全版高一数学笔记.doc
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精品文档
第一章集合
1一般地,研究对象统称为元素(element ),一些元素组成的总体叫集合(set ),也简称集。
2元素与集合的关系;
(1)如果a 是集合A 的元素,就说a 属于(belong to )A ,记作a ∈A
(2)如果a 不是集合A 的元素,就说a 不属于(not belong to )A ,记作a ∉A (或a A )(举例)
3常用数集及其记法
非负整数集(或自然数集),记作N 正整数集,记作N *或N +; 整数集,记作Z 有理数集,记作Q
4任何一个集合是它本身的子集
5真子集的概念:若集合B A ⊆,存在元素A x B x ∉∈且,则称集合A 是集合B 的真子集(proper subset )。记作:A B (或B A ) 6空集的概念
不含有任何元素的集合称为空集(empty set ),记作:∅ 规定:空集是任何集合的子集,是任何非空集合的真子集 7集合基本运算的一些结论:
A ∩
B ⊆A ,A ∩B ⊆B ,A ∩A=A ,A ∩∅=∅,A ∩B=B ∩A A ⊆A ∪B ,B ⊆A ∪B ,A ∪A=A ,A ∪∅=A,A ∪B=B ∪A (
C U A )∪A=U ,(C U A )∩A=∅ 若A ∩B=A ,则A ⊆B ,反之也成立 若A ∪B=B ,则A ⊆B ,反之也成立
若x ∈(A ∩B ),则x ∈A 且x ∈B 若x ∈(A ∪B ),则x ∈A ,或x ∈B
: A A ⊆ ○
2B A ⊆,且C B ⊆,则C A ⊆ 第二章函数
§1.2.2函数的表示法
1.函数的概念:
设A 、B 是非空的数集,如果按照某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f(x)和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数(function ).
记作: y=f(x),x ∈A .
其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域(domain );与x 的值相对应的y 值叫做函数值,函数值的集合{f(x)| x ∈A }叫做函数的值域(range ). 2构成函数的三要素:定义域、对应关系和值域
3 一般地,设A 、B 是两个非空的集合,如果按某一个确定的对应法则f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,那么就称对应f :A →B
∈
为从集合A到集合B的一个映射(mapping).
记作“f:A B”说明:(1)这两个集合有先后顺序,A到B的射与B到A的映射是截不同的.其中f表示具体的对应法则,可以用汉字叙述
补充:复合函数
如果y=f(u)(u∈M),u=g(x)(x∈A),则 y=f[g(x)]=F(x)(x∈A) 称
为f、g的复合函数。
1.3.1函数的单调性
1.增函数
一般地,设函数y=f(x)的定义域为I,
如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1 思考:仿照增函数的定义说出减函数的定义.(学生活动) 注意: ○1函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质; ○2必须是对于区间D内的任意两个自变量x1,x2;当x1 2.函数的单调性定义 如果函数y=f(x)在某个区间上是增函数或是减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间: 3.判断函数单调性的方法步骤 利用定义证明函数f(x)在给定的区间D上的单调性的一般步骤: ○1任取x1,x2∈D,且x1 ○2作差f(x1)-f(x2); ○3变形(通常是因式分解和配方); ○4定号(即判断差f(x1)-f(x2)的正负); ○5下结论(即指出函数f(x)在给定的区间D上的单调性). §1.3.2函数的奇偶性 1.偶函数(even function)(偶函数的图象关于y轴对称); 一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数. 仿照偶函数的定义给出奇函数的定义 2.奇函数(odd function)(奇函数的图象关于原点对称) 一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数. 注意:○3作出相应结论:若f(-x) = f(x) 或 f(-x)-f(x) =0, 则f(x)是偶函数;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,f(x) 是奇函数. 注意:函数定义域关于原点对称是函数具有奇偶性的必要条 件.首先看函数的定义域是否关于原点对称,若不对称则函数是非 奇非偶函数.若对称,(1)再根据定义判定; (2)由 f(-x)±f(x)=0 或f(x)/f(-x)=±1来判定; (3)利用定理,或借助函数的图象判 定 . §1.3.1函数的最大(小)值 (一)函数最大(小)值定义 1.最大值 一般地,设函数y=f(x)的定义域为I,如果存在实数M满足: (1)对于任意的x∈I,都有f(x)≤M; (2)存在x0∈I,使得f(x0) = M 那么,称M是函数y=f(x)的最大值(Maximum Value). 思考:仿照函数最大值的定义,给出函数y=f(x)的最小值(Minimum Value)的定义.(学生活动) 注意: ○1函数最大(小)首先应该是某一个函数值,即存在x0∈I,使得f(x0) = M; ○2函数最大(小)应该是所有函数值中最大(小)的,即对于任意的x∈I,都有f(x)≤M(f(x)≥M). 2.利用函数单调性的判断函数的最大(小)值的方法 ○1利用二次函数的性质(配方法)求函数的最大(小)值 ○2利用图象求函数的最大(小)值 ○3利用函数单调性的判断函数的最大(小)值 如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b 处有最大值f(b); 如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b 处有最小值f(b); §2.1.1指数 (一)指数与指数幂的运算 1.根式的概念 x n ,那么x叫做a的n次方根(n th root),其中n>1,且n∈N*.一般地,如果a 当n是奇数时,正数的n次方根是一个正数,负数的n次方根是一个负数.此时,a的n次方根用符号n a表示. 式子n a叫做根式(radical),这里n叫做根指数(radical exponent),a叫做被开方数(radicand). 当n是偶数时,正数的n次方根有两个,这两个数互为相反数.此时,正数a的正的n 次方根用符号n a表示,负的n次方根用符号-n a表示.正的n次方根与负的n次方根可以合并成±n a(a>0).