几何图形中的动点问题

合集下载

动点问题(四边形动点专题)

动点问题(四边形动点专题)

动态几何问题--------动点问题(四边形动点专题)【动态几何问题的特点】动态几何是以几何知识和几何图形为背景,渗透运动变化观点的一类试题;用运动的观点研究几何图形中图形的位置、角与角、线段与线段之间的位置及大小关系。

几何图形按一定的条件进行运动,有的几何量是随之而有规律地变化的,形成了轨迹和极值;而有的量是始终保持不变,也就是我们常说的定值。

动态几何就是研究在几何图形的运动中,伴随着出现一定的图形位置、数量关系的 “变”与“不变”性;动态几何问题常常集几何、代数知识于一体,数形结合,有较强的综合性,题目灵活、多变,动中有静,动静结合,能够在运动变化中发展空间想象能力,综合分析能力,是近几年中命题的热点。

【动态几何问题的解决方法】解决动态几何题,通过观察,对几何图形运动变化规律的探索,发现其中的“变量”和“定量”。

动中求静,即在运动变化中探索问题中的不变性;动静互化,抓住“静”的瞬间,使一般情形转化为特殊问题,从而找到“动与静”的关系;这需要有极敏锐的观察力和多种情况的分析能力,加以想象、结合推理,得出结论。

解决这类问题,要善于探索图形的运动特点和规律,抓住变化中图形的性质与特征,化动为静,以静制动。

解决运动型试题需要用运动与变化的眼光去观察和研究图形,把握图形运动与变化的全过程,抓住其中的等量关系和变量关系,并特别关注一些不变量和不变关系或特殊关系.【动态几何问题的分类】动态几何问题是以几何图形为背景的,几何图形有直线型和曲线型两种,那么动态几何也有直线型的和曲线型的两类,即全等三角形、相似三角形中的动态几何问题,也有圆中的动态问题。

有点动、线动、面动,就其运动形式而言,有平移、旋转、翻折、滚动等。

根据其运动的特点,又可分为:(1)动点类(点在线段或弧线上运动)也包括一个动点或两个动点;(2)动直线类;(3)动图形问题。

【典型例题】例1.如图,在梯形中,ABCD 动点从点出发沿线段3545AD BC AD DC AB B ====︒∥,,,,∠.M B 以每秒2个单位长度的速度向终点运动;动点同时从点出发沿线段BC C N C 以每秒1个单位长度的速度向终点运动.设运动的时间为秒.CD D t (1)求的长;BC (2)当时,求的值;MN AB ∥t (3)试探究:为何值时,t MNC △CB例2. 已知:等边三角形的边长为4厘米,长为1厘米的线段在ABC MN 的边上沿方向以1厘米/秒的速度向点运动(运动开始时,点ABC △AB AB B 与点重合,点到达点时运动终止),过点分别作边的垂线,M A N B M N 、AB 与的其它边交于两点,线段运动的时间为秒.ABC △P Q 、MN t (1)线段在运动的过程中,为何值时,四边形恰为矩形?并求出MN t MNQP 该矩形的面积;(2)线段在运动的过程中,四边形的面积为,运动的时间MN MNQP S 为.求四边形的面积随运动时间变化的函数关系式,并写出自变量t MNQP S t 的取值范围.t 例3.如图,在等腰梯形中,∥,,AB =12 ABCD AB DC cm BC AD 5==cm,CD =6cm , 点从开始沿边向以每秒3cm 的速度移动,点从开P A AB B Q C 始沿CD 边向D 以每秒1cm 的速度移动,如果点P 、Q 分别从A 、C 同时出发,当其中一点到达终点时运动停止。

立体几何中的动点问题

立体几何中的动点问题

立体几何中的动点问题1、如图,四棱锥ABCD P -的底面是边长为2的正方形,⊥PA 平面ABCD ,且4=PA ,M 是PB 上的一个动点(不与B P ,重合),过点M 作平面//α平面PAD ,截棱锥所得图形的面积为y ,若平面α与平面PAD 之间的距离为x ,则函数()x f y =的图象是C2、在《九章算术》中,将四个面都是直角三角形的四面体称为鳖臑,在鳖臑BCD A -中,⊥AB 平面BCD ,且CD BD ⊥,CD BD AB ==,点P 在棱AC 上运动,设CP 的长度为x ,若PBD ∆的面积为()x f ,则()x f 的图象大致是A3、 如图所示,侧棱与底面垂直,且底面为正方形的四棱柱1111D C B A ABCD -中,21=AA ,1=AB ,N M ,分别在BC AD ,1上移动,始终保持//MN 平面11D DCC ,设x BN =,y MN =,则函数()x f y =的图象大致是 C4、如图,已知正方体1111D C B A ABCD -的棱长为2,长为2的线段MN 的一个端点M 在棱1DD 上运动,点N 在正方体的底面ABCD 内运动,则MN 的中点P 的轨迹的面积是________2π5、点P 在正方体1111D C B A ABCD -的面对角线1BC 上运动,给出下列命题:①三棱锥PC D A 1-的体积不变;②//1P A 平面1ACD ;③1BC DP ⊥;④平面⊥1PDB 平面1ACD ;其中正确的命题序号是_______①②④6、在正方体1111D C B A ABCD -中,F E ,分别为11C B ,11D C 的中点,点P 是底面1111D C B A 内一点,且//AP 平面EFDB ,则1tan APA ∠的最大值是_______227、已知直三棱柱111C B A ABC -中的底面为等腰直角三角形,AC AB ⊥,点N M ,分别是边C A AB 11,上动点,若直线//MN 平面11B BCC ,点Q 为线段MN 的中点,则点Q 的轨迹为 C.A 双曲线的一支(一部分) .B 圆弧(一部分).C 线段(去掉一个端点) .D 抛物线的一部分 解:以AB 为轴,AC 为轴,1AA 为轴建系设()b ta M ,0,1,()tb ta M ,0,,()b ta N ,,01,则()()b t ta N -1,,0,()tb ta M ,0,()10<≤t则N M ,中点⎪⎭⎫ ⎝⎛2,2,2b ta ta Q (通过作与平面11B BCC 平行的平面交C A AB 11,来找N M ,进而找中点Q )。

专题41 几何问题(1)之动点问题【热点专题】

专题41 几何问题(1)之动点问题【热点专题】
第七部分 几何图形综合
专题41 几何问题(1)之动点问题
数学
题型精讲
题型一:圆背景下的动态探究题 【例 1】(2020•连云港)筒车是我国古代利用水力驱动的灌溉工具,唐代陈廷章在《水 轮赋)中写道:“水能利物,轮乃曲成”.如图,半径为 3m 的筒车⊙O 按逆时针方向
每分钟转 圈,筒车与水面分别交于点 A、B 筒车的轴心 O 距离水面的高度 OC 长为 2.2m,筒车上均匀分布着若干个盛水筒.若以某个盛水筒 P 刚浮出水面时开始计算时 间.
PQ PQ2.在
Rt△POQ 中,PQ2=OP2+OQ2=(8﹣t)2+t2.由四边形 OPCQ 的面积 S=S△POQ+S△PCQ
可得出答案.
题型二:四边形动点探究 【例 3】(2021·山东中考真题)如图,已知正方形 ABCD,点 E 是 BC 边上一点,将 △ABE 沿直线 AE 折叠,点 B 落在 F 处,连接 BF 并延长,与∠DAF 的平分线相交 于点 H,与 AE,CD 分别相交于点 G,M,连接 HC (1)求证:AG=GH; (2)若 AB=3,BE=1,求点 D 到直线 BH 的距离; (3)当点 E 在 BC 边上(端点除外)运动时,∠BHC 的大小是否变化?为什么?
【分析】(1)如图 1 中,连接 OA.求出∠AOC 的度数,以及旋转速度即可解决问 题. (2)如图 2 中,盛水筒 P 浮出水面 3.4 秒后,此时∠AOP=3.4×5°=17°,过点 P 作 PD⊥OC 于 D,解直角三角形求出 CD 即可. (3)如图 3 中,连接 OP,解直角三角形求出∠POM,∠COM,可得∠POH 的度 数即可解决问题.
【例 2】(2020•苏州)如图,已知∠MON=90°,OT 是∠MON 的平分线,A 是射线 OM 上一点,OA=8cm.动点 P 从点 A 出发,以 1cm/s 的速度沿 AO 水平向左作匀速 运动,与此同时,动点 Q 从点 O 出发,也以 1cm/s 的速度沿 ON 竖直向上作匀速运 动.连接 PQ,交 OT 于点 B.经过 O、P、Q 三点作圆,交 OT 于点 C,连接 PC、 QC.设运动时间为 t(s),其中 0<t<8. (1)求 OP+OQ 的值; (2)是否存在实数 t,使得线段 OB 的长度最大?若存在,求出 t 的值;若不存在, 说明理由. (3)求四边形 OPCQ 的面积.

