几何中的函数问题(一)

合集下载

三角函数在几何中的应用

三角函数在几何中的应用

三角函数在几何中的应用三角函数是数学中一个重要的分支,它在几何学中有着广泛的应用。

无论是在平面几何还是空间几何中,三角函数都扮演着重要的角色。

本文将介绍三角函数在几何中的应用,并以实际例子来说明其在几何问题解决中的作用。

作为一种数学工具,三角函数在几何中有着多种运用。

首先,我们来看在平面几何中的应用。

一、平面几何中的应用1. 直角三角形求解直角三角形是几何学中最基本的一类三角形。

通过三角函数,我们能够根据已知一边和一个角度,求解出其他未知边长和角度。

例如,已知一个直角三角形的一个锐角为30°,该直角三角形的斜边长为10个单位。

现在我们想要求解其余两条边的长度。

设其中一条边为a,另一条边为b。

根据三角函数的定义,我们可以得到以下方程组:sin(30°) = a / 10cos(30°) = b / 10通过解方程组,我们可以得到a和b的值,从而求解出直角三角形的边长。

2. 三角形面积计算在平面几何中,三角形是最简单的多边形。

通过三角函数,我们能够根据已知三角形的两条边和夹角,计算出三角形的面积。

例如,已知一个三角形的两边长分别为5个单位和8个单位,夹角为60°。

现在我们想要求解该三角形的面积。

根据三角函数的定义,我们可以得到:sin(60°) = 高 / 5通过解方程,我们可以计算出高的值,进而求解出三角形的面积。

二、空间几何中的应用除了在平面几何中的应用,三角函数在空间几何中同样发挥着重要作用。

1. 锥体体积计算在空间几何中,锥体是一种常见的几何形体。

通过三角函数,我们可以根据已知锥体的高度和底面积,计算出锥体的体积。

例如,已知一个锥体的高度为10个单位,底面半径为5个单位。

现在我们想要求解该锥体的体积。

根据锥体的定义,我们可以使用三角函数得到该锥体的体积公式:体积 = (1/3) * 底面积 * 高度通过代入已知的数值,我们可以计算出该锥体的体积。

一次函数与几何综合(一)(讲义及答案).

一次函数与几何综合(一)(讲义及答案).

一次函数与几何综合(一)(讲义)➢ 课前预习1. 若一次函数经过点 A (2,-1)和点 B (4,3),则该一次函数的表达式为.2. 若直线 l 平行于直线 y =-2x -1,且过点(1,4),则直线 l 的表达式为 .3.如图,一次函数的图象经过点 A ,且与正比例函数 y =-x 的图象交于点 B ,则该一次函数的表达式为.第 3 题图第 4 题图4.如图,点 A 在直线 l 1:y =3x 上,且点 A 在第一象限,过点 A 作 y 轴的平行线交直线 l 2:y =x 于点 B .(1) 设点 A 的横坐标为 t ,则点 A 的坐标为,点 B的坐标为 ,线段 AB 的长为;(用含 t的式子表示)(2) 若 AB =4,则点 A 的坐标是.➢ 知识点睛1. 一次函数与几何综合的处理思路:从已知的表达式、坐标或几何图形入手,分析特征,通过坐标与横平竖直线段长、函数表达式相互转化解决问题.2. 函数与几何综合问题中常见转化方式:(1) 借助表达式设出点坐标,将点坐标转化为横平竖直线段长,结合几何特征利用线段长列方程;(2) 研究几何特征,考虑线段间关系,通过设线段长进而表达点坐标,将点坐标代入函数表达式列方程.表达线段长:横平线段长,横坐标相减,右减左; 竖直线段长,纵坐标相减,上减下.1➢ 精讲精练1.如图,直线 y = - 3x + 3 与 x 轴、y 轴交于 A ,B 两点,点 C4是 y 轴负半轴上一点,若 BA =BC ,则直线 AC 的表达式为.第 1 题图第 2 题图2.如图,在平面直角坐标系中,一次函数 y =kx +b 的图象经过点A (-2,6),且与 x 轴相交于点 B ,与正比例函数 y =3x 的图象交于点 C ,点 C 的横坐标为 1,则△OBC 的面积为 .3.如图,直线l :y = 3x + 6 与 y 轴相交于点 N ,直线l :y = kx -31 42与直线l 1 相交于点 P ,与 y 轴相交于点 M ,若△PMN 的面积为 18,则直线l 2的表达式为.4.如图,一次函数 y = 1x + 2 的图象与 y 轴交于点 A ,与正比例3函数 y =kx 的图象交于第二象限内的点 B ,若 AB =OB ,则 k 的值为.5. 如图,点A,B 的坐标分别为(-8,0),(0,4),点C(a,0)为x轴上一个动点,过点C 作x 轴的垂线,交直线AB 于点D,若CD=5,则a 的值为.6.如图,直线y=kx+6 与x 轴、y 轴分别交于点A,B,点A 的坐标为(6,0),点C 的坐标为(4,0).若点P 是直线y=kx+6 上的一个动点,当点P 的坐标为时,△OPC 的面积为4.7.如图,直线y =-1x +b 与x 轴、y 轴分别交于点A,B,与直2线y=x 交于点M,点M 的横坐标为2,点C 为线段AM 上一点,过点C 作x 轴的垂线,垂足为点D,交直线y=x 于点E.若ED=4CD,则点E 的坐标为.8.如图,直线l1:y=2x+1 与直线l2:y=mx+4 相交于点P(1,b),垂直于x 轴的直线x=a 与直线l1,l2 分别交于点A,B,若线段AB 的长为2,则a 的值为.9.如图,直线AB:y=-x+20 与y 轴交于点A,与直线OB:y =1 x 3交于点B.点C 为线段OB 上一点,过点C 作y 轴的平行线交直线AB 于点D,向y 轴作垂线,垂足为点E.若DC=2CE,则点C 的坐标为.10.如图,在平面直角坐标系中,点A,C 和B,D 分别在直线y=1x+3和x 轴上,若△OAB,△BCD 都是等腰直角三角形,2∠OAB=∠BCD=90°,则点C 的坐标为.11.如图,直线l1:y 3x 与直线l2:y=-x+7 相交于点A.点P 4在x 轴正半轴上,过点P 作x 轴的垂线,与直线l1,l2 分别交于点B,C.设点P 的横坐标为t.(1)当t=1 时,求线段BC 的长;(2)用含t 的式子表达BC 的长;(3)若三个点B,C,P 中恰有一点是其他两点所连线段的中点,则称B,C,P 三点为“共谐点”.请直接写出使得B,C,P 三点成为“共谐点”的t 的值.⎨ 【参考答案】➢ 课前预习1. y = 2x - 52. y = -2x + 63. y = x + 24. (1)(t ,3t ),(t ,t ),2t(2)(2,6)➢ 精讲精练1. y = 1x - 222. 63. y = - 3x - 32 4. - 13 5. 2 或-186. (4,2)或(8,-2)7. (4,4)8. 5 或 13 3 9. (6,2) 10. (30,18) 11. (1) BC =21;4 ⎧- 7t + 7(0 < t ≤ 4) (2) BC = ⎪4 ;7 ⎪ t - 7(t > 4) ⎩ 4(3)当 t 的值为14 ,56或 28 时,B ,C ,P 三点成为“共5 11谐点”⎪。

用函数解决几何问题

用函数解决几何问题

用函数解决几何问题函数是数学中的重要概念,它们能够将一个自变量的值映射到一个因变量的值。

在几何学中,我们也可以使用函数来解决一些几何问题。

本文将介绍如何使用函数来解决几何问题,并且给出几个具体的例子。

一、函数的基本概念函数是几何学中常用的工具,它可以将几何形状的属性与数值联系起来。

在几何学中,我们通常将几何形状的特征参数称为自变量,而将对应的几何属性称为因变量。

通过定义一个函数,我们可以根据给定的自变量的值求出对应的因变量的值,从而解决几何问题。

二、使用函数解决几何问题的步骤1. 确定问题的几何形状和属性。

首先,我们需要明确问题是关于哪个几何形状的,以及需要解决该几何形状的哪些属性。

例如,如果问题涉及到一个圆的面积,我们需要确定圆是我们需要考虑的几何形状,而面积是我们需要求解的属性。

2. 建立函数表达式。

在确定了问题的几何形状和属性之后,我们需要建立一个函数表达式,将自变量和因变量联系起来。

函数表达式的形式与具体的问题相关,可以是一元函数或多元函数。

例如,在求解圆的面积问题中,我们可以建立一个一元函数,该函数的自变量是圆的半径,因变量是圆的面积。

3. 求解函数的值。

一旦建立了函数表达式,我们就可以根据给定的自变量的值,使用函数表达式求解对应的因变量的值。

这样,我们就能够准确地得到问题的答案。

三、使用函数解决几何问题的例子1. 求解圆的面积。

假设我们要求解一个半径为r的圆的面积。

我们可以建立一个函数A(r)表示圆的面积,其中r为自变量。

利用圆的面积公式A(r) = π*r^2,我们可以根据给定的半径r,通过函数A(r)求解对应的面积。

2. 求解三角形的面积。

假设我们要求解一个三角形的面积。

我们可以建立一个函数A(a, b, c)表示三角形的面积,其中a、b、c为三角形的边长。

利用海伦公式,我们可以根据给定的三个边长a、b、c,通过函数A(a, b, c)求解对应的面积。

3. 求解直线的斜率。

假设我们要求解一条直线的斜率。

专题01 用几何意义探究反比例函数中k值问题的多种解法(解析版)

专题01 用几何意义探究反比例函数中k值问题的多种解法(解析版)

