鲁棒控制理论第六章-1

合集下载

鲁棒控制理论 第六章

鲁棒控制理论 第六章

鲁棒控制理论第六章本章将介绍鲁棒控制理论的基本概念和重要性。

鲁棒控制是一种能够在面对各种不确定性和扰动时保持系统稳定性和性能的控制方法。

在实际工程中,由于各种外部因素的存在,系统常常会面临不确定性和扰动,这导致传统控制方法的性能下降或失效。

鲁棒控制理论的提出旨在解决这些问题,使得控制系统能够在不确定环境下保持稳定并具备良好的性能。

鲁棒控制理论的基本概念包括:鲁棒稳定性和鲁棒性能。

鲁棒稳定性指的是控制系统在面对各种不确定性时能够保持稳定,即使系统参数发生变化或外部干扰存在,仍能使受控系统收敛到期望状态。

鲁棒性能则是指控制系统在鲁棒稳定的前提下,仍能保持良好的控制性能,如快速响应、抑制干扰等。

___控制在工程领域具有广泛的应用价值。

它能够有效应对各种不确定性因素,如参数变化、外部扰动、测量误差等,保证系统稳定和性能优良。

鲁棒控制不仅能够应用于传统的电气和机械系统中,还可以应用于复杂的多变量和非线性系统中,如控制网络、飞行器、汽车等。

因此,掌握鲁棒控制理论对于工程领域的研究和实践具有重要意义。

在接下来的章节中,我们将进一步探讨___控制理论的原理和方法,以及其在实际工程中的应用案例。

通过深入了解和研究鲁棒控制理论,我们将能够更好地设计和实现稳定可靠的控制系统,提高工程领域的控制技术水平。

鲁棒控制理论是一种应用于控制系统设计的理论框架,旨在解决系统不确定性和外部干扰对系统性能造成的影响。

该理论的主要目标是设计出对参数变化、模型不准确性和外部扰动具有强鲁棒性的控制器。

鲁棒控制理论的主要原理是通过在控制系统中引入设计参数的变化范围,并使用鲁棒性准则来评估控制系统的性能。

这样设计的控制器能够在不确定性条件下保持系统的稳定性和性能。

在鲁棒控制理论中,主要采用了一些常见的数学工具和方法,如线性矩阵不等式、H∞控制、μ合成等。

这些方法能够有效地处理系统不确定性和外部干扰,并提供了一种灵活且可行的控制系统设计方案。

总而言之,鲁棒控制理论是一种应对系统不确定性和外部干扰的有效工具。

鲁棒控制理论 第六章

鲁棒控制理论 第六章

鲁棒控制理论第六章引言鲁棒控制是一种应对系统参数变化、外部干扰、测量噪声等不确定性因素的控制方法。

在工程控制中,系统的不确定性是常见的,对系统的稳定性和性能造成了挑战。

鲁棒控制理论通过设计具有鲁棒性的控制器,可以保证系统在存在不确定性的情况下仍能满足一定的性能要求。

本文将介绍鲁棒控制的基本概念、设计方法和应用示例等内容。

鲁棒性分析鲁棒性分析是鲁棒控制的基础,通过分析系统的不确定性对控制器性能的影响,评估控制器的鲁棒性。

鲁棒性分析一般包括稳定性分析和性能分析两个方面。

稳定性分析稳定性是控制系统最基本的要求。

对于鲁棒控制系统,稳定性分析主要关注系统的稳定性边界,即系统参数变化在何种范围内仍能保持稳定。

常用的鲁棒稳定性分析方法包括结构化奇異值理论和小结构摄动方法等。

性能分析除了稳定性,控制系统的性能也是重要的考虑因素。

性能分析通常包括鲁棒性能和鲁棒鲁棒性能两个方面。

鲁棒性能是指系统在存在不确定性的情况下,能否满足一定的性能指标。

通过分析不确定性对闭环系统传递函数的影响,可以评估系统的鲁棒性能。

鲁棒鲁棒性能是指系统在存在不确定性的情况下,能够满足给定的鲁棒鲁棒性能规范。

鲁棒鲁棒性能设计方法包括鲁棒饱和控制器设计方法和鲁棒H-infinity控制器设计方法等。

鲁棒控制设计鲁棒控制设计是鲁棒控制理论的核心内容。

鲁棒控制设计方法包括鲁棒控制设计和鲁棒控制设计方法。

鲁棒控制设计方法鲁棒控制设计方法是通过设计鲁棒控制器来实现鲁棒控制的方法。