2022高考数学立体几何—空间中的动点问题全文

2022高考数学立体几何—空间中的动点问题全文

可编辑修改精选全文完整版立体几何—空间中的动点问题专题综述空间中的动点问题是指在一定的约束条件下,点的位置发生变化,在变化过程中找出规律,将动点问题转化为“定点”问题、将空间问题转化为平面问题、将立体几何的问题转化为解析几何的问题等,目的是把问题回归到最本质的定义、定理或现有的结论中去.立体几何中考查动点问题,往往题目难度较大,渗透化归与转化思想,对学生的逻辑推理能力要求较高.一般考查动点轨迹、动点的存在性、定值、范围、最值等问题,除了利用化动为定、空间问题平面化等方法,在几何体中由动点的变化过程推理出结果以外,也可以通过建系,坐标法构建函数,求得结果.专题探究探究1:坐标法解决动点问题建立空间直角坐标系,使几何元素的关系数量化,借助空间向量求解,省去中间繁琐的推理过程.解题步骤与空间向量解决立体几何问题一致,建立适当的空间直角坐标系由动点的位置关系,如在棱上或面内,转化为向量的关系,用参数表示动点的坐标通过空间向量的坐标运算表示出待求的量若求最值或取值范围,转化为函数问题,但要注意自变量的取值范围.一般坐标法用于解决动点的存在性问题、求最值、求范围问题.说明:对于求最值、范围问题,也可以直接通过几何体中的某个变量,构建函数,求最值或范围.(2022湖北省宜昌市模拟) (多选)在正方体1111ABCD A B C D -中,点为线段1AD 上一动点,则( ) A. 对任意的点,都有1B D CQ ⊥ B. 三棱锥1B B CQ -的体积为定值 C. 当为1AD 中点时,异面直线1B Q 与所成的角最小D. 当为1AD 中点时,直线1B Q 与平面11BCC B 所成的角最大【审题视点】以正方体为载体考查定点的定值、最值问题,正方体便于建立空间直角坐标系,可选择用坐标法解决.【思维引导】选项,可以用几何知识证明;选项,设出点坐标,用坐标表示出异面直线成角的余弦值或线面角的正弦值,求最值,得出点位置.【规范解析】解:对于:连接,1.CD因为在正方体1111ABCD A B C D -中, 1B D ⊥平面1ACD ,CQ ⊂平面1ACD , 1B D CQ ⊥,故正确; 对于:平面11//ADD A 平面11BCC B ,平面11ADD A 与平面11BCC B 的距离为正方体棱长,1123111326B B CQ Q BCB V V a a a --==⨯⋅=,为定值,故正确;对于:以为坐标原点,直线分别轴,建立空间直角坐标系如下图:设正方体1111ABCD A B C D -的棱长为2, ()[](),0,20,2Q x x x -∈,则1(2,2,2)B , ()2,2,0B , (0,2,0)C , 因此()12,2,B Q x x =---, ()2,0,0BC =-, 设异面直线1B Q 与所成的角为θ,则当时,,当时,当时,故当与1D 重合时,异面直线1B Q 与所成的角最小,故不正确;对于: ()12,2,B Q x x =---, 又是平面11BCC B 的一个法向量,设直线1B Q 与平面11BCC B 所成的角为α,则,所以当1x =时,sin α取得最大值63,而0,2πα⎡⎤∈⎢⎥⎣⎦, 因此α取得最大值,即当为1AD 中点时,直线1B Q 与平面11BCC B 所成的角最大, 故正确. 故选.ABD用一个参数表示动点的坐标,并求出参数范围,即为函数定义域转化为函数求最值,求出当函数取最值时的x 的值【探究总结】典例1是一道典型的研究动点问题的多选题,难度中等,但能够反映出坐标法研究最值范围问题的思路.建系设坐标,写出参数范围 根据向量运算构造函数求最值.(2021安徽省蚌埠市联考) 已知圆柱1OO 底面半径为1,高为π,是圆柱的一个轴截面,动点从点出发沿着圆柱的侧面到达点,其距离最短时在侧面留下的曲线Γ如图所示.将轴截面绕着轴1OO 逆时针旋转(0)θθπ<<后,边11B C 与曲线Γ相交于点.P(1)求曲线Γ长度; (2)当2πθ=时,求点1C 到平面的距离;(3)证明:不存在(0)θθπ<<,使得二面角D AB P --的大小为.4π探究2:化动为定点的位置在变化的过程中,有些量或位置关系是不变的,比如点到平面的距离不变,从而使几何体的体积不变;动点与另外一定点的连线与某条直线始终垂直,与某个平面始终平行.在证明体积为定值、证明位置关系时,要动中寻定,将动态的问题静态化:将动点转化为定点,寻找动直线所在的确定平面,从而解决问题.答题思路:1.动点到平面的距离为定值:证明平面,动点到平面的距离即为定点到平面的距离;2.为动点,为定点,证明:证明所在平面与垂直;3.为动点,为定点,证明平面:证明所在平面与平面平行.(2021湖南省四校联考) 在正三棱柱中,,,分别为的中点,P 是线段DF 上的一点.有下列三个结论:①平面;②;③三棱锥的体积时定值,其中所有正确结论的编号是 A. ①②B. ①③C. ②③D. ①②③【审题视点】求证关于动直线的线面平行或线线垂直,三棱锥的体积为定值问题,要化动为定.【思维引导】证明动直线所在平面与已知平面平行;证明定直线与动直线所在平面垂直;寻找过点与平面平行的直线,即得出点到平面的距离.【规范解析】解:如图,对于①,在正三棱柱中,,分别为的中点,平面平面,由平面,得平面,故①正确;对于②,在正三棱柱中,平面平面,平面平面平面,,平面平面,故②正确;对于③,平面平面,平面到平面的距离为定值,而有为定值,故是定值,线面平行,转化为面面平行异面直线垂直,转化为线面垂直体积的定值问题,转化点到平面的距离是定值,即通过线面平行或面面平行,得出动点到平面距离为定值故③正确.故选D .【探究总结】立体几何证明中经常出现,求证关于动直线的线面平行与线线垂直问题,其思路是转化为证明动直线所在的定平面与其他平面或直线的位置关系.关键是分析动点,动线或动面间的联系,在移动变化的同时寻求规律.(2021云南省曲靖市联考) 如图所示的几何体中,111ABC A B C -为直三棱柱,四边形为平行四边形,2CD AD =,60ADC ∠=︒,1.AA AC =(1)证明:,1C ,1B 四点共面,且11A C DC ⊥;(2)若1AD =,点是上一点,求四棱锥的体积,并判断点到平面11ADC B 的距离是否为定值?请说明理由.探究3: 巧用极端位置由于点位置连续变化,使研究的图形发生连续的变化,利用点的位置变化“极端”位置,避开抽象及复杂的运算,得到结论.常见题型:1.定值问题:几何体中存在动点,但所求结果是确定的,即随着动点位置的改变不会影响所求的量,故可以考虑动点在极端位置的情况,优化解题过程.2.范围问题:几何体中存在动点,结果会随着动点位置改变而改变,当动点从一侧极端位置移动到令一个极端位置的过程中,所求量在增大、或减小、或先增后减、或先减后增,通过求出极端位置处的值,及最值,从而得出范围;3.探究问题:探究满足条件的点是否存在,也可以转化为求出范围,从而得出结论.(2021湖南省株洲市模拟) 在正四面体中, 为棱的中点, 为直线上的动点,则平面与平面夹角的正弦值的取值范围是 .【审题视点】本例可用极端位置法分析,也可以建系,用坐标法解决.【思维引导】借助极端位置分析,不难看出经过和底边中线的平面与平面垂直,点在移动的过程中,存在一个位置使平面与经过和底边中线的平面平行,即平面平面,此时两平面所成角为,角最大;当点移动到无穷远时,平面平面,此时两平面所成角最小.【规范解析】解:由下左图 设为的中心,为的中点, 则在正四面体中平面, 为中点,为的中点,,故平面连接,并延长交于点, 连接,并延长交于点, 则过点的平面交直线于点. 则平面平面 即平面与平面的夹角的正弦值为1,点从取最值的位置处移动至直线的无穷远处的过程中, 平面与平面的夹角逐渐减小,即当点在无穷远处时,看作, 如下右图 故平面与平面的夹角即为平面与平面的夹角,求出其正弦值为. 综上可知:面与面的夹角的正弦值的取值范围为.【探究总结】借助极端位置解决典例3中的问题,首先利用几何知识,明确点在移动的过程中 ,所求量的变化情况,若在极端位置处取“最值”,问题就简化为求出极端位置处的值.(2021浙江省杭州市高三模拟)高为1的正三棱锥的底面边长为,二面角与二面角A PB C --之和记为,则在从小到大的变化过程中,的变化情况是( )A .一直增大B .一直减小C .先增大后减小D .先减小后增大专题升华结合几何知识,两平面成角的变化过程,即动点从一个极端位置变化到另一极端位置时,夹角大小的增减情况在极端位置处取“最值”,直接求出点该处时的夹角的正弦值,即为范围区间的一个端点几何体中研究动点问题往往难度较大,开放性强,技巧性高.总体思路是:用几何知识,经过逻辑推理,证明位置关系或求出表示出所求量;或者建立空间直角坐标系,将几何问题代数化,用空间向量研究动点问题,省去了繁杂的推理环节,但计算量较大.解决动点问题的策略不局限与上述方法,常用的的方法还有:运用条件直接推算,借助条件将几何体还原到长方体中去;构造函数,数形结合;还将空间问题转化为平面几何解决,如化折为直、利用解析几何的知识解决. 但只要我们熟练掌握这些基本方法,并灵活加以应用,不仅能化繁为简,化难为易,而且还可以得到简捷巧妙的解法.【答案详解】 变式训练1【解答】解:(1)在侧面展开图中为的长,其中AB AD π==,∴曲线Γ的长为2;π(2)当2πθ=时,建立如图所示的空间直角坐标系,则有()0,1,0A -、()0,1,0B 、1,0,2P π⎛⎫- ⎪⎝⎭、()11,0,C π-, 、(1,1,)2AP π=-、1(1,0,)OC π=-设平面的法向量为(,,)n x y z =,则2002n AB y n AP x y z π⎧⋅==⎪⎨⋅=-++=⎪⎩, 取2z =得(,0,2)n π=,所以点1C 到平面的距离为12||||4OC n d n ππ⋅==+; (3)假设存在满足要求的(0)θθπ<<, 在(2)的坐标系中,()sin ,cos ,P θθθ-,,设平面的法向量为111(,,)m x y z =,则111120sin (cos 1)0y x y z θθθ=⎧⎨-+++=⎩,取11x =得sin (1,0,)m θθ=,又平面的法向量为(1,0,0)k =,由二面角D AB P --的大小为4π, 则|cos ⟨,m k ⟩2212|sin .21sin θθθθ==⇒=+ sin (0)2πθθθ<<<,0θπ∴<<时,均有sin θθ<,与上式矛盾.所以不存在(0)θθπ<<使得二面角D AB P --的大小为.4π 变式训练2【解答】(1)证明:因为111ABC A B C -为直三棱柱, 所以,且,又四边形为平行四边形,//BC AD ,且BC AD =,,且,四边形为平行四边形,,1B 四点共面;,又1AA ⊥平面,AC ⊂平面,,四边形11A ACC 为正方形,连接1AC 交1A C 于,,在ADC ∆中,2CD AD =,,由余弦定理得,,所以,AD AC ⊥,又1AA ⊥平面ABCD ,AD ⊂平面ABCD ,1AA AD ⊥,,1AA ⊂平面11A ACC ,,AD ⊥平面11A ACC ,1AC ⊂平面11A ACC ,所以,又,平面,1A C ⊥平面, 1DC ⊂平面,(2)解:由(1)知:1A C ⊥平面,在Rt DAC 中,由已知得3AC =,,四棱锥的体积,//BC AD ,点到平面的距离为定值,即为点到平面的距离变式训练3【解析】解:设二面角为,二面角A PB C --为,当时,正三棱锥趋向于变为正三棱柱,;当时,正三棱锥趋向变为平面,.当正三棱锥为正四面体时,且,,故.当从小变大时,要经过从变为小于的角,然后变为的过程, 故只有选项符合.故选:.静夜思[ 唐] 李白原文译文对照床前明月光,疑是地上霜。

中考动点问题题型方法归纳

中考动点问题题型方法归纳

图(3)B图(1)B图(2) 动点问题题型方法归纳动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。

)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。

下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。

一、三角形边上动点1、直线364y x =-+与坐标轴分别交于A B 、两点,动点P Q 、同时从O 点出发,同时到达A 点,运动停止.点Q 沿线段OA ﻩ运动,速度为每秒1个单位长度,点P 沿路线O →B →A 运动. (1)直接写出A B 、两点的坐标;(2)设点Q 的运动时间为t 秒,OPQ △的面积为S ,求出S 与t 之间的函数关系式; (3)当485S =时,求出点P 的坐标,并直接写出以点O P Q 、、为顶点的平行四边形的第四个顶点M 的坐标. 提示:第(2)问按点P 到拐点B所有时间分段分类;第(3)问是分类讨论:已知三定点O 、P 、Q ,探究第四点构成平行四边形时按已知线段身份不同分类-----①O P为边、OQ 为边,②OP 为边、OQ 为对角线,③OP 为对角线、OQ 为边。

然后画出各类的图形,根据图形性质求顶点坐标。

2、如图,AB 是⊙O 的直径,弦B C=2cm,∠ABC=60º. (1)求⊙O 的直径;(2)若D 是A B延长线上一点,连结CD,当B D长为多少时,CD与⊙O 相切;(3)若动点E 以2cm/s 的速度从A 点出发沿着AB 方向运动,同时动点F 以1cm/s 的速度从B 点出发沿B C方向运动,设运动时间为)20)((<<t s t ,连结EF,当t 为何值时,△BEF 为直角三角形.提示:第(3)问按直角位置分类讨论3、如图,已知抛物线33)1(2+-=x a y (0≠a )经过点(2)A -,0,抛物线的顶点为D ,过O 作射线OM AD ∥.过顶点D 平行于x 轴的直线交射线OM 于点C ,B 在x 轴正半轴上,连结BC . (1)求该抛物线的解析式;(2)若动点P 从点O 出发,以每秒1个长度单位的速度沿射线OM 运动,设点P 运动的时间为()t s .问当t 为何值时,四边形DAOP 分别为平行四边形?直角梯形?等腰梯形?(3)若OC OB =,动点P 和动点Q 分别从点O 和点B 同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC 和BO 运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t ()s ,连接PQ ,当t 为何值时,四边形BCPQ 的面积最小?并求出最小值及此时PQ 的长.提示:发现并充分运用特殊角∠DAB =60° 当△OP Q面积最大时,四边形B CPQ 的面积最小。

