对鲁棒控制的认识

合集下载

控制系统鲁棒控制

控制系统鲁棒控制

控制系统鲁棒控制鲁棒控制是一种在控制系统中应用的重要技术,旨在实现对误差、干扰和不确定性的抵抗能力。

该技术的核心思想是通过设计控制器,以使系统对于各种不确定因素的影响具有一定的容忍性,从而保证系统的性能和稳定性。

本文将介绍控制系统鲁棒控制的概念、应用、设计方法以及鲁棒性分析等内容。

一、概述控制系统鲁棒控制是指在设计控制器时考虑到系统参数的不确定性、外界干扰以及测量误差等因素,以保证系统的稳定性和性能。

鲁棒控制的目标是使系统对于这些不确定因素具有一定的容忍性,从而实现了对不稳定因素的抵抗,提高了系统的可靠性和性能。

二、鲁棒控制的应用鲁棒控制广泛应用于各个领域,例如飞行器、机器人、汽车等。

在这些领域中,系统的参数往往难以准确获取,外界环境也存在不确定性因素,因此采用鲁棒控制可以提高系统的稳定性和性能。

三、鲁棒控制的设计方法鲁棒控制的设计方法有很多种,其中比较常用的是H∞控制和μ合成控制。

1. H∞控制H∞控制是一种常用的鲁棒控制设计方法,其主要基于H∞优化理论。

通过给定性能权重函数,设计一个状态反馈控制器,使系统的传递函数具有一定的鲁棒稳定性和性能。

2. μ合成控制μ合成控制是一种另类的鲁棒控制设计方法,其基于多项式算法和复杂函数理论。

通过对系统的不确定因素进行建模,并对控制器进行优化设计,实现对系统的鲁棒性能的最优化。

四、鲁棒性分析在控制系统中,鲁棒性分析是非常重要的一步,可以评估控制系统对于不确定性和干扰的容忍程度。

常用的鲁棒性分析方法有小增益辨识、相合性和鲁棒稳定裕度等。

1. 小增益辨识小增益辨识是通过对系统的稳定性和性能进行评估,以确定系统参数的变化范围。

通过小增益辨识可以分析系统对于参数变化的容忍能力,从而指导控制器的设计。

2. 相合性相合性是通过分析系统的输入和输出关系,以确定系统的稳定性和性能。

在鲁棒性分析中,相合性是评估系统对于不确定因素的鲁棒性能的一种重要指标。

3. 鲁棒稳定裕度鲁棒稳定裕度是指系统在设计的控制器下的稳定性边界。

鲁棒控制理论

鲁棒控制理论

鲁棒控制理论
鲁棒控制理论是一种系统工程学的控制理论,由美国科学家陆奇和国际系统工程的其他学者创造,旨在解决复杂的系统控制问题。

鲁棒控制理论提出了一种处理不确定性、复杂性和时间变化的新方法,其目标是建立一种能够针对系统模型中的离散不确定性和模型更新进行控制的机制,以实现最优的系统控制运行状态。

鲁棒控制的优点是它能够可靠的实现最优控制,即使系统模型受到不确定性和模型更新的影响,也能够有效地解决复杂系统控制问题。

鲁棒控制主要由以下三部分组成:模型,估计和控制。

首先,在模型构建方面,鲁棒控制理论针对复杂系统提出了新的离散不确定模型,解决了传统控制理论中模型不精确的问题,使模型更加准确、可靠,从而有效地控制复杂系统;其次,在参数估计方面,鲁棒控制提出了基于Kalman滤波公式的鲁棒参数估计方法,能够有效地处理系统中的测量噪声和估计误差,解决模型和估计不确定性的问题;最后,在控制方面,鲁棒控制结合了最优控制理论和去抖动技术,以实现良好的系统控制,有效解决模型不精确和时间变化带来的控制问题,提高系统控制性能和精度。