鲁棒控制设计方法通常分为线性鲁棒控制和非线性鲁棒控制两类。

线性鲁棒控制设计方法中,常用的方法包括μ合成方法、玛尔科夫参数跟踪方法,以及基于奇異值方法的设计等。

非线性鲁棒控制设计方法中,常用的方法包括滑模控制、自适应控制、模糊控制和神经网络控制等。

鲁棒控制设计鲁棒控制设计是指将鲁棒控制理论应用于实际控制系统中,并进行控制器设计的过程。

鲁棒控制设计需要考虑系统的性能要求、鲁棒性要求和控制器结构等因素。

鲁棒控制课件

鲁棒控制课件

.
• 结构奇异值 实际的被控对象可以看作是对象模型 集合 G 中一个元素。结构不确定性Δ 描 述系统模型与标称模型的偏离程度。为 了评价闭环系统的稳定性和性能,可以 将闭环系统分为两部分:广义标称对象 M ( s )和不确定性Δ ,得到如图 所示的M −Δ 结构。
传递函数矩阵 M ( s )包含对象的标称模型、控制器和不确定性的加 权函数。摄动块Δ 是块 对角矩阵,它包含各种类型的不确定性摄动。Δ 结构是根据实际问 题的不确定性和系统所需要 的性能指标来确定的,它属于矩阵集 Δ ( s)。这个集合包含三部分的 块对角结构: (1)摄动块的个数 (2)每个摄动子块得类型 (3)每个摄动子块的维数 本文考虑两类摄动块:重复标量摄动块和不确定性全块。前者表示 对象参数不确定性,后 者表示对象动态不确定性。 定义块结构 Δ ( s)为 {}
实际应用
非线性系统设计的基本问题是我们仅知道被 控对象的部分动态信息,无法获得被控对象的精 确模型,所建立的模型要反映实际的被控对象,就 必然存在未知项和不确定项;如果在控制器设 计阶段没有恰当地处理这些不确定项,可能会使 得被控系统的性能明显地恱化,甚至造成整个闭 环系统不稳定。控制器必须能够处理这些未知 项戒不确定项,因而估计和鲁棒是设计一个成功 的控制器的关键。自适应控制和鲁棒控制及其 相结合的控制器是能够处理这些未知项戒不确 定项,以获得期望的暂态性能和稳态跟踪精度行 之有效的方法。
研究问题:
• 鲁棒控制器问题是控制系统 设计中鱼待解决的问题之一, 它是在所描述的被控对象不 确定性允许范围内,综合其控 制律,使系统保持稳定和性能 鲁棒. • 鲁棒控制理论包括鲁棒性分 析和鲁棒设计两大类问题. • 由于系统中的不确定性对系 统的性能能否保持有决定性 的影响,且高性能指标的保持 要求高精度的标称模型.

鲁棒控制理论及应用课程吴敏

鲁棒控制理论及应用课程吴敏

∂xT
4γ 2 ∂xT
∂x

x
=
f
(x) +
1 2γ 2
gg T
∂φ ∂x
(x)
d)在x=0附近,存在光滑正定函数 φ (x)和正常数ε,使哈密顿-
9
雅可比不等式
∂φ ∂xT
f
成立 + 1 ∂φ gg T ∂φ + hTh + ε xT x ≤ 0
4γ 2 ∂xT
∂x
2015年10月25日
鲁棒控制理论及应用课程

x=
f
(x) +
1 2γ 2
g1 g1T
∂φ ∂x

1 2
g2
g2T
∂ϕ ∂x
+
g1
γ 2
g1T
∂φ ∂x
+
~
z
是渐进稳定的,而且是局部L2稳定的
b)在x=0附近,存在光滑正定函数 φ (x)和正常数ε,使哈密顿-
雅可比不等式 成立,而且 ∂φ ∂xT
f
+
1 4
∂φ ∂xT
⎛ ⎜ ⎝
给定一个常数γ>0,下述条件是等价的。
a)非线性系统Szw是指数稳定的,而且 γ S < zw Lc2 b)近似线性系统 S%zw 是稳定的,而且 S%zw ∞ < γ
c)在x=0附近,存在光滑正定函数 φ (x),使哈密顿-雅可比方程
成立,而且 是指数稳定的 ∂φ f + 1 ∂φ ggT ∂φ + hTh = 0
∂xT
4γ 2 ∂xT
∂x
7
成立,而且
1 gT ∂φ 2
lim 2 ∂x < ∞