中考数学动点问题

中考数学动点问题

中考数学动点问题动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。

)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。

下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。

一、三角形边上动点1、直线364y x=-+与坐标轴分别交于A B、两点,动点P Q、同时从O点出发,同时到达A点,运动停止.点Q沿线段OA运动,速度为每秒1个单位长度,点P沿路线O→B→A运动.(1)直接写出A B、两点的坐标;(2)设点Q的运动时间为t秒,OPQ△的面积为S,求出S与t之间图(3)B图(1)B图(2)的函数关系式; (3)当485S =时,求出点P 的坐标,并直接写出以点O P Q 、、为顶点的平行四边形的第四个顶点M 的坐标. 解:1、A (8,0) B (0,6)提示:第(2)问按点P 到拐点B 所有时间分段分类;第(3)问是分类讨论:已知三定点O 、P 、Q ,探究第四点构成平行四边形时按已知线段身份不同分类-----①OP 为边、OQ 为边,②OP 为边、OQ 为对角线,③OP 为对角线、OQ 为边。

然后画出各类的图形,根据图形性质求顶点坐标。

2、如图,AB 是⊙O 的直径,弦BC=2cm ,∠ABC=60º. (1)求⊙O 的直径;(2)若D 是AB 延长线上一点,连结CD ,当BD 长为多少时,CD 与⊙O 相切; (3)若动点E 以2cm/s 的速度从A 点出发沿着AB 方向运动,同时动点F 以1cm/s 的速度从B 点出发沿BC 方向运动,设运动时间为)20)((<<t s t ,连结EF ,当t 为何值时,△BEF 为直角三角形.注意:第(3)问按直角位置分类讨论A-,0,抛物线的顶点3、如图,已知抛物线(1)20)y a x a=-+≠经过点(2)∥.过顶点D平行于x轴的直线交射线OM于点C,B 为D,过O作射线OM AD在x轴正半轴上,连结BC.(1)求该抛物线的解析式;(2)若动点P从点O出发,以每秒1个长度单位的速度沿射线OM运动,设点Pt s.问当t为何值时,四边形DAOP分别为平行四边形?直角梯运动的时间为()形?等腰梯形?=,动点P和动点Q分别从点O和点B同时出发,分别以每秒1(3)若OC OB个长度单位和2个长度单位的速度沿OC和BO运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t()s,连接PQ,当t为何值时,四边形BCPQ 的面积最小?并求出最小值及此时PQ 的长.注意:发现并充分运用特殊角∠DAB=60°当△OPQ 面积最大时,四边形BCPQ 的面积最小。

全等三角形动点问题典型题目

全等三角形动点问题典型题目

全等三角形动点问题典型题目
全等三角形的动点问题是几何学中的经典题目之一,它涉及到
平面几何和坐标几何的知识。

一般来说,这类问题会给出一个或多
个三角形,然后要求找到一个点,使得这个点满足某种条件,比如
使得与三角形的三个顶点连线的长度相等,或者使得与三角形的某
条边垂直平分等等。

下面我将从几何和代数两个角度来解释这类问题。

从几何角度来看,全等三角形的动点问题通常可以通过构造几
何图形来解决。

我们可以利用全等三角形的性质,比如边长相等、
角度相等等性质,来构造等式或者方程,从而找到满足条件的动点。

通常情况下,我们可以利用相似三角形的性质,或者利用垂直平分线、角平分线等性质来解决这类问题。

从代数角度来看,我们可以引入坐标系,通过假设动点的坐标,并利用坐标几何的方法来解决问题。

我们可以假设动点的坐标为(x, y),然后根据全等三角形的性质建立方程,通过求解方程来找到动
点的坐标。

这种方法通常需要运用距离公式、中点公式、斜率公式
等知识来解决问题。

综上所述,全等三角形的动点问题是一个涉及到几何和代数知识的综合性问题,需要我们灵活运用几何性质和代数方法来解决。

在解决这类问题时,我们需要画图、列方程、解方程等多种方法结合,才能全面地解决问题。

希望以上解释能够帮助你更好地理解全等三角形的动点问题。

立体几何中动点轨迹问题的几种解题方法_柳双生

立体几何中动点轨迹问题的几种解题方法_柳双生

六、 试用猜想证明法求解
猜想 证 明 法 也 是 解 决 空 间 轨 迹 问 题 的 一 种 可 以 尝试着使用的 方 法 , 这 往 往 是 以 立 体 几 何 的 定 理 及 空间图形的定义为依据 , 大胆猜想 , 然后通过验证 , 以
z ∩

P O y α
α , 过 点 P 且 与 直 线 l 成 30o 角 的
三、 应用坐标法求解
用代数方法研究几何问题是解析几何的本质 , 通 过 建 立 直 角 坐 标 系,设 出 动 点 坐 标,将 几 何 问 题 转 化 成代数问题来解决 , 这是探求空间图形中的轨迹问题 常用的一种方法 . 例 3. 正方体 ABCD-A1B1C1D1 的 棱 长 为 1 , 点 P 是 平 面 ABCD 上 的 动 点 , 且 动 点 P 到 直 线 A1D1 的 距 离与动点 P 到直线 AB 的 距 离 的 平 方 和 为 2 , 则 动 点 的轨迹是 ( )

A. 一条线段
M
D1 A1
B. 椭圆的一部分 C. 双曲线的一部分 D. 抛物线的一部分
分 析 : 在 平 面 A1B1C1D1 中 , 过 点 P 作 PM ⊥A1D1, 垂 足 为 点 M, 在 平 面 ADD1A1 中 过 点 M 作 MN ∥AA1, 交 AD 于 点 N , 又 因 为 PN=PB ,MN=BB1, 所 以 △ PMN
直线交面 α 于点 M , 若点 M 的轨 迹为一圆锥曲线 , 求其离心率 .
M x
达到解决的目的 . 例 6. 在正四棱锥 S-ABCD 中 ,E 是 BC 的 中 点 , 点 P 在侧面 △SCD 内及 其 边 界 上 运 动 , 并 且 总 是 保 持 PE⊥AC , 则动点 P 的轨迹是 ( )

动点问题解题技巧总结

动点问题解题技巧总结

动点问题解题技巧总结一、 动点选择题(中考选择最后一道) 1排除法:(1)首先看趋势,排除明显不可能的(2)看图像上面的特殊点,算出特殊点的横纵坐标,排除错误的选项(3)求解析式:如果选项出现二次函数的图像,特别需要确定开口方向,有时候可以不用完全算出解析式,确定了开口方向就可以确定正确选项(4)如果解析式不好求,可以取分段函数的每一段的中点,如果这一段的端点坐标是,x y x y ,,1122)()( 确定纵坐标比+y y 212大还是小 中考再现1.(2017•天水)如图,在等腰△ABC 中,AB=AC=4cm ,∠B=30°,点P 从点B 出发,以cm/s 的速度沿BC 方向运动到点C 停止,同时点Q 从点B 出发,以1cm/s 的速度沿BA ﹣AC 方向运动到点C 停止,若△BPQ 的面积为y (cm 2),运动时间为x (s ),则下列最能反映y 与x 之间函数关系的图象是( )A .B .C .D .【分析】第一步看趋势,四个选项都是先增大后减小,均符合 第二步,看特殊点,四个选项特殊点一样,不能排除,第三步,取区间中点,选项中出现了两个区间,<<x 04和<<x 48,区间中点x =2和x =6,x =2时,长段线垂,线垂的作过,===<BQ BP Q BP y 2223,1343则易得答案为D .2.(2017•铁岭)如图,在射线AB 上顺次取两点C ,D ,使AC=CD=1,以CD 为边作矩形CDEF ,DE=2,将射线AB 绕点A 沿逆时针方向旋转,旋转角记为α(其中0°<α<45°),旋转后记作射线AB′,射线AB′分别交矩形CDEF 的边CF ,DE 于点G ,H .若CG=x ,EH=y ,则下列函数图象中,能反映y 与x 之间关系的是( )A. B. C. D.【分析】第一步看趋势,均符合第二步,看特殊点,A,B选项是过(2,0),C,D选项是过(1,0),当x=1时,由矩形知CF∥DE,∴△ACG∽△ADH,∴,∵AC=CD=1,∴AD=2,当x=1时,即GC=1,求出DH=2,EH=y=0,排除A,B,由0°<α<45°不含等号,所以不能取到(1,0),因此是D选项3.(2017•葫芦岛)如图,菱形ABCD的边长为2,∠A=60°,点P和点Q分别从点B和点C出发,沿射线BC向右运动,且速度相同,过点Q作QH⊥BD,垂足为H,连接PH,设点P运动的距离为x(0<x≤2),△BPH的面积为S,则能反映S与x之间的函数关系的图象大致为()A.B.C.D.【分析】第一步看趋势,A,B,C都是增大,只有D是先增大后减小,随着P,Q向右运动面积一直增大,所以排除D 选项第二步,看特殊点,A,B,C 三个选项特殊点一样,不能排除,第三步,取区间中点,选项中出现了一个区间,<<x 02,区间中点x =1,x =1时,,长段,线垂,线垂的作过,====<S CQ BQ BH H BP 14823 1.5,33333则易得答案为A .二、 动点解答题几何图形动点问题(包括三角形,四边形,圆):此类问题动点是有运动速度和运动路径的,解决问题的步骤如下:第一步,确定动点运动的阶段(如果是在折线上面运动,每一个线段是一个阶段)为了方便理解,每一个阶段都任意画出动点的一个可能位置(动点解答题的解题关键是化动为静,这个“为静”指的是在每一个阶段里任意选一个位置,用t 把相关线段表示出来,这样运动的点在这个阶段内就是“静止”的了),画出对应的图第二步,根据路程=速度⨯时间把动点运动的路程表示出来,进而将每一个阶段涉及到的线段表示出来第三步,根据具体问题列出等量关系式,例如:涉及到面积问题,用21底⨯高表示出面积,根据题目条件列出等量关系式 中考再现1.(2015江苏省)如图所示,在中,,,,点从点出发沿边向点以的速度移动,点从点出发沿边向点以的速度移动,若、同时出发:(1)几秒钟后,可使?(2)几秒钟后,可使四边形的面积占的面积三分之二?1. 【分析】(1)第一步:确定分段,本题两个动点都只在一条线段移动,因此不用分段第二步,根据路程=速度 时间把动点运动的路程表示出来,设运动时间为t秒,P点从A出发,沿着AC运动,运动路程是AP= t,Q点从C出发,沿着CB运动,运动路程是CQ=2t ,第三步,根据具体问题列出等量关系式,即 AC-AP=CQ,即解得,,则秒钟后,.(2)第二问因为前两步已经在第一问解决,直接进入第三步的面积为:,四边形的面积占的面积三分之二,的面积占的面积三分之一,,解得,,,答:秒或秒钟后,可使四边形的面积占的面积三分之二.2. (2015湖北省)如图,在矩形中,,E 是AD 的中点.动点从A 点出发,沿路线以秒的速度运动,运动的时间为秒.将以EP 为折痕折叠,点A 的对应点记为. 当点在边AB 上,且点在边BC 上时,求运动时间;【分析】第一步:确定分段,本题只有一个动点P ,P 在线段AB 运动,不用分段 第二步,根据路程=速度⨯时间把动点运动的路程表示出来,运动时间为t 秒,P 点从A 出发,沿着AB 运动,运动路程是AP= t ,第三步,根据具体问题列出等量关系式当点在边AB 上,且点在边BC 上时,根据折叠不变性,为因又,,。

