP⊥AD,AP=BE=BF=5,∴GP=AP﹣AG=4,∵∠OFB=∠B=∠OEB=90°,∴四边形OFBE是矩形,∴OE=BF=5,在Rt△GPO中,由勾股定理得:PO===3,∴AF=OP=3,∵∠FGA=∠FED,∴,tan∠FED=tan∠FGA==3.15.证明:(1)∵AB是直径,∴∠ADB=90°,又∵AB=AC,∴BD=CD,∠B=∠C,∠BAD=∠CAD,∴=,∴BD=DE,∴BD=DE=DC,∴∠DEC=∠C=∠AEF,∵∠AEF+∠CAF=90°,∠C+∠DAC=90°,∴∠CAF=∠CAD,∵四边形ABDE是圆内接四边形,∴∠BAC+∠BDE=180°,又∵∠BDE+∠EDC=180°,∴∠EDC=∠BAC=2∠CAD=2∠CAF;(2)△ABC是等边三角形,理由如下:∵直线AF是⊙O的切线,∴∠BAF=90°,∵∠BAD=∠CAD=∠CAF,∴∠BAD=∠CAD=∠CAF=30°,∴∠BAC=60°,又∵AB=AC,∴△ABC是等边三角形;(3)∵=,∴设AD=25x,DF=24x,∴AF===7x,∵∠BAD=∠CAF,∠AFE=∠ADB=90°,∴△ADB∽△AFE,∴,∴,∴BD=x,∴BC=x,∵AB===x,∴.。