由于鲁棒控制理论对复杂系统控制问题的普遍性和可靠性,它已经得到了广泛的应用。

目前,鲁棒控制理论在自动化控制、机器人、智能车辆、飞行器控制等多个学科领域广泛应用,在系统设计、仿真验和控制实现等方面取得了重大的成果。

总之,鲁棒控制理论是一种实用性强、能够普遍应用于复杂系统
控制的系统工程技术,它不仅可以可靠地实现最优控制,而且能够有效解决复杂系统控制问题。

因此,鲁棒控制理论为复杂系统的控制提供了一种有效的解决方案,促进了控制学的发展,并为未来的自动控制应用奠定了基础。

控制理论中的最优控制与鲁棒控制

控制理论中的最优控制与鲁棒控制

控制理论中的最优控制与鲁棒控制控制理论是研究如何设计系统,使其行为符合确定性或随机性要求的一门学科。

在控制理论中,最优控制和鲁棒控制是两个重要的概念。

它们分别代表着在不同情况下如何有效地控制系统,保证系统稳定性和性能。

最优控制是指在给定约束条件下,通过调节控制器的参数,使系统的性能达到最优。

最优控制问题可以用数学工具和优化方法来解决,通常包括确定最优控制器的结构和参数,以实现系统的最佳性能。

最优控制理论在航空航天、自动驾驶、机器人等领域有着广泛的应用,能够有效提高系统的鲁棒性和性能。

鲁棒控制则是指在系统存在各种不确定性和干扰时,仍能保持系统的稳定性和性能。

鲁棒控制的设计考虑系统不确定性的影响,能够有效应对各种外部扰动和环境变化,保证系统在不确定性条件下的稳定性和鲁棒性。

鲁棒控制理论在工业控制、气候控制、金融领域等有着广泛的应用,能够有效应对系统面临的各种挑战和风险。

在实际工程中,最优控制和鲁棒控制通常结合起来,以实现系统的高性能和可靠性。

最优控制能够提高系统的性能和效率,而鲁棒控制则能够保证系统在面对各种不确定性和干扰时仍能正常运行。

通过最优控制和鲁棒控制的结合,可以有效提高系统的鲁棒性和性能,实现系统在各种复杂环境中的稳定运行。

综上所述,控制理论中的最优控制与鲁棒控制是两个互补的概念,分别强调系统在确定性条件和不确定性条件下的优化控制。

它们在实际工程中有着重要的应用,能够有效提高系统的鲁棒性和性能,保证系统稳定运行。

通过不断研究和应用最优控制和鲁棒控制理论,可以为各种自动控制系统的设计和优化提供重要的理论支持和指导。

鲁棒控制的原理

鲁棒控制的原理

鲁棒控制的原理一、引言鲁棒控制是现代控制理论中的一个重要概念,它的核心思想是通过设计控制系统,使其具有良好的鲁棒性,即在面对扰动、不确定性和模型误差等因素时,仍能保持良好的控制性能。

本文将介绍鲁棒控制的原理及其在实际应用中的重要性。

二、鲁棒控制的概念鲁棒控制是指控制系统能够在面对不确定性和外部扰动时,依然保持稳定性和性能。

与传统的准确建模和精确控制相比,鲁棒控制更加适用于复杂的实际系统。

鲁棒控制不依赖于系统的精确模型,而是通过设计鲁棒控制器来满足系统的性能要求。

鲁棒控制设计的目标是使系统对模型不确定性和扰动具有一定的鲁棒稳定性和性能。

三、鲁棒控制的原理鲁棒控制的原理基于系统的不确定性和外部扰动,通过设计鲁棒控制器来保证系统的稳定性和性能。

在鲁棒控制中,常用的方法有两种:一是通过设计鲁棒控制器来抵消系统的不确定性和扰动,以保持系统的稳定性和性能;二是通过设计鲁棒观测器来对系统的不确定性和扰动进行估计和补偿,以实现系统的稳定性和性能。