人教版七年级上册第四章:几何图形动点问题压轴题总结

人教版七年级上册第四章:几何图形动点问题压轴题总结

动点问题压轴大题一、线段上的动点问题1.(1)如图①,D是线段AB上任意一点,M,N分别是AD,DB的中点,若AB=16,求MN的长.(2)如图②,AB=16,点D是线段AB上一动点,M,N分别是AD,DB的中点,能否求出线段MN的长?若能,求出其长;若不能,试说明理由.(3)如图③,AB=16,点D运动到线段AB的延长线上,其他条件不变,能否求出线段MN的长?若能,求出其长;若不能,试说明理由.(4)你能用一句简洁的话,描述你发现的结论吗?2.如图,已知数轴上A,B两点对应的数分别为-2,6,O为原点,点P为数轴上的一动点,其对应的数为x.(1)PA =______,PB =______(用含x 的式子表示).(2)在数轴上是否存在点P ,使PA +PB =10?若存在,请求出x 的值;若不存在,请说明理由.(3)点P 以1个单位长度/s 的速度从点O 向右运动,同时点A 以5个单位长度/s 的速度向左运动,点B 以20个单位长度/s 的速度向右运动,在运动过程中,M ,N 分别是AP ,OB 的中点,问:AB -OP MN 的值是否发生变化?请说明理由.3.如图,线段AB =24,动点P 从A 出发,以每秒2个单位长度的速度沿射线AB 运动,M 为AP 的中点,设P 的运动时间为x 秒.(1)当PB =2AM 时,求x 的值.(2)当P 在线段AB 上运动时,试说明2BM -BP 为定值.(3)当P 在AB 延长线上运动时,N 为BP 的中点,下列两个结论:①MN 长度不变;②MA +PN 的值不变.选择一个正确的结论,并求出其值.4、如图,已知数轴上点A表示的数为8,B是数轴上一点,且AB=14.动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t s(已知O为原点,以向右为正).(1)写出数轴上点B表示的数___,点P表示的数____(用含t的代数式表示);(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P,Q 同时出发,问点P运动多少秒时追上点Q?(3)若M为AP的中点,N为PB的中点.点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明变化规律;若不变,请你画出图形,并求出线段MN的长;(4)若D是数轴上一点,点D表示的数是x,请你探索式子|x+6|+|x-8|是否有最小值?如果有,直接写出最小值;如果没有,请说明理由.5、定义:若线段上的一个点把这条线段分成1:2的两条线段,则称这个点是这条线段的三等分点.如图1,点C在线段AB上,且AC:CB=1:2,则点C是线段AB的一个三等分点,显然,一条线段的三等分点有两个.(1)已知:如图2,DE=15cm,点P是DE的三等分点,求DP的长.(2)已知,线段AB=15cm,如图3,点P从点A出发以每秒1cm的速度在射线AB上向点B方向运动;点Q从点B出发,先向点A方向运动,当与点P重合后立马改变方向与点P 同向而行且速度始终为每秒2cm,设运动时间为t秒.①若点P点Q同时出发,且当点P与点Q重合时,求t的值.②若点P点Q同时出发,且当点P是线段AQ的三等分点时,求t的值.二、角动的问题1、如图,O为直线AB上一点,过点O作射线OC,∠AOC=30°,将一直角三角板(∠M=30°)的直角顶点放在点O处,一边ON在射线OA上,另一边OM与OC都在直线AB的上方.(1)将图①中的三角板绕点O以每秒3°的速度沿顺时针方向旋转一周.如图②,经过t s后,OM恰好平分∠BOC.①求t的值;②此时ON是否平分∠AOC?请说明理由;(2)在(1)问的基础上,若三角板在转动的同时,射线OC也绕O点以每秒6°的速度沿顺时针方向旋转一周,如图③,那么经过多长时间OC平分∠MON?请说明理由;(3)在(2)问的基础上,经过多长时间OC平分∠MOB?请画图并说明理由.2、如图,已知∠AOB内部有三条射线,其中OE平分∠BOC,OF平分∠AOC.(1)若∠AOB=120°,∠AOC=30°,求∠EOF的度数?(2)若∠AOB=α,求∠EOF的度数(用含α的式子表示);(3)若将题中的“OE平分∠BOC,OF平分∠AOC”改为“∠EOB=1 3∠COB,∠COF=2 3∠COA,且∠AOB=α,求∠EOF的度数(用含α的式子表示).3、如图,O是直线AB上的一点,∠COD是直角,OE平分∠BOC.(1)若∠AOC=30°,求∠DOE的度数;(2)若∠AOC=α,直接写出∠DOE的度数(用含α的代数式表示);(3)在(1)的条件下,∠BOC的内部有一射线OG,射线OG将∠BOC分为1:4两部分,求∠DOG的度数.4、一副三角板ABC 、DEF ,如图(1)放置,(∠D=30°、∠BAC=45°) (1)求∠DBA 的度数.(2)若三角板DBE 绕B 点逆时针旋转,(如图2)在旋转过程中BM 、BN 分别平分∠DBA 、∠EBC ,则∠MBN 如何变化?(3)若三角板BDE 绕B 点逆时针旋转到如图(3)时,其它条件不变,则(2)的结论是否变化?答案线段上的动点问题1.解:(1)MN =DM +DN =12AD +12BD =12(AD +BD)=12AB =8. (2)能.MN =DM +DN =12AD +12BD =12(AD +BD)=12AB =8. (3)能.MN =MD -DN =12AD -12BD =12(AD -BD)=12AB =8.(4)若点D 在线段AB 所在直线上,点M ,N 分别是AD ,DB 的中点,则MN =12AB.2.解:(1)|x+2|;|x-6|(2)分三种情况:①当点P在A,B之间时,PA+PB=8,故舍去;②当点P在B点右边时,PA=x+2,PB=x-6,因为(x+2)+(x-6)=10,所以x=7;③当点P在A点左边时,PA=-x-2,PB=6-x,因为(-x-2)+(6-x)=10,所以x=-3.综上,当x=-3或7时,PA+PB=10.(3)AB-OPMN的值不发生变化.理由如下:设运动时间为t s,则OP=t,OA=5t+2,OB=20t+6,AB=OA+OB=25t+8,AB-OP=24t+8,AP=OA+OP=6t+2,AM=12AP=3t+1,OM=OA-AM=5t+2-(3t+1)=2t+1,ON=12OB=10t+3,所以MN=OM+ON=12t+4.所以AB-OPMN=24t+812t+4=2.3.解:(1)当点P在点B左边时,PA=2x,PB=24-2x,AM=x,所以24-2x =2x,即x=6;当点P在点B右边时,PA=2x,PB=2x-24,AM=x,所以2x-24=2x,方程无解.综上可得,x的值为6.(2)当P在线段AB上运动时,BM=24-x,BP=24-2x,所以2BM-BP=2(24-x)-(24-2x)=24,即2BM-BP为定值.(3)①正确.当P在AB延长线上运动时,PA=2x,AM=PM=x,PB=2x-24,PN=12PB=x-12,所以①MN=PM-PN=x-(x-12)=12.所以MN长度不变,为定值12.②MA+PN=x+x-12=2x-12,所以MA+PN的值是变化的.4、(1)-6;8-5t(2)点Q表示的数为-6-3t,当点P追上点Q时,8-5t=-6-3t,解得t=7,∴点P运动7 s时追上点Q;(3)没有变化.分两种情况.①当点P在A,B两点之间运动时(如答图①):变形4答图①MN=MP+NP=12AP+12BP=12(AP+BP)=12AB=7;②当点P运动到点B的左侧时(如答图②):变形4答图②MN=MP-NP=12AP-12BP=12(AP-BP)=12AB=7.综上所述,线段MN的长度不发生变化,其值为7;(4)式子|x+6|+|x-8|有最小值,最小值为14.提示:当x>8时,原式=2x-2>14,当x<-6时,原式=2-2x>14,当-6≤x≤8时,原式=x+6-x+8=14,∴|x+6|+|x-8|有最小值14.也可通过数形结合,求D到A,B距离之和的最小值来解.5、解:(1)当DP=2PE时,DP=DE=10cm;当2DP=PE时,DP=DE=5cm.综上所述:DP的长为5cm或10cm.(2)①根据题意得:(1+2)t=15,解得:t=5.答:当t=5秒时,点P与点Q重合.②(I)点P、Q重合前:当2AP=PQ时,有t+2t+2t=15,解得:t=3;当AP=2PQ时,有t+t+2t=15,解得:t=3.75;(II)点P、Q重合后,当AP=2PQ时,有t=2(t﹣5),解得:t=10;当2AP=PQ时,有2t=(t﹣5),解得:t=﹣5(不合题意,舍去).综上所述:当t=3秒、3.75秒或10秒时,点P是线段AQ的三等分点.二、角动的问题1、解:(1)①∵∠AON+∠BOM=90°,∠COM=∠MOB,∵∠AOC=30°,∴∠BOC=2∠COM=150°,∴∠COM=75°,∴∠CON=15°,∴∠AON=∠AOC﹣∠CON=30°﹣15°=15°,解得:t=15°÷3°=5秒;②是,理由如下:∵∠CON=15°,∠AON=15°,∴ON平分∠AOC;(2)15秒时OC平分∠MON,理由如下:∵∠AON+∠BOM=90°,∠CON=∠COM,∵∠MON=90°,∴∠CON=∠COM=45°,∵三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转,设∠AON为3t,∠AOC为30°+6t,∵∠AOC﹣∠AON=45°,可得:6t﹣3t=15°,解得:t=5秒;(3)OC平分∠MOB∵∠AON+∠BOM=90°,∠BOC=∠COM,∵三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转,设∠AON为3t,∠AOC为30°+6t,∴∠COM为(90°﹣3t),∵∠BOM+∠AON=90°,可得:180°﹣(30°+6t)=(90°﹣3t),解得:t=23.3秒;2、(1)∵OF平分∠AOC,∴∠COF =12∠AOC =12×30°=15°,∴∠BOC =∠AOB -∠AOC =120°-30°=90°,∵OE 平分∠BOC ,∴∠EOC =12∠BOC =45°,∴∠EOF =∠COF +∠EOC =60°;(2)∵OF 平分∠AOC ,∴∠COF =12∠AOC ,同理∠EOC =12∠BOC ,∴∠EOF =∠COF +∠EOC=12∠AOC +12∠BOC=12(∠AOC +∠BOC)=12∠AOB =12α;(3)∵∠EOB =13∠COB ,∴∠EOC =23∠COB ,∴∠EOF =∠EOC +∠COF=23∠COB +23∠COA=23∠AOB =23α.4、。

(完整版)初中数学动点问题归纳

(完整版)初中数学动点问题归纳

BB动点问题题型方法归纳动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。

)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、 相似三角形、平行四边形、梯形、特殊角或 其三角函数、线段或面积的最值。

下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。

一、三角形边上动点1、(2009年齐齐哈尔市)直线364y x =-+与坐标轴分别交于A B 、两点,动点P Q 、同时从O 点出发,同时到达A 点,运动停止.点Q 沿线段OA 运动,速度为每秒1个单 位长度,点P 沿路线O →B →A 运动. (1)直接写出A B 、两点的坐标;(2)设点Q 的运动时间为t 秒,OPQ △的面积为S ,求出S 与t 之间 的函数关系式; (3)当485S =时,求出点P 的坐标,并直接写出以点O P Q 、、为顶点的平行四边形的第四个顶点M 的坐标.解:1、A (8,0) B (0,6)2、当0<t <3时,S=t2当3<t <8时,S=3/8(8-t)t提示:第(2)问按点P 到拐点B 所有时间分段分类;第(3)问是分类讨论:已知三定点O 、P 、Q ,探究第四点构成平行四边形时按已知线段身份不同分类-----①OP 为边、OQ 为边,②OP 为边、OQ 为对角线,③OP 为对角线、OQ 为边。