2020-2021中考数学圆的综合的综合复习含详细答案

2020-2021中考数学圆的综合的综合复习含详细答案

2020-2021中考数学圆的综合的综合复习含详细答案一、圆的综合1.如图,⊙M交x轴于B、C两点,交y轴于A,点M的纵坐标为2.B(﹣33,O),C(3,O).(1)求⊙M的半径;(2)若CE⊥AB于H,交y轴于F,求证:EH=FH.(3)在(2)的条件下求AF的长.【答案】(1)4;(2)见解析;(3)4.【解析】【分析】(1)过M作MT⊥BC于T连BM,由垂径定理可求出BT的长,再由勾股定理即可求出BM的长;(2)连接AE,由圆周角定理可得出∠AEC=∠ABC,再由AAS定理得出△AEH≌△AFH,进而可得出结论;(3)先由(1)中△BMT的边长确定出∠BMT的度数,再由直角三角形的性质可求出CG 的长,由平行四边形的判定定理判断出四边形AFCG为平行四边形,进而可求出答案.【详解】(1)如图(一),过M作MT⊥BC于T连BM,∵BC是⊙O的一条弦,MT是垂直于BC的直径,∴BT=TC=123∴124;(2)如图(二),连接AE,则∠AEC=∠ABC,∵CE⊥AB,∴∠HBC+∠BCH=90°在△COF中,∵∠OFC+∠OCF=90°,∴∠HBC=∠OFC=∠AFH,在△AEH和△AFH中,∵AFH AEHAHF AHE AH AH∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AEH≌△AFH(AAS),∴EH=FH;(3)由(1)易知,∠BMT=∠BAC=60°,作直径BG,连CG,则∠BGC=∠BAC=60°,∵⊙O的半径为4,∴CG=4,连AG,∵∠BCG=90°,∴CG⊥x轴,∴CG∥AF,∵∠BAG=90°,∴AG⊥AB,∵CE⊥AB,∴AG∥CE,∴四边形AFCG为平行四边形,∴AF=CG=4.【点睛】本题考查的是垂径定理、圆周角定理、直角三角形的性质及平行四边形的判定与性质,根据题意作出辅助线是解答此题的关键.2.如图1,直角梯形OABC中,BC∥OA,OA=6,BC=2,∠BAO=45°.(1)OC的长为;(2)D是OA上一点,以BD为直径作⊙M,⊙M交AB于点Q.当⊙M与y轴相切时,sin∠BOQ=;(3)如图2,动点P以每秒1个单位长度的速度,从点O沿线段OA向点A运动;同时动点D以相同的速度,从点B沿折线B﹣C﹣O向点O运动.当点P到达点A时,两点同时停止运动.过点P作直线PE∥OC,与折线O﹣B﹣A交于点E.设点P运动的时间为t (秒).求当以B、D、E为顶点的三角形是直角三角形时点E的坐标.【答案】(1)4;(2)35;(3)点E的坐标为(1,2)、(53,103)、(4,2).【解析】分析:(1)过点B作BH⊥OA于H,如图1(1),易证四边形OCBH是矩形,从而有OC=BH,只需在△AHB中运用三角函数求出BH即可.(2)过点B作BH⊥OA于H,过点G作GF⊥OA于F,过点B作BR⊥OG于R,连接MN、DG,如图1(2),则有OH=2,BH=4,MN⊥OC.设圆的半径为r,则MN=MB=MD=r.在Rt△BHD中运用勾股定理可求出r=2,从而得到点D与点H重合.易证△AFG∽△ADB,从而可求出AF、GF、OF、OG、OB、AB、BG.设OR=x,利用BR2=OB2﹣OR2=BG2﹣RG2可求出x,进而可求出BR.在Rt△ORB中运用三角函数就可解决问题.(3)由于△BDE的直角不确定,故需分情况讨论,可分三种情况(①∠BDE=90°,②∠BED=90°,③∠DBE=90°)讨论,然后运用相似三角形的性质及三角函数等知识建立关于t的方程就可解决问题.详解:(1)过点B作BH⊥OA于H,如图1(1),则有∠BHA=90°=∠COA,∴OC∥BH.∵BC∥OA,∴四边形OCBH是矩形,∴OC=BH,BC=OH.∵OA=6,BC=2,∴AH=0A﹣OH=OA﹣BC=6﹣2=4.∵∠BHA=90°,∠BAO=45°,∴tan∠BAH=BHHA=1,∴BH=HA=4,∴OC=BH=4.故答案为4.(2)过点B作BH⊥OA于H,过点G作GF⊥OA于F,过点B作BR⊥OG于R,连接MN、DG,如图1(2).由(1)得:OH=2,BH=4.∵OC与⊙M相切于N,∴MN⊥OC.设圆的半径为r,则MN=MB=MD=r.∵BC ⊥OC ,OA ⊥OC ,∴BC ∥MN ∥OA .∵BM =DM ,∴CN =ON ,∴MN =12(BC +OD ),∴OD =2r ﹣2,∴DH =OD OH -=24r -.在Rt △BHD 中,∵∠BHD =90°,∴BD 2=BH 2+DH 2,∴(2r )2=42+(2r ﹣4)2.解得:r =2,∴DH =0,即点D 与点H 重合,∴BD ⊥0A ,BD =AD .∵BD 是⊙M 的直径,∴∠BGD =90°,即DG ⊥AB ,∴BG =AG .∵GF ⊥OA ,BD ⊥OA ,∴GF ∥BD ,∴△AFG ∽△ADB , ∴AF AD =GF BD =AG AB =12,∴AF =12AD =2,GF =12BD =2,∴OF =4,∴OG同理可得:OB AB ,∴BG =12AB .设OR =x ,则RG x .∵BR ⊥OG ,∴∠BRO =∠BRG =90°,∴BR 2=OB 2﹣OR 2=BG 2﹣RG 2,∴(2﹣x 2=()2﹣(x )2.解得:x ,∴BR 2=OB 2﹣OR 2=(2)2=365,∴BR在Rt △ORB 中,sin ∠BOR =BR OB35. 故答案为35. (3)①当∠BDE =90°时,点D 在直线PE 上,如图2.此时DP =OC =4,BD +OP =BD +CD =BC =2,BD =t ,OP =t . 则有2t =2.解得:t =1.则OP =CD =DB =1.∵DE ∥OC ,∴△BDE ∽△BCO ,∴DE OC =BD BC =12,∴DE =2,∴EP =2, ∴点E 的坐标为(1,2).②当∠BED =90°时,如图3.∵∠DBE =OBC ,∠DEB =∠BCO =90°,∴△DBE ∽△OBC ,∴BEBC =2DB BE OB ∴,∴BE . ∵PE ∥OC ,∴∠OEP =∠BOC .∵∠OPE =∠BCO =90°,∴△OPE ∽△BCO , ∴OEOB =OP BC,2t ,∴OE .∵OE+BE=OB=255,∴t+55t=25.解得:t=53,∴OP=53,OE=55,∴PE=22OE OP-=103,∴点E的坐标为(51033,).③当∠DBE=90°时,如图4.此时PE=PA=6﹣t,OD=OC+BC﹣t=6﹣t.则有OD=PE,EA=22PE PA+=2(6﹣t)=62﹣2?t,∴BE=BA﹣EA=42﹣(62﹣2t)=2t﹣22.∵PE∥OD,OD=PE,∠DOP=90°,∴四边形ODEP是矩形,∴DE=OP=t,DE∥OP,∴∠BED=∠BAO=45°.在Rt△DBE中,cos∠BED=BEDE=22,∴DE=2BE,∴t=22(t﹣22)=2t﹣4.解得:t=4,∴OP=4,PE=6﹣4=2,∴点E的坐标为(4,2).综上所述:当以B、D、E为顶点的三角形是直角三角形时点E的坐标为(1,2)、(51033,)、(4,2).点睛:本题考查了圆周角定理、切线的性质、相似三角形的判定与性质、三角函数的定义、平行线分线段成比例、矩形的判定与性质、勾股定理等知识,还考查了分类讨论的数学思想,有一定的综合性.3.如图,⊙O的半径为6cm,经过⊙O上一点C作⊙O的切线交半径OA的延长于点B,作∠ACO的平分线交⊙O于点D,交OA于点F,延长DA交BC于点E.(1)求证:AC∥OD;(2)如果DE⊥BC,求»AC的长度.【答案】(1)证明见解析;(2)2π.【解析】试题分析:(1)由OC=OD,CD平分∠ACO,易证得∠ACD=∠ODC,即可证得AC∥OD;(2)BC切⊙O于点C,DE⊥BC,易证得平行四边形ADOC是菱形,继而可证得△AOC是等边三角形,则可得:∠AOC=60°,继而求得弧AC的长度.试题解析:(1)证明:∵OC=OD,∴∠OCD=∠ODC.∵CD平分∠ACO,∴∠OCD=∠ACD,∴∠ACD=∠ODC,∴AC∥OD;(2)∵BC切⊙O于点C,∴BC⊥OC.∵DE⊥BC,∴OC∥DE.∵AC∥OD,∴四边形ADOC 是平行四边形.∵OC=OD,∴平行四边形ADOC是菱形,∴OC=AC=OA,∴△AOC是等边三角形,∴∠AOC=60°,∴弧AC的长度=606180π⨯=2π.点睛:本题考查了切线的性质、等腰三角形的判定与性质、菱形的判定与性质以及弧长公式.此题难度适中,注意掌握数形结合思想的应用.4.定义:有一个角是其邻角一半的圆内接四边形叫做圆内倍角四边形.(1)如图1,四边形ABCD内接于⊙O,∠DCB﹣∠ADC=∠A,求证:四边形ABCD为圆内接倍角四边形;(2)在(1)的条件下,⊙O半径为5.①若AD为直径,且sinA=45,求BC的长;②若四边形ABCD中有一个角为60°,且BC=CD,则四边形ABCD的面积是;(3)在(1)的条件下,记AB=a,BC=b,CD=c,AD=d,求证:d2﹣b2=ab+cd.【答案】(1)见解析;(2)①BC=6,②7534或754;(3)见解析【解析】【分析】(1)先判断出∠ADC=180°﹣2∠A.进而判断出∠ABC=2∠A,即可得出结论;(2)①先用锐角三角函数求出BD,进而得出AB,由(1)得出∠ADB=∠BDC,即可得出结论;②分两种情况:利用面积和差即可得出结论;(3)先得出BE=BC=b,DE=DA=b,进而得出CE=d﹣c,再判断出△EBC∽△EDA,即可得出结论.【详解】(1)设∠A=α,则∠DCB=180°﹣α.∵∠DCB﹣∠ADC=∠A,∴∠ADC=∠DCB﹣∠A=180°﹣α﹣α=180°﹣2α,∴∠ABC=180°﹣∠ADC=2α=2∠A,∴四边形ABCD是⊙O内接倍角四边形;(2)①连接BD.∵AD是⊙O的直径,∴∠ABD=90°.在Rt△ABD中,AD=2×5=10,sin∠A=45,∴BD=8,根据勾股定理得:AB=6,设∠A=α,∴∠ADB=90°﹣α.由(1)知,∠ADC=180°﹣2α,∴∠BDC=90°﹣α,∴∠ADB=∠BDC,∴BC=AB=6;②若∠ADC=60°时.∵四边形ABCD是圆内接倍角四边形,∴∠BCD=120°或∠BAD=30°.Ⅰ、当∠BCD=120°时,如图3,连接OA,OB,OC,OD.∵BC=CD,∴∠BOC=∠COD,∴∠OCD=∠OCB=12∠BCD=60°,∴∠CDO=60°,∴AD是⊙O 的直径,(为了说明AD是直径,点O没有画在AD上)∴∠ADC+∠BCD=180°,∴BC∥AD,∴AB=CD.∵BC=CD,∴AB=BC=CD,∴△OAB,△BOC,△COD是全等的等边三角形,∴S四边形ABCD=3S△AOB 32753.Ⅱ、当∠BAD=30°时,如图4,连接OA,OB,OC,OD.∵四边形ABCD是圆内接四边形,∴∠BCD=180°﹣∠BAD=150°.∵BC =CD ,∴∠BOC =∠COD ,∴∠BCO =∠DCO =12∠BCD =75°,∴∠BOC =∠DOC =30°,∴∠OBA =45°,∴∠AOB =90°.连接AC ,∴∠DAC =12∠BAD =15°. ∵∠ADO =∠OAB ﹣∠BAD =15°,∴∠DAC =∠ADO ,∴OD ∥AC ,∴S △OAD =S △OCD . 过点C 作CH ⊥OB 于H .在Rt △OCH 中,CH =12OC =52,∴S 四边形ABCD =S △COD +S △BOC +S △AOB ﹣S △AOD =S △BOC +S △AOB =1522⨯×5+12×5×5=754. 故答案为:7534或754;(3)延长DC ,AB 交于点E .∵四边形ABCD 是⊙O 的内接四边形,∴∠BCE =∠A =12∠ABC . ∵∠ABC =∠BCE +∠A ,∴∠E =∠BCE =∠A ,∴BE =BC =b ,DE =DA =b ,∴CE =d ﹣c . ∵∠BCE =∠A ,∠E =∠E ,∴△EBC ∽△EDA ,∴CE BC AE AD =,∴d c b a b d-=+,∴d 2﹣b 2=ab +cd .【点睛】本题是圆的综合题,主要考查了圆的内接四边形的性质,新定义,相似三角形的判定和性质,等边三角形的判定和性质,正确作出辅助线是解答本题的关键.5.如图,已知在△ABC中,AB=15,AC=20,tanA=12,点P在AB边上,⊙P的半径为定长.当点P与点B重合时,⊙P恰好与AC边相切;当点P与点B不重合时,⊙P与AC边相交于点M和点N.(1)求⊙P的半径;(2)当AP=65时,试探究△APM与△PCN是否相似,并说明理由.【答案】(1)半径为35;(2)相似,理由见解析.【解析】【分析】(1)如图,作BD⊥AC,垂足为点D,⊙P与边AC相切,则BD就是⊙P的半径,利用解直角三角形得出BD与AD的关系,再利用勾股定理可求得BD的长;(2)如图,过点P作PH⊥AC于点H,作BD⊥AC,垂足为点D,根据垂径定理得出MN=2MH,PM=PN,再利用勾股定理求出PH、AH、MH、MN的长,从而求出AM、NC的长,然后求出AMMP、PNNC的值,得出AMMP=PNNC,利用两边对应成比例且夹角相等的两三角形相似即可证明.【详解】(1)如图,作BD⊥AC,垂足为点D,∵⊙P与边AC相切,∴BD就是⊙P的半径,在Rt△ABD中,tanA= 1BD2AD ,设BD=x,则AD=2x,∴x2+(2x)2=152,解得:5∴半径为5(2)相似,理由见解析,如图,过点P作PH⊥AC于点H,作BD⊥AC,垂足为点D,∴PH垂直平分MN,∴PM=PN ,在Rt △AHP 中,tanA=12PH AH =, 设PH=y ,AH=2y ,y 2+(2y )2=(65)2解得:y=6(取正数),∴PH=6,AH=12,在Rt △MPH 中,MH=()22356-=3,∴MN=2MH=6,∴AM=AH-MH=12-3=9,NC=AC-MN-AM=20-6-9=5,∴3535AM MP ==,35PN NC =, ∴AM MP =PN NC, 又∵PM=PN ,∴∠PMN=∠PNM ,∴∠AMP=∠PNC ,∴△AMP ∽△PNC.【点睛】本题考查了解直角三角形、垂径定理、相似三角形的判定与性质等,综合性较强,有一定的难度,正确添加辅助线、灵活应用相关的性质与定理是解题的关键.6.如图,已知四边形ABCD 是矩形,点P 在BC 边的延长线上,且PD=BC ,⊙A 经过点B ,与AD 边交于点E ,连接CE .(1)求证:直线PD 是⊙A 的切线;(2)若5sin ∠P=23,求图中阴影部份的面积(结果保留无理数).【答案】(1)见解析;(2)20-4π.【解析】分析:(1)过点A作AH⊥PD,垂足为H,只要证明AH为半径即可.(2)分别算出Rt△CED的面积,扇形ABE的面积,矩形ABCD的面积即可.详解:(1)证明:如图,过A作AH⊥PD,垂足为H,∵四边形ABCD是矩形,∴AD=BC,AD∥BC,∠PCD=∠BCD=90°,∴∠ADH=∠P,∠AHD=∠PCD=90°,又PD=BC,∴AD=PD,∴△ADH≌△DPC,∴AH=CD,∵CD=AB,且AB是⊙A的半径,∴AH=AB,即AH是⊙A的半径,∴PD是⊙A的切线.(2)如图,在Rt△PDC中,∵sin∠P=23CDPD,5,令CD=2x,PD=3x,由由勾股定理得:(3x)2-(2x)252,解得:x=2,∴CD=4,PD=6,∴AB=AE=CD=4,AD=BC=PD=6,DE=2,∵矩形ABCD的面积为6×4=24,Rt△CED的面积为12×4×2=4,扇形ABE的面积为12π×42=4π,∴图中阴影部份的面积为24-4-4π=20-4π.点睛:本题考查了全等三角形的判定,圆的切线证明,三角形的面积,扇形的面积,矩形的面积.7.如图,已知⊙O的半径为1,PQ是⊙O的直径,n个相同的正三角形沿PQ排成一列,所有正三角形都关于PQ对称,其中第一个△A1B1C1的顶点A1与点P重合,第二个△A 2B 2C 2的顶点A 2是B 1C 1与PQ 的交点,…,最后一个△A n B n C n 的顶点B n 、C n 在圆上.