鲁棒控制设计的关键是选择合适的鲁棒性能指标和控制器结构。

常用的鲁棒性能指标包括鲁棒稳定裕度、鲁棒性能裕度和鲁棒敏感度函数等。

鲁棒控制器的结构可以根据具体的系统特性进行选择,常见的鲁棒控制器包括H∞控制器、μ合成控制器和鲁棒PID控制器等。

四、鲁棒控制的应用鲁棒控制在实际应用中具有广泛的应用价值。

首先,在工业控制领域,鲁棒控制可以应对系统参数不确定性和外部扰动,提高系统的鲁棒稳定性和性能。

其次,在航空航天领域,鲁棒控制可以应对飞行器的不确定性和外部干扰,确保飞行器的安全和稳定。

此外,在机器人领域,鲁棒控制可以应对环境的不确定性和外部扰动,提高机器人的自主导航和操作能力。

鲁棒控制的应用还涉及到经济系统、生物系统、能源系统等多个领域。

例如,在经济系统中,鲁棒控制可以应对市场波动和外部冲击,提高经济系统的鲁棒性和稳定性。

在生物系统中,鲁棒控制可以应对遗传变异和环境变化,保持生物系统的稳定和适应能力。

自动控制系统中的鲁棒控制方法研究

自动控制系统中的鲁棒控制方法研究

自动控制系统中的鲁棒控制方法研究鲁棒控制方法是自动控制系统中一种重要的控制技术,旨在提高系统的稳定性和性能。

鲁棒控制方法可以有效地处理模型不确定性、外部扰动和控制器参数变化等问题,使得系统能够在各种不确定条件下保持稳定性和良好的性能。

1. 引言自动控制系统是指通过测量系统的状态变量,并根据预定的控制策略对系统进行调节,以使系统的输出满足一定的要求。

然而,现实中的系统往往受到各种不确定因素的影响,如模型误差、外部扰动、传感器噪声等。

这些不确定因素会导致控制系统的性能下降甚至失效。

因此,鲁棒控制方法的研究变得尤为重要,它能够提高控制系统的稳定性、鲁棒性和鲁棒性。

2. 鲁棒控制的基本概念鲁棒控制是指在不确定系统条件下设计控制器的方法。

其目标是确保系统在不确定性条件下依然能够满足性能要求。

鲁棒控制方法的基本概念包括不确定性建模、鲁棒稳定性和鲁棒性能等。

2.1 不确定性建模在鲁棒控制中,对不确定性的建模是非常关键的一步。

不确定性可以来源于多个方面,包括参数不确定性、外部扰动和测量噪声等。

常用的不确定性建模方法包括不确定参数集、不确定传递函数和不确定矩阵等。

2.2 鲁棒稳定性鲁棒稳定性是指系统在考虑不确定性的条件下保持稳定的能力。

对于存在不确定性的自动控制系统,鲁棒控制方法通过设计鲁棒稳定控制器来保证系统在不确定性条件下的稳定性。

2.3 鲁棒性能鲁棒性能是指系统在不确定性条件下满足一定性能要求的能力。

鲁棒控制方法通过设计鲁棒控制器来提高系统的鲁棒性能,如鲁棒追踪性能和鲁棒抑制性能等。

3. 常用的鲁棒控制方法在自动控制系统中,常用的鲁棒控制方法包括H∞控制、μ合成控制和自适应控制等。

3.1 H∞控制H∞控制是一种基于H∞优化理论的鲁棒控制方法,能够处理带有不确定性的系统。

该方法通过设计H∞鲁棒控制器,将系统的输出稳定性和鲁棒性能进行优化。

H∞控制方法的优点是能够处理模型不确定性和外部扰动,但其设计复杂度较高。

对鲁棒控制的认识

对鲁棒控制的认识

对鲁棒控制的认识 赵呈涛专业:学号: 092030071姓名:鲁棒控制( RobustControl )方面的研究始于 20 世纪 50 年代。

在过去的 20 年中,鲁棒控制一直是国际自控界的研究热点。

所谓“鲁棒性”,是指控制系统 在一定(结构、大小)的参数摄动下,维持某些性能的特性。

根据对性能的不同 定义,可分为稳定鲁棒性和性能鲁棒性。

如果所关心的是系统的稳定性,那么就称 该系统具有鲁棒稳定性;如果所关心的是用干扰抑制性能或用其他性能准则来描述的 品质,那么就称该系统具有鲁棒性能。

以闭环系统的鲁棒性作为目标设计得到的固定控制器称为鲁棒控制器。

定性,具有代表性的是 Zames 提出的微分灵敏度分析。

然而,实际工业过程中故障导致系统中参数的变化,这种变化是有界摄动而不是无穷小摄动,因此产生了以讨论参数在有界摄动下系统性能保持和控制为内容的现代鲁棒控制。

控制是一个着重控制算法可靠性研究的控制器设计方法, 际环境中为保证安全要求控制系统最小必须满足的要求。

一旦设计好这个控制 器,它的参数不能改变而且控制性能能够保证。

鲁棒控制方法,是对时间域或频率域来说,一般要假设过程动态特性的信息 和它的变化范围 , 一些算法不需要精确的过程模型,但需要一些离线辨识。

鲁棒 控制理论是分析和处理具有不确定性系统的控制理论,包括两大类问题:鲁棒性分析 及鲁棒性综合问题。

鲁棒性分析是根据给定的标称系统和不确定性集合,找出保证系 统鲁棒性所需的条件;而鲁棒性综合(鲁棒控制器设计问题)就是根据给定的标称模 型和不确定性集合,基于鲁棒性分析得到的结果来设计一个控制器,使得闭环系统满 足期望的性能要求。