然后画出各类的图形,根据图形性质求顶点坐标。

2、(2009年衡阳市)如图,AB 是⊙O 的直径,弦BC=2cm , ∠ABC=60º.(1)求⊙O 的直径;(2)若D 是AB 延长线上一点,连结CD ,当BD 长为多少时,CD 与⊙O 相切;(3)若动点E 以2cm/s 的速度从A 点出发沿着AB 方向运动,同时动点F 以1cm/s 的速度从B 点出发沿BC 方向运动,设运动时间为)20)((<<t s t ,连结EF ,当t 为何值时,△BEF 为直角三角形.注意:第(3)问按直角位置分类讨论3、(2009重庆綦江)如图,已知抛物线(1)20)y a x a =-+≠经过点(2)A -,0,抛物线的顶点为D ,过O 作射线OM AD ∥.过顶点D 平行于x 轴的直线交射线OM 于点C ,B 在x 轴正半轴上,连结BC . (1)求该抛物线的解析式;(2)若动点P 从点O 出发,以每秒1个长度单位的速度沿射线OM 运动,设点P 运动的时间为()t s .问当t 为何值时,四边形DAOP 分别为平行四边形?直角梯形?等腰梯形?(3)若OC OB =,动点P 和动点Q 分别从点O 和点B 同时出发,分别以每秒1单位和2个长度单位的速度沿OC 和BO 之停止运动.设它们的运动的时间为t ()s ,连接PQ ,当t 为何值时,四边形BCPQ 的面积最小?并求出最小值及此时PQ 的长. 注意:发现并充分运用特殊角∠DAB=60°当△OPQ 面积最大时,四边形BCPQ 的面积最小。

初中数学专题07几何图形动点运动问题(解析版)

初中数学专题07几何图形动点运动问题(解析版)

专题七几何图形动点运动问题【考题研究】几何动点运动问题,是以几何知识和具体的几何图形为背景,渗透运动变化的观点,通过点、线、形的运动,图形的平移、翻折、旋转等把图形的有关性质和图形之间的数量关系位置关系看作是在变化的、相互依存的状态之中,要求对运动变化过程伴随的数量关系的图形的位置关系等进行探究.对学生分析问题的能力,对图形的想象能力,动态思维能力的培养和提高有着积极的促进作用.动态问题,以运动中的几何图形为载体所构建成的综合题,它能把几何、三角、函数、方程等知识集于一身,题型新颖、灵活性强、有区分度,受到了人们的高度关注,同时也得到了命题者的青睐,动态几何问题,常常出现在各地的中考数学试卷中.【解题攻略】几何动点运动问题通常包括动点问题、动线问题、面动问题,在考查图形变换(含三角形的全等与相似)的同时常用到的不同几何图形的性质,以三角形四边形为主,主要运用方程、函数、数形结合、分类讨论等数学思想.【解题类型及其思路】动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。

)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。

利用动点(图形)位置进行分类,把运动问题分割成几个静态问题,然后运用转化的思想和方法将几何问题转化为函数和方程问题,利用函数与方程的思想和方法将所解决图形的性质(或所求图形面积)直接转化为函数或方程。