现代控制理论鲁棒控制资料课件

现代控制理论鲁棒控制资料课件

鲁棒优化算法的应用
01
02
03
鲁棒优化算法是一种在不确定环 境下优化系统性能的方法。
鲁棒优化算法的主要思想是在不 确定环境下寻找最优解,使得系 统的性能达到最优,同时保证系 统在不确定因素影响下仍能保持 稳定。
鲁棒优化算法的主要应用领域包 括航空航天、机器人、能源系统 、化工过程等。
05
现代控制理论鲁棒控制实 验及案例分析
现代控制理论鲁棒控制的成就与不足
• 广泛应用在工业、航空航天、医疗等领域
现代控制理论鲁棒控制的成就与不足
01
02
不足
控制系统的复杂度较高,难以设 计和优化
对某些不确定性和干扰的鲁棒性 仍需改进
03
实际应用中可能存在实现难度和 成本问题
04
未来研究方向与挑战
研究方向
深化理论研究,提高鲁棒控制器 的设计和优化能力
线性鲁棒控制实验
线性鲁棒控制的基本原理
01
介绍线性鲁棒控制的概念、模型和控制问题。
线性鲁棒控制实验设计
02 说明如何设计线性鲁棒控制实验,包括系统模型的建
立、鲁棒控制器的设计和实验步骤。
线性鲁棒控制实验结果分析
03
对实验结果进行分析,包括稳定性、性能和鲁棒性能
等。
非线性鲁棒控制实验
非线性鲁棒控制的基本原理
03
线性系统的分析与设计:极点配置、最优控制和最优
估计等。
非线性控制系统
1
非线性系统的基本性质:非线性、不稳定性和复 杂性。
2
非线性系统的状态空间表示:非线性状态方程和 输出方程。
3
非线性系统的分析与设计:反馈线性化、滑模控 制和自适应控制等。
离散控制系统

鲁棒控制理论

鲁棒控制理论


1
这种形式的摄动可用下图表示
q
H
L
W
p
v z
L
-
上图可以简化为
L
p q
H
根据小增益定理,闭环系统稳定的充分条
件是 H 1 L
H L H L ,且 L 摄动系统稳定的充分条 H

1
件是
1
实际上上式是一个充要条件
从方框图可得 稳定条件为
假设相对摄动满足下面不等式
L ' ( j ) L ( j ) L ( j ) W ( j ) , R
则稳定条件变为
L ' ( j ) L ( j ) L ( j ) T 0 ( j ) W ( j )T 0 ( j ) 1, R
W 2 ( j ) L ( j ) 1 L ( j ) ,
上式表明在每一频率下,临界点-1都位于 以 L ( j ) 为圆心,以 W 2 ( j ) L ( j ) 为半径的圆外。
摄动系统框图,设 || || 1
W 2T
W2

K
P
W 2T
即峰值 S
R
大,在高频衰减下来。
考虑SISO反馈系统的回路增益L=PC的Nyquist图,L是 标称值,L’是实际值
-1 L’ L
0
实际闭环系统稳定的充分条件是L’的
Nyquist图不包围-1点。由图可以看出,也 就是对于所有频率有:
L ' ( j ) L ( j ) L ( j ) ( 1) L ( j ) 1 , R

1
1.3.2 控制系统的摄动形式

《鲁棒控制》-1-鲁棒控制问题的提出和描述_32201772

《鲁棒控制》-1-鲁棒控制问题的提出和描述_32201772
j
线性定常受控对象参数摄动模型的一般形式:
《鲁棒控制》课堂笔记 清华大学自动化系 钟宜生
Gp (s)∈Q
⎧ ⎪ ⎪
bm an
( (
q) q)
sm sn
+ +
bm−1 an−1
(q) sm−1 + (q) sn−1 +
+ b1 (q) s + b0 + a1 (q) s + a0
(q) (q)
⎫ ,⎪ ⎪
其中
a0 = −1.0732, b0 = 1.0732, c0 = 1
Δa ≤ 0.3157 Δb ≤ 0.3157
《鲁棒控制》课堂笔记 清华大学自动化系 钟宜生
门架控制系统
伺服电机模型:
《鲁棒控制》课堂笔记 清华大学自动化系 钟宜生
伺服电机动力学方程:
其中
M
d
2x(t)
dt 2
+
D
dx(t )
线性定常受控对象可能含有参数摄动和模型摄动,即具有混合摄动:
Gp (s) = Go (s) + ΔG (s) Go (s) ∈G or Q ΔG (s) = W1 (s) Δ (s)W2 (s) Δ(s)∈Ω
1.2 时域不确定模型
1.2.1 系数区间摄动
还以 RC 电路为例:
x
(t
)
=