专题01 用几何意义探究反比例函数中k 值问题的多种解法如图,反比例函数k y x =(k >0),A 、C 是第一象限上两点,S △OAB =S △OCD =2k ;S △OAC =S 梯形ABDC 在已知面积或比例线段解答反比例函数的问题中,善于利用k 与面积的关系,往往可以事半功倍.典例1.知面积比值,求k 值(2022•山东聊城中考真题)如图,直线与反比例函数在第一象限内的图象交于点,与y 轴交于点B ,过双曲线上的一点C 作x 轴的垂线,垂足为点D ,交直线于点E ,且.()30y px p =+¹()0k y k x=>()2,A q 3y px =+:3:4AOB COD S S =△△(1)求k ,p 的值;(2)若OE 将四边形BOCE 分成两个面积相等的三角形,求点C 的坐标.【答案】(1),;(2)点C 的坐标为(4,2)【解析】【方法一】坐标法(1)解:∵直线与y 轴交点为B ,∴,即.∵点A 的横坐标为2,∴.∵,∴△COD 的面积为4,设,∴,解得.∵点在双曲线上,∴,把点代入,得,∴,;8k =12p =3y px =+()0,3B 3OB =13232AOB S =´´=V :3:4AOB COD S S =△△,k C m m æöç÷èø142k m m×=8k =()2,A q 8y x=4q =()2,4A 3y px =+12p =8k =12p =(2)解:由(1)得8,C m m æöç÷èø,∴.∵OE 将四边形BOCE 分成两个面积相等的三角形,∴,∵32BOE S m =△,,∴,解得或(不符合题意,舍去),∴点的坐标为(4,2).【方法二】k 的几何意义法解:(1)由题意知,△ABO 的面积为3,又,得:△OCD 的面积为4,故k =2S △OCD =8,所以,A (2,4),把点代入,得(2)如图,过A ,E 作y 轴垂线,垂足为M ,N则四边形ODEN 为矩形,所以,S △OEN =S △OED ,又S △OBE =S △OCE ,所以S △BEN =S △OCD =4,1,32E m m æö+ç÷èøBOE COE S S =△△13422COE m S m æö=+-ç÷èø△3134222m m m æö=+-ç÷èø4m =4m =-C :3:4AOB COD S S =△△()2,4A 3y px =+12p =所以S △ABM =1,∵AM ∥NE ,∴△ABM ∽△EBN ,其面积比为1:4,∴AM :NE =1:2,即NE =4,∴C 点坐标为(4,2)典例2.知比例线段,求k 值(2022•贵州铜仁中考真题)如图,点A 、B 在反比例函数k y x=的图象上,AC y ^轴,垂足为D ,BC AC ^.若四边形AOBC 的面积为6,12AD AC =,则k 的值为_______.【答案】3.【解析】【方法一】坐标法设点,k A a a æöç÷èø,∵AC y ^轴,∴AD a =,k OD a =,∵12AD AC =,∴AC 2a =,∴CD =3a ,∵BC AC ^.AC y ^轴,∴BC ∥y 轴,∴点B 3,3æöç÷èøk a a ,∴233k k k BC a a a=-=,∵AOD AOBC OBCD S S S =+V 四边形梯形,四边形AOBC 间面积为6,∴12136232k k a k a a æö+´=+ç÷èø,解得:3k =.【方法二】k 的几何意义法如图,连接OC ,延长CB 交x 轴于E ,则S △AOD =S △BOE =12k ,因为AD :AC =1:2,所以S △AOC =2S △AOD =k ,S △BOC =6-k ,又四边形DOEC 为矩形,OC 为对角线,所以,S △COD =S △COE ,所以12k +k =6-k +12k ,解得:k =3.典例3.知面积值,求k 值(2022•内蒙古呼伦贝尔中考真题)如图,在平面直角坐标系中,Rt OAB △的直角顶点B 在x 轴的正半轴上,点O 与原点重合,点A 在第一象限,反比例函数k y x=(0x >)的图象经过OA 的中点C ,交AB 于点D ,连接CD .若ACD △的面积是1,则k 的值是_________.【答案】43.【解析】【方法一】坐标法解:设C (m ,k m),因为C 为OA 中点,所以A (2m ,2k m),则D (2m ,2k m ),又△ACD 的面积为1,所以12122k k m m m æö×-=ç÷èø,解得:k =43【方法二】k 的几何意义法解:连接OD ,过C 作CE AB ∥,交x 轴于E ,∵∠ABO =90°,反比例函数k y x =(x >0)的图象经过OA 的中点C ,1ACD S =V ,∴12COE BOD S S k ==△△,1ACD OCD S S ==V V ,2OC =OA ,∵CE AB ∥,∴△OCE ∽△OAB ,∴221124OCE S OC S OA æöæö===ç÷ç÷èøèø△△O A B ,∴4OCE OAB ACD OCD OBD S S S S S ==++V V V V V ,∴1141122k k ´=++,∴k =43,故答案为:43.1.(2022•辽宁锦州中考真题)如图,在平面直角坐标系中,△AOB 的边OB 在y 轴上,边AB 与x 轴交于点D ,且BD =AD ,反比例函数y =k x(x >0)的图像经过点A ,若S △OAB =1,则k 的值为___________.【答案】2.【解析】【方法一】坐标法解:设A(a,b) ,如图,作A过x轴的垂线与x轴交于C,则:AC=b,OC=a,AC∥OB,∴∠ACD=∠BOD=90°,∠ADC=∠BDO,∴△ADC≌△BDO,∴S△ADC=S△BDO,∴S△OAC=S△AOD+ S△ADC=S△AOD+ S△BDO= S△OAB=1,∴12×OC×AC=12ab=1,∴ab=2,∵A(a,b) 在y=kx上,∴k=ab=2 .【方法二】k的几何意义法由上知,S△AOC=1,所以,k=2S△AOC=2故答案为:2.2.(2022•辽宁鞍山中考真题)如图,在平面直角坐标系中,O 是坐标原点.在Rt OAB V 中,90OAB Ð=°,边OA 在y 轴上,点D 是边OB 上一点,且:1:2OD DB =,反比例函数()0ky x x=>的图象经过点D 交AB 于点C ,连接OC .若4OBC S =△,则k 的值为_________.【答案】1.【解析】【方法一】坐标法解:∵反比例函数()0k y x x=>的图象经过点D ,∠OAB =90°,∴D (m ,k m ),∵OD :DB =1:2,∴B (3m ,3k m),∴AB =3m ,OA =3k m ,∴反比例函数()0k y x x =>的图象经过点D 交AB 于点C ,∠OAB =90°,∴12AOC S k =△,∵4OBC S △=,∴4AOB AOC S S -△△=,即1313422k m k m ´×-=,解得k =1【方法二】k 的几何意义法如图,过D 作DE ⊥x 轴,则DE ∥AB ,因为OD :BD =1:2,所以DE :AB =1:3,所以S △ODE :S △OAB =1:9,又S △ODE =S △OAC =12k ,所以12k +4=92k ,解得:k =13.(2022•江苏南通中考真题)平面直角坐标系中,已知点是函数图象上的三点.若,则k 的值为___________.【答案】【解析】【方法一】坐标法解:∵点是函数图象上的三点,∴,,∴m =n ,∴,,∴点B 、C 关于原点对称,∴设直线BC 的解析式为,代入得:,解得:,∴直线BC 的解析式为,xOy (,6),(3,2),(3,2)--A m m B m n C m n (0)k y k x=¹2ABC S =△34(,6),(3,2),(3,2)--A m m B m n C m n (0)k y k x =¹260k m =>6k mn =(3,2)B m m (3,2)C m m --()0y kx k =¹(3,2)B m m 23m mk =23k =23y x =不妨设m >0,如图,过点A 作x 轴的垂线交BC 于D ,把x =m 代入得:,∴D (m ,),∴AD =,∴,∴,∴,而当m <0时,可得,故答案为:.【方法二】由题意知,S △OAB =12632m n m m ×-×,O 为BC 中点,因为所以,S △OAB =12632m n m m ×-×=1,即291mn m -=①,又632m m m n k ×=×=②,23y x =23y m =23m 216633m m m -=()11633223ABC S m m m =´×+=V 218m =2136684k m ==´=34k =342ABC S =△由①②可得:4.(2022•湖北十堰中考真题)如图,正方形ABCD 的顶点分别在反比例函数()110k y k x=>和()220k y k x =>的图象上.若BD y ∥轴,点D 的横坐标为3,则12k k +=( )A .36B .18C .12D .9【答案】B .【解析】【方法一】解:连接AC ,与BD 相交于点P ,设PA =PB =PC =PD =t (t ≠0).∴点D 的坐标为(3,23k ),∴点C 的坐标为(3-t ,23k +t ).∵点C 在反比例函数y =2k x 的图象上,34k=∴(3-t )(23k +t )=k 2,化简得:t =3-23k ,∴点B 的纵坐标为23k +2t =23k +2(3-23k )=6-23k ,∴点B 的坐标为(3,6-23k ),∴3×(6-23k )=1k ,整理,得:1k +2k =18.【方法二】先利用D 点坐标,表示出A 和C 点坐标,再根据四边形ABCD 为正方形,BD 与y 轴平行,知AC 平行于x 轴,那么,A 和C 点的纵坐标相等,进而求解23,3k D æöç÷èø,13,3k B æöç÷èø,122123,636k k k C k k æöç÷--ç÷-ç÷-èø,121123,636k k k A k k æöç÷-+ç÷-ç÷+èø所以2112123366k k k k k k =---+,整理得:()212212180k k k k ---=即()()1212108k k k k -+=-因为()120k k -¹所以()12018k k +-=,即1218k k +=5.(2022•黑龙江龙东中考真题)如图,在平面直角坐标系中,点O 为坐标原点,平行四边形OBAD 的顶点B 在反比例函数3y x =的图象上,顶点A 在反比例函数k y x=的图象上,顶点D 在x 轴的负半轴上.若平行四边形OBAD 的面积是5,则k 的值是( )A .2B .1C .1-D .2-【答案】D .【解析】解:设B点坐标为3,mmæöç÷èø,则A3,3kmmæöç÷èø,因为平行四边形OBAD的面积是5,所以353kmmmæö-×=ç÷èø,解得k=-2【方法二】解:如图,连接OA,设AB交y轴于点C,∵四边形OBAD是平行四边形,平行四边形OBAD的面积是5,∴1522AOB OBADS S==V Y,AB∥OD,∴AB⊥y轴,∵点B在反比例函数3yx=的图象上,顶点A在反比例函数kyx=的图象上,∴3,22 COB COAkS S==-V V,∴35222 AOB COB COAkS S S=+=-=V V V,解得:2k=-.故选:D.6.(2022•湖北黄石中考真题)如图,反比例函数kyx=的图象经过矩形ABCD对角线的交点E和点A,点B、C在x轴上,OCE△的面积为6,则k=______________.【答案】8.【解析】设C (m ,0),由题意知E 为AC 中点,因为△OCE 面积为6,所以E 点纵坐标为12m,所以E 12,12km m æöç÷èø,A 24,6km m m æö-ç÷èø,又A 在反比例函数图像上所以246km m k mæö-×=ç÷èø解得k =8【方法二】解:如图作EF ⊥BC ,则12EF AB =,设E 点坐标为(a ,b ),则A 点的纵坐标为2b ,则可设A 点坐标为(c ,2b ),∵点A ,E 在反比例函数k y x=上,∴ab =k =2bc ,解得:a =2c ,故BF =FC =2c -c =c ,∴OC =3c ,故113622OEC S OC EF c b =´´=´´=V ,解得:bc =4,∴k =2bc =8,故答案为:8.7.(2022•贵州六盘水中考真题)如图,正比例函数与反比例函数的图象交于,两点.y x =4y x=A B(1)求,两点的坐标;(2)将直线向下平移个单位长度,与反比例函数在第一象限的图象交于点,与轴交于点,与轴交于点,若,求的值.【答案】(1);(2)【解析】(1)解:联立与,解得,;(2)【方法一】解:如图,过点作轴于点,A B y x =a C x D y E 13CD DE =a ()()2,2,2,2A B --3a =y x =4y x=121222,22x x y y ==-ììíí==-îî()()2,2,2,2A B \--C CF y ^F,,,直线向下平移个单位长度得到,根据图象可知,令,得,令,得,,,,,与反比例函数在第一象限的图象交于点,,将代入,得,解得或(舍去).【方法二】CF OD \∥Q 13CD DE =13OF CD OE DE \==Q y x =a y x a =-0a >0x =y a =-0y =x a =()0,E a \-(),0D a 10,3F a æö\ç÷èø13c y a \=Q y x a =-4y x=C 41213c x aa \==121,3C a a æöç÷èøy x a =-1123a a a=-3a =3a =-如图,连接OC ,过C 作CE ⊥x 轴,因为CD :DE =1:3,CE ∥OE则△CDE ∽△EDO ,相似比为1:3,面积比为1:9,易知△ODE 面积为212a ,△OCE 的面积为12k =2,所以△OCD 的面积为2-2118a ,又△OCD 与△ODE 的面积比为1:3,所以2-2118a =21132a ´,解得:a =3或a =-3(舍)8.(2022•安徽中考真题)如图,平行四边形OABC 的顶点O 是坐标原点,A 在x 轴的正半轴上,B ,C 在第一象限,反比例函数1y x =的图象经过点C ,()0k y k x=¹的图象经过点B .若OC AC =,则k =________.【答案】3.【解析】【方法一】设C 1,m m æöç÷èø,因为OC =AC所以A ()2,0m ,又OABC 为平行四边形所以B 13,m m æöç÷èø因为B 点在k y x =上,所以k =133m m ×=【方法二】解:过点C 作CD ⊥OA 于D ,过点B 作BE ⊥x 轴于E ,∴CD ∥BE ,∵四边形ABCO 为平行四边形,∴CB OA ∥ ,即CB DE ∥,OC =AB ,∴四边形CDEB 为平行四边形,∵CD ⊥OA ,∴四边形CDEB 为矩形,∴CD =BE ,∴在Rt △COD 和Rt △BAE 中,OC AB CD EB =ìí=î,∴Rt △COD ≌Rt △BAE (HL ),∴S △OCD =S △ABE ,∵OC =AC ,CD ⊥OA ,∴OD =AD ,∵反比例函数1yx=的图象经过点C,∴S△OCD=S△CAD=12,∴S平行四边形OCBA=4S△OCD=2,∴S△OBA=11 2OCBAS=平行四边形,∴S△OBE=S△OBA+S△ABE=13122+=,∴3232k=´=.故答案为3.。