解题类型:几何动点运动问题常见有两种常见类型:(1)利用函数与方程的思想和方法将所解决图形的性质直接转化为函数或方程;(2)根据运动图形的位置分类,把动态问题分割成几个静态问题,再将几何问题转化为函数和方程问题【典例指引】类型一【探究动点运动过程中线段之间的数量关系】【典例指引1】在△ABC中,∠ACB=45°,点D为射线BC上一动点(与点B、C不重合),连接AD,以AD为一边在AD右侧作正方形ADEF.(1)如果AB=AC,如图1,且点D在线段BC上运动,判断∠BAD∠CAF(填“=”或“≠”),并证明:CF⊥BD(2)如果AB≠AC,且点D在线段BC的延长线上运动,请在图2中画出相应的示意图,此时(1)中的结论是否成立?请说明理由;(3)设正方形ADEF的边DE所在直线与直线CF相交于点P,若AC=42,CD=2,求线段CP的长.【答案】(1)=,见解析;(2)AB≠AC时,CF⊥BD的结论成立,见解析;(3)线段CP的长为1或3 【解析】【分析】(1)证出∠BAC=∠DAF=90°,得出∠BAD=∠CAF;可证△DAB≌△F AC(SAS),得∠ACF=∠ABD=45°,得出∠BCF=∠ACB+∠ACF=90°.即CF⊥BD.(2)过点A作AG⊥AC交BC于点G,可得出AC=AG,易证△GAD≌△CAF(SAS),得出∠ACF=∠AGD =45°,∠BCF=∠ACB+∠ACF=90°.即CF⊥BD.(3)分两种情况去解答.①点D在线段BC上运动,求出AQ=CQ=4.即DQ=4﹣2=2,易证△AQD∽△DCP,得出对应边成比例,即可得出CP=1;②点D在线段BC延长线上运动时,同理得出CP=3.【详解】(1)①解:∠BAD=∠CAF,理由如下:∵四边形ADEF是正方形∴∠DAF=90°,AD=AF∵AB=AC,∠BAC=90°∴∠BAD+∠DAC=∠CAF+∠DAC=90°∴∠BAD=∠CAF故答案为:=②在△BAD和△CAF中,AB ACBAD CAF AD AF=⎧⎪∠=∠⎨⎪=⎩∴△BAD≌△CAF(SAS)∴CF=BD∴∠B=∠ACF∴∠B+∠BCA=90°∴∠BCA+∠ACF=90°∴∠BCF=90°∴CF⊥BD(2)如图2所示:AB≠AC时,CF⊥BD的结论成立.理由如下:过点A作GA⊥AC交BC于点G则∠GAD=∠CAF=90°+∠CAD∵∠ACB=45°∴∠AGD=45°∴AC=AG在△GAD和△CAF中,AG ACGAD CAF AD AF=⎧⎪∠=∠⎨⎪=⎩,∴△GAD≌△CAF(SAS),∴∠ACF=∠AGD=45°,∴∠BCF=∠ACB+∠ACF=90°∴CF⊥BD.(3)过点A作AQ⊥BC交CB的延长线于点Q,①点D在线段BC上运动时,如图3所示:∵∠BCA=45°∴△ACQ是等腰直角三角形∴AQ=CQ=22AC=4∴DQ=CQ﹣CD=4﹣2=2∵AQ⊥BC,∠ADE=90°∴∠DAQ+∠ADQ=∠ADQ+∠PDC=90°∴∠DAQ=∠PDC∵∠AQD=∠DCP=90°∴△DCP∽△AQD∴CPDQ=CDAQ,即CP2=24解得:CP=1②点D在线段BC延长线上运动时,如图4所示:∵∠BCA=45°∴AQ=CQ=4∴DQ=AQ+CD=4+2=6∵AQ⊥BC于Q∴∠Q=∠F AD=90°∵∠C′AF=∠C′CD=90°,∠AC′F=∠CC′D ∴∠ADQ=∠AFC′则△AQD∽△AC′F∴CF⊥BD∴△AQD∽△DCP∴CPDQ=CDAQ,即CP6=24解得:CP=3综上所述,线段CP的长为1或3.【名师点睛】此题是四边形综合题目,考查了正方形的性质、全等三角形的判定与性质、相似三角形的判定与性质以及直角三角形的性质等知识;本题综合性强,证明三角形全等和三角形相似是解题的关键.【举一反三】如图1,点C在线段AB上,(点C不与A、B重合),分别以AC、BC为边在AB同侧作等边三角形ACD和等边三角形BCE,连接AE、BD交于点P(1)观察猜想:①线段AE与BD的数量关系为_________;②∠APC的度数为_______________(2)数学思考:如图2,当点C在线段AB外时,(1)中的结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明(3)拓展应用:如图3,分别以AC、BC为边在AB同侧作等腰直角三角形ACD和等腰直角三角形BCE,其中∠ACD=∠BCE=90°,CA=CD,CB=CE,连接AE=BD交于点P,则线段AE与BD的关系为________________【答案】(1)AE=BD.∠APC=60°;(2)成立,见详解;(3)AE=BD【解析】【分析】(1)观察猜想:①证明△ACE≌△DCB(SAS),可得AE=BD,∠CAE=∠BDC;②过点C向AE,BD作垂线,由三角形全等可得高相等,再根据角分线判定定理,推出PC平分∠APB,即可求出∠APC的度数;(2)数学思考:结论成立,证明方法类似;(3)拓展应用:证明△ACE≌△DCB(SAS),即可得AE=BD.【详解】解:(1)观察猜想:结论:AE=BD.∠APC=60°.理由:①∵△ADC,△ECB都是等边三角形,∴CA=CD,∠ACD=∠ECB=60°,CE=CB,∴∠ACE=∠DCB,∴△ACE≌△DCB(SAS),∴AE=BD;②由①得∠EAC=∠BDC,∵∠AOC=∠DOP,∴∠APB=∠AOC+∠EAC=180°-60°= 120°.过过点C向AE,BD作垂线交于点F与G∵由①知△ACE≌△DCB∴CF=CG∴CP为∠APB的角平分线∴∠APC=12APB∠=60°;(2)数学思考:结论仍然成立.①∵△ADC,△ECB都是等边三角形,∴CA=CD,∠ACD=∠ECB=60°,CE=CB,∴∠ACE=∠DCB∴△ACE≌△DCB(SAS),∴AE=BD;②由①得∠AEC=∠DBC,∴∠CEA+∠PEB=∠CBD+∠PEB=60°,∴∠APB=∠CBD+∠CBE+∠PEB=120°.过过点P向AC,BC作垂线交于点H与I∵由①知△ACE≌△DCB∴PH=PI∴CP为∠APB的角平分线∴∠APC=12APB∠=60°;(3)∵△ADC,△ECB都是等腰直角三角形,∴CA=CD,∠ACD=∠ECB=90°,CE=CB,∴∠ACB+∠BCE=∠ACB+∠ACD∴∠ACE=∠DCB∴△ACE≌△DCB(SAS),∴AE=BD.【点睛】本题属于四边形综合题,考查了等边三角形的性质,等腰直角三角形的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考压轴题.类型二【确定动点运动过程中的运动时间】【典例指引2】已知:如图,在平面直角坐标系中,长方形OABC的项点B的坐标是(6,4).(1)直接写出A点坐标(______,______),C点坐标(______,______);(2)如图,D为OC中点.连接BD,AD,如果在第二象限内有一点(),1P m,且四边形OADP的面积是ABC∆面积的2倍,求满足条件的点P的坐标;(3)如图,动点M 从点C 出发,以每钞1个单位的速度沿线段CB 运动,同时动点N 从点A 出发.以每秒2个单位的連度沿线段AO 运动,当N 到达O 点时,M ,N 同时停止运动,运动时间是t 秒()0t >,在M ,N 运动过程中.当5MN =时,直接写出时间t 的值.【答案】(1)()6,0A ,()0,4C (2)()18,1P -(3)1或3 【解析】 【分析】(1)根据矩形的性质和直角坐标系中点的确定,即可求出A 点坐标和C 点坐标;(2)根据四边形OADP 的面积是ABC ∆面积的2倍,列出关于m 的方程,解方程即可求出点P 的坐标; (3)由题意表示出ON =6-2t ,MC =t ,过点M 作ON 得垂线ME 交OA 于点E , 根据勾股定理列出关于t 的方程,求解即可. 【详解】(1)∵长方形OABC 的项点B 的坐标是(6,4), ∴BC =6,AB =4, ∴OA =6,OC =4, ∴A (6,0)C (0,4);(2)连接PD ,PO ,过点P 作PE ⊥OD ,交OD 于点E ,∵BC =6,AB =4; ∴11==64=1222ABC S AB BC ⋅⨯⨯△, ∵四边形OADP 的面积是ABC ∆面积的2倍, ∴四边形OADP 的面积是24, ∴==OADP S S S △OAD △ODP 四边形+11=2422OA OD PE OD ⋅⋅+ ∵D 为OC 中点, ∴OD =2;∵(),1P m 是第二象限的点, ∴PE =﹣m , ∴可列方程为1162+2m =22⨯⨯⨯⨯(﹣)24;解得m =﹣18, ∴()18,1P -(3)如图,过点M 作ON 的垂线ME 交OA 于点E ,由题意得ON =6-2t ,MC =t ()3t ≤0<; ∴ME =4,EN =6-3t 又∵5MN =,∴根据勾股定理可列方程为()22246t =5+-3,解方程得t =1或t =3 ∴当t =1或t =3时,5MN =. 【名师点睛】本题考查了矩形的性质和直角坐标系中点的确定,勾股定理等,利用方程思想解决问题是解题的关键【举一反三】如图,▱ABCD的对角线AC、BD相交于点O,AB⊥AC,AB=3,BC=5,点P从点A出发,沿AD以每秒1个单位的速度向终点D运动.连结PO并延长交BC于点Q.设点P的运动时间为t秒.(1)求BQ的长,(用含t的代数式表示)(2)当四边形ABQP是平行四边形时,求t的值(3)当点O在线段AP的垂直平分线上时,直接写出t的值.【答案】(1)BQ=5﹣t;(2)52秒;(3)t=165.【解析】【分析】(1)利用平行四边形的性质可证△APO≌△CQO,则AP=CQ,再利用BQ BC CQ=-即可得出答案;(2)由平行四边形性质可知AP∥BQ,当AP=BQ时,四边形ABQP是平行四边形,建立一个关于t的方程,解方程即可求出t的值;(3)在Rt△ABC中,由勾股定理求出AC的长度,进而求出AO的长度,然后利用ABC的面积求出EF 的长度,进而求出OE的长度,而AE可以用含t的代数式表示出来,最后在Rt AOE中利用勾股定理即可求值.【详解】解:(1)∵四边形ABCD是平行四边形,∴OA=OC,AD∥BC,∴∠P AO=∠QCO,∵∠AOP=∠COQ,∴△APO≌△CQO(ASA),∴AP=CQ=t,∵BC=5,∴BQ=BC-CQ=5﹣t;(2)∵AP ∥BQ ,当AP =BQ 时,四边形ABQP 是平行四边形, 即t =5﹣t ,t =52, ∴当t 为52秒时,四边形ABQP 是平行四边形;(3)t =165,如图,在Rt △ABC 中, ∵AB =3,BC =5,∴AC 2222534BC AC -=-= ∴AO =CO =12AC =2, 1122ABCSAB AC BC EF == AB AC BC EF ∴=∴3×4=5×EF , ∴125EF =, ∴65OE =,∵OE 是AP 的垂直平分线, ∴AE =12AP =12t ,∠AEO =90°, 由勾股定理得:AE 2+OE 2=AO 2,22216()()225t ∴+=165t ∴=或165t =-(舍去)∴当165t =秒时,点O 在线段AP 的垂直平分线上. 【点睛】本题主要考查了平行四边形的判定及性质以及动点问题,掌握平行四边形的判定及性质,以及勾股定理是解题的关键.类型三 【探究动点运动过程中图形的形状或图形之间的关系】【典例指引3】已知矩形ABCD 中,10cm AB =,20cm BC =,现有两只蚂蚁P 和Q 同时分别从A 、B出发,沿AB BC CD DA =--方向前进,蚂蚁P 每秒走1cm ,蚂蚁Q 每秒走2cm .问:(1)蚂蚁出发后△PBQ 第一次是等腰三角形需要爬行几秒? (2)P 、Q 两只蚂蚁最快爬行几秒后,直线PQ 与边AB 平行? 【答案】(1)蚂蚁出发后△PBQ 第一次是等腰三角形需要爬行103秒;(2)P 、Q 两只蚂蚁最快爬行20秒后,直线PQ ∥AB 【解析】 【分析】(1)首先设蚂蚁出发后△PBQ 第一次是等腰三角形需要爬行t 秒,可得方程:10-t =2t ,解此方程即可求得答案;(2)首先设P 、Q 两只蚂蚁最快爬行x 秒后,直线PQ ∥AB ,可得方程:x -10=50-2x ,解此方程即可求得答案. 【详解】(1)设蚂蚁出发后△PBQ 第一次是等腰三角形需要爬行t 秒, ∵四边形ABCD 是长方形, ∴∠B =90∘, ∴BP =BQ ,∵AP =tcm ,BQ =2tcm ,则PB =AB −AP =10−t (cm ), ∴10−t =2t ,解得:t=103,∴蚂蚁出发后△PBQ第一次是等腰三角形需要爬行103秒;(2)设P、Q两只蚂蚁最快爬行x秒后,直线PQ∥AB,∵AD∥BC,∴四边形ABPQ是平行四边形,∴AQ=BP,∴x−10=50−2x,解得:x=20,∴P、Q两只蚂蚁最快爬行20秒后,直线PQ∥AB;【名师点睛】此题考查了矩形的性质以及等腰三角形的性质.此题难度适中,注意掌握数形结合思想与方程思想的应用.【举一反三】如图,平面直角坐标系中,直线l分别交x轴、y轴于A、B两点(AO<AB)且AO、AB的长分别是一元二次方程x2-3x+2=0的两个根,点C在x轴负半轴上,且AB:AC=1:2.(1)求A、C两点的坐标;(2)若点M从C点出发,以每秒1个单位的速度沿射线CB运动,连接AM,设△ABM的面积为S,点M的运动时间为t,写出S关于t的函数关系式,并写出自变量的取值范围;(3)点P是y轴上的点,在坐标平面内是否存在点Q,使以A、B、P、Q为顶点的四边形是菱形?若存在,请直接写出Q点的坐标;若不存在,请说明理由.【答案】(1)A(1,0),C(-3,0);(2)23(023)33S t tS t t⎧=≤<⎪⎨=-⎪⎩(>)(3)存在,点Q的坐标为(-1,0),(1,2),(1,-2),(123).【解析】【分析】(1)根据方程求出AO 、AB 的长,再由AB :AC =1:2求出OC 的长,即可得到答案; (2)分点M 在CB 上时,点M 在CB 延长线上时,两种情况讨论S 与t 的函数关系式; (3)分AQ =AB ,BQ =BA ,BQ =AQ 三种情况讨论可求点Q 的坐标. 【详解】 (1)x 2-3x +2=0, (x -1)(x -2)=0, ∴x 1=1,x 2=2, ∴AO =1,AB =2, ∴A (1,0),OB ===,∵AB :AC =1:2, ∴AC =2AB =4, ∴OC =AC -OA =4-1=3, ∴C (-3,0).(2)∵3OB OC ==,∴22222312BC OB OC =+=+=, ∵2222416,24AC AB ====, ∴222AC AB BC =+,∴△ABC 是直角三角形,且∠ABC =90︒, 由题意得:CM =t ,BC=当点M 在CB 上时,1)2S t t =⨯=(0t ≤<, ②当点M 在CB 延长线上时,12(2S t t =⨯-=-t>.综上,(0 S t t S t t ⎧=≤<⎪⎨=-⎪⎩>. (3)存在,①当AB 是菱形的边时,如图所示,在菱形AP 1Q 1B 中,Q 1O =AO =1,∴ Q 1(-1,0),在菱形ABP 2Q 2中,AQ 2=AB =2,∴Q 2(1,2), 在菱形ABP 3Q 3中,AQ 3=AB =2,∴Q 3(1,-2); ②当AB 为菱形的对角线时,如图所示, 设菱形的边长为x ,则在Rt △AP 4O 中,22244AO P O AP += 2221(3)x x =+-,解得x =233, ∴Q 4(1,233). 综上,平面内满足条件的点Q 的坐标为(-1,0),(1,2),(1,-2),(1,233).【点睛】此题考查一次函数的综合运用、解一元二次方程,解题过程中注意分类讨论.类型四 【探究动点运动过程中图形的最值问题】【典例指引4】如图,抛物线y =ax 2﹣34x +c 与x 轴相交于点A (﹣2,0)、B (4,0),与y 轴相交于点C ,连接AC ,BC ,以线段BC 为直径作⊙M ,过点C 作直线CE ∥AB ,与抛物线和⊙M 分别交于点D ,E ,点P 在BC 下方的抛物线上运动.(1)求该抛物线的解析式;(2)当△PDE是以DE为底边的等腰三角形时,求点P的坐标;(3)当四边形ACPB的面积最大时,求点P的坐标并求出最大值.【答案】(1)y=38x2﹣34x﹣3;(2)P(3,﹣138);(3)点P(2,﹣3),最大值为12【解析】【分析】(1)用交点式设出抛物线的表达式,化为一般形式,根据系数之间的对应关系即可求解;(2)根据(1)中的表达式求出点C(0,-3),函数对称轴为:x=1,则点D(2,-3),点E(4,-3),当△PDE 是以DE为底边的等腰三角形时,点P在线段DE的中垂线上,据此即可求解;(3)求出直线BC的表达式,设出P、H点的坐标,根据四边形ACPB的面积=S△ABC+S△BHP+S△CHP进行计算,化为顶点式即可求解.【详解】(1)抛物线的表达式为:y=a(x+2)(x﹣4)=a(x2﹣2x﹣8),即﹣2a=﹣34,解得:a=38,故抛物线的表达式为:y=38x2﹣34x﹣3;(2)当x=0时,y=-3,故点C的坐标为(0,﹣3),函数对称轴为:x=242-+=1,∵CE∥AB∴点D(2,﹣3),点E(4,﹣3),则DE的中垂线为:x=242=3,当x=3时,y=38x2﹣34x﹣3=﹣138,故点P(3,﹣138);(3)设直线BC的解析式为y=kx+b,把B(4,0)C(0,﹣3)代入得:403k bb+=⎧⎨=-⎩解得:343 kb⎧=⎪⎨⎪=-⎩∴直线BC的表达式为:y=34x﹣3,故点P作y轴的平行线交BC于点H,设点P(x,38x2﹣34x﹣3),则点H(x,34x﹣3);四边形ACPB的面积=S△ABC+S△BHP+S△CHP=12⨯3×6+12⨯HP×OB=9+12×4×(34x﹣3﹣38x2+34x+3)=﹣3 4x2+3x+9=()23-2124x-+,∵﹣34<0,故四边形ACPB的面积有最大值为12,此时,点P(2,﹣3).【名师点睛】本题考查的是二次函数综合运用,涉及到一次函数的性质、圆的基本知识、面积的计算等,综合性强,掌握中点坐标公式及作辅助线的方法是关键.【举一反三】已知:如图.在△ABC中.AB=AC=5cm,BC=6cm.点P由B出发,沿BC方向匀速运动.速度为1cm/s.同时,点Q从点A出发,沿AC方向匀速运动.速度为1cm/s,过点P作PM⊥BC交AB于点M,过点Q作QN⊥BC,垂足为点N,连接MQ,若设运动时间为t(s)(0<t<3),解答下列问题:(1)当t为何值时,点M是边AB中点?(2)设四边形PNQM的面积为y(cm2),求出y与t之间的函数关系式;(3)是否存在某一时刻t,使S四边形PNQM:S△ABC=4:9?若存在,求出此时t的值;若不存在,说明理由;(4)是否存在某一时刻t,使四边形PNQM为正方形?若存在,求出此时t的值;若不存在,请说明理由.【答案】(1)当t为32s时,点M是AB中点;(2)y与t的函数关系式是y28675t=-+;(3)t的值为52s;(4)不存在,理由见解析. 【解析】【分析】(1)求出BD=3,根据BM BPAB BD=,即可求出时间t;(2)先判断出△MBP∽△ABD,进而得出MP,同理表示出QN和CN,然后利用梯形面积公式进行计算即可得出结论;(3)根据(2)中所求,结合面积之间的关系建立方程即可得出结论;(4)假设存在,先利用PM=QN求出t,进而求出PM,PN,判断出PM≠PN即可得出结论.