1 RC
x
(t
{ } { } A = aij , B = bij { } C = cij
aij ≤ aij ≤ aij , bij ≤ bij ≤ bij , cij ≤ cij ≤ cij 其中区间端点是已知的,即αij ,αij (α = a, b, c)。

《鲁棒控制系统》课件

《鲁棒控制系统》课件
详细描述
在工业自动化生产线上,各种设备、传感器和执行器需要精 确控制和协调工作。鲁棒控制系统能够有效地处理各种不确 定性,如设备故障、传感器漂移等,保证整个生产过程的稳 定性和效率。
航空航天
总结词
在航空航天领域,鲁棒控制系统用于 确保飞行器的安全和稳定运行。
详细描述
航空航天领域的飞行器面临着复杂的 环境和严苛的飞行条件,鲁棒控制系 统能够有效地处理各种不确定性和干 扰,保证飞行器的安全和稳定运行。
05
鲁棒控制系统的发展趋势 与展望
人工智能与鲁棒控制
人工智能在鲁棒控制中的应用
利用人工智能算法优化控制策略,提高系统的鲁棒性和 自适应性。
深度学习在鲁棒控制中的潜力
通过训练深度神经网络,实现对不确定性和干扰的高效 处理,提升系统的鲁棒性能。
网络化与鲁棒控制
网络控制系统的发展
随着网络技术的进步,网络化控制系统成为研究的热点,对鲁棒控制提出了新的挑战和 机遇。
鲁棒优化控制
总结词
通过优化方法来设计鲁棒控制律,以实现系统在不确定性和干扰下的最优性能 。
详细描述
鲁棒优化控制是一种基于优化方法的控制策略,通过考虑系统的不确定性和干 扰,来设计最优的控制律。这种方法能够保证系统在各种工况下的最优性能, 提高系统的鲁棒性和适应性。
自适应控制
总结词
通过在线调整控制律参数来适应系统参数的 变化和外部干扰。
要点二
详细描述
电力系统的稳定运行对于整个社会的正常运转至关重要。 鲁棒控制系统能够有效地处理电力系统中的各种不确定性 和干扰,保证电力供应的稳定和可靠。
04
鲁棒控制系统的挑战与解 决方案
系统不确定性
系统不确定性描述
01

鲁棒稳定性鲁棒控制

鲁棒稳定性鲁棒控制
S (s) 1 1 P0 ( s ) K ( s )
体现了开环特性的相对偏差 GK GK 到闭环频率特性 GB GB 的增益,因此,如果我们在设计控制器K时, 能够使S的增益足够小,即
S ( j ) , 为充分小正数
那么闭环特性的偏差将会抑制在工程允许的范围内。 传递函数S(s)称为系统的灵敏度函数。实际上S(s)还等 于干扰w到输出的闭环传递函数,因此减小S(s)的增益 就等价于减小干扰对控制误差的影响。引入定义
1 G0 ( s) , M 0 s 0 Ms ( s ) ( M 0 s 0 ) [(M 0 M ) s ( 0 )]
可以找到适当的界函数W ( j ),有 ( j ) W ( j )
鲁棒控制理论是分析和处理具有不确定性系统的 控制理论,包括两大类问题:鲁棒性分析及鲁棒性综 合问题。鲁棒性分析是根据给定的标称系统和不确定 性集合,找出保证系统鲁棒性所需的条件;而鲁棒性 综合(鲁棒控制器设计问题)就是根据给定的标称模 型和不确定性集合,基于鲁棒性分析得到的结果来设 计一个控制器,使得闭环系统满足期望的性能要求。 主要的鲁棒控制理论有: Kharitonov区间理论; H控制理论; 结构奇异值理论(理论); 等。
S ( s) sup [ S ( j )]
R
* ( A ) { ( A A)} , ( ) 其中 表示最大奇异值,即 max 1 2
A*为A的共轭转置阵, max为最大特征值。
H控制问题即为对于给定的 > 0,设计控制器K 使得闭环系统稳定且满足
S ( s)
G ( s) 1 , a [ a , a ] 2 s as 1
可以代表带阻尼的弹簧装置,RLC电路等。这种不确 定性通常不会改变系统的结构和阶次。 动态不确定性 也称未建模动态 ( s) ,我们通常并不知道它的结构、 阶次,但可以通过频响实验测出其幅值界限:

最新第6章--鲁棒控制系统的计算机辅助设计与仿真教学讲义PPT课件

最新第6章--鲁棒控制系统的计算机辅助设计与仿真教学讲义PPT课件

6.1.2
在MATபைடு நூலகம்AB的鲁棒控制工具箱中使用了一种特殊
的数据结构, 即分层数据结构(Hierarchical Data
Structure
来表示所描述的系统对象。 这使得用
户可以用一个简单的变量来代表所要研究的系统并进
行相关的运算, 从而很大程度上方便了用户访问鲁棒控 制工具箱中函数的过程。 这个变量称为tree类型的变量。
fr = tree(′w, sv′, w, sv);
DesignData = tree(′plant, controller, freq, name′, TSS, ssf, fr, ′Aircraft... Design Data′);
图6.1显示了tree变量DesignData的层次结构。
图 6.1 Design Data的层次结构
这里的λi代表矩阵A的第i个特征值。
(4)如果 A1存在,(A) 1 . ( A1)
(5)如果
A1
存在,
(
A)
1 ( A1)
.
(6) ( A) ( A)
(7) ( A B ) ( A) ( B )
n
(8)
2 i
Trace(
A* A)
i 1
其中属性1在鲁棒控制系统的分析和设计中很重要。 因为该属性反映了矩阵A的最大特征值与输入向量x在 所有可能方向上的矩阵增益的最大值之间的关系。 对 于稳定的Laplace变换矩阵G(s)∈Cm×n , p=min(m,n)。 定义G(jω)的与频率相关的H2和H∞范数如下:
H2范数
G 2
[ (i(G (j)))2d]1 2
(6.4)
H∞范数
G sup(G(j))

鲁棒控制理论第六章-1

鲁棒控制理论第六章-1
B1 D11 D21 B2 D12 D22
A G11 s G12 s G s C1 G21 s G22 s C2 z w G11 s 即我们有: G s y u G21 s u K s y
干扰抑制问题
r — 图2 u K G0 + d y
设计控制器K s ,使闭环系统内稳定, 且使J sup y

2
v H 2 , v 2 1 极小
1

y I G0 s K s d Tyv s W s v sup y
D d d W s v, v H 2 , v 2 1 其中W s 是稳定的实有理函数, 称为权函数,用来反映在期望的 频段上对干扰的抑制能力。 上式表示一个能量有限的干扰信 号v通过权函数W s 形成系统的 干扰输入d .
范数极小的问题,便转化为使Tyv s W s 的
注意到图2干扰抑制系统中,z y,于是有 y Wv G0 r u W z Wv G0 r u u Ky 由此得广义被控对象的传递函数阵 W G0 G0 G s W G G 0 0 其H 标准控制的结构框图 如图3所示,图中外部输入 v 信号w r
2
P s 被控对象,C1 , C2 分别为前馈和
反馈控制器。由于增加了设计的自由度, 便可保证控制器成为正则有理函数。 因此,在跟踪问题中取 也称为二自由度系统。u为控制信号, 由图有 r u C1 r C2 v C1 C2 v 参考输入 被跟踪信号 r并不是一个已知 确定信号,而是属于某个能量有限信号 的集合 R r r Ww, w H 2 , w 2 1

鲁棒控制理论及应用--

鲁棒控制理论及应用--

维纳滤波器方法的基本思想
r

e
C
u
d
P
y
d: 可以用某种随机过程来表示的外界扰动
把反馈控制问题变成数学上的某些优化问题 卡尔曼-布西滤波器 (Kalman-Bucy Filter)理论
现代控制理论
LQG控制器