一元函数微分学几何应用(一)--单调性与极值

一元函数微分学几何应用(一)--单调性与极值

⼀元函数微分学⼏何应⽤(⼀)--单调性与极值单调性与极值的判别单调性的判别若 y = f(x)在区间I上有f'(x)>0,则 y=f(x)在I上严格单调增加若 y = f(x)在区间I上有f'(x)<0,则 y=f(x)在I上严格单调增加费马引理(极值点的必要条件)⼀阶可导点是极值点的必要条件(极值导数必为0,导数为0不⼀定是极值,如y=x3)设f(x)在x=x0处可导,且在点x0处取得极值,则必有f'(x0)=0判别极值的第⼀充分条件(左右邻域⼀阶导异号)极值点不⼀定是可导点左邻域内,f'(x)<0,⽽右邻域,f'(x)>0,则f(x)在x=x0处取得极⼩值左邻域内,f'(x)>0,⽽右邻域,f'(x)<0,则f(x)在x=x0处取得极⼤值若f'(x)在左右邻域内不变号,则点x0不是极值点判别极值的第⼆充分条件(⼀阶导数=0,⼆阶导数≠0)设f(x)在x=x0处⼆阶可导,且f'(x0)=0,f''(x0)≠0若f''(x0)<0,则f(x)在x0处取得极⼤值若f''(x0)>0,则f(x)在x0处取得极⼩值可以⽤⼀阶导数定义和保号性证明判别极值的第三充分条件(⾼阶导)f(x)在x0处n阶可导,且 f(m)(x0)=0(m=1,2,...,n-1),f(n)(x)≠0(n≥2)f'(x0)=f''(x0)=...=f(n-1)(x0)=0若n为偶数且f(n)(x0)<0时,f(x)在x0处取得极⼤值若n为偶数且f(n)(x0)>0时,f(x)在x0处取得极⼩值拉格朗⽇中值定理推⼴(联系函数与导函数)f(b) - f(a) = f'(ξ)(b - a)f(x) - f(x0) = f'(ξ)(x - x0)。

高中三角函数在几何中的应用解析

高中三角函数在几何中的应用解析

高中三角函数在几何中的应用解析三角函数是数学中重要的概念之一,它不仅在代数中有广泛的应用,也在几何中发挥着重要的作用。

本文将从几何的角度解析高中三角函数在几何中的应用,包括图形的旋转、角度的测量和直角三角形的性质等方面。

1. 图形的旋转与三角函数在几何中,我们经常需要讨论图形的旋转问题。

三角函数可以帮助我们描述旋转过程中图形的位置与形状的变化。

以单位圆为例,如果我们将单位圆绕原点逆时针旋转一个角度θ,那么圆上某一点P(x, y)在旋转后的位置可以通过三角函数来表示。

假设旋转后的点为P'(x', y'),则有以下关系:x' = x * cosθ - y * sinθy' = x * sinθ + y * cosθ通过这些关系,我们可以利用三角函数来计算图形在旋转过程中的位置坐标,进而研究图形的旋转性质。

2. 角度的测量与三角函数在几何中,我们经常需要测量角度大小,而三角函数可以帮助我们进行角度的测量。

常见的三角函数包括正弦函数、余弦函数和正切函数。

我们可以利用这些函数来计算角度的值。

例如,在直角三角形中,角度的正弦值可以表示为对边与斜边的比值,余弦值可以表示为邻边与斜边的比值,而正切值可以表示为对边与邻边的比值。

通过三角函数的计算,我们可以准确地获得各种角度的大小,进而帮助我们解决几何中的问题。

3. 直角三角形的性质与三角函数直角三角形是几何中最基础的三角形,而三角函数恰好与直角三角形的性质相对应。

在直角三角形中,根据勾股定理可知,两个直角边的平方和等于斜边的平方。

利用三角函数的关系,我们可以用三角函数的数值表达式来表示这一关系。

以正弦函数为例,根据定义,正弦函数的值可以表示为对边与斜边的比值,而根据勾股定理,这一比值可以表示为直角边与斜边的比值的平方。

通过这种关系,我们可以发现三角函数与直角三角形的性质之间存在着紧密的联系。

综上所述,高中三角函数在几何中的应用是广泛而重要的。

应用几何画板解决初中数学的函数问题

应用几何画板解决初中数学的函数问题

应用几何画板解决初中数学的函数问题初中数学中的函数问题可以利用几何画板来解决,通过绘制图形,可以直观地理解和分析函数的性质。

下面将详细介绍几何画板在解决初中数学函数问题中的应用。

一、函数的定义和性质函数是数学中的一个重要概念,可以用几何画板来帮助理解。

通过几何画板,我们可以绘制出函数的图像,并观察图像的特点和性质。

我们要绘制函数y = 2x + 1的图像。

打开几何画板,可以选择直线工具,在坐标系上绘制出函数的图像。

通过观察图像的斜率和截距,我们可以理解函数的性质:斜率为2表示函数是一个直线,截距为1表示函数与y轴的交点为(0, 1)。

这样,我们对函数的定义和性质有了更深的理解。

二、函数的图像和方程之间的关系在初中数学中,我们经常需要通过函数的图像来确定函数的方程,或者反过来,通过函数的方程来绘制出函数的图像。

几何画板可以帮助我们更直观地理解这种关系。

已知函数y = x^2的图像是一个抛物线,我们可以打开几何画板,选择曲线工具,在坐标系上绘制出函数的图像。

通过观察图像的形状,我们可以发现这是一个开口向上的抛物线,这样就能够推测出函数的方程为y = x^2。

反过来,我们也可以通过给定的方程来绘制出函数的图像,从而验证方程的正确性。

三、函数的增减性和零点函数的增减性和零点是初中数学中的重要内容。

几何画板可以帮助我们直观地理解和分析函数的增减性和零点。

几何画板是解决初中数学中函数问题的有力工具。

通过绘制图形,我们可以直观地理解和分析函数的定义、性质、图像和方程之间的关系,以及增减性、零点、复合和反函数等概念。

推荐学生在解决函数问题时使用几何画板,以加深对函数概念的理解和掌握。

中考数学几何模型专题25函数与正方形存在性问题(老师版)知识点+例题

中考数学几何模型专题25函数与正方形存在性问题(老师版)知识点+例题

【压轴必刷】2023年中考数学压轴大题之经典模型培优案专题25函数与正方形存在性问题【例1】(2022•崂山区一模)如图,正方形ABCD,AB=4cm,点P在线段BC的延长线上.点P从点C出发,沿BC方向运动,速度为2cm/s;点Q从点A同时出发,沿AB方向运动,速度为1cm/s.连接PQ,PQ分别与BD,CD相交于点E,F.设运动时间为t(s)(0<t<4).解答下列问题:(1)线段CF长为多少时,点F为线段PQ中点?(2)当t为何值时,点E在对角线BD中点上?(3)当PQ中点在∠DCP平分线上时,求t的值;(4)设四边形BCFE的面积为S(cm2),求S与t的函数关系式.【分析】(1)可得出C点是BP的中点,从而求得t=2;(2)证明DEF≌△BEQ,从而得出DF=BQ=4﹣t,进而CF=CD﹣DF=t,证明△PCF∽△PBQ,从而得出,进而求得t;(3)作OG⊥BP于G,可根据OG=CG,进一步求得结果;(4)根据△PCF∽△PBQ,△DOF∽△BOG,分别列出比例式表示出CF,DF及EH,进一步求得结果.【解答】解:由题意得,CP=2t,AQ=t,BQ=4﹣t,(1)四边形ABCD是正方形,∴CD∥AB,∴=1,∴PC=BC=4,∴t==2s;(2)∵AB∥CD,∴∠QBE=∠EDF,∠BQE=∠DFE,△PCF∽△PBQ,∴,∵点E是BD的中点,∴BE=DE,∴△DEF≌△BEQ(AAS),∴DF=BQ=4﹣t,∴CF=CD﹣DF=t,∴t1=1,t2=0(舍去),(3)如图1,点O是PQ的中点,CO平分∠DCP,作OG⊥BP于G,同理得:OG=,PG=,∴CG=PC﹣PG=2t﹣(2+t)=t﹣2,∵∠COG=∠OCG==45°,∴OG=CG,∴,∴t=;(4)如图2,过点E作GH∥BC,交AB于G,交CD于H,∵CF∥EG∥AB,∴△PCF∽△PBQ,△DEF∽△BEG,∴,=,∴,=,∴DF=CD﹣CF=4﹣=,∴=,∴EH=,∴S=S△BCD﹣S△DEF=﹣=8﹣.【例2】(2022春•孟村县期末)如图,在平面直角坐标系中.直线l:y=﹣2x+10(k≠0)经过点C(3,4),与x轴,y轴分别交于点A,B,点D的坐标为(8,4),连接OD,交直线l于点M,连接OC,CD,AD.(1)填空:点A的坐标为(5,0),点M的坐标为(4,2);(2)求证:四边形OADC是菱形;(3)直线AP:y=﹣x+5与y轴交于点P.①连接MP,则MP的长为5;②已知点E在直线AP上,在平面直角坐标系中是否存在一点F,使以O,A,E,F为顶点的四边形是正方形?若存在,请直接写出点F的坐标;若不存在,请说明理由.【分析】(1)利用一次函数图象上点的坐标特征,可得出点A的坐标,又点D的坐标,利用待定系数法可求出直线OD的解析式,再联立两函数解析式,可求出交点M的坐标;(2)过点C作CQ⊥x轴于点Q,利用勾股定理可得出OC=5,又点C,D的坐标可得出CD=5,CD ∥x轴,结合点A的坐标,可得出CD=OA,进而可得出四边形OADC为平行四边形,再结合OC=OA,即可证出四边形OADC是菱形;(3)①过点M作MN⊥y轴于点N,利用一次函数图象上点的坐标特征,可求出点P的坐标,结合点M。