如图1,当n=1时,正三角形的边长a 1=_____;如图2,当n=2时,正三角形的边长a 2=_____;如图3,正三角形的边长a n =_____(用含n 的代数式表示).3831343n 【解析】 分析:(1)设PQ 与11B C 交于点D ,连接1B O ,得出OD=1A D -O 1A ,用含1a 的代数式表示OD ,在△O 1B D 中,根据勾股定理求出正三角形的边长1a ;(2)设PQ 与2B 2C 交于点E ,连接2B O ,得出OE=1A E-O 1A ,用含2a 的代数式表示OE ,在△O 2B E 中,根据勾股定理求出正三角形的边长2a ;(3)设PQ 与n B n C 交于点F ,连接n B O ,得出OF=1A F-O 1A ,用含an 的代数式表示OF ,在△O n B F 中,根据勾股定理求出正三角形的边长an . 本题解析:(1)易知△A 1B 1C 1的高为323 ∴a 13.(2)设△A 1B 1C 1的高为h ,则A 2O =1-h ,连结B 2O ,设B 2C 2与PQ 交于点F ,则有OF =2h -1. ∵B 2O 2=OF 2+B 2F 2,∴1=(2h -1)2+2212a ⎛⎫ ⎪⎝⎭ . ∵h =32a 2,∴1=32-1)2+14a 22, 解得a 2=8313. (3)同(2),连结B n O ,设B n C n 与PQ 交于点F ,则有B n O 2=OF 2+B n F 2, 即1=(nh -1)2+212n a ⎛⎫ ⎪⎝⎭. ∵h 3a n ,∴1=14a n 2+2312n na ⎛⎫- ⎪ ⎪⎝⎭ ,解得a n =24331n n + .8.如图,在⊙O 中,直径AB ⊥弦CD 于点E ,连接AC ,BC ,点F 是BA 延长线上的一点,且∠FCA =∠B .(1)求证:CF 是⊙O 的切线;(2)若AE =4,tan ∠ACD =3,求FC 的长.【答案】(1)见解析【解析】分析:(1)利用圆周角定理以及等腰三角形的性质得出∠OCF=90°,进而得出答案; (2)根据正切的性质求出EC 的长,然后利用垂径定理求出圆的半径,再根据等边三角形的性质,利用勾股定理求出即可.详解:(1)证明:连接OC.∵AB 是⊙O 的直径,∴∠ACB =90°,∴∠OCB +∠ACO =90°.∵OB =OC ,∴∠B =∠OCB.又∵∠FCA =∠B ,∴∠FCA =∠OCB ,∴∠FCA +∠ACO =90°,即∠FCO =90°,∴FC ⊥OC ,∴FC 是⊙O 切线.(2)解:∵AB ⊥CD ,∴∠AEC =90°,∴EC=AE 43tan ACE 3∠== 设OA =OC =r ,则OE =OA -AE =r -4.在Rt △OEC 中,OC 2=OE 2+CE 2,即r 2=(r -4)2+32,解得r =8.∴OE =r -4=4=AE.∵CE ⊥OA ,∴CA =CO =8,∴△AOC 是等边三角形,∴∠FOC =60°,∴∠F =30°.在Rt △FOC 中,∵∠OCF =90°,OC =8,∠F =30°,∴OF =2OC =16,∴FC 22OF OC 83-=.点睛:此题主要考查了切线的判定、垂径定理的推论以及勾股定理等知识,得出BC的长是解题关键.9.四边形ABCD内接于⊙O,点E为AD上一点,连接AC,CB,∠B=∠AEC.(1)如图1,求证:CE=CD;(2)如图2,若∠B+∠CAE=120°,∠ACD=2∠BAC,求∠BAD的度数;(3)如图3,在(2)的条件下,延长CE交⊙O于点G,若tan∠BAC= 53,EG=2,求AE的长.【答案】(1)见解析;(2)60°;(3)7.【解析】试题分析:(1)利用圆的内接四边形定理得到∠CED=∠CDE.(2) 作CH⊥DE于H, 设∠ECH=α,由(1)CE=CD,用α表示∠CAE,∠BAC,而∠BAD=∠BAC+∠CAE.(3)连接AG,作GN⊥AC,AM⊥EG,先证明∠CAG=∠BAC,设NG=3m,可得AN=11m,利用直角n AGM,n AEM,勾股定理可以算出m的值并求出AE长.试题解析:(1)解:证明:∵四边形ABCD内接于⊙O.∴∠B+∠D=180°,∵∠B=∠AEC,∴∠AEC+∠D=180°,∵∠AEC+∠CED=180°,∴∠D=∠CED,∴CE=CD.(2)解:作CH⊥DE于H.设∠ECH=α,由(1)CE=CD,∴∠ECD=2α,∵∠B=∠AEC,∠B+∠CAE=120°,∴∠CAE+∠AEC=120°,∴∠ACE=180°﹣∠AEC﹣∠ACE=60°,∴∠CAE=90°﹣∠ACH=90°﹣(60°+α)=30°﹣α,∠ACD=∠ACH+∠HCD=60°+2α,∵∠ACD=2∠BAC,∴∠BAC=30°+α,∴∠BAD=∠BAC+∠CAE=30°+α+30°﹣α=60°.(3)解:连接AG,作GN⊥AC,AM⊥EG,∵∠CED=∠AEG,∠CDE=∠AGE,∠CED=∠CDE,∴∠AEG=∠AGE,∴AE=AG,∴EM=MG=1EG=1,2∴∠EAG=∠ECD=2α,∴∠CAG=∠CAD+∠DAG=30°﹣α+2α=∠BAC,∵tan ∠BAC =5311, ∴设NG=53m ,可得AN =11m ,AG =22AG AM -=14m , ∵∠ACG =60°,∴CN=5m ,AM =83m ,MG =22AG AM -=2m =1, ∴m =12, ∴CE=CD =CG ﹣EG =10m ﹣2=3, ∴AE =22AM EM +=221+43()=7.10.已知:如图1,∠ACG=90°,AC=2,点B 为CG 边上的一个动点,连接AB ,将△ACB 沿AB 边所在的直线翻折得到△ADB ,过点D 作DF ⊥CG 于点F .(1)当BC=23 时,判断直线FD 与以AB 为直径的⊙O 的位置关系,并加以证明; (2)如图2,点B 在CG 上向点C 运动,直线FD 与以AB 为直径的⊙O 交于D 、H 两点,连接AH ,当∠CAB=∠BAD=∠DAH 时,求BC 的长.【答案】(1)直线FD 与以AB 为直径的⊙O 相切,理由见解析;(2)22 .【解析】试题分析:(1)根据已知及切线的判定证明得,直线FD 与以AB 为直径的⊙O 相切; (2)根据圆内接四边形的性质及直角三角形的性质进行分析,从而求得BC 的长. 试题解析:(1)判断:直线FD 与以AB 为直径的⊙O 相切.证明:如图,作以AB 为直径的⊙O ;∵△ADB 是将△ACB 沿AB 边所在的直线翻折得到的,∴△ADB ≌△ACB ,∴∠ADB=∠ACB=90°.∵O 为AB 的中点,连接DO ,∴OD=OB=AB,∴点D在⊙O上.在Rt△ACB中,BC=,AC=2;∴tan∠CAB==,∴∠CAB=∠BAD=30°,∴∠ABC=∠ABD=60°,∴△BOD是等边三角形.∴∠BOD=60°.∴∠ABC=∠BOD,∴FC∥DO.∵DF⊥CG,∴∠ODF=∠BFD=90°,∴OD⊥FD,∴FD为⊙O的切线.(2)延长AD交CG于点E,同(1)中的方法,可证点C在⊙O上;∴四边形ADBC是圆内接四边形.∴∠FBD=∠1+∠2.同理∠FDB=∠2+∠3.∵∠1=∠2=∠3,∴∠FBD=∠FDB,又∠DFB=90°.∴EC=AC=2.设BC=x,则BD=BC=x,∵∠EDB=90°,∴EB=x.∵EB+BC=EC,∴x+x=2,解得x=2﹣2,∴BC=2﹣2.11.如图所示,AB 是半圆O 的直径,AC 是弦,点P 沿BA 方向,从点B 运动到点A ,速度为1cm/s ,若10AB cm ,点O 到AC 的距离为4cm .(1)求弦AC 的长;(2)问经过多长时间后,△APC 是等腰三角形.【答案】(1)AC=6;(2)t=4或5或145s 时,△APC 是等腰三角形; 【解析】 【分析】(1)过O 作OD ⊥AC 于D ,根据勾股定理求得AD 的长,再利用垂径定理即可求得AC 的长;(2)分AC=PC 、AP=AC 、AP=CP 三种情况求t 值即可.【详解】(1)如图1,过O 作OD ⊥AC 于D ,易知AO=5,OD=4,从而AD==3,∴AC=2AD=6;(2)设经过t 秒△APC 是等腰三角形,则AP=10﹣t①如图2,若AC=PC ,过点C 作CH ⊥AB 于H ,∵∠A=∠A ,∠AHC=∠ODA=90°,∴△AHC ∽△ADO ,∴AC :AH=OA :AD ,即AC :=5:3,解得t=s , ∴经过s 后△APC 是等腰三角形; ②如图3,若AP=AC ,由PB=x ,AB=10,得到AP=10﹣x ,又∵AC=6,则10﹣t=6,解得t=4s ,∴经过4s 后△APC 是等腰三角形;③如图4,若AP=CP ,P 与O 重合,则AP=BP=5,∴经过5s 后△APC 是等腰三角形.综上可知当t=4或5或s 时,△APC 是等腰三角形.【点睛】本题是圆的综合题,解决问题利用了垂径定理,勾股定理等知识点,解题时要注意当△BPC 是等腰三角形时,点P 的位置有三种情况.12.如图所示,ABC ∆内接于圆O ,CD AB ⊥于D ;(1)如图1,当AB 为直径,求证:OBC ACD ∠=∠;(2)如图2,当AB 为非直径的弦,连接OB ,则(1)的结论是否成立?若成立请证明,不成立说明由;(3)如图3,在(2)的条件下,作AE BC ⊥于E ,交CD 于点F ,连接ED ,且2AD BD ED =+,若3DE =,5OB =,求CF 的长度.【答案】(1)见解析;(2)成立;(3)145【解析】【分析】 (1)根据圆周角定理求出∠ACB=90°,求出∠ADC=90°,再根据三角形内角和定理求出即可;(2)根据圆周角定理求出∠BOC=2∠A ,求出∠OBC=90°-∠A 和∠ACD=90°-∠A 即可; (3)分别延长AE 、CD 交⊙O 于H 、K ,连接HK 、CH 、AK ,在AD 上取DG=BD ,延长CG 交AK 于M ,延长KO 交⊙O 于N ,连接CN 、AN ,求出关于a 的方程,再求出a 即可.【详解】(1)证明:∵AB 为直径,∴ACB 90∠=︒, ∵CD AB ⊥于D , ∴ADC 90∠=︒,∴OBC A 90∠∠+=︒,A ACD 90∠∠+=︒,∴OBC ACD ∠∠=;(2)成立,证明:连接OC ,由圆周角定理得:BOC 2A ∠∠=,∵OC OB =,∴()()11OBC 180BOC 1802A 90A 22∠∠∠∠=︒-=︒-=︒-, ∵ADC 90∠=︒,∴ACD 90A ∠∠=︒-,∴OBC ACD ∠∠=;(3)分别延长AE 、CD 交⊙O 于H 、K ,连接HK 、CH 、AK ,∵AE BC ⊥,CD BA ⊥,∴AEC ADC 90∠∠==︒,∴BCD CFE 90∠∠+=︒,BAH DFA 90∠∠+=︒,∵CFE DFA ∠∠=,∴BCD BAH ∠∠=,∵根据圆周角定理得:BAH BCH ∠∠=,∴BCD BAH BCH ∠∠∠==,∴由三角形内角和定理得:CHE CFE ∠∠=, ∴CH CF =,∴EH EF =,同理DF DK =,∵DE 3=,∴HK 2DE 6==,在AD 上取DG BD =,延长CG 交AK 于M ,则AG AD BD 2DE 6=-==,BC GC =,∴MCK BCK BAK ∠∠∠==,∴CMK 90∠=︒,延长KO 交⊙O 于N ,连接CN 、AN ,则NAK 90CMK ∠∠=︒=,∴CM //AN ,∵NCK ADK 90∠∠==︒,∴CN //AG ,∴四边形CGAN 是平行四边形,∴AG CN 6==,作OT CK ⊥于T ,则T 为CK 的中点,∵O 为KN 的中点, ∴1OT CN 32==, ∵OTC 90∠=︒,OC 5=,∴由勾股定理得:CT 4=,∴CK 2CT 8==,作直径HS ,连接KS ,∵HK 6=,HS 10=,∴由勾股定理得:KS 8=, ∴3tan HSK tan HAK 4∠∠==, ∴1tan EAB tan BCD 3∠∠==, 设BD a =,CD 3a =, ∴AD BD 2ED a 6=+=+,11DK AD a 233==+, ∵CD DK CK +=, ∴13a a 283++=, 解得:9a 5=, ∴113DK a 235=+=, ∴2614CF CK 2DK 855=-=-=. 【点睛】本题考查了垂径定理、解直角三角形、等腰三角形的性质、圆周角定理、勾股定理等知识点,能综合运用知识点进行推理是解此题的关键,综合性比较强,难度偏大.13.如图,AB 是O e 的直径,DF 切O e 于点D ,BF DF ⊥于F ,过点A 作AC //BF 交BD 的延长线于点C .(1)求证:ABC C ∠∠=;(2)设CA 的延长线交O e 于E BF ,交O e 于G ,若¼DG的度数等于60o ,试简要说明点D 和点E 关于直线AB 对称的理由.【答案】(1)见解析;(2)见解析.【解析】【分析】(1)作辅助线,连接OD,由DF为⊙O的切线,可得OD⊥DF,又BF⊥DF,AC∥BF,所以OD∥AC,∠ODB=∠C,由OB=OD得∠ABD=∠ODB,从而可证∠ABC=∠C;(2)连接OG,OD,AD,由BF∥OD,»GD=60°,可求证»BG=»»==60°,由平行线GD AD的性质及三角形的内角和定理可求出∠OHD=90°,由垂径定理便可得出结论.【详解】(1)连接OD,∵DF为⊙O的切线,∴OD⊥DF.∵BF⊥DF,AC∥BF,∴OD∥AC∥BF.∴∠ODB=∠C.∵OB=OD,∴∠ABD=∠ODB.∴∠ABC=∠C.(2)连接OG,OD,AD,DE,DE交AB于H,∵BF∥OD,∴∠OBG=∠AOD,∠OGB=∠DOG,∴»»GD AD==»BG.∵»GD=60°,∴»BG=»»GD AD==60°,∴∠ABC=∠C=∠E=30°,∵OD//CE∴∠ODE=∠E=30°.在△ODH 中,∠ODE=30°,∠AOD=60°,∴∠OHD=90°,∴AB ⊥DE .∴点D 和点E 关于直线AB 对称.【点睛】本题考查的是切线的性质、圆周角定理及垂径定理,解答此题的关键是作出辅助线,利用数形结合解答.14.如图,已知AB 是⊙O 的直径,直线CD 与⊙O 相切于C 点,AC 平分∠DAB . (1)求证:AD ⊥CD ;(2)若AD =2,AC=6,求⊙O 的半径R 的长.【答案】(1)证明见解析(2)32【解析】试题分析:(1)连接OC ,由题意得OC ⊥CD .又因为AC 平分∠DAB ,则∠1=∠2=12∠DAB .即可得出AD ∥OC ,则AD ⊥CD ; (2)连接BC ,则∠ACB =90°,可证明△ADC ∽△ACB .则2AD AC AC R ,从而求得R . 试题解析:(1)证明:连接OC ,∵直线CD 与⊙O 相切于C 点,AB 是⊙O 的直径,∴OC ⊥CD .又∵AC 平分∠DAB ,∴∠1=∠2=12∠DAB . 又∠COB =2∠1=∠DAB ,∴AD ∥OC ,∴AD ⊥CD .(2)连接BC ,则∠ACB =90°,在△ADC 和△ACB 中∵∠1=∠2,∠3=∠ACB =90°,∴△ADC ∽△ACB .∴2AD AC AC R= ∴R =2322AC AD = 15.如图,已知四边形ABCD 内接于⊙O ,点E 在CB 的延长线上,连结AC 、AE ,∠ACB =∠BAE =45°.(1)求证:AE 是⊙O 的切线;(2)若AB=AD ,AC =32,tan ∠ADC=3,求BE 的长.【答案】(1)证明见解析;(2)52BE = 【解析】试题分析:(1)连接OA 、OB ,由圆周角定理得出∠AOB=2∠ACB=90°,由等腰直角三角形的性质得出∠OAB=∠OBA=45°,求出∠OAE=∠OAB+∠BAE=90°,即可得出结论;(2)过点A 作AF ⊥CD 于点F,由AB=AD ,得到∠ACD =∠ACB =45°,在Rt △AFC 中可求得AF =3,在Rt △AFD 中求得DF =1,所以AB =AD =10 ,CD = CF +DF =4,再证明△ABE ∽△CDA ,得出BE AB DA CD=,即可求出BE 的长度; 试题解析: (1)证明:连结OA ,OB ,∵∠ACB =45°,∴∠AOB =2∠ACB = 90°,∵OA=OB ,∴∠OAB =∠OBA =45°,∵∠BAE =45°,∴∠OAE =∠OAB +∠BAE =90°,∴OA ⊥AE .∵点A 在⊙O 上,∴AE 是⊙O 的切线.(2)解:过点A 作AF ⊥CD 于点F ,则∠AFC =∠AFD =90°. ∵AB=AD , ∴AB u u u r =AD u u u r∴∠ACD =∠ACB =45°,在Rt △AFC 中,∵AC =∠ACF =45°,∴AF=CF=AC ·sin ∠ACF =3,∵在Rt △AFD 中, tan ∠ADC=3AF DF =, ∴DF =1,∴AB AD ==且CD = CF +DF =4,∵四边形ABCD 内接于⊙O ,∴∠ABE =∠CDA ,∵∠BAE =∠DCA ,∴△ABE ∽△CDA , ∴BE AB DA CD =,∴=∴5 BE .2。