e
C
u
d
P
y
Байду номын сангаас
卡尔曼-布西滤 波器
控制问题的解 (分离原理): ·设计卡尔曼-布西滤波器,获得x的估计值; ·设计基于x的估计值的状态反馈增益矩阵K。
涉及课程及其参考书
涉及课程: • 线性系统理论(Linear System Theory) • 最优控制(Optimal Control) 参考书: • 吴敏,桂卫华,何勇:《现代鲁棒控制》(第2版) • 中南大学出版社,2006 • Zhou K, Doyle J C and Glover K.Robust and Optimal Control.Prentice Hall,1996
第一讲:
鲁棒控制研究的基本问题
基本的反馈控制系统
d
r
u
控制器 控制对象
y
v
传感器
n
r-目标输入,y-控制对象输出,u-控制输入
v-传感器输出,n-传感器噪声,d-外部扰动
控制系统设计与不确定性
控 制 理 论 模 设计方法 型 实际 控制 对象
扰来 动自 信控 号制 。系 统 本 身 外 部 的
系统不确定性
非结构不确定性 (Unstructured Uncertainty)
P0
P0 P
结构不确定性 (Structured Uncertainty)

鲁棒控制理论及应用课程吴敏

鲁棒控制理论及应用课程吴敏

∂xT
4γ 2 ∂xT
∂x

x
=
f
(x) +
1 2γ 2
gg T
∂φ ∂x
(x)
d)在x=0附近,存在光滑正定函数 φ (x)和正常数ε,使哈密顿-
9
雅可比不等式
∂φ ∂xT
f
成立 + 1 ∂φ gg T ∂φ + hTh + ε xT x ≤ 0
4γ 2 ∂xT
∂x
2015年10月25日
鲁棒控制理论及应用课程
γ s ≤ zw Lc2
z
2
S = Sup w zw Lc2
w∈L2 {0}ILc∞
2
4
2015年10月25日
鲁棒控制理论及应用课程
吴敏
耗散性与局部L2稳定性
对于系统Szw,当 x0 = x(0),x(t) = x 时,如果存在满足
V
( x0
)
+
∫t 0
⎡⎣γ
2 wT

) w(τ
)

zT

)
z (τ
现代的方法:微分几何方法、逆系统方法、变结构控制、 基于Volterra级数的方法、非线性H∞控制
2
2015年10月25日
鲁棒控制理论及应用课程
吴敏
L2增益的概念
线性系统H∞控制
非线性系统H∞控制
在时域: H∞范数由零初始条件下从输入到输出的L2诱导范数来代替
L2增益: 非线性系统H∞控制的实质
1
10
2015年10月25日
鲁棒控制理论及应用课程
吴敏
状态反馈非线性H∞控制的可解性条件

鲁棒控制与故障诊断 第六章

鲁棒控制与故障诊断 第六章
E e
E
2 2
0
e dt W e S oW d
2

2 2
Include the control signal u in the cost function:
E

e
2 2

2
~ u
2 2

W e S oW
2
d d 2
W u KS o W
Robustness problem???? H Performance: under worst possible case sup e 2 W e S oW d
L stable and nonminimum phase with RHP zeros: z1,…, zk:
s z1 s z 2 s z k L( s ) Lmp ( s ) s z1 s z 2 s zk
1
L ( j 0 )




d ln L dv

Sensor noise rejection and robust stability (high frequency):
( T0 ) ( PK ( I PK ) 1 ) ( 1)
Note that
( S 0 ) 1 ( PK ) 1 ( S i ) 1 ( KP ) 1 (T0 ) 1 ( PK ) 1
~ d
2
1
restrictions on the control energy or control bandwidth: ~ W KS W sup u
~ d
Combined cost:
2
1

鲁棒控制理论及应用lesson

鲁棒控制理论及应用lesson

鲁棒性设计问题: 必须根据不确定性的结构加以区别。
非结构不确定性: H∞控制;结构不确定性: μ综合
3
2007年10月9日
鲁棒控制理论及应用
中南大学信息科学与工程学院 吴 敏
鲁棒性分析和设计方法一览表
外部输入假设 性能要求
摄动假设
E[w(t)w∗ (t)] E[z(t)z∗ (t)] ≤ 1 = δ (t −τ )
μΔ
[M
(s)]
=
min{σ
max
(Δ)
:
det(I