一次函数与几何综合一

一次函数与几何综合一

一次函数与几何综合(一)标模块一一次函数与线段长例1(2017江岸区八下期末)如图,直线l: y=2x+4.(1)①直接写出直线l关于y轴对称的直线l i的解析式:;②直接写出直线l向右平移2个单位得到的直线12的解析式: ;(2)在(1)的基础上,点M是x轴上一点,过点M作x轴的垂线交直线l i于点Q、交直线l2于点P,若PM = 2PQ,求M 点的坐标.例2(2017斫口区八下期末)图1中两条经过原点O的射线组成的图形E表示y关于x的函数关系式.(1)直接写出图形E表示的函数解析式;(2)如图2,过直线y=3上一点P(m, 3)作x轴的垂线交图形E于点C,交直线y=- x- 1于点D.①若m>0,试比较PC与PD的大小,并证明你的结论;②若CD <3,求m的取值范围.图图2挑战压轴题(2017黄陂区八下期末第24题)如图,直线l i经过点P(2, 2),分别交x轴、y轴于点A(4, 0)、B.(1)求直线l i的解析式;(2)点C为x轴负半轴上一点,过点C的直线l2:y=mx+ n交线段AB于点D.①如图1,当点D恰与点P重合时,点Q(t, 0)为x轴上一动点,过点Q作QM,x轴,分别交直线11、12于点M、N,若m= - , MN = 2MQ,求t 的值;2②如图2,若BC=CD,试判断m、n之间的数量关系并说明理由.模块二一次函数与特殊三角形知识导航1.等腰直角三角形一三垂直全等如图,△ ABC中,AB = AC, / BAC=90°,可构造如图所示的三垂直全等模型,“△ ACD^A BAE",从而可以转化为水平线段长度与点坐标的基本计算.若已知等腰直角三角形三个顶点坐标中的两个便可通过此方法求第三顶点坐标.2.等腰三角形的存在性一两圆一中垂已知A、B为定点,C为动点,△ ABC为等腰三角形,则分下列情况:(1)若CA = CB,则点C在AB中垂线上(不与AB共线).(2)若AC = AB,则点C在以A为圆心,AB为半径的圆上(不与点B重合).(3)若BA=BC,则点C在以B为圆心,AB为半径的圆上(不与点A重合).3.直角三角形的存在性一两垂一圆已知A、B为定点,C为动点,△ ABC为直角三角形,则分下列情况:(1)若/ CAB = 90°,则点C在过点A且垂直AB的直线上(不与点A重合).(2)若/ CBA = 90°,则点C在过点B且垂直AB的直线上(不与点B重合).(3)若/ ACB = 90°,则点C在以AB为直径的圆上(不与点A、B重合).八下会把特殊三角形的顶点放在一次函数背景下讨论、计算.例3如图,在直角坐标系中,矩形OABC的两边在坐标轴上,其中点B的坐标为(4, 3),过点A的直线AD 的解析式为y=2x+3,点P是直线AD上一动点,点Q是线段BC(包才B, C两点)上一动点.若AP = AQ 且AP^AQ,求点P的坐标及直线AQ的解析式;练习如图1,在平面直角坐标系中,A(a, 0), B(0, b),且b= "a -4+”5 +16a 2(1)求直线AB的解析式;(2)如图2,若点M为直线y=mx在第一象限上一点,且^ ABM是等腰直角三角形,求m.图1 图2例4在平面直角坐标系中,直线y=kx— k经过一定点P.(1)直接写出P点坐标;(2)在y轴上有一点A(0, 2),当k = 2时,将直线y=kx—k向上平移2个单位得到直线1,在直线l上找点C,使得△ ACO为等腰三角形,求点C的坐标.练习3 ........................................... 如图,在平面直角坐标中,一次函数y= — x+ 2的图象与x轴交于A点,与y轴交于B点,在x轴上是3否存在点P,使^ PAB为等腰三角形?若存在,求出符合条件的P点的坐标;若不存在,请说明理由.3 ............... ............................ 例5如图,在平面直角坐标系中,直线y=- ^r-x+ 6与x轴、y轴分别交于B、A点,已知点C从点A出3发沿AO以每秒1cm的速度向点O运动,同时点D从点B出发沿BA以每秒2cm的速度向点A运动,运动时间为t秒(0<t<6),过点D作DELOB于点E.连接DC,当t为何值时,△ DEC为直角三角形?模块三一次函数与特殊四边形例61如图,已知函数y=- -x+ b的图象与x轴、y轴分别交于点A, B,与函数y=x的图象交于点E,点E的3横坐标为3.⑴求点A的坐标.1(2)在x轴上有一点F(a, 0),过点F作x轴的垂线,分别交函数y=—-x+b和y=x的图象于点C、D.若3以点B, O, C, D为顶点的四边形为平行四边形,求a的值.练习如图,在平面直角坐标系xOy中,直线y=kx+b交x轴于点A,交y轴于点B,线段AB的中点E的坐标为(2, 1).⑴求k、b的值;(2)P为直线AB上一点,PC^x轴于点C, PD^y轴于点D,若四边形PCOD为正方形,求点P的坐标.例7(2017东湖高新区八下期末)平面直角坐标系中,直线y=ax+b与x轴分别交于点B、C,且a、b满足a= *6-b + J b — 6 +3,不论k为何值,直线l: y=kx—2k都经过x轴上一定点A.(1)a =, b =, 点A 的坐标为;(2)如图1,当k= 1时,将线段BC沿某个方向平移,使点B、C对应的点M、N恰好在直线l和直线y= 2x—4上.请你判断四边形BMNC的形状,并说明理由;(3)如图2,当k的取值发生变化时,直线l: y=kx—2k绕着点A旋转,当它与直线y=ax+b相交的夹角为450时,求出相应的k的值.图1 图2拓展1平面直角坐标系中,直线li: y= —/x+3与x轴交于点A,与y轴交于点B,直线12:y=kx+2k与x轴父于点C,与直线l i交于点P.(1)当k=1时,求点P的坐标;(2)如图1,点D为PA的中点,过点D作DE^x轴于点巳交直线12于点F,若DF=2DE,求k的值.(3)如图2,点P在第二象限内,PM^x轴于M,以PM为边向左作正方形PMNQ, NQ的延长线交直线11 于点R,若PR= PC,求点P的坐标.课后作业A基础巩固1.已知点A的坐标是(2, 2),若点P在x轴上,且^ APO是等腰三角形,则点P的坐标为 .1 2.如图,P是y轴上一动点,是否存在平行于y轴的直线x=t(t>0),使它与直线y=x和直线y=-2x+2分别交于点D、E(E在D的上方),且4 PDE为等腰直角三角形.若存在,求t的值及点P的坐标;若不存在,请说明理由.3.如图,直线y=kx+b与坐标轴分别交于点A, B,且A(—4, 0), &AOB =4.(1)求直线y= kx+ b的解析式;(2)若点P为直线y=kx+b上一点,PC^x轴于C, PD^y轴于D,若四边形PCOD为正方形,求点P坐标.4 .如图,在平面直角坐标系中,直线 y=- — x+ 6与x 轴、y 轴分别交于A 、B 点,已知点C 从点A 出 3发沿AO 以每秒1cm 的速度向点O 运动,同时点D 从点B 出发沿BA 以每秒2cm 的速度向点A 运动,运 动时间为t 秒(0<t<6),过点D 作DELOB 于点E.(1)①直接写出/ ABO 的度数为②证明在C 、D 运动过程中,四边形 ACED 是平行四边形; 5 . (2017洪山区八下期末)3y=— —x+b 分别与x 轴、y 轴父于点 A 、B,且点A 坐标为(8, 0),点 4C 为AB 的中点.⑴写出点B 的坐标(2)如图1,点P 为直线AB 上的一个动点,过点 P 作x 轴的垂线,与直线 OC 交于点Q,设点P 的横坐标 为m,线段PQ 的长度为d,求d 与m 的函数解析式(请直接写出自变量 m 的取值范围);数学故事为什么2187是个幸运的数字尽管不符合常规理解的“幸运”含义,2187这个数字仍有一系列让人吃惊的特征.在纪念马丁 加德纳 100周年诞辰之际,我们来回顾他在 1997年为《数学信使》(MathematicalIntelligencer)写的一篇文章.在这篇文章中,他问他想象中的好友欧文约书亚矩阵博士(Dr. Irving JoshuaMatrix)关于数字2187的问题.欧文 约书亚 矩阵博士是“世界最著名的数字命理学家”,也是在《科学美国人》(Scientific American )"数学游戏”(Mathematical Games)专栏中经常出现的角色;而 2187,则是加德 纳儿时在美国俄克拉荷马州(Okla)塔尔萨(Tulsa)老家的门牌号码.矩阵博士立刻列举了一系列关于 2187的事实,这让加德纳感到非常兴奋: 2187,是3的7次方,它的.三进制写法是 10000000; 9999减去2187等于7812,恰好与其顺序相反;21乘以87等于1827, 27乘以81又刚好等于2187.“每个数字都有数不 尽的独特的特征,”矩阵博士点评说,同时补充道, 2187也是一个幸运数.幸运数是素数的远亲,素数是只能被1和它本身整除的正整数.尽管这两者在很多方面都不同,但它们都可以利用被称为“筛法”的方法得到.希腊数学家埃拉托斯特尼 (Eratosthenes)设计了一种在正整数序列中寻找素数的方法一一著名的埃拉托斯特尼筛法:首先删除所有除2以外2的倍数,然后删除3的倍数,然后是5, 7, 11等等.这样不断删除到无穷大,就可以得到所有素数.波兰裔美国数学家斯塔尼斯拉夫 乌拉姆(Stanislaw Ulam)在20世纪50年代中期开发出了另一种筛法:同样是从正整数序列开始,先将数列 中的第 2n 个数 (偶数 )删除,只留下奇数;这样剩下的数列中第二项是 3,因此将新数列的第 3n 个数删除;(2)当 t = 时,四边形ACED 是菱形.如图,在平面直角坐标系中,直线(3)如图2,当点P 在线段 AB 上,在第一象限内有一点 N,使得四边形 OBNP 为菱形,求出N 点坐标.B 综合训练再剩下的新数列中的第三项为7,因此将新数列的第7n 个数删除;再剩下的新数列中的第四项为9,因此将新数列的第9n 个数删除;这样继续下去,最终有一些数永远地逃离了被删除的命运而留下来,这就是为什么乌拉姆把它们称作“幸运数”.幸运数和素数有一些由奇妙的筛法得到的数字的共同特征.比如说,在小于100 的数中,有25 个素数和23 个幸运数,其中有八对孪生素数(之差为 2 的两个素数)以及七对孪生幸运数.关于素数,尚未解决的最有名的问题之一就是哥德巴赫猜想——任一大于2 的偶数,都可表示成两个素数之和.同样另一个未解决的问题是一个相似的命题——任一大于2 的偶数,都可表示成两个幸运数之和.关于2187,还有另一个有趣的事实——如下所示,等号右边的数字之和等于左边与2187 相加的排列不同的数字之和.2187 + 1234=34212187+12345= 145322187 + 123456= 1256432187 + 1234567= 12367542187+ 12345678=123478652187+ 123456789= 123458976。

例举与函数相关的几例几何图形问题

例举与函数相关的几例几何图形问题

例举与函数相关的几例几何图形问题函数与几何图形问题呈现了完美的结合,函数与几何密不可分,其中复杂的问题可以通过分析函数与几何之间的联系来解决。

下面介绍几个常见的函数与几何图形问题。

一、抛物线:抛物线是一种二元二次函数,它的定义式为:y = ax² + bx + c,它有一个最典型的图形,类似于一个“U”字型,许多科学问题都可以使用该图来描述和解决,抛物线是应用非常广泛的几何图形。

二、双曲线:双曲线是一种三元一次函数,它的定义式为:y² = ax² + bx + c,双曲线通常由两个半双曲线组成,是几何图形当中比较复杂的一种,其在科学研究中发挥重要的作用。

三、圆形:圆形是一种二元一次函数,它的定义式为:(x-a)²+(y-b)²=r²,即圆心(a,b)与半径(r)的函数形式,圆形的函数表达式非常简单,其曲线在理论上可用无穷条线段来逼近,也是几何图形中最重要的图形之一。

四、椭圆:椭圆是一种三元二次函数,它的定义式为:(x-a)²/a²+(y-b)²/b²=1,椭圆是一种比较复杂的几何图形,它和圆形相差较大,它的定义比较复杂,其在科学研究中发挥重要的作用。

五、曲面:曲面是一种三维函数,它的定义式为:z = f(x, y),它是一种比较复杂的几何图形,其表面结构可以有多种样式,例如凸曲面、凹曲面等,曲面是应用非常广泛的几何图形之一。

总之,函数与几何图形问题是一个十分重要的课题,它们俩结合可以解决许多复杂的科学问题,上述就是常见的几种函数与几何图形问题,它们在科学研究中是扮演着重要的角色。

中考函数与几何专题汇编(一)

中考函数与几何专题汇编(一)