2020-2021中考数学压轴题专题复习—圆的综合的综合附答案解析

2020-2021中考数学压轴题专题复习—圆的综合的综合附答案解析

2020-2021中考数学压轴题专题复习—圆的综合的综合附答案解析一、圆的综合1.如图,AB 是半圆的直径,过圆心O 作AB 的垂线,与弦AC 的延长线交于点D ,点E 在OD 上DCE B ∠=∠. (1)求证:CE 是半圆的切线; (2)若CD=10,2tan 3B =,求半圆的半径.【答案】(1)见解析;(2)413 【解析】分析: (1)连接CO ,由DCE B ∠=∠且OC=OB,得DCE OCB ∠=∠,利用同角的余角相等判断出∠BCO+∠BCE=90°,即可得出结论;(2)设AC=2x ,由根据题目条件用x 分别表示出OA 、AD 、AB ,通过证明△AOD ∽△ACB ,列出等式即可.详解:(1)证明:如图,连接CO .∵AB 是半圆的直径, ∴∠ACB =90°.∴∠DCB =180°-∠ACB =90°. ∴∠DCE+∠BCE=90°. ∵OC =OB , ∴∠OCB =∠B. ∵=DCE B ∠∠, ∴∠OCB =∠DCE . ∴∠OCE =∠DCB =90°. ∴OC ⊥CE . ∵OC 是半径, ∴CE 是半圆的切线. (2)解:设AC =2x ,∵在Rt △ACB 中,2tan 3AC B BC ==, ∴BC =3x .∴()()222313AB x x x =+=.∵OD ⊥AB , ∴∠AOD =∠A CB=90°. ∵∠A =∠A , ∴△AOD ∽△ACB . ∴AC AOAB AD=. ∵1132OA AB x ==,AD =2x +10, ∴113221013xx x =+. 解得 x =8. ∴138413OA =⨯=. 则半圆的半径为413.点睛:本题考查了切线的判定与性质,圆周角定理,相似三角形.2.如图1O e ,的直径12AB P =,是弦BC 上一动点(与点B C ,不重合)30ABC o ,∠=,过点P 作PD OP ⊥交O e 于点D .()1如图2,当//PD AB 时,求PD 的长;()2如图3,当»»DC AC=时,延长AB 至点E ,使12BE AB =,连接DE . ①求证:DE 是O e 的切线;②求PC 的长.【答案】(1)262)333①见解析,②. 【解析】分析:()1根据题意首先得出半径长,再利用锐角三角函数关系得出OP PD ,的长;()2①首先得出OBD V 是等边三角形,进而得出ODE OFB 90∠∠==o ,求出答案即可;②首先求出CF 的长,进而利用直角三角形的性质得出PF 的长,进而得出答案.详解:()1如图2,连接OD ,//OP PD PD AB ⊥Q ,,90POB ∴∠=o ,O Q e 的直径12AB =,6OB OD ∴==,在Rt POB V 中,30ABC o ∠=,3tan30623OP OB ∴=⋅=⨯=o , 在Rt POD V 中,22226(23)26PD OD OP =-=-=;()2①证明:如图3,连接OD ,交CB 于点F ,连接BD ,»»DC AC =Q ,30DBC ABC ∴∠=∠=o , 60ABD o ∴∠=,OB OD =Q , OBD ∴V 是等边三角形, OD FB ∴⊥,12BE AB =Q ,OB BE ∴=, //BF ED ∴,90ODE OFB o ∴∠=∠=,DE ∴是O e 的切线; ②由①知,OD BC ⊥,3cos30633CF FB OB ∴==⋅=⨯=o , 在Rt POD V 中,OF DF =,13(2PF DO ∴==直角三角形斜边上的中线,等于斜边的一半), 333CP CF PF ∴=-=-.点睛:此题主要考查了圆的综合以及直角三角形的性质和锐角三角函数关系,正确得出OBD V 是等边三角形是解题关键.3.矩形ABCD 中,点C (3,8),E 、F 为AB 、CD 边上的中点,如图1,点A 在原点处,点B 在y 轴正半轴上,点C 在第一象限,若点A 从原点出发,沿x 轴向右以每秒1个单位长度的速度运动,点B 随之沿y 轴下滑,并带动矩形ABCD 在平面内滑动,如图2,设运动时间表示为t 秒,当点B 到达原点时停止运动. (1)当t =0时,点F 的坐标为 ; (2)当t =4时,求OE 的长及点B 下滑的距离; (3)求运动过程中,点F 到点O 的最大距离;(4)当以点F 为圆心,FA 为半径的圆与坐标轴相切时,求t 的值.【答案】(1)F (3,4);(2)8-33)7;(4)t 的值为245或325. 【解析】试题分析:(1)先确定出DF ,进而得出点F 的坐标; (2)利用直角三角形的性质得出∠ABO =30°,即可得出结论;(3)当O 、E 、F 三点共线时,点F 到点O 的距离最大,即可得出结论; (4)分两种情况,利用相似三角形的性质建立方程求解即可.试题解析:解:(1)当t =0时.∵AB =CD =8,F 为CD 中点,∴DF =4,∴F (3,4); (2)当t =4时,OA =4.在Rt △ABO 中,AB =8,∠AOB =90°,∴∠ABO =30°,点E 是AB 的中点,OE =12AB =4,BO =43,∴点B 下滑的距离为843-.(3)当O 、E 、F 三点共线时,点F 到点O 的距离最大,∴FO=OE+EF=7.(4)在Rt △ADF 中,FD 2+AD 2=AF 2,∴AF =22FD AD +=5,①设AO =t 1时,⊙F 与x 轴相切,点A 为切点,∴FA ⊥OA ,∴∠OAB +∠FAB =90°.∵∠FAD +∠FAB =90°,∴∠BAO =∠FAD .∵∠BOA =∠D =90°,∴Rt △FAE ∽Rt △ABO ,∴AB AO FA FE =,∴1853t=,∴t 1=245,②设AO =t 2时,⊙F 与y 轴相切,B 为切点,同理可得,t 2=325. 综上所述:当以点F 为圆心,FA 为半径的圆与坐标轴相切时,t 的值为245或325. 点睛:本题是圆的综合题,主要考查了矩形的性质,直角三角形的性质,中点的意义,勾股定理,相似三角形的判定和性质,切线的性质,解(2)的关键是得出∠ABO =30°,解(3)的关键是判断出当O 、E 、F 三点共线时,点F 到点O 的距离最大,解(4)的关键是判断出Rt △FAE ∽Rt △ABD ,是一道中等难度的中考常考题.4.如图.在△ABC 中,∠C =90°,AC =BC ,AB =30cm ,点P 在AB 上,AP =10cm ,点E 从点P 出发沿线段PA 以2c m/s 的速度向点A 运动,同时点F 从点P 出发沿线段PB 以1c m/s 的速度向点B 运动,点E 到达点A 后立刻以原速度沿线段AB 向点B 运动,在点E 、F 运动过程中,以EF 为边作正方形EFGH ,使它与△ABC 在线段AB 的同侧,设点E 、F 运动的时间为t (s )(0<t <20).(1)当点H落在AC边上时,求t的值;(2)设正方形EFGH与△ABC重叠部分的面积为S.①试求S关于t的函数表达式;②以点C为圆心,12t为半径作⊙C,当⊙C与GH所在的直线相切时,求此时S的值.【答案】(1)t=2s或10s;(2)①S=22 2 9?(02)75050(210)240400?(1020)t tt t tt t t⎧<≤⎪⎪-+-<≤⎨⎪-+<<⎪⎩;②100cm2.【解析】试题分析:(1)如图1中,当0<t≤5时,由题意AE=EH=EF,即10﹣2t=3t,t=2;如图2中,当5<t<20时,AE=HE,2t﹣10=10﹣(2t﹣10)+t,t=10;(2)分四种切线讨论a、如图3中,当0<t≤2时,重叠部分是正方形EFGH,S=(3t)2=9t2.b、如图4中,当2<t≤5时,重叠部分是五边形EFGMN.c、如图5中,当5<t<10时,重叠部分是五边形EFGMN.d、如图6中,当10<t<20时,重叠部分是正方形EFGH.分别计算即可;②分两种情形分别列出方程即可解决问题.试题解析:解:(1)如图1中,当0<t≤5时,由题意得:AE=EH=EF,即10﹣2t=3t,t=2如图2中,当5<t<20时,AE=HE,2t﹣10=10﹣(2t﹣10)+t,t=10.综上所述:t=2s或10s时,点H落在AC边上.(2)①如图3中,当0<t≤2时,重叠部分是正方形EFGH,S=(3t)2=9t2如图4中,当2<t≤5时,重叠部分是五边形EFGMN,S=(3t)2﹣12(5t﹣10)2=﹣72t2+50t﹣50.如图5中,当5<t<10时,重叠部分是五边形EFGMN,S=(20﹣t)2﹣12(30﹣3t)2=﹣72t2+50t﹣50.如图6中,当10<t<20时,重叠部分是正方形EFGH,S=(20﹣t)2=t2﹣40t+400.综上所述:S=2229?(02)75050(210)240400?(1020)t tt t tt t t⎧<≤⎪⎪-+-<≤⎨⎪-+<<⎪⎩.②如图7中,当0<t≤5时,12t+3t=15,解得:t=307,此时S=100cm2,当5<t<20时,12t+20﹣t=15,解得:t=10,此时S=100.综上所述:当⊙C与GH所在的直线相切时,求此时S的值为100cm2点睛:本题考查了圆综合题、正方形的性质、等腰直角三角形的性质、切线的性质等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,注意不能漏解,属于中考压轴题.5.如图,AB是圆O的直径,射线AM⊥AB,点D在AM上,连接OD交圆O于点E,过点D作DC=DA交圆O于点C(A、C不重合),连接O C、BC、CE.(1)求证:CD是⊙O的切线;(2)若圆O的直径等于2,填空:①当AD=时,四边形OADC是正方形;②当AD=时,四边形OECB是菱形.【答案】(1)见解析;(2)①1;②3.【解析】试题分析:(1)依据SSS证明△OAD≌△OCD,从而得到∠OCD=∠OAD=90°;(2)①依据正方形的四条边都相等可知AD=OA;②依据菱形的性质得到OE=CE,则△EOC为等边三角形,则∠CEO=60°,依据平行线的性质可知∠DOA=60°,利用特殊锐角三角函数可求得AD的长.试题解析:解:∵AM⊥AB,∴∠OAD=90°.∵OA=OC,OD=OD,AD=DC,∴△OAD≌△OCD,∴∠OCD=∠OAD=90°.∴OC⊥CD,∴CD是⊙O的切线.(2)①∵当四边形OADC是正方形,∴AO=AD=1.故答案为:1.②∵四边形OECB是菱形,∴OE=CE.又∵OC=OE,∴OC=OE=CE.∴∠CEO=60°.∵CE∥AB,∴∠AOD=60°.在Rt△OAD中,∠AOD=60°,AO=1,∴AD=.故答案为:.点睛:本题主要考查的是切线的性质和判定、全等三角形的性质和判定、菱形的性质、等边三角形的性质和判定,特殊锐角三角函数值的应用,熟练掌握相关知识是解题的关键.6.解决问题:()1如图①,半径为4的Oe上,则PA的最大值和e外有一点P,且7PO=,点A在O最小值分别是______和______.()2如图②,扇形AOB的半径为4,45∠=o,P为弧AB上一点,分别在OA边找AOBV周长的最小,请在图②中确定点E、F的位置并直点E,在OB边上找一点F,使得PEFV周长的最小值;接写出PEF拓展应用()3如图③,正方形ABCD 的边长为42;E 是CD 上一点(不与D 、C 重合),CF BE ⊥于F ,P 在BE 上,且PF CF =,M 、N 分别是AB 、AC 上动点,求PMN V 周长的最小值.【答案】(1)11,3;(2)图见解析,PEF V 周长最小值为423)41042. 【解析】 【分析】()1根据圆外一点P 到这个圆上所有点的距离中,最远是和最近的点是过圆心和该点的直线与圆的交点,容易求出最大值与最小值分别为11和3;()2作点P 关于直线OA 的对称点1P ,作点P 关于直线OB 的对称点2P ,连接1P 、2P ,与OA 、OB 分别交于点E 、F ,点E 、F 即为所求,此时PEF V 周长最小,然后根据等腰直角三角形求解即可;()3类似()2题作对称点,PMN V 周长最小12PP =,然后由三角形相似和勾股定理求解.【详解】解:()1如图①,Q 圆外一点P 到这个圆上所有点的距离中,最大距离是和最小距离都在过圆心的直线OP 上,此直线与圆有两个交点,圆外一点与这两个交点的距离个分别最大距离和最小距离.PA ∴的最大值227411PA PO OA ==+=+=,PA 的最小值11743PA PO OA ==-=-=, 故答案为11和3;()2如图②,以O 为圆心,OA 为半径,画弧AB 和弧BD ,作点P 关于直线OA 的对称点1P ,作点P 关于直线OB 的对称点2P ,连接1P 、2P ,与OA 、OB 分别交于点E 、F ,点E 、F 即为所求.连接1OP 、2OP 、OP 、PE 、PF ,由对称知识可知,1AOP AOP ∠∠=,2BOP BOP ∠∠=,1PE PE =,2PF P F = ∴1245AOP BOP AOP BOP AOB ∠∠∠∠∠+=+==o , 12454590POP o o o ∠=+=, 12POP ∴V 为等腰直角三角形,121PP ∴==PEF V 周长1212PE PF EF PE P F EF PP =++=++=,此时PEF V 周长最小.故答案为;()3作点P 关于直线AB 的对称1P ,连接1AP 、1BP ,作点P 关于直线AC 的对称2P ,连接1P 、2P ,与AB 、AC 分别交于点M 、N .如图③ 由对称知识可知,1PM PM =,2PN P N =,PMN V 周长1212PM PN MN PM P N MN PP =++=++=,此时,PMN V 周长最小12PP =.由对称性可知,1BAP BAP ∠∠=,2EAP EAP ∠∠=,12APAP AP ==, ∴1245BAP EAP BAP EAP BAC o∠∠∠∠∠+=+== 12454590P AP ∠=+=o o o ,12P AP V ∴为等腰直角三角形,PMN ∴V 周长最小值12PP =,当AP 最短时,周长最小. 连接DF .CF BE Q ⊥,且PF CF =,45PCF ∠∴=o ,PCCF=45ACD ∠=o Q ,PCF ACD ∠∠∴=,PCA FCD ∠∠=,又ACCD=, ∴在APC V 与DFC V 中,AC PCCD CF=,PCA FCD ∠∠=C AP ∴V ∽DFC V ,AP AC DF CD∴== ∴AP =90BFC ∠=o Q ,取AB 中点O .∴点F 在以BC 为直径的圆上运动,当D 、F 、O 三点在同一直线上时,DF 最短.DF DO FO OC =-===AP ∴最小值为AP = ∴此时,PMN V 周长最小值12PP ====.【点睛】本题考查圆以及正方形的性质,运用圆的对称性和正方形的对称性是解答本题的关键.7.已知,ABC ∆内接于O e ,点P 是弧AB 的中点,连接PA 、PB ; (1)如图1,若AC BC =,求证:AB PC ⊥; (2)如图2,若PA 平分CPM ∠,求证:AB AC =; (3)在(2)的条件下,若24sin 25BPC ∠=,8AC =,求AP 的值.【答案】(1)见解析;(2)见解析5 【解析】 【分析】(1)由点P 是弧AB 的中点,可得出AP=BP , 通过证明APC BPC ∆≅∆ ,ACE BCE ∆≅∆可得出AEC BEC ∠=∠进而证明AB ⊥ PC.(2)由PA 是∠CPM 的角平分线,得到∠MPA=∠APC, 等量代换得到∠ABC=∠ACB, 根据等腰三角形的判定定理即可证得AB=AC.(3)过A 点作AD ⊥BC,有三线合一可知AD 平分BC,点O 在AD 上,连结OB ,则∠BOD =∠BAC ,根据圆周角定理可知∠BOD=∠BAC, ∠BPC=∠BAC ,由∠BOD=∠BPC 可得sin sin BDBOD BPC OB∠=∠=,设OB=25x ,根据勾股定理可算出OB 、BD 、OD 、AD 的长,再次利用勾股定理即可求得AP 的值. 【详解】解:(1)∵点P 是弧AB 的中点,如图1, ∴AP =BP , 在△APC 和△BPC 中AP BP AC BC PC PC =⎧⎪=⎨⎪=⎩, ∴△APC ≌△BPC (SSS ), ∴∠ACP =∠BCP , 在△ACE 和△BCE 中AC BC ACP BCP CE CE =⎧⎪∠=∠⎨⎪=⎩, ∴△ACE ≌△BCE (SAS ), ∴∠AEC =∠BEC , ∵∠AEC +∠BEC =180°, ∴∠AEC =90°, ∴AB ⊥PC ;(2)∵PA 平分∠CPM , ∴∠MPA =∠APC ,∵∠APC +∠BPC +∠ACB =180°,∠MPA +∠APC +∠BPC =180°, ∴∠ACB =∠MPA =∠APC , ∵∠APC =∠ABC , ∴∠ABC =∠ACB , ∴AB =AC ;(3)过A 点作AD ⊥BC 交BC 于D ,连结OP 交AB 于E ,如图2,由(2)得出AB =AC , ∴AD 平分BC , ∴点O 在AD 上,连结OB ,则∠BOD =∠BAC ,∵∠BPC =∠BAC , ∴sin sin BOD BPC ∠=∠=2425BDOB=, 设OB =25x ,则BD =24x , ∴OD =22OB BD -=7x ,在Rt ABD V 中,AD =25x +7x =32x ,BD =24x , ∴AB =22AD BD +=40x ,∵AC =8, ∴AB =40x =8, 解得:x =0.2,∴OB =5,BD =4.8,OD =1.4,AD =6.4, ∵点P 是¶AB 的中点, ∴OP 垂直平分AB , ∴AE =12AB =4,∠AEP =∠AEO =90°, 在Rt AEO ∆中,OE =223AO AE -=,∴PE =OP ﹣OE =5﹣3=2,在Rt APE ∆中,AP =22222425PE AE +=+=. 【点睛】本题是一道有关圆的综合题,考查了圆周角定理、勾股定理、等腰三角形的判定定理和三线合一,是初中数学的重点和难点,一般以压轴题形出现,难度较大.8.已知P 是O e 的直径BA 延长线上的一个动点,∠P 的另一边交O e 于点C 、D ,两点位于AB 的上方,AB =6,OP=m ,1sin 3P =,如图所示.另一个半径为6的1O e 经过点C 、D ,圆心距1OO n =. (1)当m=6时,求线段CD 的长;(2)设圆心O 1在直线AB 上方,试用n 的代数式表示m ;(3)△POO 1在点P 的运动过程中,是否能成为以OO 1为腰的等腰三角形,如果能,试求出此时n 的值;如果不能,请说明理由.【答案】(1)CD=25;(2)m=23812n n- ;(3) n 的值为955或9155 【解析】分析:(1)过点O 作OH ⊥CD ,垂足为点H ,连接OC .解Rt △POH ,得到OH 的长.由勾股定理得CH 的长,再由垂径定理即可得到结论; (2)解Rt △POH ,得到Rt 3mOH OCH V =.在和Rt △1O CH 中,由勾股定理即可得到结论;(3)△1POO 成为等腰三角形可分以下几种情况讨论:① 当圆心1O 、O 在弦CD 异侧时,分1OP OO =和11O P OO =.②当圆心1O 、O 在弦CD 同侧时,同理可得结论. 详解:(1)过点O 作OH ⊥CD ,垂足为点H ,连接OC .在Rt △1sin 63POH P PO =Q 中,=,,∴2OH =. ∵AB =6,∴3OC =. 由勾股定理得: 5CH = ∵OH ⊥DC ,∴225CD CH ==.(2)在Rt △1sin 3POH P PO m Q 中,=,=,∴3m OH =. 在Rt △OCH 中,2293m CH ⎛⎫- ⎪⎝⎭=. 在Rt △1O CH 中,22363m CH n ⎛⎫-- ⎪⎝⎭=. 可得: 2236933m m n ⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭=,解得23812n m n -:=.(3)△1POO 成为等腰三角形可分以下几种情况: ① 当圆心1O 、O 在弦CD 异侧时i )1OP OO =,即m n =,由23812n n n-=,解得9n :=.即圆心距等于O e 、1O e 的半径的和,就有O e 、1O e 外切不合题意舍去.ii )11O P OO =,由22233m m n m -+-()() n =, 解得:23m n =,即23n 23812n n-=,解得9155n :=. ②当圆心1O 、O 在弦CD 同侧时,同理可得: 28132n m n-=.∵1POO ∠是钝角,∴只能是m n =,即28132nn n-=,解得955n :=. 综上所述:n 的值为955或9155. 点睛:本题是圆的综合题.考查了圆的有关性质和两圆的位置关系以及解直径三角形.解答(3)的关键是要分类讨论.9.定义:数学活动课上,李老师给出如下定义:如果一个三角形有一边上的中线等于这条边的一半,那么称三角形为“智慧三角形”.理解: ⑴如图,已知是⊙上两点,请在圆上找出满足条件的点,使为“智慧三角形”(画出点的位置,保留作图痕迹);⑵如图,在正方形中,是的中点,是上一点,且,试判断是否为“智慧三角形”,并说明理由;运用:⑶如图,在平面直角坐标系中,⊙的半径为,点是直线上的一点,若在⊙上存在一点,使得为“智慧三角形”,当其面积取得最小值时,直接写出此时点的坐标.【答案】(1)详见解析;(2)详见解析;(3)P 的坐标(223-,13),(223,13).【解析】试题分析:(1)连结AO并且延长交圆于C1,连结BO并且延长交圆于C2,即可求解;(2)设正方形的边长为4a,表示出DF=CF以及EC、BE的长,然后根据勾股定理列式表示出AF2、EF2、AE2,再根据勾股定理逆定理判定△AEF是直角三角形,由直角三角形的性质可得△AEF为“智慧三角形”;(3)根据“智慧三角形”的定义可得△OPQ为直角三角形,根据题意可得一条直角边为1,当斜边最短时,另一条直角边最短,则面积取得最小值,由垂线段最短可得斜边最短为3,根据勾股定理可求另一条直角边,再根据三角形面积可求斜边的高,即点P的横坐标,再根据勾股定理可求点P的纵坐标,从而求解.试题解析:(1)如图1所示:(2)△AEF是否为“智慧三角形”,理由如下:设正方形的边长为4a,∵E是DC的中点,∴DE=CE=2a,∵BC:FC=4:1,∴FC=a,BF=4a﹣a=3a,在Rt△ADE中,AE2=(4a)2+(2a)2=20a2,在Rt△ECF中,EF2=(2a)2+a2=5a2,在Rt△ABF中,AF2=(4a)2+(3a)2=25a2,∴AE2+EF2=AF2,∴△AEF是直角三角形,∵斜边AF上的中线等于AF的一半,∴△AEF为“智慧三角形”;(3)如图3所示:由“智慧三角形”的定义可得△OPQ为直角三角形,根据题意可得一条直角边为1,当斜边最短时,另一条直角边最短,则面积取得最小值,由垂线段最短可得斜边最短为3,由勾股定理可得PQ=,PM=1×2÷3=,由勾股定理可求得OM=,故点P的坐标(﹣,),(,).考点:圆的综合题.10.如图,四边形为菱形,且,以为直径作,与交于点.请仅用无刻度的直尺按下列要求画图.(保留作图痕迹)(1)在如图中,过点作边上的高.(2)在如图中,过点作的切线,与交于点.【答案】(1)如图1所示.(答案不唯一),见解析;(2)如图2所示.(答案不唯一),见解析.【解析】【分析】(1)连接AC交圆于一点F,连接PF交AB于点E,连接CE即为所求.(2)连接OF交BC于Q,连接PQ即为所求.【详解】(1)如图1所示.(答案不唯一)(2)如图2所示.(答案不唯一)【点睛】本题考查作图-复杂作图,菱形和圆的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.11.如图,△ABC中,AC=BC=10,cosC=35,点P是AC边上一动点(不与点A、C重合),以PA长为半径的⊙P与边AB的另一个交点为D,过点D作DE⊥CB于点E.(1)当⊙P与边BC相切时,求⊙P的半径.(2)连接BP交DE于点F,设AP的长为x,PF的长为y,求y关于x的函数解析式,并直接写出x的取值范围.(3)在(2)的条件下,当以PE长为直径的⊙Q与⊙P相交于AC边上的点G时,求相交所得的公共弦的长.【答案】(1)409R=;(2)25880320xy x xx=-++(3)505-【解析】【分析】(1)设⊙P与边BC相切的切点为H,圆的半径为R,连接HP,则HP⊥BC,cosC=35,则sinC=45,sinC=HPCP=10RR-=45,即可求解;(2)首先证明PD∥BE,则EB BFPD PF=,即:2024588x yxxxy-+--=,即可求解;(3)证明四边形PDBE为平行四边形,则AG=EP=BD,即:AB=DB+AD=AG+AD=45,即可求解.【详解】(1)设⊙P与边BC相切的切点为H,圆的半径为R,连接HP,则HP⊥BC,cosC=35,则sinC=45,sinC=HPCP=10RR-=45,解得:R=409;(2)在△ABC中,AC=BC=10,cosC=35,设AP=PD=x,∠A=∠ABC=β,过点B作BH⊥AC,则BH=ACsinC=8,同理可得:CH=6,HA=4,AB=5tan∠CAB=2,BP228+(4)x-2880x x-+DA 25x,则BD=525x,如下图所示,PA =PD ,∴∠PAD =∠CAB =∠CBA =β,tanβ=2,则cosβ=5,sinβ=5, EB =BDcosβ=(45﹣25x )×5=4﹣25x , ∴PD ∥BE , ∴EB BF PD PF =,即:2024588x y x xx y -+--=, 整理得:y =25x x 8x 803x 20-++; (3)以EP 为直径作圆Q 如下图所示,两个圆交于点G ,则PG =PQ ,即两个圆的半径相等,则两圆另外一个交点为D , GD 为相交所得的公共弦,∵点Q 是弧GD 的中点,∴DG ⊥EP ,∵AG 是圆P 的直径,∴∠GDA =90°,∴EP ∥BD ,由(2)知,PD ∥BC ,∴四边形PDBE 为平行四边形,∴AG =EP =BD ,∴AB =DB+AD =AG+AD =5设圆的半径为r ,在△ADG 中,AD =2rcosβ=5,DG =5,AG =2r , 5+2r =45,解得:2r =51+, 则:DG =5=50﹣105, 相交所得的公共弦的长为50﹣105.【点睛】本题考查的是圆知识的综合运用,涉及到解直角三角形、勾股定理等知识,其中(3),要关键是根据题意正确画图,此题用大量的解直角三角形的内容,综合难度很大.12.如图,四边形ABCD 是⊙O 的内接四边形,AC 为直径,»»BD AD =,DE ⊥BC ,垂足为E .(1)判断直线ED 与⊙O 的位置关系,并说明理由;(2)若CE =1,AC =4,求阴影部分的面积.【答案】(1)ED 与O e 相切.理由见解析;(2)2=33S π-阴影 【解析】【分析】 (1)连结OD ,如图,根据圆周角定理,由»»BD AD =得到∠BAD =∠ACD ,再根据圆内接四边形的性质得∠DCE =∠BAD ,所以∠ACD =∠DCE ;利用内错角相等证明OD ∥BC ,而DE ⊥BC ,则OD ⊥DE ,于是根据切线的判定定理可得DE 为⊙O 的切线;(2)作OH ⊥BC 于H ,易得四边形ODEH 为矩形,所以OD =EH =2,则CH =HE ﹣CE =1,于是有∠HOC =30°,得到∠COD =60°,然后根据扇形面积公式、等边三角形的面积公式和阴影部分的面积=S 扇形OCD ﹣S △OCD 进行计算即可.【详解】(1)直线ED 与⊙O 相切.理由如下:连结OD ,如图,∵»»BD AD =,∴∠BAD =∠ACD .∵∠DCE =∠BAD ,∴∠ACD =∠DCE .∵OC =OD ,∴∠OCD =∠ODC ,而∠OCD =∠DCE ,∴∠DCE =∠ODC ,∴OD ∥BC .∵DE ⊥BC ,∴OD ⊥DE ,∴DE 为⊙O 的切线;(2)作OH ⊥BC 于H ,则四边形ODEH 为矩形,∴OD =EH .∵CE =1,AC =4,∴OC =OD =2,∴CH =HE ﹣CE =2﹣1=1.在Rt △OHC 中,∵OC =2,CH =1,∠OHC =90°,∠HOC =30°,∴∠COD =60°,∴阴影部分的面积=S 扇形OCD ﹣S △OCD26023360π⋅⋅=-•22 23=π3-.【点睛】本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.也考查了扇形面积的计算.13.如图①,已知Rt ABC ∆中,90ACB ∠=o ,8AC =,10AB =,点D 是AC 边上一点(不与C 重合),以AD 为直径作O e ,过C 作CE 切O e 于E ,交AB 于F .(1)若O e 的半径为2,求线段CE 的长;(2)若AF BF =,求O e 的半径;(3)如图②,若CE CB =,点B 关于AC 的对称点为点G ,试求G 、E 两点之间的距离.【答案】(1)42CE =(2)O e 的半径为3;(3)G 、E 两点之间的距离为9.6.【解析】【分析】(1)根据切线的性质得出∠OEC=90°,然后根据勾股定理即可求得;(2)由勾股定理求得BC ,然后通过证得△OEC ∽△BCA ,得到OE BC =OC BA ,即r 8-r =610,解得即可; (3)证得D 和M 重合,E 和F 重合后,通过证得△GBE ∽△ABC ,GB GE AB AC=,即12108GE =,解得即可. 【详解】(1)如图,连结OE .∵CE 切O e 于E ,∴90OEC ∠=︒.∵8AC =,O e 半径为2,∴6OC =,2OE =.∴2242CE OC OE =-=;(2)设O e 半径为r .在Rt ABC ∆中,90ACB ∠=︒,10AB =,8AC =, ∴226BC AB AC -=. ∵AF BF =, ∴AF CF BF ==. ∴ACF CAF ∠=∠. ∵CE 切O e 于E ,∴90OEC ∠=︒.∴OEC ACB ∠=∠,∴OEC BCA ∆~∆.∴OE OC BC BA =, ∴8610r r -=, 解得3r =.∴O e 的半径为3;(3)连结EG 、OE ,设EG 交AC 于点M ,由对称性可知,CB CG =.又CE CB =,∴CE CG =.∴EGC GEC ∠=∠.∵CE 切O e 于E ,∴90GEC OEG ∠+∠=︒.又90EGC GMC ∠+∠=︒,∴OEG GMC ∠=∠.又GMC OME ∠=∠,∴OEG OME ∠=∠.∴OE OM =.∴点M 与点D 重合.∴G 、D 、E 三点在同一条直线上.连结AE 、BE ,∵AD 是直径,∴90AED ∠=︒,即90AEG ∠=︒.又CE CB CG ==,∴90BEG ∠=︒.∴180AEB AEG BEG ∠=∠+∠=︒,∴A 、E 、B 三点在同一条直线上.∴E 、F 两点重合.∵90GEB ACB ∠=∠=︒,B B ∠=∠,∴GBE ABC ∆~∆. ∴GB GE AB AC =,即12108GE =. ∴9.6GE =.故G 、E 两点之间的距离为9.6.【点睛】本题考查了切线的判定,轴的性质,勾股定理的应用以及三角形相似的判定和性质,证得G 、D 、E 三点共线以及A 、E 、B 三点在同一条直线上是解题的关键.14.如图,已知AB 是⊙O 的直径,点C 、D 在⊙O 上,∠D =60°且AB =6,过O 点作OE ⊥AC ,垂足为E .(1)求OE 的长;(2)若OE的延长线交⊙O于点F,求弦AF、AC和弧CF围成的图形(阴影部分)的面积.(结果保留π)【答案】(1)OE的长为32;(2)阴影部分的面积为3 2π【解析】(1)OE=32(2)S=32π15.结果如此巧合!下面是小颖对一道题目的解答.题目:如图,Rt△ABC的内切圆与斜边AB相切于点D,AD=3,BD=4,求△ABC的面积.解:设△ABC的内切圆分别与AC、BC相切于点E、F,CE的长为x.根据切线长定理,得AE=AD=3,BF=BD=4,CF=CE=x.根据勾股定理,得(x+3)2+(x+4)2=(3+4)2.整理,得x2+7x=12.所以S△ABC=12 AC•BC=12(x+3)(x+4)=12(x2+7x+12)=12×(12+12)=12.小颖发现12恰好就是3×4,即△ABC的面积等于AD与BD的积.这仅仅是巧合吗?请你帮她完成下面的探索.已知:△ABC的内切圆与AB相切于点D,AD=m,BD=n.可以一般化吗?(1)若∠C=90°,求证:△ABC的面积等于mn.倒过来思考呢?(2)若AC•BC=2mn,求证∠C=90°.改变一下条件……(3)若∠C=60°,用m、n表示△ABC的面积.【答案】(1)证明见解析;(2)证明见解析;(3)S△ABC=3mn;【解析】【分析】(1)设△ABC的内切圆分别与AC、BC相切于点E、F,CE的长为x,仿照例题利用勾股定理得(x+m)2+(x+n)2=(m+n)2,再根据S△ABC=AC×BC,即可证明S△ABC=mn.(2)由AC•BC=2mn,得x2+(m+n)x=mn,因此AC2+BC2=(x+m)2+(x+n)2=AB2,利用勾股定理逆定理可得∠C=90°.(3)过点A作AG⊥BC于点G,在Rt△ACG中,根据条件求出AG、CG,又根据BG=BC-CG得到BG .在Rt△ABG中,根据勾股定理可得x2+(m+n)x=3mn,由此S△ABC=BC•AG=mn.【详解】设△ABC的内切圆分别与AC、BC相切于点E、F,CE的长为x,根据切线长定理,得:AE=AD=m、BF=BD=n、CF=CE=x,(1)如图1,在Rt△ABC中,根据勾股定理,得:(x+m)2+(x+n)2=(m+n)2,整理,得:x2+(m+n)x=mn,所以S△ABC=AC•BC=(x+m)(x+n)=[x2+(m+n)x+mn]=(mn+mn)=mn;(2)由AC•BC=2mn,得:(x+m)(x+n)=2mn,整理,得:x2+(m+n)x=mn,∴AC2+BC2=(x+m)2+(x+n)2=2[x2+(m+n)x]+m2+n2=2mn+m2+n2=(m+n)2=AB2,根据勾股定理逆定理可得∠C=90°;(3)如图2,过点A作AG⊥BC于点G,在Rt△ACG中,AG=AC•sin60°=(x+m),CG=AC•co s60°=(x+m),∴BG=BC﹣CG=(x+n)﹣(x+m),在Rt△ABG中,根据勾股定理可得:[(x+m)]2+[(x+n)﹣(x+m)]2=(m+n)2,整理,得:x2+(m+n)x=3mn,∴S△ABC=BC•AG=×(x+n)•(x+m)=3x2+(m+n)x+mn]=3(3mn+mn)3.【点睛】本题考查了圆中的计算问题、与圆有关的位置关系以及直角三角形,注意掌握方程思想与数形结合思想的应用.。