1 M
Δ)
=
0,
Δ是结构性的}
M(s)关于复数结构不确定性Δ的最大结构奇异值
6
2007年10月9日
鲁棒控制理论及应用
中南大学信息科学与工程学院 吴 敏
结构奇异值μ的引入(1)
△△
e2
w2
w1
e1
M
问题:多大的Δ(在 Δ 的意义下) ∞ 不致于使反馈系统不稳定
w = U0δ (t)
E (U 0U
∗ 0
)
=
I
E( z 2) ≤1 2
Δ=0
w ≤1 2
z ≤1 2
Δ=0
分析方法
设计方法
M 22
≤1
2
LQG H2
M 22 ∞ ≤ 1 奇异值
w ≤1 2
内部稳定
Δ ≤1 ∞
M11 ∞ ≤ 1
H∞
4
2007年10月9日
鲁棒控制理论及应用
中南大学信息科学与工程学院 吴 敏
, DM 2 D−1
=
⎡ ⎢ ⎢ ⎢ ⎢ ⎣
1 a
1
d2 d1

鲁棒控制及其发展概述

鲁棒控制及其发展概述

鲁棒控制及其发展概述摘要本文首先介绍了鲁棒控制理论的发展过程;接下来主要介绍了研究鲁棒多变量控制过程中两种常用的分析方法:方法以及分析方法;最后给出了鲁棒控制理论的应用及其控制方法,不仅仅用在工业控制中,它被广泛运用在经济控制、社会管理等很多领域。

随着人们对于控制效果要求的不断提高,系统的鲁棒性会越来越多地被人们所重视,从而使这一理论得到更快的发展。

并且指出了目前鲁棒控制尚未解决的问题以及研究的热点问题。

关键词:鲁棒控制;鲁棒多变量控制;鲁棒控制;分析方法一、引言鲁棒控制(Robust Control)方面的研究始于20世纪50年代。

在过去的20年中,鲁棒控制一直是国际自控界的研究热点。

以闭环系统的鲁棒性作为目标设计得到的固定控制器称为鲁棒控制器。

控制系统的鲁棒性研究是现代控制理论研究中一个非常活跃的领域,鲁棒控制问题最早出现在上个世纪人们对于微分方程的研究中。

最早给出鲁棒控制问题的解的是Black在1927年给出的关于真空开关放大器的设计,他首次提出采用反馈设计和回路高增益的方法来处理振控管特信各大范围波动。

之后,Nyquist频域稳定性准则和Black回路高增益概念共同构成了Bode的经典之著[1]中关于鲁棒控制设计的基础。

20世纪60年代之前这段时间可称为经典灵敏度设计时期。

此间问题多集中于SISO系统,根据稳定性、灵敏度的降低和噪声等性能准则来进行回路设计。

20世纪六七十年代中鲁棒控制只是将SISO系统的灵敏度分析结果向MIMO进行了初步的推广[2],灵敏度设计问题包括跟踪灵敏度、性能灵敏度和特征值/特征向量灵敏度等的设计。

20世纪80年代,鲁棒设计进入了新的发展时期,此间研究的目的是寻求适应大范围不确定性分析的理论和方法。

二、正文1. 鲁棒控制理论方法在工程中应用最多,它以输出灵敏度函数的范数作为性能指标,旨在可能发生“最坏扰动”的情况下,使系统的误差在无穷范数意义下达到极小,从而将干扰问题转化为求解使闭环系统稳定并使相应的范数指标极小化的输出反馈控制问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

ru 2
t dt, r

0
可求得使性能指标J 达极小得状态反馈控制律为u Kx t ,
(6.2)
其中K 1 q 5 2q 2 5 2q q 4 , q 4 r1 . 根据LQ最优调节器的性质,由(6.1)和(6.2)构成的状态反馈闭环系统具有大 于0.5的稳定幅值裕度,大于等于 60o的相角稳定裕度.

b
0

1

1

由摄动后的被控对象的状态空间实现和式(4.1.2)的闭环反馈控制律,构成一
个闭环系统.可以求得该闭环系统具有两个闭环极点,这两个闭环极点当
r 0控制能量较小时,p1 q, p2 1 2
可见,当 0.5 0时,p1和p2均为实数,且 越小,p2越大,也就是说, 被控对象的微小模型摄动会使该闭环系统具有很大的不稳定的正实极点.
• H∞控制理论发展
– 1981年,Zames提出以控制系统的某些信号间的传递函数(矩 阵)的H∞范数作为优化性能指标的设计思想
– 1982年,Doyle针对H∞性能指标发展了“结构奇异值”来检验 鲁棒性,极大程度地促进了以∞范数为性能指标的控制理论的 发展
– Youla等人提出的控制器参数化,使Zames的H∞性能指标以及 Doyle的结构奇异值理论揭开了反馈控制理论的新篇章
u
其中x Rn , z Rm , y Rq , w Rr ,u R p .
y
相应的传递函数矩阵为
K
图1
A
B1 B2
G

s


G11 G21
s s
G12 G22
s s

CC12


D11 D21
D12 D22

即我们有: zy
– 外部信号(包括干扰信号、传感器噪声和指令信号等) 不是具有已知特性(如统计特性或能量谱)的信号, 也仅知道其属于某个已知的信号集合。
• 在以上两种情况下,控制系统的设计如果采用传统的H2 性能指标,在某些场合不能满足实际的需要。