中考函数与几何专题汇编(一)一.解答题(共50小题)1.已知抛物线y=ax2+bx+c(b<0)与x轴只有一个公共点.(1)若抛物线与x轴的公共点坐标为(2,0),求a、c满足的关系式;(2)设A为抛物线上的一定点,直线l:y=kx+1﹣k与抛物线交于点B、C,直线BD垂直于直线y=﹣1,垂足为点D.当k=0时,直线l与抛物线的一个交点在y轴上,且△ABC为等腰直角三角形.①求点A的坐标和抛物线的解析式;②证明:对于每个给定的实数k,都有A、D、C三点共线.2.在平面直角坐标系xOy中,抛物线y=ax2+bx﹣与y轴交于点A,将点A向右平移2个单位长度,得到点B,点B在抛物线上.(1)求点B的坐标(用含a的式子表示);(2)求抛物线的对称轴;(3)已知点P(,﹣),Q(2,2).若抛物线与线段PQ恰有一个公共点,结合函数图象,求a 的取值范围.3.在平面直角坐标系xOy中(如图),已知抛物线y=x2﹣2x,其顶点为A.(1)写出这条抛物线的开口方向、顶点A的坐标,并说明它的变化情况;(2)我们把一条抛物线上横坐标与纵坐标相等的点叫做这条抛物线的“不动点”.①试求抛物线y=x2﹣2x的“不动点”的坐标;②平移抛物线y=x2﹣2x,使所得新抛物线的顶点B是该抛物线的“不动点”,其对称轴与x轴交于点C,且四边形OABC是梯形,求新抛物线的表达式.4.已知抛物线y=x2﹣bx+c(b,c为常数,b>0)经过点A(﹣1,0),点M(m,0)是x轴正半轴上的动点.(Ⅰ)当b=2时,求抛物线的顶点坐标;(Ⅱ)点D(b,y D)在抛物线上,当AM=AD,m=5时,求b的值;(Ⅲ)点Q(b+,y Q)在抛物线上,当AM+2QM的最小值为时,求b的值.5.如图,已知抛物线y=ax2+bx+5经过A(﹣5,0),B(﹣4,﹣3)两点,与x轴的另一个交点为C,顶点为D,连结CD.(1)求该抛物线的表达式;(2)点P为该抛物线上一动点(与点B、C不重合),设点P的横坐标为t.①当点P在直线BC的下方运动时,求△PBC的面积的最大值;②该抛物线上是否存在点P,使得∠PBC=∠BCD?若存在,求出所有点P的坐标;若不存在,请说明理由.6.将直角三角板ABC按如图1放置,直角顶点C与坐标原点重合,直角边AC、BC分别与x轴和y轴重合,其中∠ABC=30°.将此三角板沿y轴向下平移,当点B平移到原点O时运动停止.设平移的距离为m,平移过程中三角板落在第一象限部分的面积为s,s关于m的函数图象(如图2所示)与m轴相交于点P(,0),与s轴相交于点Q.(1)试确定三角板ABC的面积;(2)求平移前AB边所在直线的解析式;(3)求s关于m的函数关系式,并写出Q点的坐标.7.已知:如图,抛物线y=ax2+bx+3与坐标轴分别交于点A,B(﹣3,0),C(1,0),点P是线段AB上方抛物线上的一个动点.(1)求抛物线解析式;(2)当点P运动到什么位置时,△PAB的面积最大?(3)过点P作x轴的垂线,交线段AB于点D,再过点P作PE∥x轴交抛物线于点E,连接DE,请问是否存在点P使△PDE为等腰直角三角形?若存在,求点P的坐标;若不存在,说明理由.8.一次函数y=kx+4与二次函数y=ax2+c的图象的一个交点坐标为(1,2),另一个交点是该二次函数图象的顶点(1)求k,a,c的值;(2)过点A(0,m)(0<m<4)且垂直于y轴的直线与二次函数y=ax2+c的图象相交于B,C两点,点O为坐标原点,记W=OA2+BC2,求W关于m的函数解析式,并求W的最小值.9.如图,在平面直角坐标系中,抛物线y=x2﹣2x﹣3与x轴交于点A,B(点A在点B的左侧),交y轴于点C,点D为抛物线的顶点,对称轴与x轴交于点E.(1)连结BD,点M是线段BD上一动点(点M不与端点B,D重合),过点M作MN⊥BD,交抛物线于点N(点N在对称轴的右侧),过点N作NH⊥x轴,垂足为H,交BD于点F,点P是线段OC 上一动点,当MN取得最大值时,求HF+FP+PC的最小值;(2)在(1)中,当MN取得最大值,HF+FP+PC取得最小值时,把点P向上平移个单位得到点Q,连结AQ,把△AOQ绕点O顺时针旋转一定的角度α(0°<α<360°),得到△A′OQ′,其中边A′Q′交坐标轴于点G.在旋转过程中,是否存在一点G,使得∠Q'=∠Q'OG?若存在,请直接写出所有满足条件的点Q′的坐标;若不存在,请说明理由.10.在平面直角坐标系中,抛物线y=﹣x2+x+2与x轴交于A,B两点(点A在点B左侧),与y轴交于点C,顶点为D,对称轴与x轴交于点Q.(1)如图1,连接AC,BC.若点P为直线BC上方抛物线上一动点,过点P作PE∥y轴交BC于点E,作PF⊥BC于点F,过点B作BG∥AC交y轴于点G.点H,K分别在对称轴和y轴上运动,连接PH,HK.当△PEF的周长最大时,求PH+HK+KG的最小值及点H的坐标.(2)如图2,将抛物线沿射线AC方向平移,当抛物线经过原点O时停止平移,此时抛物线顶点记为D′,N为直线DQ上一点,连接点D′,C,N,△D′CN能否构成等腰三角形?若能,直接写出满足条件的点N的坐标;若不能,请说明理由.11.综合与探究如图,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于C点,OA=2,OC=6,连接AC和BC.(1)求抛物线的解析式;(2)点D在抛物线的对称轴上,当△ACD的周长最小时,点D的坐标为.(3)点E是第四象限内抛物线上的动点,连接CE和BE.求△BCE面积的最大值及此时点E的坐标;(4)若点M是y轴上的动点,在坐标平面内是否存在点N,使以点A、C、M、N为顶点的四边形是菱形?若存在,请直接写出点N的坐标;若不存在,请说明理由.12.如图,在平面直角坐标系中,矩形ABCD的边AB在x轴上,AB、BC的长分别是一元二次方程x2﹣7x+12=0的两个根(BC>AB),OA=2OB,边CD交y轴于点E,动点P以每秒1个单位长度的速度,从点E出发沿折线段ED﹣DA向点A运动,运动的时间为t(0≤t<6)秒,设△BOP与矩形AOED重叠部分的面积为S.(1)求点D的坐标;(2)求S关于t的函数关系式,并写出自变量的取值范围;(3)在点P的运动过程中,是否存在点P,使△BEP为等腰三角形?若存在,直接写出点P的坐标;若不存在,请说明理由.13.如图,在平面直角坐标系中,抛物线y=x2+bx+c与x轴交于点A(3,0)、点B(﹣1,0),与y轴交于点C.(1)求拋物线的解析式;(2)过点D(0,3)作直线MN∥x轴,点P在直线NN上且S△PAC=S△DBC,直接写出点P的坐标.14.如图,抛物线y=(x﹣1)2+k与x轴相交于A,B两点(点A在点B的左侧),与y轴相交于点C (0,﹣3).P为抛物线上一点,横坐标为m,且m>0.(1)求此抛物线的解析式;(2)当点P位于x轴下方时,求△ABP面积的最大值;(3)设此抛物线在点C与点P之间部分(含点C和点P)最高点与最低点的纵坐标之差为h.①求h关于m的函数解析式,并写出自变量m的取值范围;②当h=9时,直接写出△BCP的面积.15.如图,在平面直角坐标系中,抛物线y=ax2+bx+2(a≠0)与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,抛物线经过点D(﹣2,﹣3)和点E(3,2),点P是第一象限抛物线上的一个动点.(1)求直线DE和抛物线的表达式;(2)在y轴上取点F(0,1),连接PF,PB,当四边形OBPF的面积是7时,求点P的坐标;(3)在(2)的条件下,当点P在抛物线对称轴的右侧时,直线DE上存在两点M,N(点M在点N的上方),且MN=2,动点Q从点P出发,沿P→M→N→A的路线运动到终点A,当点Q的运动路程最短时,请直接写出此时点N的坐标.16.如图1,抛物线C:y=ax2+bx经过点A(﹣4,0)、B(﹣1,3)两点,G是其顶点,将抛物线C绕点O旋转180°,得到新的抛物线C′.(1)求抛物线C的函数解析式及顶点G的坐标;(2)如图2,直线l:y=kx﹣经过点A,D是抛物线C上的一点,设D点的横坐标为m(m<﹣2),连接DO并延长,交抛物线C′于点E,交直线l于点M,若DE=2EM,求m的值;(3)如图3,在(2)的条件下,连接AG、AB,在直线DE下方的抛物线C上是否存在点P,使得∠DEP=∠GAB?若存在,求出点P的横坐标;若不存在,请说明理由.17.如图,顶点为M的抛物线y=ax2+bx+3与x轴交于A(3,0),B(﹣1,0)两点,与y轴交于点C.(1)求这条抛物线对应的函数表达式;(2)问在y轴上是否存在一点P,使得△PAM为直角三角形?若存在,求出点P的坐标;若不存在,说明理由.(3)若在第一象限的抛物线下方有一动点D,满足DA=OA,过D作DG⊥x轴于点G,设△ADG的内心为I,试求CI的最小值.18.已知抛物线y=ax2+x+4的对称轴是直线x=3,与x轴相交于A,B两点(点B在点A右侧),与y 轴交于点C.(1)求抛物线的解析式和A,B两点的坐标;(2)如图1,若点P是抛物线上B、C两点之间的一个动点(不与B、C重合),是否存在点P,使四边形PBOC的面积最大?若存在,求点P的坐标及四边形PBOC面积的最大值;若不存在,请说明理由;(3)如图2,若点M是抛物线上任意一点,过点M作y轴的平行线,交直线BC于点N,当MN=3时,求点M的坐标.19.已知抛物线y=ax2+bx﹣4经过点A(2,0)、B(﹣4,0),与y轴交于点C.(1)求这条抛物线的解析式;(2)如图1,点P是第三象限内抛物线上的一个动点,当四边形ABPC的面积最大时,求点P的坐标;(3)如图2,线段AC的垂直平分线交x轴于点E,垂足为D,M为抛物线的顶点,在直线DE上是否存在一点G,使△CMG的周长最小?若存在,求出点G的坐标;若不存在,请说明理由.20.如图,顶点为M的抛物线y=ax2+bx+3与x轴交于A(﹣1,0),B两点,与y轴交于点C,过点C 作CD⊥y轴交抛物线于另一点D,作DE⊥x轴,垂足为点E,双曲线y=(x>0)经过点D,连接MD,BD.(1)求抛物线的表达式;(2)点N,F分别是x轴,y轴上的两点,当以M,D,N,F为顶点的四边形周长最小时,求出点N,F的坐标;(3)动点P从点O出发,以每秒1个单位长度的速度沿OC方向运动,运动时间为t秒,当t为何值时,∠BPD的度数最大?(请直接写出结果)21.如图,在平面直角坐标系xoy中,O为坐标原点,点A(4,0),点B(0,4),△ABO的中线AC 与y轴交于点C,且⊙M经过O,A,C三点.(1)求圆心M的坐标;(2)若直线AD与⊙M相切于点A,交y轴于点D,求直线AD的函数表达式;(3)在过点B且以圆心M为顶点的抛物线上有一动点P,过点P作PE∥y轴,交直线AD于点E.若以PE为半径的⊙P与直线AD相交于另一点F.当EF=4时,求点P的坐标.22.若二次函数y=ax2+bx+c的图象与x轴、y轴分别交于点A(3,0)、B(0,﹣2),且过点C(2,﹣2).(1)求二次函数表达式;(2)若点P为抛物线上第一象限内的点,且S△PBA=4,求点P的坐标;(3)在抛物线上(AB下方)是否存在点M,使∠ABO=∠ABM?若存在,求出点M到y轴的距离;若不存在,请说明理由.23.如图1,在平面直角坐标系中,直线y=﹣5x+5与x轴,y轴分别交于A,C两点,抛物线y=x2+bx+c 经过A,C两点,与x轴的另一交点为B.(1)求抛物线解析式及B点坐标;(2)若点M为x轴下方抛物线上一动点,连接MA、MB、BC,当点M运动到某一位置时,四边形AMBC面积最大,求此时点M的坐标及四边形AMBC的面积;(3)如图2,若P点是半径为2的⊙B上一动点,连接PC、PA,当点P运动到某一位置时,PC+PA 的值最小,请求出这个最小值,并说明理由.24.在平面直角坐标系中,直线y=x+2与x轴交于点A,与y轴交于点B,抛物线y=ax2+bx+c(a<0)经过点A、B.(1)求a、b满足的关系式及c的值.(2)当x<0时,若y=ax2+bx+c(a<0)的函数值随x的增大而增大,求a的取值范围.(3)如图,当a=﹣1时,在抛物线上是否存在点P,使△PAB的面积为1?若存在,请求出符合条件的所有点P的坐标;若不存在,请说明理由.25.如图,抛物线y=mx2﹣mx﹣4与x轴交于A(x1,0),B(x2,0)两点,与y轴交于点C,且x2﹣x1=.(1)求抛物线的解析式;(2)若P(x1,y1),Q(x2,y2)是抛物线上的两点,当a≤x1≤a+2,x2≥时,均有y1≤y2,求a 的取值范围;(3)抛物线上一点D(1,﹣5),直线BD与y轴交于点E,动点M在线段BD上,当∠BDC=∠MCE时,求点M的坐标.26.如图,在平面直角坐标系中,抛物线y=ax2+bx+c与x轴交于点A(﹣2,0),点B(4,0),与y 轴交于点C(0,8),连接BC,又已知位于y轴右侧且垂直于x轴的动直线l,沿x轴正方向从O运动到B(不含O点和B点),且分别交抛物线、线段BC以及x轴于点P,D,E.(1)求抛物线的表达式;(2)连接AC,AP,当直线l运动时,求使得△PEA和△AOC相似的点P的坐标;(3)作PF⊥BC,垂足为F,当直线l运动时,求Rt△PFD面积的最大值.27.如图①,抛物线y=﹣x2+x+4与y轴交于点A,与x轴交于点B,C,将直线AB绕点A逆时针旋转90°,所得直线与x轴交于点D.(1)求直线AD的函数解析式;(2)如图②,若点P是直线AD上方抛物线上的一个动点①当点P到直线AD的距离最大时,求点P的坐标和最大距离;②当点P到直线AD的距离为时,求sin∠PAD的值.28.如图,抛物线与x轴交于A,B两点,与y轴交于点C(0,﹣2),点A的坐标是(2,0),P为抛物线上的一个动点,过点P作PD⊥x轴于点D,交直线BC于点E,抛物线的对称轴是直线x=﹣1.(1)求抛物线的函数表达式;(2)若点P在第二象限内,且PE=OD,求△PBE的面积.(3)在(2)的条件下,若M为直线BC上一点,在x轴的上方,是否存在点M,使△BDM是以BD 为腰的等腰三角形?若存在,求出点M的坐标;若不存在,请说明理由.29.综合与探究如图,抛物线y=ax2+bx+6经过点A(﹣2,0),B(4,0)两点,与y轴交于点C,点D是抛物线上一个动点,设点D的横坐标为m(1<m<4).连接AC,BC,DB,DC.(1)求抛物线的函数表达式;(2)△BCD的面积等于△AOC的面积的时,求m的值;(3)在(2)的条件下,若点M是x轴上一动点,点N是抛物线上一动点,试判断是否存在这样的点M,使得以点B,D,M,N为顶点的四边形是平行四边形?若存在,请直接写出点M的坐标;若不存在,请说明理由.30.在平面直角坐标系中,已知抛物线L:y=ax2+(c﹣a)x+c经过点A(﹣3,0)和点B(0,﹣6),L 关于原点O对称的抛物线为L′.(1)求抛物线L的表达式;(2)点P在抛物线L′上,且位于第一象限,过点P作PD⊥y轴,垂足为D.若△POD与△AOB相似,求符合条件的点P的坐标.31.如图,若b是正数,直线l:y=b与y轴交于点A;直线a:y=x﹣b与y轴交于点B;抛物线L:y=﹣x2+bx的顶点为C,且L与x轴右交点为D.(1)若AB=8,求b的值,并求此时L的对称轴与a的交点坐标;(2)当点C在l下方时,求点C与l距离的最大值;(3)设x0≠0,点(x0,y1),(x0,y2),(x0,y3)分别在l,a和L上,且y3是y1,y2的平均数,求点(x0,0)与点D间的距离;(4)在L和a所围成的封闭图形的边界上,把横、纵坐标都是整数的点称为“美点”,分别直接写出b=2019和b=2019.5时“美点”的个数.32.