【详解】解:(1)过点A作AD⊥BC于点D,∵PM⊥BC,∴PM∥AD,∴BM BP AB BD=,∵点M 是AB 中点 ∴12BM AB =, ∴12BP BD =, ∵AB = AC , ∴132BD CD BC ===, ∵BP =t , ∴132t =,解得:32t =, 即当t 为32s 时,点M 是AB 中点; (2)过点A 作AD ⊥BC 于点D , ∵PM ∥AD , ∴△MBP ∽△ABD , ∴MP BPAD BD=,∵4AD ==, ∴43MP t=, ∴43MP t =,同理,△QCN ∽△ACD , ∴CQ QN CNAC AD CD==, ∵5CQ t =-, ∴5543t QN CN-==, ∴()445=455QN t t =--,()335=355CN t t =--, ∴32=63355PN t t t --+=-,∴y =S 四边形PNQM =()21144284362235575MP QN PN t t t t ⎛⎫⎛⎫+⋅=+-⋅-=-+ ⎪ ⎪⎝⎭⎝⎭, 即y 与t 的函数关系式是y 28675t =-+; (3)若S 四边形PNQM :S △ABC =4:9,则y =49S △ABC ,∵S △ABC =11641222BC AD ⋅=⨯⨯=,∴2846=12759t -+⨯, 解得152t =,252t =-(不合题意,舍去), ∴t 的值为52s ; (3)若四边形PNQM 为正方形,则需满足PM = QN ,PM = PN ,当PM = QN 时,44=435t t -,解得:158t =, 当158t =时,PM =44155==3382t ⨯,PN =221593=3=5584t --⨯,∴PM ≠PN , ∴不存在. 【点睛】此题是四边形综合题,主要考查了相似三角形的判定和性质、等腰三角形的性质、勾股定理、梯形和三角形的面积公式、解一元二次方程以及正方形的性质等知识点,解本题的关键是用方程的思想解决问题.【新题训练】1.如图①,△ABC 是等边三角形,点P 是BC 上一动点(点P 与点B 、C 不重合),过点P 作PM ∥AC 交AB 于M ,PN ∥AB 交AC 于N ,连接BN 、CM .(1)求证:PM +PN =BC ;(2)在点P 的位置变化过程中,BN =CM 是否成立?试证明你的结论;(3)如图②,作ND ∥BC 交AB 于D ,则图②成轴对称图形,类似地,请你在图③中添加一条或几条线段,使图③成轴对称图形(画出一种情形即可).【答案】(1)见解析;(2)结论成立,理由见解析;(3)见解析【解析】【分析】(1)先证明△BMP,△CNP是等边三角形,再证明△BPN≌△MPC,从而PM=PB,PN=PC,可得PM+PN =BC;(2)BN=CM总成立,由(1)知△BPN≌△MPC,根据全等三角形的性质可得结论;(3)作ND∥BC交AB于N,作ME∥BC交AC于M,作EF∥AB交BC于F,连接DF即可.【详解】(1)证明:∵△ABC是等边三角形,∴AB=BC,∠ABC=∠ACB=60°,∵PM∥AC,PN∥AB,∴∠BPM=∠ACB=60°,∠CPN=∠ABC=60°,∴△BMP,△CNP是等边三角形,∴∠BPM=∠CPN=60°,PN=PC,PN=PC,∴∠BPN=∠MPC,∴△BPN≌△MPC,∴PM=PB,PN=PC,∵BP+PC=BC,∴PM+PN=BC;(2)BN=CM总成立,理由:由(1)知△BPN≌△MPC,∴BN=CM;(3)解:如图③即为所求.作ND∥BC交AB于N,作ME∥BC交AC于M,作EF∥AB交BC于F,连接DF,作直线AH⊥BC交BC 于H,同(1)可证△AND,△AME,△BPM,△CEF都是等边三角形,∴D与N,M与E,B与C关于AH对称.∴BM=CE,∴BM=CF,∴P与F关于AH对称,∴所做图形是轴对称图形.【点睛】本题属于三角形综合题,考查了等边三角形的性质与判定,全等三角形的判定和性质,轴对称图形的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.2.如图,在矩形ABCD中,AB=18,AD=12,点M是边AB的中点,连结DM,DM与AC交于点G,点E,F分别是CD与DG上的点,连结EF,(1)求证:CG=2AG.(2)若DE=6,当以E,F,D为顶点的三角形与△CDG相似时,求EF的长.(3)若点E从点D出发,以每秒2个单位的速度向点C运动,点F从点G出发,以每秒1个单位的速度向点D运动.当一个点到达,另一个随即停止运动.在整个运动过程中,求四边形CEFG的面积的最小值.【答案】(1)证明见解析;(2) EF 1213;(3)S四边形CEFG最小=52.【解析】【分析】(1)利用矩形的性质及平行线的性质,可证得∠DCG=∠MAG,,∠CDG=∠AMG,△AGM∽△CGD,再利用相似三角形的对应边相等,可得比例线段,然后证明DC=AB=2AM,即可证得CG与AG的数量关系. (2)利用勾股定理,分别求出AC、DG的长,再分情况讨论:①当∠DEF=∠DCG时,△DEF∽△DCG;②当∠DEF=∠DGC时,△DEF∽△DGC,分别利用相似三角形的性质,得出对应边成比例,即可求出EF的长.(3)作GH⊥DC,FN⊥DC,易证△DNF∽△MAD,可证对应边成比例,求出NF的长,再根据S四边形CEFG=S△DCG-S△DEF,可得到S与t的函数解析式,再利用二次函数的性质,可求出四边形CEFG的面积的最小值.【详解】证明:(1)在矩形ABCD中,AB∥DC,∴∠DCG=∠MAG,∠CDG=∠AMG,∴△AGM∽△CGD,∴CG DC AG AM=∵点M是边AB的中点, ∴DC=AB=2AM,∴CGAG=2,CG即CG=2AG(2)在Rt△ADC中,由勾股定理得AC=2222AD CD1218613+=+=,由(1)得CG=2AG,CG=23AC=413,同理可得DG=10①当∠DEF=∠DCG时,△DEF∽△DCG∴EF DECG DC=即EF618413=,解得EF=4133②当∠DEF=∠DGC时,△DEF∽△DGC∴EF DECG DG=,即EF610413=,解得EF=12135(3)作GH⊥DC,FN⊥DC,设运动时间为t,则DF=DG-FG=10-t,DE=2t,∵∠DNF=∠DAM,∠NDF=∠AMD,∴△DNF∽△MAD∴DF FN DM DA = 即 10t FN 1512-= ,解得NF = 404t5- ∵S 四边形CEFG =S △DCG -S △DEF ()22211404t 4404=18122t t t 72=5523225555-⨯⨯⨯-⨯⨯=-+-+t ∴当t =5时,S 四边形CEFG 最小=52 【点睛】本题考查了矩形的性质,相似三角形的动点问题,以及二次函数的实际应用,熟练掌握矩形的性质判定相似三角形,然后利用相似三角形的性质求出边长并建立二次函数模型是解题的关键.3.知识链接:将两个含30°角的全等三角尺放在一起,让两个30°角合在一起成60°,经过拼凑、观察、思考,探究出结论“直角三角形中,30°角所对的直角边等于斜边的一半”.如图,等边三角形ABC 的边长为4cm ,点D 从点C 出发沿CA 向A 运动,点E 从B 出发沿AB 的延长线BF 向右运动,已知点D 、E 都以每秒0.5cm 的速度同时开始运动,运动过程中DE 与BC 相交于点P ,设运动时间为x 秒.(1)请直接写出AD 长.(用x 的代数式表示) (2)当△ADE 为直角三角形时,运动时间为几秒? (3)求证:在运动过程中,点P 始终为线段DE 的中点.【答案】(1)AD =4-0.5x ;(2)83;(3)证明见解析.【解析】 【详解】试题分析:(1)直接根据AD =AC -CD 求解;(2)设x 秒时,△ADE 为直角三角形,分别用含x 的式子表示出AD 和AE ,再根据Rt △ADE 中30°角所对的直角边等于斜边的一半得出x 的方程,求解即可;(3)作DG ∥AB 交BC 于点G ,证△DGP ≌△EBP 便可得. 解:(1)由AC =4,CD =0.5x ,得AD =AC -CD =4-0.5x ; (2)∵△ABC 是等边三角形,∴AB =BC =AC =4cm ,∠A =∠ABC =∠C =60°.设x 秒时,△ADE 为直角三角形,∴∠ADE =90°,CD =0.5x ,BE =0.5x ,AD =4-0.5x ,AE =4+0.5x , ∴∠AED =30°,∴AE =2AD , ∴4+0.5x =2(4-0.5x ),∴x =83.答:运动83秒后,△ADE 为直角三角形;(3)作DG ∥AB 交BC 于点G ,∴∠GDP =∠BEP ,∠CDG =∠A =60°,∠CGD =∠ABC =60°, ∴∠C =∠CDG =∠CGD ,∴△CDG 是等边三角形,∴DG =DC , ∵DC =BE ,∴DG =BE .在△DEP 和△EBP 中,∠GDP =BEP ,∠DPG =∠EPB ,DG =EB , ∴△DGP ≌△EBP ,∴DP =PE .∴在运动过程中,点P 始终为线段DE 的中点.4.如图所示,已知抛物线2(0)y ax a =≠与一次函数y kx b =+的图象相交于(1,1)A --,(2,4)-B 两点,点P 是抛物线上不与A ,B 重合的一个动点.(1)请求出a ,k ,b 的值;(2)当点P 在直线AB 上方时,过点P 作y 轴的平行线交直线AB 于点C ,设点P 的横坐标为m ,PC 的长度为L ,求出L 关于m 的解析式;(3)在(2)的基础上,设PAB ∆面积为S ,求出S 关于m 的解析式,并求出当m 取何值时,S 取最大值,最大值是多少?【答案】(1)1k =-,2b =-,1a =-;(2)22(12)L m m m =-++-<<;(3)当12m =时,S 取最大值,最大值为278【解析】 【分析】(1)把A 、B 坐标分别代入抛物线和一次函数解析式即可求出a 、b 、k 的值;(2)根据a 、b 、k 的值可得抛物线和直线AB 的解析式,根据P 点横坐标为m 可用m 表示P 、C 两点坐标,根据两点间距离公式即可得L 与m 的关系式;(3)如图,作AD ⊥PC 于D ,BE ⊥PC 于E ,根据PAB PAC PBC S S S ∆∆∆=+,可用m 表示出S ,配方求出二次函数的最值即可得答案. 【详解】(1)∵点A (-1,-1)在抛物线2(0)y ax a =≠图象上, ∴2(1)1a -=-, 解得:1a =-,∵点A (-1,-1)、B (2,-4)在一次函数y kx b =+的图象上,∴124k b k b -+=-⎧⎨+=-⎩, 解得12k b =-⎧⎨=-⎩,∴1k =-,2b =-,(2)∵1k =-,2b =-,a =-1,∴直线AB 的解析式为2y x =--,抛物线的解析式为2y x =-,∵点P 在抛物线上,点C 在直线AB 上,点P 横坐标为m ,PC //y 轴, ∴()2,P m m-,(,2)C m m --,∴L 关于m 的解析式:22(12)L m m m =-++-<<,(3)如图,作AD ⊥PC 于D ,BE ⊥PC 于E , ∴AD =m +1,BE =2-m , ∵PAB PAC PBC S S S ∆∆∆=+, ∴S =12PC ·AD +12PC ·BE ()()()()2211122222m m m m m m =+-+++--++ ()2322m m =-++ 233322m m =-++配方得:23127228S m ⎛⎫=--+ ⎪⎝⎭,∴当12m =时,S 取最大值,最大值为278【点睛】本题考查待定系数法求二次函数解析式及二次函数的最值,熟练运用配方法求二次函数的最值是解题关键. 5.已知:如图,在矩形ABCD 中,AC 是对角线,AB =6cm ,BC =8cm .点P 从点D 出发,沿DC 方向匀速运动,速度为1cm /s ,同时,点Q 从点C 出发,沿CB 方向匀速运动,速度为2cm /s ,过点Q 作QM ∥AB 交AC 于点M ,连接PM ,设运动时间为t (s )(0<t <4).解答下列问题:(1)当t 为何值时,∠CPM =90°; (2)是否存在某一时刻t ,使S 四边形MQCP =ABCD 1532S 矩形?若存在,求出t 的值;若不存在,请说明理由; (3)当t 为何值时,点P 在∠CAD 的角平分线上. 【答案】(1)t =125s 时,∠CPM =90°;(2)t =3s 时,S 四边形MQCP =ABCD 1532S 矩形;(3)当t =83s 时,点P在∠CAD 的平分线上. 【解析】 【分析】(1)首先证明QM =PC ,利用平行线分线段成比例定理构建方程即可解决问题. (2)根据S 四边形MQCP =ABCD1532S 矩形,构建方程即可解决问题. (3)如图1中,作PH ⊥AC 于H .证明△P AD ≌△P AH (AAS ),推出AD =AH =8,DP =PH ,设DP =PH =x ,在Rt △PCH 中,构建方程即可解决问题. 【详解】解:(1)∵四边形ABCD 是矩形, ∴AB =CD =6,BC =AD =8,∠D =90°,∴AC 10,∵∠CPM =∠D =90°, ∴PM ∥AD , ∵QM ∥AB ∥CD ,∴四边形PCQM 是平行四边形, ∴PC =QM =6﹣t ,∵QM AB =CQCB , ∴66t -=28t ,解得t =125,∴t =125s 时,∠CPM =90°.(2)∵S 四边形MQCP =ABCD15S 32矩形, ∴12•(6﹣t )•2t +12•2t •34×2t =1532×6×8,解得t =3或﹣15(舍弃), 答:t =3s 时,S 四边形MQCP =ABCD 15S 32矩形. (3)如图1中,作PH ⊥AC 于H .∵∠D =∠AHP =90°,AP =AP ,∠P AD =∠P AH , ∴△P AD ≌△P AH (AAS ),∴AD =AH =8,DP =PH ,设DP =PH =x , ∵AC =10, ∴CH =2,在Rt △PCH 中,∵PH 2+CH 2=PC 2, ∴t 2+22=(6﹣t )2, 解得t =83,答:当t =83s 时,点P 在∠CAD 的平分线上.【点睛】本题属于四边形综合题,考查了矩形的性质,平行线分线段成比例定理,勾股定理,全等三角形的判定和性质等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.6.在等边三角形ABC 中,点D 是BC 的中点,点E 、F 分别是边AB 、AC (含线段AB 、AC 的端点)上的动点,且∠EDF =120°,小明和小慧对这个图形展开如下研究:问题初探:(1)如图1,小明发现:当∠DEB =90°时,BE +CF =nAB ,则n 的值为 ;问题再探:(2)如图2,在点E、F的运动过程中,小慧发现两个有趣的结论:①DE始终等于DF;②BE与CF的和始终不变;请你选择其中一个结论加以证明.成果运用:(3)若边长AB=8,在点E、F的运动过程中,记四边形DEAF的周长为L,L=DE+EA+AF+FD,则周长L取最大值和最小值时E点的位置?【答案】(1)12;(2)①见解析;②见解析;(3)周长L取最大值时点E和点B重合或BE=4,取最小值时BE=2.【解析】【分析】(1)先利用等边三角形判断出BD=CD=12AB,进而判断出BE=12BD,再判断出∠DFC=90°,得出CF=12CD,即可得出结论;(2)①构造出△EDG≌△FDH(ASA),得出DE=DF,即可得出结论;②由(1)知,BG+CH=12AB,由①知,△EDG≌△FDH(ASA),得出EG=FH,即可得出结论;(3)由(1)(2)判断出L=2DE+12,再判断出DE⊥AB时,L最小,点F和点C重合时,DE最大,即可得出结论.【详解】解:(1)∵△ABC是等边三角形,∴∠B=∠C=60°,AB=BC,∵点D是BC的中点,∴BD=CD=12BC=12AB,∵∠DEB=90°,∴∠BDE=90°-∠B=30°,在Rt△BDE中,BE=12 BD,∵∠EDF=120°,∠BDE=30°,∴∠CDF=180°-∠BDE-∠EDF=30°,∵∠C=60°,∴∠DFC=90°,在Rt△CFD中,CF=12 CD,∴BE +CF =12BD +12CD =12BC =12AB , ∵BE +CF =nAB , ∴n =12, 故答案为:12; (2)如图,①过点D 作DG ⊥AB 于G ,DH ⊥AC 于H , ∴∠DGB =∠AGD =∠CHD =∠AHD =90°, ∵△ABC 是等边三角形, ∴∠A =60°,∴∠GDH =360°-∠AGD -∠AHD -∠A =120°, ∵∠EDF =120°, ∴∠EDG =∠FDH ,∵△ABC 是等边三角形,且D 是BC 的中点, ∴∠BAD =∠CAD , ∵DG ⊥AB ,DH ⊥AC , ∴DG =DH ,在△EDG 和△FDH 中,90DGE DHF DG DHEDG FDH ∠∠︒⎧⎪⎨⎪∠∠⎩====, ∴△EDG ≌△FDH (ASA ), ∴DE =DF ,即:DE 始终等于DF ;②同(1)的方法得,BG+CH=12 AB,由①知,△EDG≌△FDH(ASA),∴EG=FH,∴BE+CF=BG-EG+CH+FH=BG+CH=12 AB,∴BE与CF的和始终不变;(3)由(2)知,DE=DF,BE+CF=12 AB,∵AB=8,∴BE+CF=4,∴四边形DEAF的周长为L=DE+EA+AF+FD =DE+AB-BE+AC-CF+DF=DE+AB-BE+AB-CF+DE=2DE+2AB-(BE+CF)=2DE+2×8-4=2DE+12,∴DE最大时,L最大,DE最小时,L最小,当DE⊥AB时,DE最小,L最小,此时∠BDE=90°-60°=30°,BE=12BD=2,当点F和点C重合或点E和点B重合时,DE最大,点F和点C重合时,∠BDE=180°-∠EDF=120°=60°,∵∠B=60°,∴∠B=∠BDE=∠BED=60°,∴△BDE是等边三角形,∴BE=DE=BD=12AB=4,当点E和点B重合时,DE=BD=4,周长L有最大值,即周长L取最大值时点E和点B重合或BE=4,取最小值时BE=2.【点睛】本题是四边形综合题,考查等边三角形的性质,含30度角的直角三角形的性质,角平分线定理,全等三角形的判定和性质,构造出全等三角形是解题的关键.7.如图,在矩形ABCD中,AB=8cm,BC=16cm,点P从点D出发向点A运动,运动到点A停止,同时,点Q从点B出发向点C运动,运动到点C即停止,点P、Q的速度都是1cm/s.连接PQ、AQ、CP.设点P、Q运动的时间为ts.(1)当t为何值时,四边形ABQP是矩形;(2)当t为何值时,四边形AQCP是菱形;(3)分别求出(2)中菱形AQCP的周长和面积.【答案】(1)8;(2)6;(3),40cm,80cm2.【解析】【分析】(1)当四边形ABQP是矩形时,BQ=AP,据此求得t的值;(2)当四边形AQCP是菱形时,AQ=AC,列方程求得运动的时间t;(3)菱形的四条边相等,则菱形的周长=4t,面积=矩形的面积-2个直角三角形的面积.【详解】(1)当四边形ABQP是矩形时,BQ=AP,即:t=16-t,解得t=8.答:当t=8时,四边形ABQP是矩形;(2)设t秒后,四边形AQCP是菱形8t t时,四边形AQCP为菱形.当AQ=CQ22解得:t=6.答:当t=6时,四边形AQCP是菱形;(3)当t=6时,CQ=10,则周长为:4CQ=40cm,面积为:10×8=80(cm2).8.如图,O为菱形ABCD对角线的交点,M是射线CA上的一个动点(点M与点C、O、A都不重合),过点A、C分别向直线BM作垂线段,垂足分别为E、F,连接OE,OF.。