主要的鲁棒控制理论有:1) Kharitonov 区间理论;2) H 控制理论;3)结构奇异值理论 理论。

面就这三种理论做简单的介绍。

1 Kharitonov 区间理论 1.1 参数不确定性系统的研究概况对参数不确定性系统的研究源于20世纪20年代。

控制系统中的鲁棒控制方法与应用

控制系统中的鲁棒控制方法与应用

控制系统中的鲁棒控制方法与应用随着科技的发展,控制系统在工业生产、机器人、交通运输等领域中扮演着至关重要的角色。

然而,由于环境条件的不确定性和系统参数的变化,控制系统往往面临着挑战。

为了在不确定的环境下依然能保持良好的控制性能,鲁棒控制方法应运而生。

一、鲁棒控制的概念和特点鲁棒控制是指在控制系统中,在环境不确定或者系统参数发生变化的情况下,仍然能够保持良好的控制性能。

其特点主要有以下几点:1. 对参数变化和干扰具有一定的容忍度;2. 能够在控制系统的整个工作范围内保持稳定性;3. 具有自适应能力,可以根据环境变化自动调整控制方法。

二、鲁棒控制的方法鲁棒控制的方法有很多种,其中比较常用的包括:1. H∞控制:H∞控制方法通过优化控制器的参数来最小化系统的灵敏度函数,从而增强控制系统的鲁棒性。

2. μ合成控制:μ合成控制是一种综合设计方法,通过有效地引入不确定性模型来设计鲁棒控制器,并考虑系统的性能指标。

3. 小范数控制:小范数控制是一种基于无穷小范数理论的方法,通过控制系统的特征值或者特征向量来实现鲁棒控制。

三、鲁棒控制的应用鲁棒控制方法广泛应用于各个领域的控制系统中,以下为几个典型的应用场景:1. 工业生产控制:在工业生产中,鲁棒控制可以提高生产线的稳定性和效率,确保产品质量和产量的稳定。

2. 机器人控制:在机器人控制系统中,鲁棒控制可以提高机器人的运动精度和抗干扰能力,保证其在不确定环境下的稳定性。

3. 交通运输系统:在交通运输系统中,鲁棒控制方法可以应用于车辆的稳定性控制和路径规划,提高交通流的效率和安全性。

总结控制系统中的鲁棒控制方法是应对环境不确定性和系统参数变化的一种有效手段。

通过合理选择和设计控制方法,可以提高控制系统的鲁棒性和稳定性,保证系统在不确定的环境下依然能够达到预期的控制目标。

随着科技的不断进步,鲁棒控制方法在各个领域将发挥越来越重要的作用,为提高生产效率和保证安全性提供有力支持。

自动化控制系统中的鲁棒控制方法研究

自动化控制系统中的鲁棒控制方法研究

自动化控制系统中的鲁棒控制方法研究自动化控制系统在现代工业过程中扮演着至关重要的角色,它能够实现对生产过程的自动监测和控制,提高生产效率和质量。

然而,由于环境条件的不确定性和外界干扰的存在,控制系统面临着很多挑战。

为了提高系统的鲁棒性和控制性能,研究者们提出了许多鲁棒控制方法。

一、鲁棒控制的概念和作用鲁棒控制是指控制系统对不确定性、干扰和参数变化具有较强的适应能力,保持稳定性和性能的能力。

它可以有效地解决系统模型不准确、外部干扰和测量噪声等问题,提高系统的稳定性和鲁棒性,确保系统在不确定环境下的可靠性和正常运行。

二、常见的鲁棒控制方法1. H∞控制法H∞控制法是一种广泛应用的鲁棒控制方法,它通过将系统的不确定性和干扰建模为统计误差,设计控制器使系统对这些误差具有抵抗能力。