如图,抛物线y=ax2+x+c交x轴于A,B两点,交y轴于点C.直线y=﹣x﹣2经过点A,C.(1)求抛物线的解析式;(2)点P是抛物线上一动点,过点P作x轴的垂线,交直线AC于点M,设点P的横坐标为m.①当△PCM是直角三角形时,求点P的坐标;②作点B关于点C的对称点B',则平面内存在直线l,使点M,B,B′到该直线的距离都相等.当点P在y轴右侧的抛物线上,且与点B不重合时,请直接写出直线l:y=kx+b的解析式.(k,b可用含m的式子表示)33.已知抛物线C1:y=(x﹣1)2﹣4和C2:y=x2(1)如何将抛物线C1平移得到抛物线C2?(2)如图1,抛物线C1与x轴正半轴交于点A,直线y=﹣x+b经过点A,交抛物线C1于另一点B.请你在线段AB上取点P,过点P作直线PQ∥y轴交抛物线C1于点Q,连接AQ.①若AP=AQ,求点P的横坐标;②若PA=PQ,直接写出点P的横坐标.(3)如图2,△MNE的顶点M、N在抛物线C2上,点M在点N右边,两条直线ME、NE与抛物线C2均有唯一公共点,ME、NE均与y轴不平行.若△MNE的面积为2,设M、N两点的横坐标分别为m、n,求m与n的数量关系.34.如图,已知抛物线y=x2+bx+c经过点A(﹣1,0)、B(5,0).(1)求抛物线的解析式,并写出顶点M的坐标;(2)若点C在抛物线上,且点C的横坐标为8,求四边形AMBC的面积;(3)定点D(0,m)在y轴上,若将抛物线的图象向左平移2个单位,再向上平移3个单位得到一条新的抛物线,点P在新的抛物线上运动,求定点D与动点P之间距离的最小值d(用含m的代数式表示)35.已知抛物线y=a(x﹣2)2+c经过点A(﹣2,0)和C(0,),与x轴交于另一点B,顶点为D.(1)求抛物线的解析式,并写出D点的坐标;(2)如图,点E,F分别在线段AB,BD上(E点不与A,B重合),且∠DEF=∠A,则△DEF能否为等腰三角形?若能,求出BE的长;若不能,请说明理由;(3)若点P在抛物线上,且=m,试确定满足条件的点P的个数.36.在平面直角坐标系中,正方形ABCD的四个顶点坐标分别为A(﹣2,4),B(﹣2,﹣2),C(4,﹣2),D(4,4).(1)填空:正方形的面积为;当双曲线y=(k≠0)与正方形ABCD有四个交点时,k的取值范围是:;(2)已知抛物线L:y=a(x﹣m)2+n(a>0)顶点P在边BC上,与边AB,DC分别相交于点E,F,过点B的双曲线y=(k≠0)与边DC交于点N.①点Q(m,﹣m2﹣2m+3)是平面内一动点,在抛物线L的运动过程中,点Q随m运动,分别切运动过程中点Q在最高位置和最低位置时的坐标;②当点F在点N下方,AE=NF,点P不与B,C两点重合时,求﹣的值;③求证:抛物线L与直线x=1的交点M始终位于x轴下方.37.如图,在直角坐标系中,直线y=﹣x+3与x轴,y轴分别交于点B,点C,对称轴为x=1的抛物线过B,C两点,且交x轴于另一点A,连接AC.(1)直接写出点A,点B,点C的坐标和抛物线的解析式;(2)已知点P为第一象限内抛物线上一点,当点P到直线BC的距离最大时,求点P的坐标;(3)抛物线上是否存在一点Q(点C除外),使以点Q,A,B为顶点的三角形与△ABC相似?若存在,求出点Q的坐标;若不存在,请说明理由.38.如图,已知抛物线y=﹣x2+bx+c与x轴交于A、B两点,AB=4,交y轴于点C,对称轴是直线x=1.(1)求抛物线的解析式及点C的坐标;(2)连接BC,E是线段OC上一点,E关于直线x=1的对称点F正好落在BC上,求点F的坐标;(3)动点M从点O出发,以每秒2个单位长度的速度向点B运动,过M作x轴的垂线交抛物线于点N,交线段BC于点Q.设运动时间为t(t>0)秒.①若△AOC与△BMN相似,请直接写出t的值;②△BOQ能否为等腰三角形?若能,求出t的值;若不能,请说明理由.39.已知抛物线y=ax2+bx+c顶点(2,﹣1),经过点(0,3),且与直线y=x﹣1交于A,B两点.(1)求抛物线的解析式;(2)若在抛物线上恰好存在三点Q,M,N,满足S△QAB=S△MAB=S△NAB=S,求S的值;(3)在A,B之间的抛物线弧上是否存在点P满足∠APB=90°?若存在,求点P的横坐标;若不存在,请说明理由.(坐标平面内两点M(x1,y1),N(x2,y2)之间的距离MN=)40.如图1,在平面直角坐标系xOy中,已知抛物线y=ax2﹣2ax﹣8a与x轴相交于A、B两点(点A在点B的左侧),与y轴交于点C(0,﹣4).(1)点A的坐标为,点B的坐标为,线段AC的长为,抛物线的解析式为.(2)点P是线段BC下方抛物线上的一个动点.①如果在x轴上存在点Q,使得以点B、C、P、Q为顶点的四边形是平行四边形.求点Q的坐标.②如图2,过点P作PE∥CA交线段BC于点E,过点P作直线x=t交BC于点F,交x轴于点G,记PE=f,求f关于t的函数解析式;当t取m和4﹣m(0<m<2)时,试比较f的对应函数值f1和f2的大小.41.如图,在平面直角坐标系中,平行四边形OABC的顶点A,C的坐标分别为(6,0),(4,3),经过B,C两点的抛物线与x轴的一个交点D的坐标为(1,0).(1)求该抛物线的解析式;(2)若∠AOC的平分线交BC于点E,交抛物线的对称轴于点F,点P是x轴上一动点,当PE+PF的值最小时,求点P的坐标;(3)在(2)的条件下,过点A作OE的垂线交BC于点H,点M,N分别为抛物线及其对称轴上的动点,是否存在这样的点M,N,使得以点M,N,H,E为顶点的四边形为平行四边形?若存在,直接写出点M的坐标,若不存在,说明理由.42.如图①,在平面直角坐标系xOy中,已知A(﹣2,2),B(﹣2,0),C(0,2),D(2,0)四点,动点M以每秒个单位长度的速度沿B→C→D运动(M不与点B、点D重合),设运动时间为t (秒).(1)求经过A、C、D三点的抛物线的解析式;(2)点P在(1)中的抛物线上,当M为BC的中点时,若△PAM≌△PBM,求点P的坐标;(3)当M在CD上运动时,如图②.过点M作MF⊥x轴,垂足为F,ME⊥AB,垂足为E.设矩形MEBF与△BCD重叠部分的面积为S,求S与t的函数关系式,并求出S的最大值;(4)点Q为x轴上一点,直线AQ与直线BC交于点H,与y轴交于点K.是否存在点Q,使得△HOK为等腰三角形?若存在,直接写出符合条件的所有Q点的坐标;若不存在,请说明理由.43.如图,在平面直角坐标系中,直线y=﹣x+2与x轴交于点A,与y轴交于点B,抛物线y=﹣x2+bx+c经过A,B两点且与x轴的负半轴交于点C.(1)求该抛物线的解析式;(2)若点D为直线AB上方抛物线上的一个动点,当∠ABD=2∠BAC时,求点D的坐标;(3)已知E,F分别是直线AB和抛物线上的动点,当B,O,E,F为顶点的四边形是平行四边形时,直接写出所有符合条件的E点的坐标.44.如图,抛物线y=ax2+6ax(a为常数,a>0)与x轴交于O,A两点,点B为抛物线的顶点,点D的坐标为(t,0)(﹣3<t<0),连接BD并延长与过O,A,B三点的⊙P相交于点C.(1)求点A的坐标;(2)过点C作⊙P的切线CE交x轴于点E.①如图1,求证:CE=DE;②如图2,连接AC,BE,BO,当a=,∠CAE=∠OBE时,求﹣的值.45.如图,二次函数y=x2+bx+c的图象与x轴交于点A(﹣1,0)和点B(3,0),与y轴交于点N,以AB为边在x轴上方作正方形ABCD,点P是x轴上一动点,连接CP,过点P作CP的垂线与y轴交于点E.(1)求该抛物线的函数关系表达式;(2)当点P在线段OB(点P不与O、B重合)上运动至何处时,线段OE的长有最大值?并求出这个最大值;(3)在第四象限的抛物线上任取一点M,连接MN、MB.请问:△MBN的面积是否存在最大值?若存在,求出此时点M的坐标;若不存在,请说明理由.46.已知二次函数y=ax2+bx﹣4(a>0)的图象与x轴交于A、B两点,(A在B左侧,且OA<OB),与y轴交于点C.(1)求C点坐标,并判断b的正负性;(2)设这个二次函数的图象的对称轴与直线AC相交于点D,已知DC:CA=1:2,直线BD与y轴交于点E,连接BC.①若△BCE的面积为8,求二次函数的解析式;②若△BCD为锐角三角形,请直接写出OA的取值范围.47.如图①,抛物线y=﹣x2+(a+1)x﹣a与x轴交于A,B两点(点A位于点B的左侧),与y轴交于点C.已知△ABC的面积是6.(1)求a的值;(2)求△ABC外接圆圆心的坐标;(3)如图②,P是抛物线上一点,Q为射线CA上一点,且P、Q两点均在第三象限内,Q、A是位于直线BP同侧的不同两点,若点P到x轴的距离为d,△QPB的面积为2d,且∠PAQ=∠AQB,求点Q 的坐标.48.如图1,在平面直角坐标系中,抛物线y=x2+x﹣与x轴交于点A、B(点A在点B右侧),点D为抛物线的顶点,点C在y轴的正半轴上,CD交x轴于点F,△CAD绕点C顺时针旋转得到△CFE,点A恰好旋转到点F,连接BE.(1)求点A、B、D的坐标;(2)求证:四边形BFCE是平行四边形;(3)如图2,过顶点D作DD1⊥x轴于点D1,点P是抛物线上一动点,过点P作PM⊥x轴,点M为垂足,使得△PAM与△DD1A相似(不含全等).①求出一个满足以上条件的点P的横坐标;②直接回答这样的点P共有几个?49.如图抛物线经y=ax2+bx+c过点A(﹣1,0),点C(0,3),且OB=OC.(1)求抛物线的解析式及其对称轴;(2)点D、E在直线x=1上的两个动点,且DE=1,点D在点E的上方,求四边形ACDE的周长的最小值.(3)点P为抛物线上一点,连接CP,直线CP把四边形CBPA的面积分为3:5两部分,求点P的坐标.50.如图,二次函数y=x2+bx+c的图象与x轴交于A,B两点,与y轴交于点C,且关于直线x=1对称,点A的坐标为(﹣1,0).(1)求二次函数的表达式;(2)连接BC,若点P在y轴上时,BP和BC的夹角为15°,求线段CP的长度;(3)当a≤x≤a+1时,二次函数y=x2+bx+c的最小值为2a,求a的值.2019年中考函数与几何专题汇编参考答案与试题解析一.解答题(共50小题)1.【分析】(1)抛物线与x轴的公共点坐标即为函数顶点坐标,即可求解;(2)①y=kx+1﹣k=k(x﹣1)+1过定点(1,1),且当k=0时,直线l变为y=1平行x轴,与轴的交点为(0,1),即可求解;②计算直线AD表达式中的k值、直线AC表达式中的k值,两个k值相等即可求解.【解答】解:(1)抛物线与x轴的公共点坐标即为函数顶点坐标,故:y=a(x﹣2)2=ax2﹣4ax+4a,则c=4a;(2)y=kx+1﹣k=k(x﹣1)+1过定点(1,1),且当k=0时,直线l变为y=1平行x轴,与y轴的交点为(0,1),又△ABC为等腰直角三角形,∴点A为抛物线的顶点;①c=1,顶点A(1,0),抛物线的解析式:y=x2﹣2x+1,②,x2﹣(2+k)x+k=0,x=(2+k±),x D=x B=(2+k﹣),y D=﹣1;则D,y C=(2+k2+k),C,A(1,0),∴直线AD表达式中的k值为:k AD==,直线AC表达式中的k值为:k AC=,∴k AD=k AC,点A、C、D三点共线.【点评】本题考查的是二次函数综合运用,涉及到一次函数、等腰三角形性质等知识点,本题关键是复杂数据的计算问题,难度不大.2.【分析】(1)A(0,﹣)向右平移2个单位长度,得到点B(2,﹣);(2)A与B关于对称轴x=1对称;(3)①a>0时,当x=2时,y=﹣<2,当y=﹣时,x=0或x=2,所以函数与AB无交点;②a<0时,当y=2时,ax2﹣2ax﹣=2,x=或x=当≤2时,a≤﹣;【解答】解:(1)A(0,﹣)点A向右平移2个单位长度,得到点B(2,﹣);(2)A与B关于对称轴x=1对称,∴抛物线对称轴x=1;(3)∵对称轴x=1,∴b=﹣2a,∴y=ax2﹣2ax﹣,①a>0时,当x=2时,y=﹣<2,当y=﹣时,x=0或x=2,∴函数与AB无交点;②a<0时,当y=2时,ax2﹣2ax﹣=2,x=或x=当≤2时,a≤﹣;∴当a≤﹣时,抛物线与线段PQ恰有一个公共点;【点评】本题考查二次函数的图象及性质;熟练掌握二次函数图象上点的特征,数形结合讨论交点是解题的关键.3.【分析】(1)∵a=1>0,故该抛物线开口向上,顶点A的坐标为(1,﹣1);(2)①设抛物线“不动点”坐标为(t,t),则t=t2﹣2t,即可求解;②新抛物线顶点B为“不动点”,则设点B(m,m),则新抛物线的对称轴为:x=m,与x轴的交点C(m,0),四边形OABC 是梯形,则直线x=m在y轴左侧,而点A(1,﹣1),点B(m,m),则m=﹣1,即可求解.【解答】解:(1)∵a=1>0,故该抛物线开口向上,顶点A的坐标为(1,﹣1);(2)①设抛物线“不动点”坐标为(t,t),则t=t2﹣2t,解得:t=0或3,故“不动点”坐标为(0,0)或(3,3);②当OC∥AB时,∵新抛物线顶点B为“不动点”,则设点B(m,m),∴新抛物线的对称轴为:x=m,与x轴的交点C(m,0),∵四边形OABC是梯形,∴直线x=m在y轴左侧,∵BC与OA不平行,∴OC∥AB,又∵点A(1,﹣1),点B(m,m),∴m=﹣1,故新抛物线是由抛物线y=x2﹣2x向左平移2个单位得到的;当OB∥AC时,同理可得:抛物线的表达式为:y=(x﹣2)2+2=x2﹣4x+6,当四边形OABC是梯形,字母顺序不对,故舍去,综上,新抛物线的表达式为:y=(x+1)2﹣1.【点评】本题为二次函数综合运用题,涉及到二次函数基本知识、梯形基本性质,此类新定义题目,通常按照题设顺序,逐次求解即可.4.【分析】(Ⅰ)将点A(﹣1,0)代入y=x2﹣bx+c,求出c关于b的代数式,再将b代入即可求出c 的值,可进一步写出抛物线解析式及顶点坐标;(Ⅱ)将点D(b,y D)代入抛物线y=x2﹣bx﹣b﹣1,求出点D纵坐标为﹣b﹣1,由b>0判断出点D (b,﹣b﹣1)在第四象限,且在抛物线对称轴x=的右侧,过点D作DE⊥x轴,可证△ADE为等腰直角三角形,利用锐角三角函数可求出b的值;(Ⅲ)将点Q(b+,y Q)代入抛物线y=x2﹣bx﹣b﹣1,求出Q纵坐标为﹣﹣,可知点Q (b+,﹣﹣)在第四象限,且在直线x=b的右侧,点N(0,1),过点Q作直线AN的垂线,垂足为G,QG与x轴相交于点M,过点Q作QH⊥x轴于点H,则点H(b+,0),在Rt△MQH 中,可知∠QMH=∠MQH=45°,设点M(m,0),则可用含b的代数式表示m,因为AM+2QM=,所以[(﹣)﹣(﹣1)]+2[(b+)﹣(﹣)]=,解方程即可.【解答】解:(Ⅰ)∵抛物线y=x2﹣bx+c经过点A(﹣1,0),∴1+b+c=0,即c=﹣b﹣1,当b=2时,y=x2﹣2x﹣3=(x﹣1)2﹣4,∴抛物线的顶点坐标为(1,﹣4);(Ⅱ)由(Ⅰ)知,抛物线的解析式为y=x2﹣bx﹣b﹣1,∵点D(b,y D)在抛物线y=x2﹣bx﹣b﹣1上,∴y D=b2﹣b•b﹣b﹣1=﹣b﹣1,由b>0,得b>>0,﹣b﹣1<0,∴点D(b,﹣b﹣1)在第四象限,且在抛物线对称轴x=的右侧,如图1,过点D作DE⊥x轴,垂足为E,则点E(b,0),∴AE=b+1,DE=b+1,得AE=DE,∴在Rt△ADE中,∠ADE=∠DAE=45°,。