2021年广东省中考数学总复习:圆的综合题

2021年广东省中考数学总复习:圆的综合题
第6题图
题型十二 圆的综合题
证明:如解图,过点O作OF⊥AB于点F. ∵∠AOE=∠BAE,∠AOE=∠BOC, ∴∠BAE=∠BOC. ∵AE⊥BE,∠C=90°, ∴∠ABO=∠CBO. ∴OB平分∠ABC. ∵OF⊥AB,OC⊥BC, ∴OF=OC. ∴OF是⊙O的半径. ∵OF⊥AB,∴AB是⊙O的切线.
题型十二 圆的综合题
针对演练
类型一 与全等结合
1. (2019遵义)如图,AB是⊙O的直径,弦AC与BD交于点E,且AC=BD,连接AD,
BC.
(1)求证:△ADB≌△BCA;
(2)若OD⊥AC,AB=4,求弦AC的长;
(3)在(2)的条件下,延长AB至点P,使BP=2,
连接PC.求证:PC是⊙O的切线.
( 2 2+x)2-x2=42,解得x= 2 ,∴⊙O的半径为 2 .
题型十二 圆的综合题
2. 如图,以AB为直径作⊙O,过点A作⊙O的切线AC,连接BC,交⊙O于点D,点E
3
是BC边的中点,连接AE.若AB=6,cosB= 5 ,求DE的长.
第2题图
题型十二 圆的综合题
解:如解图,连接AD,
∵AB是⊙O的直径,
5
第2题解图
题型十二 圆的综合题
类型二 证线段相等[2019.24(1),2017、2014.24(2)]
满分技法 在圆中证明线段相等常有以下几种方法: 1. 若所证两线段不平行. (1)利用等腰或等边三角形等角对等边来证明; (2)利用等腰三角形三线合一或直角三角形斜边上的中线等于斜边的一半来证明; (3)利用全等三角形证明; (4)利用同圆半径,直径相等来证明; (5)利用等弧所对的弦相等进行证明. 2. 若所证两线段平行,则可以考虑特殊四边形对边相等来证明.

2020-2021中考数学圆的综合综合题及答案解析

2020-2021中考数学圆的综合综合题及答案解析

2020-2021中考数学圆的综合综合题及答案解析一、圆的综合1.如图,⊙O是△ABC的外接圆,点E为△ABC内切圆的圆心,连接AE的延长线交BC于点F,交⊙O于点D;连接BD,过点D作直线DM,使∠BDM=∠DAC.(1)求证:直线DM是⊙O的切线;(2)若DF=2,且AF=4,求BD和DE的长.【答案】(1)证明见解析(2)23【解析】【分析】(1)根据垂径定理的推论即可得到OD⊥BC,再根据∠BDM=∠DBC,即可判定BC∥DM,进而得到OD⊥DM,据此可得直线DM是⊙O的切线;(2)根据三角形内心的定义以及圆周角定理,得到∠BED=∠EBD,即可得出DB=DE,再判定△DBF∽△DAB,即可得到DB2=DF•DA,据此解答即可.【详解】(1)如图所示,连接OD.∵点E是△ABC的内心,∴∠BAD=∠CAD,∴¶¶BD CD=,∴OD⊥BC.又∵∠BDM=∠DAC,∠DAC=∠DBC,∴∠BDM=∠DBC,∴BC∥DM,∴OD⊥DM.又∵OD为⊙O半径,∴直线DM是⊙O的切线.(2)连接BE.∵E为内心,∴∠ABE=∠CBE.∵∠BAD=∠CAD,∠DBC=∠CAD,∴∠BAD=∠DBC,∴∠BAE+∠ABE=∠CBE+∠DBC,即∠BED=∠DBE,∴BD=DE.又∵∠BDF=∠ADB(公共角),∴△DBF∽△DAB,∴DF DBDB DA=,即DB2=DF•DA.∵DF=2,AF=4,∴DA=DF+AF=6,∴DB2=DF•DA=12,∴DB=DE=23.【点睛】本题主要考查了三角形的内心与外心,圆周角定理以及垂径定理的综合应用,解题时注意:平分弦所对一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧;三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.2.在平面直角坐标中,边长为2的正方形OABC的两顶点A、C分别在y轴、x轴的正半轴上,点O在原点.现将正方形OABC绕O点顺时针旋转,当A点一次落在直线y x=上时停止旋转,旋转过程中,AB边交直线y x=于点M,BC边交x轴于点N(如图).(1)求边OA在旋转过程中所扫过的面积;(2)旋转过程中,当MN和AC平行时,求正方形OABC旋转的度数;(3)设MBN∆的周长为p,在旋转正方形OABC的过程中,p值是否有变化?请证明你的结论.【答案】(1)π/2(2)22.5°(3)周长不会变化,证明见解析【解析】试题分析:(1)根据扇形的面积公式来求得边OA在旋转过程中所扫过的面积;(2)解决本题需利用全等,根据正方形一个内角的度数求出∠AOM的度数;(3)利用全等把△MBN的各边整理到成与正方形的边长有关的式子.试题解析:(1)∵A点第一次落在直线y=x上时停止旋转,直线y=x与y轴的夹角是45°,∴OA旋转了45°.∴OA在旋转过程中所扫过的面积为24523602ππ⨯=.(2)∵MN∥AC,∴∠BMN=∠BAC=45°,∠BNM=∠BCA=45°.∴∠BMN=∠BNM.∴BM=BN.又∵BA=BC,∴AM=CN.又∵OA=OC,∠OAM=∠OCN,∴△OAM≌△OCN.∴∠AOM=∠CON=12(∠AOC-∠MON)=12(90°-45°)=22.5°.∴旋转过程中,当MN和AC平行时,正方形OABC旋转的度数为45°-22.5°=22.5°.(3)在旋转正方形OABC的过程中,p值无变化.证明:延长BA交y轴于E点,则∠AOE=45°-∠AOM,∠CON=90°-45°-∠AOM=45°-∠AOM,∴∠AOE=∠CON .又∵OA=OC ,∠OAE=180°-90°=90°=∠OCN .∴△OAE ≌△OCN .∴OE=ON ,AE=CN .又∵∠MOE=∠MON=45°,OM=OM ,∴△OME ≌△OMN .∴MN=ME=AM+AE .∴MN=AM+CN ,∴p=MN+BN+BM=AM+CN+BN+BM=AB+BC=4.∴在旋转正方形OABC 的过程中,p 值无变化.考点:旋转的性质.3.如图,AB 为⊙O 的直径,AC 为⊙O 的弦,AD 平分∠BAC ,交⊙O 于点D ,DE ⊥AC ,交AC 的延长线于点E .(1)判断直线DE 与⊙O 的位置关系,并说明理由;(2)若AE =8,⊙O 的半径为5,求DE 的长.【答案】(1)直线DE 与⊙O 相切(2)4【解析】试题分析:(1)连接OD ,∵AD 平分∠BAC ,∴EAD OAD ∠∠=,∵OA OD =,∴ODA OAD ∠∠=,∴ODA EAD ∠∠=,∴EA ∥OD ,∵DE ⊥EA ,∴DE ⊥OD ,又∵点D 在⊙O 上,∴直线DE 与⊙O 相切(2)如图1,作DF ⊥AB ,垂足为F ,∴DFA DEA 90∠∠︒==,∵EAD FAD ∠∠=,AD AD =,∴△EAD ≌△FAD ,∴AF AE 8==,DF DE =,∵OA OD 5==,∴OF 3=,在Rt △DOF 中,22DF 4OD OF -==,∴AF AE 8== 考点:切线的证明,弦心距和半径、弦长的关系点评:本题难度不大,第一小题通过内错角相等相等证明两直线平行,再由两直线平行推出同旁内角相等.第二小题通过求出两个三角形全等,从而推出对应边相等,接着用弦心距和弦长、半径的计算公式,求出半弦长.4.如图,已知△ABC内接于⊙O,AB是⊙O的直径,点F在⊙O上,且点C是的中点,过点C作⊙O的切线交AB的延长线于点D,交AF的延长线于点E.(1)求证:AE⊥DE;(2)若∠BAF=60°,AF=4,求CE的长.【答案】(1)证明见解析;(2)【解析】试题分析:(1)首先连接OC,由OC=OA,,易证得OC∥AE,又由DE切⊙O于点C,易证得AE⊥DE;(2)由AB是⊙O的直径,可得△ABC是直角三角形,易得△AEC为直角三角形,根据AE=3求得AC的长,然后连接OF,可得△OAF为等边三角形,知AF=OA=AB,在△ACB 中,利用已知条件求得答案.试题解析:(1)证明:连接OC,∵OC=OA,∴∠BAC=∠OCA,∵∴∠BAC=∠EAC,∴∠EAC=∠OCA,∴OC∥AE,∵DE切⊙O于点C,∴OC⊥DE,∴AE⊥DE;(2)解:∵AB是⊙O的直径,∴△ABC是直角三角形,∵∠CBA=60°,∴∠BAC=∠EAC=30°,∵△AEC为直角三角形,AE=3,∴AC=2,连接OF,∵OF=OA,∠OAF=∠BAC+∠EAC=60°,∴△OAF为等边三角形,∴AF=OA=AB,在Rt△ACB中,AC=2,tan∠CBA=,∴BC=2,∴AB=4,∴AF=2.考点:切线的性质.5.如图,已知在△ABC中,AB=15,AC=20,tanA=12,点P在AB边上,⊙P的半径为定长.当点P与点B重合时,⊙P恰好与AC边相切;当点P与点B不重合时,⊙P与AC边相交于点M和点N.(1)求⊙P的半径;(2)当AP=5△APM与△PCN是否相似,并说明理由.【答案】(1)半径为52)相似,理由见解析.【解析】【分析】(1)如图,作BD⊥AC,垂足为点D,⊙P与边AC相切,则BD就是⊙P的半径,利用解直角三角形得出BD与AD的关系,再利用勾股定理可求得BD的长;(2)如图,过点P作PH⊥AC于点H,作BD⊥AC,垂足为点D,根据垂径定理得出MN=2MH,PM=PN,再利用勾股定理求出PH、AH、MH、MN的长,从而求出AM、NC的长,然后求出AMMP、PNNC的值,得出AMMP=PNNC,利用两边对应成比例且夹角相等的两三角形相似即可证明.【详解】(1)如图,作BD⊥AC,垂足为点D,∵⊙P 与边AC 相切,∴BD 就是⊙P 的半径,在Rt △ABD 中,tanA=1BD 2AD =, 设BD=x ,则AD=2x ,∴x 2+(2x)2=152,解得:5∴半径为5(2)相似,理由见解析,如图,过点P 作PH ⊥AC 于点H ,作BD ⊥AC ,垂足为点D ,∴PH 垂直平分MN ,∴PM=PN ,在Rt △AHP 中,tanA=12PH AH =, 设PH=y ,AH=2y ,y 2+(2y )2=(52解得:y=6(取正数),∴PH=6,AH=12,在Rt △MPH 中, ()22356-,∴MN=2MH=6,∴AM=AH-MH=12-3=9,NC=AC-MN-AM=20-6-9=5, ∴3535AM MP ==,35PN NC =, ∴AM MP =PN NC, 又∵PM=PN ,∴∠PMN=∠PNM ,∴∠AMP=∠PNC ,∴△AMP ∽△PNC.【点睛】本题考查了解直角三角形、垂径定理、相似三角形的判定与性质等,综合性较强,有一定的难度,正确添加辅助线、灵活应用相关的性质与定理是解题的关键.6.如图,AB是⊙O的直径,点C,D是半圆O的三等分点,过点C作⊙O的切线交AD的延长线于点E,过点D作DF⊥AB于点F,交⊙O于点H,连接DC,AC.(1)求证:∠AEC=90°;(2)试判断以点A,O,C,D为顶点的四边形的形状,并说明理由;(3)若DC=2,求DH的长.【答案】(1)证明见解析;(2)四边形AOCD为菱形;(3)DH=2.【解析】试题分析:(1)连接OC,根据EC与⊙O切点C,则∠OCE=90°,由题意得,∠DAC=∠CAB,即可证明AE∥OC,则∠AEC+∠OCE=180°,从而得出∠AEC=90°;(2)四边形AOCD为菱形.由(1)得,则∠DCA=∠CAB可证明四边形AOCD是平行四边形,再由OA=OC,即可证明平行四边形AOCD是菱形(一组邻边相等的平行四边形是菱形);(3)连接OD.根据四边形AOCD为菱形,得△OAD是等边三角形,则∠AOD=60°,再由DH⊥AB于点F,AB为直径,在Rt△OFD中,根据sin∠AOD=,求得DH的长.试题解析:(1)连接OC,∵EC与⊙O切点C,∴OC⊥EC,∴∠OCE=90°,∵点CD是半圆O的三等分点,∴,∴∠DAC=∠CAB,∵OA=OC,∴∠CAB=∠OCA,∴∠DAC=∠OCA,∴AE∥OC(内错角相等,两直线平行)∴∠AEC+∠OCE=180°,∴∠AEC=90°;(2)四边形AOCD为菱形.理由是:∵,∴∠DCA=∠CAB,∴CD∥OA,又∵AE∥OC,∴四边形AOCD是平行四边形,∵OA=OC,∴平行四边形AOCD是菱形(一组邻边相等的平行四边形是菱形);(3)连接OD.∵四边形AOCD为菱形,∴OA=AD=DC=2,∵OA=OD,∴OA=OD=AD=2,∴△OAD 是等边三角形,∴∠AOD=60°,∵DH ⊥AB 于点F ,AB 为直径,∴DH=2DF ,在Rt △OFD 中,sin ∠AOD=, ∴DF=ODsin ∠AOD=2sin60°=,∴DH=2DF=2. 考点:1.切线的性质2.等边三角形的判定与性质3.菱形的判定与性质4.解直角三角形.7.如图,△ABC 内接于⊙O ,弦AD ⊥BC,垂足为H ,连接OB .(1)如图1,求证:∠DAC=∠ABO;(2)如图2,在弧AC 上取点F,使∠CAF=∠BAD,在弧AB 取点G ,使AG ∥OB ,若∠BAC=600, 求证:GF=GD;(3)如图3,在(2)的条件下,AF 、BC 的延长线相交于点E,若AF :FE=1:9,求sin ∠ADG 的值。