通过最小化系统的鲁棒稳定裕度函数,可以设计出稳定性能优越的控制器。

2. μ合成方法μ合成方法是一种基于奇异值分析的鲁棒控制方法,它通过构建系统的鲁棒性性能函数,设计具有适应性的控制器。

这种方法可以从系统的角度全面分析不确定性和干扰对系统性能的影响,并通过优化设计控制器来提高系统的鲁棒性。

3. 鲁棒自适应控制法鲁棒自适应控制法是将鲁棒控制和自适应控制相结合的一种方法,它可以实时地根据系统的工作状态和性能要求来调整控制器的参数,使系统具有较强的适应能力和鲁棒性。

这种方法可以有效地解决系统参数变化和环境波动等问题。

4. 鲁棒最优控制法鲁棒最优控制法是将鲁棒控制和最优控制相结合的一种方法,它既考虑了系统的鲁棒性,又考虑了系统的控制性能。

通过优化设计控制器和状态反馈增益矩阵,可以使系统在不确定环境下达到最优性能。

三、鲁棒控制方法的应用案例1. 机械臂控制系统机械臂控制系统是自动化控制系统的一个典型应用案例,它需要精确的轨迹跟踪和力控制能力。

通过将H∞控制和自适应控制相结合,可以实现机械臂在不确定环境下的精确控制。

2. 飞行器控制系统飞行器控制系统是一个高度复杂和动态的控制系统,它需要具有鲁棒性和适应性来应对不同的飞行环境和飞行任务。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

对鲁棒控制的认识*名:***学号: *********专业:双控鲁棒控制(RobustControl)方面的研究始于20世纪50年代。

在过去的20年中,鲁棒控制一直是国际自控界的研究热点。

所谓“鲁棒性”,是指控制系统在一定(结构、大小)的参数摄动下,维持某些性能的特性。

根据对性能的不同定义,可分为稳定鲁棒性和性能鲁棒性。

如果所关心的是系统的稳定性,那么就称该系统具有鲁棒稳定性;如果所关心的是用干扰抑制性能或用其他性能准则来描述的品质,那么就称该系统具有鲁棒性能。

以闭环系统的鲁棒性作为目标设计得到的固定控制器称为鲁棒控制器。

鲁棒控制的早期研究,主要针对单变量系统(SISO)的在微小摄动下的不确定性,具有代表性的是Zames提出的微分灵敏度分析。

然而,实际工业过程中故障导致系统中参数的变化,这种变化是有界摄动而不是无穷小摄动,因此产生了以讨论参数在有界摄动下系统性能保持和控制为内容的现代鲁棒控制。

现代鲁棒控制是一个着重控制算法可靠性研究的控制器设计方法,其设计目标是找到在实际环境中为保证安全要求控制系统最小必须满足的要求。

一旦设计好这个控制器,它的参数不能改变而且控制性能能够保证。

鲁棒控制方法,是对时间域或频率域来说,一般要假设过程动态特性的信息和它的变化范围,一些算法不需要精确的过程模型,但需要一些离线辨识。

鲁棒控制理论是分析和处理具有不确定性系统的控制理论,包括两大类问题:鲁棒性分析及鲁棒性综合问题。

鲁棒性分析是根据给定的标称系统和不确定性集合,找出保证系统鲁棒性所需的条件;而鲁棒性综合(鲁棒控制器设计问题)就是根据给定的标称模型和不确定性集合,基于鲁棒性分析得到的结果来设计一个控制器,使得闭环系统满足期望的性能要求。

主要的鲁棒控制理论有:(1)Kharitonov区间理论;控制理论;(2)H∞(3)结构奇异值理论μ理论。

下面就这三种理论做简单的介绍。

1 Kharitonov区间理论1.1参数不确定性系统的研究概况对参数不确定性系统的研究源于20世纪20年代。

Black采用大回路增益的反馈控制技术来抑制真空管放大器中存在的严重不确定性,由于采用大回路增益,所以设计的系统常常不稳定;1932年,Nyquist给出了判断系统稳定性的频域判据,在控制系统设计时,用来在系统稳定性和回路增益之间进行折衷;1945年,Bode首次提出灵敏度函数的概念,对系统的参数不确定性进行定量的描述。