动态几何中的函数问题--教师版

动态几何中的函数问题--教师版

在现实世界中,处处都有运动,我们常说“运动是绝对的,静止是相对的”。

在数学学习中我们也研究动态的几何问题。

运动的对象有点、线、角等几何图形;运动形式有平移、旋转、折叠等。

由于动态的几何问题有较强的综合性,近几年成为了中考试卷压轴题的热门。

例1、如图,在△ABC 中,AB=AC=5,BC=6。

点D 是边AB 上的点,DE//BC 交AC 于点E 。

(1)求△ABC 的面积;(2)若点D 在AB 上移动(D 不与A 、B 重合),以DE 为边,在点A 的下方作正方形DEFG 。

设AD=x ,△ABC 与正方形DEFG 重叠部分的面积为S ,试求S 关于x 的函数关系式,并写出定义域;(3)在(2)中,连结BG 。

当△BDG 是等腰三角形时,请直接写出AD 的长。

解:(1)12;(2)当0<x ≤2时,22536x S =; 当2<x<5时,22524524x x S -= (3)720,1125,73125反思:解第(1)题后,要砍柴,先磨刀,我们要观察背景图形,善于挖掘隐含条件,为后面解题做好铺垫。

本题中除了求出面积,进一步发现四个三边之比为3:4:5且相似的直角三角形。

(作高后)(2)先找了临界点即正方形的边FG 正好落在BC 上时,x=2,然后分情况讨论。

由于点D 的运动,造成一些图形的运动变化,某些数量关系发生了变化,但由于DE//BC 关系不变,因此,运动变化中DE=56x 始终不变。

在动态的几何问题中,我们要善于寻找到点的运动规律,从而建立函数关系式。

在求定义域的时候,除了考虑主动点的范围,还需考虑被动元素的条件限制,善于找到临界的位置,求出定义域;在动态的几何问题中,要把握图形动动的全过程,逐步形成范围意识。

(3)由于点D的运动,造成△BDG 的形状发生了改变,在某个瞬间,△BDG 有可能是等腰三角形。

但是由于每一条边都有可能是底边或者腰,所以进行分类讨论。

小结:例1是一个典型的几何动态问题,我们来梳理动态几何问题的基本题型结构以及相应解决问题的策略和方法。

中考二次函数中的几何最值问题(一)

中考二次函数中的几何最值问题(一)