几何中的动点问题

几何中的动点问题

几何中的动点问题动点问题一直是考试中常见的压轴题,它能考查学生的多种能力,有较强的选拔功能。

解这类题目要“以静制动”,即把动态问题,变为静态问题来解。

动点题一般方法是针对这些点在运动变化的过程中相伴随着的数量关系(如等量关系、变量关系)、图形位置关系(如图形的特殊状态、图形间的特殊关系)等进行研究考察.首先抓住变化中的“不变量”,以不变应万变,首先根据题意理清题目中两个变量x、y的变化情况并找出相关常量,第二,按照图形中的几何性质及相互关系,找出一个基本关系式,把相关的量用一个自变量的表达式表达出来,然后再根据题目的要求,依据几何、代数知识解出。

第三,确定自变量的取值范围,画出相应的图象。

一、典型例题1、如图,AB是半圆O点Q在半圆O(1)当∠QPA=60(2)当QP⊥AB时,∠(3)由(1)、(2定是_________三角形。

中,AC=5,BC=12,∠ACB=90°,P是AB边上的动点(与点A、B不重合),Q是BC2、在Rt ABC边上的动点(与点B、C不重合),当PQ与AC不平行时,△CPQ可能为直角三角形吗?若有可能,请求出线段CQ的长的取值范围;若不可能,请说明理由。

3、如图,在平面直角坐标系内,已知点A (0,6)、点B (8,0),动点P 从点A 开始在线段AO 上以每秒1个单位长度的速度向点O 移动,同时动点Q 从点B 开始在线段BA 上以每秒2个单位长度的速度向点A 移动,设点P 、Q 移动的时间为t 秒.(1) 求直线AB 的解析式;(2) 当t 为何值时,△APQ 与△AOB 相似? (3) 当t 为何值时,△APQ 的面积为524个平方单位?4、已知:如图,在平面直角坐标系中,ABC △是直角三角形,90ACB ∠=,点A C ,的坐标分别为(3 0)A -,,(1 0)C ,,∠BAC 的正切值是34。

(1)求过点A B ,的直线的函数解析式;(2)在x 轴上找一点D ,连接DB ,使得ADB △与ABC △相似(不包括全等),并求点D 的坐标; (3)在(2)的条件下,如果P Q ,分别是AB 和AD 上的动点,连接PQ ,设AP DQ m ==,问是否存在这样的m ,使得APQ △与ADB △相似,如存在,请求出m 的值;如不存在,请说明理由.5、已知,如图,在直角梯形COAB 中,CB ∥OA ,以O 为原点建立平面直角坐标系,A 、B 、C 的坐标分别为A (10,0)、B (4,8)、C (0,8),D 为OA 的中点,动点P 自A 点出发沿A →B →C →O 的路线移动,速度为每秒1个单位,移动时间记为t 秒,(1)动点P 在从A 到B 的移动过程中,设△APD 的面积为S ,试写出S 与t 的函数关系式,指出自变量的取值范围,并求出S 的最大值;(2)动点P 从出发,几秒钟后线段PD 将梯形COAB 的面积分成1:3两部分?求出此时P 点的坐标。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档