考虑SISO被控对象,其传递函数为P0

s



s
2s
1
3
鲁棒控制理论
第六章 H∞标准控制
前言
• 本章在标准框架下讨论H∞控制问题的求解。 • H∞控制理论可分为频域方法和时域方法。本章开始介
绍时域方法。 • 时域状态空间方法包括Riccati方法和LMI (Linear
Matrix Inequality,线性矩阵不等式)方法。 • 本章将重点介绍理论上成熟的Riccati方法(包括状态
• 根据LQ最优调节器的性质,LQ(LQG)状态反馈系统 的幅值稳定裕度为0.5~ ∞,而相角稳定裕度大于等于+60o.
• LQG控制系统具有一定的相对稳定性,但LQG控制系统 甚至LQ最优调节器对被控对象的模型摄动(模型误差) 的鲁棒稳定性在某些场合很差。
– 如果被控对象不是由一个确定的模型来描述的,而仅 知道其模型属于某个已知的模型集合;
下面考虑如下形式的模型摄动:P s Po s s,其中P s为摄动后的 实际的被控对象传递函数, s为模型误差, s ,其中为一实数.
s 1
亦即对于0
,有
P
j P0
j

. s 1
上述摄动的状态空间实现表现为b矩阵的摄动b
• 定义1(H∞最优控制问题)
求一正则实有理控制器K,使闭环系统内稳定且使传递函数阵
Tzw

s
的H
极小,即

min K
Tzw
s

0
• 定义2(H∞次优控制问题)
求一正则实有理的K,使闭环系统内稳定,且使
其中 0 注:
Tzw s
1.
如果以上两种控制问题有解,我们可以通过逐渐减小
反馈求解方法和输出反馈求解方法),并对近年非常 流行的LMI方法进行必要的讨论。
本章内容
• 一、问题的提出 • 二、H∞标准控制问题 • 三、Riccati方程和H∞范数 • 四、状态反馈H∞控制 • 五、输出反馈H∞控制 • 六、参数不确定系统的鲁棒H∞控制 • 七、可靠H∞控制
一、问题的提出
去逼近

0
即由次优控制问题的解去逼近最优问题的解
2. 不失一般性,常取 =1
3.
H
问题难以求解。本章主要讨论H
次优控制问题的各种解法,并

将其称为H标准控制问题
干扰抑制问题
设计控制器K s,使闭环系统内稳定,
r —u
d +y G0
且使J sup y 2 v H2 , v 2 1 极小
– H∞控制理论蓬勃发展:从频域到时域、定常系统到时变系统、 线性系统到非线性系统、连续系统到离散系统、确定性系统到 不确定系统、无时滞系统到时滞系统、单目标控制到多目标控 制……
– 目前线性系统的H∞控制理论已经基本成熟,形成了一套完整 的频域设计理论和方法,而时域状态空间的Riccati方法和LMI 方法,由于具有能揭示系统的内部结构、易于计算机辅助设计 等优点而倍受重视
s
2
,
其状态空间最小
(能控、能观测)实现为x t Ax t bu t , x 0 x0 , y t Cx t , (6.1)
其中A

1

0
0 2
,
B

1 1
,
C

1
1.
取二次型性能指标为J

0

y
2
t
二、H∞标准控制问题
• 问题的定义 • 工程实际中,许多控制问题可归结
为H∞标准控制问题 – 干扰抑制问题 – 跟踪问题 – 鲁棒稳定问题
问题的定义
广义被控对象G的状态空间实现为:
x Ax B1w B2u
w
z
z C1x D11w D12u
G
y C2 x D21w D22u


G
s
w

u


G11 G21
s s
G12 s w
GБайду номын сангаас2

s


u

u K s y
于是,图中从w到z的闭环传递函数阵为
Tzw s LFT G, K G11 G12 K I G22 K 1 G21
相关文档
最新文档