在此基础上,Horowitz在1962年提出一种参数不灵敏系统的频域设计方法,此后,基于灵敏度分析的方法成为控制理论中对付系统参数不确定性的主要工具。

不过,这种方法是基于无穷小分析的,在实际系统的设计中并不总是能收到良好效果。

因为系统的参数不确定性通并不能看作无穷小扰动;另外,灵敏度分析法一般要求知道对象的标称值,这在实际中往往也难以做到。

于是,人们开始研究用有界扰动来刻画参数的不确定性,出现了鲁棒辨识方法。

此法给出的辨识结果不是一个确定值,而是参数空间中的一个域(如超矩形、凸多面体、椭球等)。

相应地,不确定系统的参数空间设计方法也得到广泛而深入的研究。

1984年,Barmish将前苏联学者Kharitonov的区间多项式鲁棒稳定性的著名结果——四多项式定理。

引入控制界,掀起了在参数空间中研究系统鲁棒性的热潮。

1.2 关于区间多项式的几个重要定理参数摄动通常表现为独立摄动、线性相关摄动和多线性相关摄动3种模式。

判断在相应的参数摄动模式下系统鲁棒稳定性的主要定理分别是:四多项式定理、棱边定理和映射定理。

2 结构奇异值理论(理论)2. 1 结构奇异值理论的产生和L定义当系统中的不确定性可以用一个范数有界的摄动块来刻画时,系统对确定性的最大容限(鲁棒性)可以用小增益定理来描述。

若只考虑定的传递函数和稳定摄动时,小增益定理用矩阵奇异值给出的系统鲁棒性估计是无保守性的。

但在许多实际问题中,仅用一个范数有界的摄动块来刻画系统的未建模动态是不够精细的。

因为我们常常可以获得未建模动态中的部分内部结构信息,若此时仍用小增益定理来估计系统的鲁棒性,所得结论的保守性可能会很大。

于是Doyle于1982年首次提出了结构奇异值——SSV(StructuredSingularValue)的概念,再经Doyle自己及Packard等的进一步研究及整理便上升为研究动态不确定性鲁棒控制的结构奇异值理论(亦称L理论)。

这一理论的基本思想是:将一个具有回路多点独立的有界范数摄动化为块对角摄动结构,然后给出判断系统鲁棒稳定的充要条件。

这一理论同时兼顾了系统的稳定鲁棒性和性能鲁棒性,是鲁棒控制理论中的一个重要分支。

2. 2 几个重要定理及L综合小L定理、主环定理和L综合问题。

L综合的任务就是寻找正则控制器K,使得式得到满足。

著名的L综合算法是Doyle在1985年提出的K-D迭代算法,它将L综合问题转化为标准的H∞优化问题及标准的凸优化问题。

2. 3 混合L问题求取相应系统的结构奇异值就是所谓的混合L问题。

对于混合L,似乎可以将其中的实参数摄动当作复摄动来处理,但具体数值计算表明:随着$中实参数数目的增多,复L 与混合L之间的比值可以任意大。

因此,必须采取新的方法来求解混合L问题。

Doyle于1985年首先用L方法考虑了实参数不确定性问题,找到了计算混合L上界的有效方法;田玉平、冯纯伯将popov判据进行推广,来判断系统的鲁棒绝对稳定性,并利用popov 乘子的思想和回路变换的方法来研究混合L的上界问题。

另外,混合L的上界问题可以转化成LMI的求解问题。

2. 4 回路成形法(LoopShaping)回路成形法也是一种处理动态不确定性的有效方法。

其基本思想是:通过选择权函数来改善开环奇异值频率特性,以实现系统的闭环性能,并在鲁棒性能指标和鲁棒稳定性之间进行折衷。

在因此,回路成形控制器的设计就是要寻找一个正则控制器K,使L 满足低频高增益,高频低增益。

McFarlane等在1992年给出了具体的设计步骤。

2. 5 尚待解决的两个问题(1)对于多项式族的鲁棒稳定性问题,当参数摄动超出凸多面体摄动的范围时,目前尚无十分有效的手段来检验多项式族的鲁棒稳定性。

在实际问题中,参数摄动常以多线性和多项式映射的形式出现。

虽然通过映射定理可以将参数空间中的满足一定条件的超矩形映射为复平面上的凸多边形,利用剔零算法给出多项式族鲁棒稳定的充要条件,但我们尚不清楚满足条件的超矩形是否包括了所有此类多线性映射。