2021年九年级数学中考复习专题:圆的综合(考查切线证明、长度计算等)(三)

2021年九年级数学中考复习专题:圆的综合(考查切线证明、长度计算等)(三)

中考复习专题:圆的综合(考察切线证明、长度计算等)1.如图所示,AB是⊙O的直径,∠B=30°,弦BC=6,∠ACB的平分线交⊙O于D,连AD.(1)求直径AB的长.(2)求阴影部分的面积(结果保留π).2.如图,点D在⊙O的直径AB的延长线上,CD切⊙O于点C,AE⊥CD于点E (1)求证:AC平分∠DAE;(2)若AB=6,BD=2,求CE的长.3.如图,⊙O的直径AB与弦CD相交于点E,且DE=CE,⊙O的切线BF与弦AD的延长线交于点F.(1)求证:CD∥BF;(2)若⊙O的半径为6,∠A=35°,求的长.4.如图,在△ABC中,∠ACB=90°,O是边AC上一点,以O为圆心,以OA为半径的圆分别交AB、AC于点E、D,在BC的延长线上取点F,使得BF=EF.(1)判断直线EF与⊙O的位置关系,并说明理由;(2)若∠A=30°,求证:DG=DA;(3)若∠A=30°,且图中阴影部分的面积等于2,求⊙O的半径的长.5.如图所示,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=BD,连接AC,过点D作DE⊥AC于E.(1)求证:AB=AC;(2)求证:DE为⊙O的切线.6.如图,已知⊙O的直径AB=10,弦AC=6,∠BAC的平分线交⊙O于点D,过点D 作DE⊥AC交AC的延长线于点E.(1)求证:DE是⊙O的切线;(2)求DE的长.7.如图,AB是⊙O的直径,BC为⊙O的切线,D为⊙O上的一点,CD=CB,延长CD 交BA的延长线于点E.(1)求证:CD为⊙O的切线;(2)若BD的弦心距OF=1,∠ABD=30°,求图中阴影部分的面积.(结果保留π)8.已知,如图在Rt△ABC中,∠C=90°,BD平分∠ABC交AC于D,过D作DE⊥BD 交AB于E,经过B,D,E三点作⊙O.(1)求证:AC与⊙O相切.(2)若AD=15,AE=9,求⊙O的半径.9.如图,⊙O是△ABC外接圆,AC是直径,OF∥AB,过点B⊙O的切线相交于点D,与OF的延长线交点E.(1)求证:△ABD∽△BCD;(2)若∠C=30°,求证:△OED是等腰三角形;(3)若⊙O的半径为3,cos D=,求OF的长.10.如图,AB是⊙O的直径,C是AB延长线上一点,CD与⊙O相切于点E,AD⊥CD 于点D.(1)求证:AE平分∠DAC,(2)若AB=6,∠ABE=60°,求①AD的长,②图中阴影部分的面积.11.△ABC内接于⊙O,点D在BC上,连接AD、BO,AD=AC.(1)如图1,求证:∠DAC=2∠ABO;(2)如图2,点E在弧BC上,连接AE交BC于点F,∠CAE=3∠DAE,连接BE,DE,若∠EDC=∠EBC+60°,求∠DEA的度数:(3)如图3,在(2)的条件下,若tan∠ACB=2,AE=2+1,求半径BO的长.12.如图1,△ABC内接于⊙O,连接AO,延长AO交BC于点D,AD⊥BC.(1)求证:AB=AC;(2)如图2,在⊙O上取一点E,连接BE、CE,过点A作AF⊥BE于点F,求证:EF+CE =BF;(3)如图3在(2)的条件下,在BE上取一点G,连接AG、CG,若∠AGB+∠ABC =90°,∠AGC=∠BGC,AG=6,BG=5,求EF的长.13.如图,在Rt△ABC中,∠C=90°,O为BC边上一点,以OC为半径的圆O,交AB于D点,且AD=AC.延长DO交圆O于E点,连接AE.(1)求证:DE⊥AB;(2)若DB=4、BC=8,求AE的长.14.如图,AB是⊙C的直径,M、D两点在AB的延长线上,E是⊙C的点,且DE2=DB •DA,延长AE至F,使得AE=EF,设BF=5,cos∠BED=.(1)求证:△DEB∽△DAE;(2)求DA,DE的长;(3)若点F在B、E、M三点确定的圆上,求MD的长.15.如图,AB是⊙O的直径,点C为⊙O上一点,点P是半径OB上一动点(不与O,B 重合),过点P作射线l⊥AB,分别交弦BC,于D、E两点,在射线l上取点F,使FC=FD.(1)求证:FC是⊙O的切线;(2)当点E是的中点时,①若∠BAC=60°,判断以O,B,E,C为顶点的四边形是什么特殊四边形,并说明理由;②若=,且AB=20,求OP的长.参考答案1.解:(1)∵AB为⊙O的直径,∴∠ACB=90°,∵∠B=30°,∴AB=2AC,∵AB2=AC2+BC2,∴AB2=AB2+62,∴AB=4.(2)连接OD.∵AB=4,∴OA=OD=2,∵CD平分∠ACB,∠ACB=90°,∴∠ACD=45°,∴∠AOD=2∠ACD=90°,∴S△AOD=OA•OD=•2•2=6,∴S扇形△AOD=•π•OD2=•π•(2)2=3π,∴阴影部分的面积=S扇形△AOD﹣S△AOD=3π﹣6.2.(1)证明:连接OC.∵CD是⊙O的切线,∴∠OCD=90°,∵∠AEC=90°,∴∠OCD=∠AEC,∴AE∥OC,∴∠EAC=∠ACO,∵OA=OC,∴∠OAC=∠OCA,∴∠EAC=∠OAC,∴AC平分∠DAE.(2)作CF⊥AB于F.在Rt△OCD中,∵OC=3,OD=5,∴CD=4,∵•OC•CD=•OD•CF,∴CF=,∵AC平分∠DAE,CE⊥AE,CF⊥AD,∴CE=CF=.3.(1)证明:∵AB是⊙O的直径,DE=CE,∴AB⊥CD,∵BF是⊙O的切线,∴AB⊥BF,∴CD∥BF;(2)解:连接OD、OC,∵∠A=35°,∴∠BOD=2∠A=70°,∴∠COD=2∠BOD=140°,∴的长==.4.解:(1)连接OE,∵OA=OE,∴∠A=∠AEO,∵BF=EF,∴∠B=∠BEF,∵∠ACB=90°,∴∠A+∠B=90°,∴∠AEO+∠BEF=90°,∴∠OEG=90°,∴EF是⊙O的切线;(2)∵∠AED=90°,∠A=30°,∴ED=AD,∵∠A+∠B=90°,∴∠B=∠BEF=60°,∵∠BEF+∠DEG=90°,∴∠DEG=30°,∵∠ADE+∠A=90°,∴∠ADE=60°,∵∠ADE=∠EGD+∠DEG,∴∠DGE=30°,∴∠DEG=∠DGE,∴DG=DE,∴DG=DA;(3)∵AD是⊙O的直径,∴∠AED=90°,∵∠A=30°,∴∠EOD=60°,∴∠EGO=30°,∵阴影部分的面积=×r×r﹣=2﹣π.解得:r2=4,即r=2,即⊙O的半径的长为2.5.证明:(1)连接AD;∵AB是⊙O的直径,∴∠ADB=90°.又∵DC=BD,∴AD是BC的中垂线.∴AB=AC.(2)连接OD;∵OA=OB,CD=BD,∴OD∥AC.∴∠0DE=∠CED.又∵DE⊥AC,∴∠CED=90°.∴∠ODE=90°,即OD⊥DE.∴DE是⊙O的切线.6.证明:(1)连接OD,∵AD平分∠BAC,∴∠DAE=∠DAB,∵OA=OD,∴∠ODA=∠DAO,∴∠ODA=∠DAE,∴OD∥AE,∵DE⊥AC,∴OD⊥DE,∴DE是⊙O切线.(2)过点O作OF⊥AC于点F,∴AF=CF=3,∴OF==4.∵∠OFE=∠DEF=∠ODE=90°,∴四边形OFED是矩形,∴DE=OF=4.7.(1)证明:连接OD,∵BC是⊙O的切线,∴∠ABC=90°,∵CD=CB,∴∠CBD=∠CDB,∵OB=OD,∴∠OBD=∠ODB,∴∠ODC=∠ABC=90°,即OD⊥CD,∵点D在⊙O上,∴CD为⊙O的切线;(2)在Rt△OBF中,∵∠ABD=30°,OF=1,∴∠BOF=60°,OB=2,BF=,∵OF⊥BD,∴BD=2BF=2,∠BOD=2∠BOF=120°,∴S阴影=S扇形OBD﹣S△BOD==.8.(1)证明:连接OD,如图所示:∵OD=OB,∴∠1=∠2,又∵BD平分∠ABC,∴∠2=∠3,∴∠1=∠3,∴OD∥BC,而∠C=90°,∴OD⊥AD,∴AC与⊙O相切于D点;(2)解:∵OD⊥AD,∴在RT△OAD中,OA2=OD2+AD2,又∵AD=15,AE=9,设半径为r,∴(r+9)2=152+r2,解方程得,r=8,即⊙O的半径为8.9.解:(1)如图1,连接BO,∵BD是⊙O的切线,∴∠OBD=90°,∴∠OBA+∠ABD=90°,∵AC是⊙O的直径,∴∠ABC=90°,∴∠CBO+∠OBA=90°,∴∠ABD=∠CBO,∵OB=OC,∴∠CBO=∠C,∴∠ABD=∠C,又∵∠D=∠D,∴△ABD∽△BCD;(2)证明:∵∠C=30°,OE∥AB,∠ABC=90°,∴∠BAO=60°=∠BOA=∠BOE,由(1)知OB⊥DE,∠EBO=∠DBO=90°,又∵OB=OB,∴△BOE≌△BOD(ASA),∴OE=OD,∴△OED是等腰三角形;(3)∵OE∥AB,CO=AO,∴CF=BF,∴OF是△ABC中位线,∴OF=AB,又∵在Rt△OBD中,cos∠D==,设BD=4x,则OD=5x,由勾股定理(5x)2=(4x)2+32,解得,x=1(取正值),∴DB=4,OD=5,如图2,过点B作BM⊥OA于M,则∠OMB=∠OBD=90°,又∵∠BOM=∠DOB,∴△OBM∽△ODB,∴==,∴==,∴BM=,OM=,∴AM=,∴AB==,∴OF=AB=.10.证明:(1)如图,连接OE,∵DC为切线,∴OE⊥CD,且AD⊥CD,∴OE∥AD,∴∠DAE=∠AEO,∵OE=OA,∴∠AEO=∠EAO,∴∠DAE=∠EAO,即AE平分∠DAC;(2)①∵∠ABE=60°,∠AEB=90°,∴∠EAB=30°,∠AOE=120°∴BE=AB=3,AE=BE=3∵AE平分∠DAC,∴∠DAE=∠BAE=30°,且∠D=90°∴DE=AE=,AD=DE=,②∵OA=OB=BE=3,∴S扇形AOE=π•OA2=3π,S△AOE=S△ABE=×AE•BE=,∴S阴影=S扇形AOE﹣S△AOE=3π﹣11.解:(1)连接OA,∵OA=OB,∴∠ABO=(180°﹣∠AOB),∵AD=AC,∴∠ADC=∠C,∴∠DAC=180°﹣2∠C,∵∠AOB=2∠C,∴∠DAC=180°﹣∠AOB,∴∠AOB=180°﹣∠DAC,∴∠ABO=(180°﹣∠AOB)=[180°﹣(180°﹣∠DAC)]=,即∠DAC=2∠ABO;(2)如图2,过点A作AH⊥BC于H,∵∠CAE=3∠DAE,∴∠CAD=4∠DAE,∵AD=AC,AH⊥BC,∴∠DAH=∠CAH=2∠DAE,∠ADH+∠DAH=90°,∴∠ADH+2∠DAE=90°,∵∠EDC=∠EBC+60°,∠EBC=∠EAC,∴∠EDC=∠EAC+60°=∠DAE+60°,∵∠AED+∠DAE+∠ADH+∠EDC=180°,∴∠DEA+∠DAE+∠DAE+60°+∠ADH=180°,∴∠DEA+90°+60°=180°,∴∠DEA=30°,(3)如图3,过点D作DG⊥AE交AH的延长线于点G,连接GC,OE,CE,过点B 作BN⊥AE于N,∵∠CAD=4∠DAE,AD=AC,AH⊥DC,∴∠DAH=∠CAH=2∠DAE,AH是CD的中垂线,∴∠DAE=∠FAH,∵DG⊥AE,∠DAE=∠FAH,∴∠ADG=∠AGD,∴AD=AG,且∠DAE=∠FAH,AE=AE,∴△ADE≌△AGE(SAS)∴∠AED=∠AEG=30°,DE=EG,∴∠DEG=60°,∴△DEG是等边三角形,∴DG=EG=DE,∠DGE=60°,∵AH是CD的中垂线,∴DG=GC,∴DG=GC=EG,∴点D,点G,点E在以点G为圆心,DG为半径的圆上,∴∠DCE=∠DCE=30°,∴∠BAE=∠BCE=30°,∴∠BOE=60°,且BO=OE,∴△BOE是等边三角形,∴BE=BO,∵∠BAE=30°,BN⊥AE,∴AN=BN∵∠ACB=∠AEB,∴tan∠ACB=tan∠AEB=2=,∴EN=BN,∵AE=EN+AN,∴2+1=BN+BN,∴BN=2,∴EN=1,∴BE===,∴BO=.12.证明:(1)∵AD⊥BC,AD过圆心O,∴BD=CD,且AD⊥BC,∴AB=AC;(2)如图2,在BF上截取FH=EF,连接AE,AH,∵AF⊥EH,EF=FH,∴AH=AE,∴∠AHE=∠AEH,∵AB=AC,∴∠ABC=∠ACB,且∠ACB=∠AEH,∴∠AEH=∠AHE=∠ABC=∠ACB,∴∠BAC=∠HAE,∴∠BAH=∠CAE,且AH=AE,AB=AC,∴△ABH≌△ACE(SAS)∴BH=CE,∴BF=EF+CE;(3)如图3,延长CG交⊙O于M,交AB于K,过点A作AP⊥CM于P,过点B作BN⊥CM于N,连接AE,AM,MB,∵∠AGB+∠ABC=90°,∴∠AGB=90°﹣∠ABC,∴∠AGB=2∠BAC,∵∠AGC=∠BGC,∴∠BGM=∠AGM=∠AGB,∴∠BGM=∠AGM=∠BAC,且∠BAC=∠BMC,∴∠BMG=∠BGM,∴BM=BG=5,∵∠AMC=∠ABC,∠AGM=∠BAC,∴∠GAM=∠ACB,∴∠AMG=∠MAG,∴MG=AG=6,∵BM=BG,BN⊥MG,∴MN=NG=3,∴BN===4,∵∠BMG=∠AGM,∴BM∥AG,∴=,∵AP∥BN,∴=,∴AP=,∴PG==,∴PN=PG﹣NG=,且∴PK=,KN=,∴AK==,BK==,∴AB=AK+BK=,∵AF2=AG2﹣GF2,AF2=AB2﹣BF2,∴AG2﹣GF2=AB2﹣(5+GF)2,∴GF=,∴BF=,∵MP=MG﹣PG=,∴MK=,∵∠AMC=∠ABC,∠MAB=∠BCM,∴△MAK∽△BCK,∴,∴CK=,∴GC﹣KC﹣KG=,∵∠BMC=∠BEC,∠BGM=∠CGE,∠BGM=∠BMG,∴∠CGE=∠CEG,∴CG=CE=,∵EF+CE=BF,∴EF=BF﹣CE==.13.(1)证明:连接AO.∵AD=AC,AO=AO,OD=OC,∴△AOD≌△AOC(SSS),∴∠ADO=∠ACO=90°,∴DE⊥AB.(2)解:设OD=OC=x,在Rt△OBD中,∵OB2=BD2+OD2,∴(8﹣x)2=x2+42,解得x=3,设AD=AC=y,在Rt△ACB中,∵AB2=AC2+BC2,∴(y+4)2=y2+82,∴y=6,在Rt△ADE中,AE===6.14.解:(1)∵DE2=DB•DA,∴=,又∵∠D=∠D,∴△DEB∽△DAE.(2)∵△DEB∽△DAE,∴∠DEB=∠DAE=α,∵AB是直径,∴∠AEB=90°,又AE=EF,∴AB=BF=5,∴∠BFE=∠BAE=α,则BF⊥ED交于点H,∵cos∠BED=,则BE=3,AE=4∴==,即:==,解得:BD=,DE=,则AD=AB+BD=,ED=.(3)由点F在B、E、M三点确定的圆上,则BF是该圆的直径,连接MF,∵BF⊥ED,∠BMF=90°,∴∠MFB=∠D=β,在△BED中,过点B作HB⊥ED于点H,设HD=x,则EH=﹣x,则9﹣(﹣x)2=()2﹣x2,解得:x=,则cosβ==,则sinβ=,MB=BF sinβ=5×=,DM=BD﹣MB=.15.证明:(1)连接OC,∵OB=OC,∴∠OBC=∠OCB,∵PF⊥AB,∴∠BPD=90°,∴∠OBC+∠BDP=90°,∵FC=FD∴∠FCD=∠FDC∵∠FDC=∠BDP∴∠OCB+∠FCD=90°∴OC⊥FC∴FC是⊙O的切线;(2)如图2,连接OC,OE,BE,CE,①以O,B,E,C为顶点的四边形是菱形.理由如下:∵AB是直径,∴∠ACB=90°,∵∠BAC=60°,∴∠BOC=120°,∵点E是的中点,∴∠BOE=∠COE=60°,∵OB=OE=OC∴△BOE,△OCE均为等边三角形,∴OB=BE=CE=OC∴四边形BOCE是菱形;②∵,∴设AC=3k,BC=4k(k>0),由勾股定理得AC2+BC2=AB2,即(3k)2+(4k)2=202,解得k=4,∴AC=12,BC=16,∵点E是的中点,∴OE⊥BC,BH=CH=8,∴S△OBE=OE×BH=OB×PE,即10×8=10PE,解得:PE=8,由勾股定理得OP===6.。

2021年中考数学复习高频考点精准练:《圆的综合》解答题专题练习(一)

2021年中考数学复习高频考点精准练:《圆的综合》解答题专题练习(一)

2021年中考数学复习高频考点精准练:《圆的综合》解答题专题练习(一)1.如图,AB是⊙O的直径,点P在BA的延长线上,PD切⊙O于点C,BD⊥PD,垂足为D,连接BC.(1)求证:∠PBC=∠DBC;(2)若PA=6,PC=6,求⊙O的半径.2.如图,在△ABC中,AC=BC,以AB为直径的⊙O交AC边于点D,过D作⊙O的切线交BC于点E.(1)证明:∠CDE=∠ABD;(2)若AB=26,sin∠CDE=,求DC的长.3.如图,▱ABCD的边AB与经过A、C、D三点的⊙O相切.(1)求证:AC=AD;(2)如图2,延长BC交⊙O于点E,连接DE.若sin∠ADE=,求tan∠DCE 的值.4.如图,AB,CD是⊙O的两条直径,且AB⊥CD,点E,点F分别在半径OC,OD上(不与点O,点C,点D重合),连接AE,EB,BF,FA.(1)若CE=DF,求证:四边形AEBF是菱形.(2)过点O作OG⊥EB,分别交EB,⊙O于点H,点G,连接BG.①若∠COG=∠EBG,判断△OBG的形状,说明理由.②若点E是OC的中点,求的值.5.已知:在半径为2的扇形AOB中,∠AOB=m°(0<m≤180),点C是上的一个动点,直线AC与直线OB相交于点D.(1)如图1,当0<m<90,△BCD是等腰三角形时,求∠D的大小(用含m的代数式表示);(2)如图2,当m=90点C是的中点时,联结AB,求的值;(3)将沿AC所在的直线折叠,当折叠后的圆弧与OB所在的直线相切于点E,且OE=1时,求线段AD的长.6.如图,在矩形ABCD中,AB=4,BC=8,点P在边BC上(点P与端点B、C不重合),以P为圆心,PB为半径作圆,圆P与射线BD的另一个交点为点E,直线CE 与射线AD交于点G.点M为线段BE的中点,联结PM.设BP=x,BM=y.(1)求y关于x的函数解析式,并写出该函数的定义域;(2)联结AP,当AP∥CE时,求x的值;(3)如果射线EC与圆P的另一个公共点为点F,当△CPF为直角三角形时,求△CPF 的面积.7.如图所示,AB是⊙O的直径,点E为线段OB上一点(不与O,B重合),作CE⊥OB,交⊙O于点C,垂足为点E,作直径CD,过点C的切线交DB的延长线于点P,作AF⊥PC于点F,连接CB.(1)求证:AC平分∠FAB.(2)求证:BC2=CE•CP.(3)当AB=4时,求劣弧BC长度(结果保留π).8.如图,在Rt△ABC中,∠ACB=90°,AO是△ABC的角平分线.以O为圆心,OC 为半径作⊙O.(1)求证:AB是⊙O的切线.(2)已知AO交⊙O于点E,延长AO交⊙O于点D,tan∠ADC=,求的值.9.对于平面直角坐标系xOy中的半径为r的⊙C与图形W,给出如下的定义:P是图形W上的任意一点,射线CP与⊙C交于点Q,线段PQ的长度记作m(P,⊙C).特别地,当点P与圆心C重合时,规定m(P,⊙C)=r;当点P与点Q重合时,规定m(P,⊙C)=0;m(P,⊙C)的最小值称d为图形W与⊙C的“绝对距离”.(1)当⊙O的半径为2时,已知点D(0,1),E(3,0),F(1,0).①m(D,⊙O)m(E,⊙O)(填“>”,“=”或“<”);△ODF与⊙O的“绝对距离”d=;②点A、B都在直线y=kx+1上,G是线段AB上一动点,若m(G,⊙O)≤m(D,⊙O),求线段AB长度的最大值;(2)⊙T的圆心为T(t,0),半径为r,直线y=﹣x+与x轴、y轴分别交于点M、N.当1≤r≤4时,线段MN与⊙T的“绝对距离”d≤1,直接写出t的取值范围.10.对于平面直角坐标系xOy中的图形M,N和点P.给出如下定义:如果图形M,N上分别存在点E,F,使得点P为线段EF的中点,那么称点P为图形M,N的关联点.特别地,当E,P,F三点重合时,点P也为其关联点.已知点A(3,0),B(2,1).(1)在点(﹣2,﹣2),(﹣2,﹣1),(﹣1,﹣1)中,点C的坐标为时,点O为线段AB,点C的关联点;(2)⊙T的圆心为T(t,0),半径为1.若点O为⊙T,线段AB的关联点,求t的取值范围;(3)⊙O的半径为3,若点S(s,0)为⊙O,线段AB的关联点,求s的取值范围;(4)点Q为y=x﹣2上一点,以Q为圆心,r为半径作圆,若点O为线段AB,⊙Q 的关联点,直接写出r的取值范围.11.如图,AB为⊙O直径,C、D为⊙O上不同于A、B两点,连接CD,过C作⊙O的切线交AB延长线于点F.直线DB⊥CF于点E.(1)求证:∠ABD=2∠BAC;(2)连接BC,求证:BC2=2BE•BO;(3)当BD=,sin∠F=时,求CD的长.12.如图,AB为⊙O的直径,BC是⊙O的一条弦,点D在⊙O上,BD平分∠ABC,过点D作EF⊥BC,分别交BA、BC的延长线于点E、F.(1)求证:EF为⊙O的切线;(2)若BD=4,tan∠FDB=2,求AE的长.13.如图,AB是⊙O的直径,点C为圆上一点,过圆心O作弦BC的垂线,交过点C的切线于点D,OD交⊙O于点E,连接AC,BD.(1)求证:BD是⊙O的切线;(2)若AC=AO=3,求阴影部分的面积.14.如图,已知△ABE,AB=BE,以AB为直径作⊙O,交AE于点D,过D点作⊙O 的切线交边BE于点C,交BA的延长线于点P.(1)求证:PC⊥BE;(2)如果PD=2,∠ABC=60°,求BC的长.15.如图,AB为⊙O的直径,C为BA延长线上一点,CD与⊙O相切于点D.OF⊥AD 于点E,交CD于点F.(1)求证:∠ADC=∠AOF;(2)若sin C=,BD=10,求EF的长.参考答案1.(1)证明:连接OC,∵PD为圆的切线,∴OC⊥PD,∴∠PCO=90°,∴BD⊥PD,∴∠D=90°,∴∠PCO=∠D,∴CO∥BD,∴∠OCB=∠DBC,∵OB=OC,∴∠OCB=∠PBC,∴∠PBC=∠DBC.(2)解:设半径为x,则OA=OC=x,则OP=6+x.在Rt△POC中,由勾股定理得:OC2+PC2=OP2,∴(x+6)2=x2+(6)2,∴x=3.∴⊙O的半径是3.2.(1)证明:连接OD,如图,∵DE为⊙O的切线,∴∠ODE=90°,∴∠ODB+∠BOE=90°,∵AB为直径,∴∠ADB+∠BDC=90°,∴∠CDE+∠BDE=90°,∴∠CDE=∠ODB,∵OB=OD,∴∠OBD=∠ODB,∴∠CDE=∠OBD,∴∠CDE=∠ABD.(2)解:∵∠CDE=∠ABD,∴sin∠CDE=sin∠ABD=,在Rt△ABD中,AB=26,sin∠ADB=,∴AD=10,∴BD==24,设DC=x,AC=AD+DC=10+x,在Rt△BDC中,∠BDC=90°,∴BC2=BD2+DC2,∴(10+x)2=242+x2,∴x=,即DC=.3.(1)证明:连接AO并延长交CD于F,如图,∵AB为切线,∴AF⊥AB,∵四边形ABCD为平行四边形,∴AB∥CD,∴AF⊥CD,∴CF=DF,即AF垂直平分CD,∴AC=AD;(2)解:过A点作AH⊥BC,如图,∵∠ACB+∠ACE=180°,∠ADE+∠ACE=180°,∴∠ACB=∠ADE,∴sin∠ACB=sin∠ADE=,在Rt△ACH中,∵sin∠ACH==,∴设AH=24x,AC=25x,∴CH==7x,∵四边形ABCD为平行四边形,∴BC=AD,AB∥CD,而AD=AC,∴BC=AC=25x,∴BH=CB﹣CH=25x﹣7x=18x,在Rt△ABH中,tan B===,∵AB∥CD,∴∠DCE=∠B,∴tan∠DCE=.4.解:(1)在⊙中,OA=OB=OC=OD,∵CE=DF,∴OC﹣CE=OD﹣DF,∴OE=OF,∵AB⊥CD,即AB⊥EF,∴四边形AEBF是菱形.(2)①△OBG是等边三角形.理由如下:∵AB⊥CD,OG⊥EB,∴∠COB=∠OHB=90°,∴∠COG=90°﹣∠BOH=∠EBO,∵∠COG=∠EBG,∴∠EBO=∠EBG,∵BH=BH,∠BHO=∠BHG=90°∴△BHO≌△BHG(ASA)∴OB=GB,∵OB=OG,∴OB=OG=GB,∴△OBG是等边三角形.②设⊙的半径长为2m,则OC=OG=OB=2m,∵点E是OC的中点,∴OE=m,∴BE==m;∵∠EOH=90°﹣∠BOH=∠EBO,∴==cos∠EBO,∴=,∴HO=m,∴GH=2m﹣m,∴==.5.解:(1)C在AB弧线上,∴∠OBC为锐角,∴∠CBD为钝角,则△BCD是等腰三角形时,仅有BC=BD这一种情况,∴∠D=∠BCD,连接OC则OA=OC=OB,∴∠OAC=∠OCA,∠OCD=∠OBC,∴∠OBC=∠D+∠BCD=2∠D,在△OCD中,∠COD+2∠D+2∠D=180°,∴∠AOC=m°﹣∠COD=m°+4∠D﹣180°,∴∠AOC=×(180°﹣∠AOC)=180°﹣﹣2∠D,在△AOD中,m°+∠OAC+∠D=180°,∴180°+﹣∠D=180°,∴∠D=;(2)过D作DM⊥AB延长线于M,连接OC,∵C为中点,∴AC=BC,∴∠BAC=∠ABC且AO=CO=BO,∴∠OAC=∠OCA=∠OCB=∠OBC,∴∠ACO+∠BCO=×(360°﹣90°)=135°,∴∠BCD=45°,∴45°+∠ODA=∠ABC+∠ABD=45°+∠ABC,∴∠ABC=∠ADO=∠BAC,∴BD=AB=2(勾股定理),∴BM=DM=2(∠MBD=∠OBA=45°,∴BM=DM),∴AM=AB+BM=2+2,∴AN=AB=,又∵CN⊥AB,DM⊥AB,∴△ANC∽△AMD,∴,∴==6+4;(3)图2如下:∵E为弧线AEC与OB切点,∴A、E、C在半径为2的另一个圆上,∵O′E=2,OE=1,∴OO′=(勾股定理),又∵OA=OC=2,O′A=O′C=2,∴四边形AOCO′是菱形,∴AC⊥OO′且AC、OO′互相平分,且∠O′OE共角,∴△O′OE∽△DOP,∴=且OP=OO′=,∴OP=,∴AP==(Rt△APO′的勾股定理)∴AD=AP+PD=.6.解:(1)在矩形ABCD中,CD=AB=4,BC=8,∠BCD=90°,∴BD==4,∵M为弦BE的中点,P为圆心,∴PM⊥BE,∠BMP=90°,∵AD∥BC,∴∠PBM=∠DBC,∴==cos∠DBC,∴=,∴y=x,当点G与点A重合时,则点E为BD中点,此时y=BD=,由x=,得x=,∴y关于x的函数解析式y=x(≤x<8);(2)如图1,当AP∥CE时,则四边形APCG是平行四边形,AG=PC,∴DG=BP=x.由BM=x,得BE=x,DE=4﹣x∵DG∥BC∴△DGE∽△BCE,∴===;∴=,整理,得x2+8x﹣40=0,解得x1=﹣4+2,x2=﹣4﹣2(不符合题意,舍去). ∴x=﹣4+2.(3)如图2,若∠PFC=90°,则点F与点E重合,不符合题意;如图3,当∠PCF=90°时,则点E与点D重合,此时y=×4=2,由x=2,得x=5,∴PC=8﹣5=3,CF=CD=4,∴S△CPF=×3×4=6;如图4,当∠CPF=90°时,过点E作EQ⊥BC交BC的延长线于点Q,在BC边上取一点H,连接DH,使DH=BH,由图3得,当点E与点D重合时,则点P与图4中的点H重合,此时,CH=3,DH =5,∴CH:CD:DH=3:4:5,∵∠EPQ=∠DHC=2∠DBC,∠Q=∠DCH=90°,∴△EPQ∽△DHC,∴PQ:EQ:PE=3:4:5,∵PE=BP=PF=x,∴EQ=x,PQ=x∵PF∥EQ,∴△CPF∽△CQE,∴===,∴PC=PQ=×x=x,∴8﹣x=x,解得x=6,∴PC=8﹣6=2,PF=6,∴S△CPF=×2×6=6.综上所述,△CPF的面积为6.7.(1)证明:连接AC,BC,∵OC=OA,∴∠OCA=∠OAC,∵PF是⊙O的切线,CE⊥AB,∴∠OCP=∠F=90°,∴AF∥OC,∴∠FAC=∠OCA,∴∠FAC=∠OAC,∴CA平分∠FAB.(2)证明:∵CD是直径,∴∠CBD=90°,∴∠CBP=90°,∵CE⊥OB,∴∠CEB=∠CBP=90°,∵PC切⊙O于点C,∴∠PCB=∠CAB,∵AB是直径,∴∠ACB=90°,∴∠ABC+∠CAB=90°,∠BCE+∠ABC=90°,∵∠CAB=∠BCE,∴∠PCB=∠BCE,∴△BCE∽△PCB,∴,∴BC2=CE•CP;(3)解:,设CF=3a,CP=4a,∵BC2=CE•CP=3a•4a=12a2,∴BC=2a,在Rt△BCE中,sin∠CBE=,∴∠CBE=60°,∴∠BCE=30°,∴△COB是等边三角形,∵AB=4,∴OB=BC=2,∴劣弧BC的长==π.8.(1)证明:过点O作OF⊥AB于F,∵∠ACB=90°,∴OC⊥AC,又∵OA是∠CAB的角平分线,∴OF=OC,∴AB是⊙O的切线;(2)解:连接CE,∵DE是⊙O的直径,∴∠ECD=90°,∴tan ADC=,∵OC=OD,∴∠OCD=∠ADC,又∵∠AEC=∠ECD+∠ADC=90°+∠ADC,∠ACD=∠ACO+∠OCD=90°+∠OCD=90°+∠ADC,∴∠AEC=∠ACD,而∠CAE=∠CAD,∴△AEC∽△ACD,∴==.9.解:(1)①如图1中,根据m(P,⊙C)的定义可知,m(D,⊙O)=1,△ODF 与⊙O的“绝对距离”d=1,故答案为:1,1.②如图2中,∵m(G,⊙O)≤m(D,⊙O),∴满足条件的点在图2中,两个虚线圆组成的圆环之间(包括圆上的点),∴当直线与小圆相切时,得到大圆的弦AB的值最大,AB的最大值=2×=4.(2)如图3中,当点T在y轴的左侧时,r=1时,∵线段MN与⊙T的“绝对距离”d≤1,∴d=1时,TM=2,OT==1,观察图像可知,满足条件的t的值为﹣1≤t<0,当点T在y轴的右侧(包括y轴)时,r=1时,满足条件的t的值为0≤t≤4,综上所述,r=1时,满足条件的t的值为﹣1≤t≤4,观察图像可知,当1≤r≤4时,也满足条件,故t的值为﹣1≤t≤4.10.解:(1)如图1中,观察图像可知,点C的坐标为(﹣2,﹣1).故答案为:(﹣2,﹣1).(2)如图2中,线段A′B′与线段AB关于点O对称,当⊙T与线段A′B′有交点时,满足条件.设⊙T与线段A′B′相切于点F,连接TF,TB′,∵S△A′B′T=××1=×1×A′T,∴A′T=,∴T(﹣3,0),观察图像可知满足条件的t的值为﹣4≤t≤﹣3.(3)如图3﹣1中,当点B关于点S的对称点F落在⊙O上时,过点F作FP⊥x轴于P.∵OF=3,PF=1,∠OPF=90°,∴OP===2,∴F(﹣2,﹣1),∵B(2,1),∴S(1﹣,0),观察图像可知,满足条件的s的取值范围为:1﹣≤s≤0.如图3﹣2中,当点F在第四象限时,T同法可得S(1+,0),观察图像可知,满足条件的s的取值范围为:1+≤s≤3.综上所述,满足条件的s的取值范围为:1﹣≤s≤0或1+≤s≤3.(3)如图4中,线段A′B′与线段AB关于点O对称,当⊙Q与线段A′B′有交点时,满足条件.直线AB与直线A′B′的交点为Q(﹣,﹣),当⊙Q经过点B′时,r=,当⊙Q经过点A′时,r=,观察图像可知,满足条件的r的值为≤r≤.11.(1)证明:连接OC过圆心O且有CF是⊙O的切线,如图,∵OC⊥CF,DB⊥CF,∴CO∥BD,∴∠ABD=∠COB,∵∠COB=2∠BAC,∴∠ABD=2∠BAC.(2)证明:连接BC,如上图,∵AB为⊙O直径,∴∠ACB=90°,∵CE⊥DB,∴∠CEB=∠ACB,∵∠ACB=90°,∴∠COB+∠ABC=90°,∵OC⊥CF,∴∠BCE+∠OCB=90°,∵OB=OC,∴∠ABC=∠OCB,∴∠COB=∠BCE,∴△CBE~△ABC,∴,∴BC2=AB•BE,∵AB=2OB,∴BC2=2BE•BO.(3)解:如图,连接AD,∵AB为⊙O直径,∴∠ADB=90°,∴CF∥AD,∴∠BAD=∠F,∴sin∠BAD=sin F=,∴AB=BD==12,∴OB=OC=AB=6,∵OC⊥CF,∴∠OCF=90°,∴sin F=,∴OF=10,由勾股定理,得,CF==8,∵OC∥DB,∴,即,∴CE=,∴EF=,∵BF=OF﹣OB=10﹣6=4,∴BE=,∴DE=BD+BE==,∴CD==.12.(1)证明:连接OD,如图1所示:∵BD平分∠ABC,∴∠OBD=∠CBD,∵OD=OB,∴∠OBD=∠ODB,∴∠CBD=∠ODB,∴OD∥BC,∵EF⊥BC,∴EF⊥OD,又∵OD是⊙O的半径,∴EF为⊙O的切线;(2)解:连接AD,如图2所示:∵AB为⊙O的直径,∴∠ADB=90°,∴∠BAD+∠ABD=90°,∵EF⊥BC,∴∠F=90°,∴∠FDB+∠CBD=90°,∵∠ABD=∠CBD,∴∠BAD=∠FDB,∴tan∠BAD=tan∠FDB=2,∴=2,=2,∴AD=BD=2,BF=2DF,∴AB===10,BD==DF=4,∴OD=OA=OB=AB=5,DF=4,BF=8,由(1)得:OD∥BC,∴△ODE∽△BFE,∴=,即=,解得:AE=.13.(1)证明:连接OC,如图所示:∵CD是⊙O的切线,∴∠OCD=90°,∵OD⊥BC,∴,∴∠BOE=∠COE,在△OBD和△OCD中,,∴△OBD≌△OCD(SAS),∴∠OBD=∠OCD=90°,∴BD⊥OB,∴BD是⊙O的切线;(2)解:∵AC=AO=3=OC,∴△AOC是等边三角形,∴∠AOC=60°,∴∠BOE=∠COE=60°,∵∠OBD=90°,OB=AO=3,∴∠BDO=30°,∴BD=OB=3,∴阴影部分的面积=△OBD的面积﹣扇形OBE的面积=×3×3﹣=﹣π.14.(1)证明:连接DO,∵PC与⊙O相切,∴OD⊥PC,∵OC=OA,∴∠ODA=∠OAD,∵AB=BE,∴∠EAB=∠E,∴∠ODA=∠E,∴OD∥BE,∴PC⊥BE;(2)解:∵∠ABC=60°,∠PCB=90°,∴∠P=30°,∵∠PDO=90°,PD=2,∴OD=PD=2,∴OP=2OD=4,∴PB=6,∴BC=PB=3.15.(1)证明:连接OD,∵OF⊥AD,∴∠AOF+∠DAO=90°,∵CD是⊙O的切线,D为切点,∴∠CDO=90°,∴∠ADC+∠ADO=90°,∵OA=OD,∴∠DAO=∠ADO,∴∠AOF=∠ADC;(2)解:∵OF∥BD,AO=OB,∴AE=DE,∴OE=BD=10=5,∵sin C==,∴设OD=3x,OC=5x,∴OB=3x,∴CB=8x,∵OF∥BD,∴△COF∽△CBD,∴,∴=,∴OF=,∴EF=OF﹣OE=﹣5=.。