(2)对于L问题,min K‖F1(G,K)‖L算法的完善及坏条件数系统的L分析方法都是尚需研究的问题。

目前有效的综合方法是K-D迭代法。

该算法复杂,收敛性也难以保证。

因此,有必要寻找更有效的L综合方法。

参H∞鲁棒控制理论是在H∞空间(即Hardy空间)通过某些反映性能指标的无穷范数优化而获得具有鲁棒性能的控制器的一种控制理论,H∞空间是在开右半平面解析且有界的矩阵函数空间。

3 H∞控制的发展概况控制界将H∞鲁棒控制理论的发展过程分为两大阶段,分别以Zames和Doyle等发表的两篇著名论文为标志。

前一阶段的理论被称为经典H∞鲁棒控制理论,后一阶段的理论被称为状态空间H∞鲁棒控制理论。

本人将H∞控制理论的发展大致分为3个时期:酝酿诞生期、发展完善期和推广应用期。

3. 1 酝酿诞生期(1981年~1984年)20世纪60年代发展起来的LQG(线性二次高斯型)反馈设计(H2控制)方法在许多实际控制系统的设计中没能获得较好的应用,因它忽略了对象的不确定性并对系统所存在的干扰信号作了苛刻要求。

针对LQG对干扰信号所作的不合理限制,Zames于1981年在文中提出了著名的H∞鲁棒控制思想:对于一个属于有限能量的信号集的干扰信号,设计一个控制器,使得闭环系统稳定且干扰对系统期望输出影响最小。

文的发表标志着H∞鲁棒控制理论的诞生。

在这一时期,H∞控制理论主要使用逼近方法和插值方法。

前者使用Nevanlinna-Pick插值理论及矩阵形式的Sarason理论,后者借助于AAK理论。

Doyle等对当时的控制进行了总结,形成了“1984年方法”。

其基本思路是:通过稳定化控制器的Youla参数,将在控制器集合中寻求使传递函数矩阵的H∞范数最小化问题变换成模型匹配和广义距离问题,然后再将其变换为Nehari问题来求解。

求解过程涉及到Youla参数化、内外分解、谱分解及最佳Hankel逼近等运算。

计算量相当大,且每步都要增加状态。

为保持系统兼有鲁棒稳定性和良好性能,H∞控制优化设计问题由灵敏度极小化问题发展为混合灵敏度优化问题;采用Kwakernaak多项式方法可将该问题转化为多项式方程或矩阵方程的求解问题。

3.2 发展完善期(1985年~1988年)在这一时期,H∞控制理论取得了突破性进展。

Francis和Doyle对当时的H∞控制的发展状况作了详尽的总结,并着重介绍了逼近方法。

Ball和Cohen将ball和Helton的几何理论进行简化,把H∞控制的求解问题化为谱和J-谱的分解问题,从而获得3个Raccati方程。

此方法对后来的J-谱分解法、(J,J′)无损分解法的形成和完善起了重要作用,并沟通了它与插值方法,多项式方法之间的联系。

Kimura采用方向性插值解决了2块问题,提出了“共轭化”(conjugation)概念,创立了(J,J′)无损分解方法。

Limebeer等对2块问题的控制器阶次的上界进行了研究,提出可得到状态数不超过广义对象阶次的控制器。

为了分析含有不确定性系统的鲁棒稳定性问题,Khargonekar等创立了H∞控制的代数Riccati方程解法(ARE),研究了H∞状态反馈控制问题,建立了H∞控制和二次镇定、线性二次微分对策之间的联系,这对后来的微分对策方法的产生和发展起到了促进作用。

在这一时期,最具有突破性的成果是Doyle等人在著名的“DGKF论文”中提出的“2-Riccati方程”解法,它标志着H∞控制理论的成熟。

这一解法表明:对于标准的H∞控制问题求解,只需求解两个非耦合的代数Riccati方程便可获得阶次不超过广义对象的McMillan阶次的H∞控制器。

他们进一步给出更简单的H∞控制器的求解方法,指出H∞状态反馈控制问题可通过求解一个代数Ric2cati方程来获得。

到此,H∞控制问题在概念和算法上均被大大简化,再加上含有上述解法的软件包,如Robust_control_box,Matrix和Xmath等的出现,使得H∞控制理论成为真正实用的工程设计理论。

3.3 推广应用期(1989年~今)在这一时期,H∞控制理论向着实用化的方向发展。

Green等发展了Ball和Cohen的工作,将H∞控制问题转化为2个J-谱分解问题,并给出了系统的解法。

相关文档
最新文档