2021年广东省中考数学第四章图形的认识第4讲圆第3课时与圆有关的计算专题复习试卷

2021年广东省中考数学第四章图形的认识第4讲圆第3课时与圆有关的计算专题复习试卷

2021年广东省中考数学第四章图形的认识第4讲圆第3课时与圆有关的计算专题复习试卷班级:姓名:A级基础题1.(2019年广西河池)如图4­4­80,在正六边形ABCDEF中,AC=2 3,则它的边长是()A.1 B. 2 C. 3 D.2图4­4­802.(2020年浙江温州三模)如图4­4­81,⊙O的半径为9,四边形ABCD是⊙O的内接四边形,∠B=100°,则ABC的长为()图4­4­81A.4π B.5π C.7π D.8π3.(2019年四川南充)如图4­4­82,在半径为6的⊙O中,点A,B,C都在⊙O上,四边形OABC是平行四边形,则图中阴影部分的面积为()图4­4­82A.6π B.3 3π C.2 3π D.2π4.(2020年四川德阳)半径为R的圆内接正三角形、正方形、正六边形的边心距分别为a,b,c,则a,b,c的大小关系是()A.a<b<c B.b<a<c C.a<c<b D.c<b<a5.(2020年山东德州)如图4­4­83,圆内接正六边形的边长为4,以其各边为直径作半圆,则图中阴影部分的面积为()图4­4­83A.24 3-4π B.12 3+4π C.24 3+8π D.24 3+4π6.(2020年湖南娄底)如图4­4­84,公路弯道标志R=m表示圆弧道路所在圆的半径为m(米),某车在标有R=300处的弯道上从点A行驶了100π米到达点B,则线段AB=________米.图4­4­847.(2019年湖北天门)75°的圆心角所对的弧长是 2.5π cm,则此弧所在圆的半径是__________ cm.8.如图4­4­85,四边形ABCD是⊙O的内接正方形.若正方形的面积等于4,则⊙O 的面积等于________.图4­4­859.(2019年黑龙江绥化)用一个圆心角为120°的扇形作一个圆锥的侧面,若这个圆锥的底面半径恰好等于4,则这个圆锥的母线长为__________.10.(2020年湖南邵阳)如图4­4­86(1)是山东舰航徽的构图,采用航母45度破浪而出的角度,展现山东舰作为中国首艘国产舰母横空出世的气势,将舰徽中第一条波浪抽象成几何图形,则是一条长为10π的弧,若该弧所在的扇形是高为12的圆锥侧面展开图[如图4­4­86(2)],则该圆锥的母线长AB为________.(1)(2)图4­4­8611.如图4­4­87,已知AB是⊙O的直径,点C,D在⊙O上,点E在⊙O外,∠EAC=∠B.(1)求证:直线AE是⊙O的切线;(2)若∠D=60°,AB=6时,求劣弧AC的长(结果保留π).图4­4­8712.(2020年辽宁辽阳)如图4­4­88,在平行四边形ABCD中,AC是对角线,∠CAB=90°,以点A为圆心,AB的长为半径作⊙A,交BC于点E,交AC于点F,连接DE.(1)求证:DE与⊙A相切;(2)若∠ABC=60°,AB=4,求阴影部分的面积.图4­4­88B 级 中等题13.如图4­4­89,在△ABC 中,CA =CB ,∠ACB =90°,以AB 的中点D 为圆心,作圆心角为90°的扇形DEF ,点C 恰在EF 上,设∠BDF =α(0°<α<90°),当α由小到大变化时,图中阴影部分的面积( )图4­4­89A .由小到大B .由大到小C .不变D .先由小到大,后由大到小14.(2020年浙江嘉兴)如图4­4­90,在半径为2的圆形纸片中,剪一个圆心角为90°的最大扇形(阴影部分),则这个扇形的面积为________;若将此扇形围成一个无底的圆锥(不计接头),则圆锥底面半径为________.图4­4­9015.把边长相等的正六边形ABCDEF 和正五边形GHCDL 的CD 边重合,按照如图4­4­91所示的方式叠放在一起,延长LG 交AF 于点P ,则∠APG =________.图4­4­91C 级 拔尖题16.(2020年贵州黔东南)如图4­4­92,AB 是⊙O 的直径,点C 是⊙O 上一点(与点A ,B 不重合),过点C 作直线PQ ,使得∠ACQ =∠ABC .(1)求证:直线PQ 是⊙O 的切线;(2)过点A 作AD ⊥PQ 于点D ,交⊙O 于点E ,若⊙O 的半径为2,sin ∠DAC =12,求图中阴影部分的面积.图4­4­92参考答案:1.D 2.D 3.A 4.A 5.A 6.300 7.6 8.2π 9.12 10.13 11.(1)证明:∵AB 是⊙O 的直径,∴∠ACB =90°. ∴∠B +∠BAC =90°.∵∠EAC =∠B ,∴∠EAC +∠BAC =90°. ∴∠BAE =90°,即BA ⊥AE . ∴AE 是⊙O 的切线. (2)解:连接CO . ∵AB =6,∴AO =3.∵∠D =60°,∴∠AOC =120°,∴ACl =120π·3180=2π.12.(1)证明:如图D53,连接AE ,图D53∵四边形ABCD 是平行四边形, ∴AD =BC ,AD ∥BC , ∴∠DAE =∠AEB . ∵AE =AB ,∴∠AEB =∠ABC , ∴∠DAE =∠ABC ,∴△AED ≌△BAC (SAS), ∴∠DEA =∠CAB . ∵∠CAB =90°, ∴∠DEA =90°, ∴DE ⊥AE .∵AE 是⊙A 的半径, ∴DE 与⊙A 相切.(2)解:∵∠ABC =60°,AB =AE =4, ∴△ABE 是等边三角形, ∴AE =BE ,∠EAB =60°, ∵∠CAB =90°,∴∠CAE =90°-∠EAB =90°-60°=30°,∠ACB =90°-∠ABC =90°-60°=30°, ∴∠CAE =∠ACB ,∴AE =CE ,∴CE =BE ,∴S △ABC =12AB ·AC =12×4×4 3=8 3,∴S △ACE =12S △ABC =12×8 3=4 3,∵∠CAE =30°,AE =4,∴S 扇形AEF =30π·AE 2360=30π·42360=4π3,∴S 阴影=S △ACE -S 扇形AEF =4 3-4π3.13.C 14.π 1215.144°16.(1)证明:如图D54,连接OC ,图D54∵AB 是⊙O 的直径, ∴∠ACB =90°, ∵OA =OC ,∴∠CAB =∠ACO . ∵∠ACQ =∠ABC ,∴∠CAB +∠ABC =∠ACO +∠ACQ =∠OCQ =90°,即OC ⊥PQ , ∴直线PQ 是⊙O 的切线. (2)解:连接OE ,∵sin ∠DAC =12,AD ⊥PQ ,∴∠DAC =30°,∠ACD =60°. ∴∠OAC =∠OCA =30°, ∴∠DAO =60°. 又∵OA =OE ,∴△AEO 为等边三角形, ∴∠AOE =60°.∴S 阴影=S 扇形OAE -S △AEO =S 扇形OAE -12OA ·OE ·sin 60°=60π360×22-12×2×2×32=2π3- 3.∴图中阴影部分的面积为2π3- 3.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档