二次函数中的几何最值问题(一)模型一:如图,A,B 为坐标系中两个定点,x 轴上有一动点P ,求PA+PB 的最小值,并求此时P 点的坐标.作法:过作A 点关于x 轴的对称点A’,连接A’B 与x 轴的交点即为P 点 例1.如图,在平面直角坐标系中,52x 23x 105y 2++-=与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C.连接AC 、BC ,E 为BC 的中点,连接AE. (1) 判断△ACE 的形状;(2) 如图2,点P 为直线BC 上方抛物线上的一动点,当△PCE 的面积最大时,将△OAC 沿直线BC 进行平移,平移后点O 、A 、C 对应的点为O 1、A 1、C 1.连接A 1P 、A 1B 、PB ,当△PA 1B 的周长最短时,求此时点A 1的坐标及△PA 1B 周长的最小值.A迁移练习1.如图,在平面直角坐标系中,抛物线211242y x x =-++与x 轴交于A 、B 两点,与y 轴交于点C.(1)求直线BC 的解析式及抛物线的对称轴;(2)如图1,D 为抛物线的顶点,P 是直线BC 上方抛物线上一点,当点P 到直线BC 距离最大时,在直线BC 上找一点Q 使得△DPQ 周长最小,求点Q 的坐标;模型2:如图:在∠ABC 内部有一点定点P ,点M 、N 分别为BC 、AB 上的动点,要使△PMN 的周长最短,试确定M 、N 的位置。

作法:作P 关于BC 的对称点P ' ,作P 关于AB 的对称点P '',连接P 'P '',与BC 、AB 的交点即为M 、N 点。

例2.如图1,已知抛物线333233y 2++-=x x 与x 轴交于A 、B 两点,与y 轴交于点C ,点D 是点C 关于抛物线对称轴的对称点,连接CD ,过点D 作DH ⊥x 轴交于点H ,过点A 作AE ⊥AC 交DH 的延长线与点E. (1)求线段DE 的长度;(2)如图,试在线段AE 上找一点F ,在线段DE 上找一点P ,且点M 为直线PF 上方抛物线上的一点,求当△CPF 的周长最小时,△MPF 的面积的最大值是多少;BB迁移练习2.如图,抛物线c bx x y ++-=2与直线n mx y +=相交于点)8,1(A 和点)4,5(B 。

中考数学函数与几何结合问题练习题

中考数学函数与几何结合问题练习题

中考数学:函数与几何结合问题练习题1. 题目:已知函数f(x)=2x+3,求函数f(x)在直线y=2x-1上的截距。

解析:截距就是函数与直线相交的点的纵坐标。

所以我们只需要将函数f(x)与直线y=2x-1联立,解方程即可。

将函数f(x)代入直线方程,得到2x+3=2x-1,化简得到3=-1,显然等式不成立。

所以函数f(x)与直线y=2x-1没有交点,因此没有截距。

2. 题目:已知函数f(x)=3x-2,求函数f(x)在直线y=x+1上的截距。

解析:同样地,我们将函数f(x)与直线y=x+1联立,解方程。

将函数f(x)代入直线方程,得到3x-2=x+1,化简得到2x=3,解得x=3/2。

将x=3/2代入直线方程,得到y=3/2+1=5/2。

所以函数f(x)在直线y=x+1上的截距为(3/2, 5/2)。

3. 题目:已知函数f(x)=x^2+2x,求函数f(x)在直线y=2x的截距。

解析:同样地,我们将函数f(x)与直线y=2x联立,解方程。

将函数f(x)代入直线方程,得到x^2+2x=2x,化简得到x^2=0,解得x=0。

将x=0代入直线方程,得到y=2(0)=0。

所以函数f(x)在直线y=2x上的截距为(0, 0)。

4. 题目:已知函数f(x)=3x^2-4x+1,求函数f(x)在直线y=3的截距。

解析:同样地,我们将函数f(x)与直线y=3联立,解方程。

将函数f(x)代入直线方程,得到3x^2-4x+1=3,化简得到3x^2-4x-2=0。

解方程得到x≈-0.732和x≈1.065。

将x≈-0.732代入函数f(x),得到f(-0.732)=3(-0.732)^2-4(-0.732)+1≈3.529。

将x≈1.065代入函数f(x),得到f(1.065)=3(1.065)^2-4(1.065)+1≈1.126。

所以函数f(x)在直线y=3上的截距为(-0.732, 3.529)和(1.065, 1.126)。

中考复习之二次函数中问题综合-几何旋转问题[1]

中考复习之二次函数中问题综合-几何旋转问题[1]

最短距离问题分析最值问题是初中数学的重要内容,也是一类综合性较强的问题,它贯穿初中数学的始终,是中考的热点问题,它主要考察学生对平时所学的内容综合运用,无论是代数问题还是几何问题都有最值问题,在中考压轴题中出现比较高的主要有利用重要的几何结论(如两点之间线段最短、三角形两边之和大于第三边、两边之差小于第三边、垂线段最短等)。

利用一次函数和二次函数的性质求最值。

一、“最值”问题大都归于两类基本模型:Ⅰ、归于函数模型:即利用一次函数的增减性和二次函数的对称性及增减性,确定某范围内函数的最大或最小值Ⅱ、归于几何模型,这类模型又分为两种情况:(1)归于“两点之间的连线中,线段最短”。

凡属于求“变动的两线段之和的最小值”时,大都应用这一模型。

(2)归于“三角形两边之差小于第三边”凡属于求“变动的两线段之差的最大值”时,大都应用这一模型。

一)、已知两个定点:1、在一条直线m上,求一点P,使PA+PB最小;(1)点A、B在直线m两侧:(2)点A、B在直线同侧:A、A’是关于直线m的对称点。

2、在直线m、n上分别找两点P、Q,使PA+PQ+QB最小。

(1)两个点都在直线外侧:mmABmAB mnmn(2)一个点在内侧,一个点在外侧:(3)两个点都在内侧:(4)、台球两次碰壁模型变式一:已知点A 、B 位于直线m,n 的内侧,在直线n 、m 分别上求点D 、E 点,使得围成的四边形ADEB 周长最短.变式二:已知点A 位于直线m,n 的内侧, 在直线m 、n 分别上求点P 、Q 点PA+PQ+QA 周长最短.二)、一个动点,一个定点:n mAnnnm(一)动点在直线上运动:点B 在直线n 上运动,在直线m 上找一点P ,使PA+PB 最小(在图中画出点P 和点B ) 1、两点在直线两侧:2、两点在直线同侧:(二)动点在圆上运动点B 在⊙O 上运动,在直线m 上找一点P ,使PA+PB 最小(在图中画出点P 和点B ) 1、点与圆在直线两侧:2、点与圆在直线同侧:m n Am nm nmmmmA m(1)点A 、B 在直线m 同侧:(2)点A 、B 在直线m 异侧:过B 作关于直线m 的对称点B ’,连接AB ’交点直线m 于P,此时PB=PB ’,PA-PB 最大值为AB ’如图1,正方形ABCD 的边长为2,E 为AB 的中点, P 是AC 上一动点.连结BD ,由正方形对称性可知, B 与D 关于直线AC 对称.连结ED 交AC 于P ,则 PB PE +的最小值是___________;2.如图所示,正方形ABCD 的面积为12,ABE △是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,使PD PE +的和最小,则这个最小值为( )A .B .C .3 DBAm A B E CBD 图1A D EPB C二次函数常见压轴y=322--x x (以下几种分类的函数解析式就是这个)和最小,差最大 在对称轴上找一点P ,使得PB+PC 的和最小,求出P 点坐标在对称轴上找一点P ,使得PB-PC 的差最大,求出P 点坐标求面积最大 连接AC,在第四象限找一点P ,使得ACP ∆面积最大,求出P 坐标讨论直角三角连接AC,在对称轴上找一点P ,使得ACP ∆为直角三角形,求出P 坐标 或者在抛物线上求点P ,使△ACP 是以AC 为直角边的直角三角形.因动点产生的三角形相似问题例1.(2013•南平)如图,已知点A(0,4),B(2,0).(1)求直线AB的函数解析式;(2)已知点M是线段AB上一动点(不与点A、B重合),以M为顶点的抛物线y=(x﹣m)2+n与线段OA交于点C.①求线段AC的长;(用含m的式子表示)②是否存在某一时刻,使得△ACM与△AMO相似?若存在,求出此时m的值.例2.如图,直线3y x=-+与x轴,y轴分别相交于点B,点C,经过B C,两点的抛物线2y ax bx c=++与x轴的另一交点为A,顶点为P,且对称轴是直线2x=.(1)求A点的坐标;(2)求该抛物线的函数表达式;(3)连结AC.请问在x轴上是否存在点Q,使得以点P B Q,,为顶点的三角形与ABC△相似,若存在,请求出点Q的坐标;若不存在,请说明理由.练习:如图,在直角坐标系中,O为原点,抛物线23y x bx=++与x轴的负半轴交于点A,与y轴的正半轴交于点B,tan∠ACO=31.(1)求抛物线的解析式;(2)若直线:(0)l y kx k=≠与线段BC交于点D(不与点B C,重合),则是否存在这样的直线l,使得以B O D,,为顶点的三角形与BAC△相似?若存在,求出该直线的函数表达式及点D的坐标;若不存在,请说明理由.A BCPOxy2x=AOBCxy和最小差最大如图,抛物线y=ax2+bx+c(a≠0)的顶点为(1,4),交x轴于A、B,交y轴于D,其中B点的坐标为(3,0)(1)求抛物线的解析式(2)如图14,过点A的直线与抛物线交于点E,交y轴于点F,其中E点的横坐标为2,若直线PQ为抛物线的对称轴,点G为PQ上一动点,则x轴上是否存在一点H,使D、G、F、H四点围成的四边形周长最小.若存在,求出这个最小值及G、H的坐标;若不存在,请说明理由.(3)如图15,抛物线上是否存在一点T,过点T作x的垂线,垂足为M,过点M作直线M N∥BD,交线段AD 于点N,连接MD,使△DNM∽△BMD,若存在,求出点T的坐标;若不存在,说明理由.面积问题:例题1:如图,在平面直角坐标系中,点A、C的坐标分别为(-1,0)、(0,3-),点B在x轴上.已知某二次函数的图象经过A、B、C三点,且它的对称轴为直线x=1,点P为直线BC下方的二次函数图象上的一个动点(点P与B、C不重合),过点P作y轴的平行线交BC于点F.(1)求该二次函数的解析式;(2)若设点P的横坐标为m,试用含m的代数式表示线段PF的长;(3)求△PBC面积的最大值,并求此时点P的坐标.yxBA FPx=1CO例题2:在平面直角坐标系中,已知抛物线经过A (-4,0),B (0,-4),C (2,0)三点. (1)求抛物线的解析式;(2)若点M 为第三象限内抛物线上一动点,点M 的横坐标为m ,△AMB 的面积为S .求S 关于m 的函数关系式,并求出S 的最大值.(3)若点P 是抛物线上的动点,点Q 是直线y =-x 上的动点,判断有几个位置能够使得点P 、Q 、B 、O 为顶点的四边形为平行四边形,直接写出相应的点Q 的坐标.例3:已知:抛物线()20y ax bx c a =++≠的对称轴为1x =-,与x 轴交于A B ,两点,与y 轴交于点C ,其中()30A -,、()02C -,.(1)求这条抛物线的函数表达式.(2)已知在对称轴上存在一点P ,使得PBC △的周长最小.请求出点P 的坐标. (3)若点D 是线段OC 上的一个动点(不与点O 、点C 重合).过点D 作DE PC ∥交x 轴于点E .连接PD 、PE .设CD 的长为m ,PDE △的面积为S .求S 与m 之间的函数关系式.试说明S 是否存在最大值,若存在,请求出最大值;若不存在,请说明理由.讨论直角三角例1:已知:如图一次函数y =21x +1的图象与x 轴交于点A ,与y 轴交于点B ;二次函数y =21x2+bx +c 的图象与一次函数y =21x +1的图象交于B 、C 两点,与x 轴交于D 、E 两点且D 点坐标为(1,0) (1)求二次函数的解析式; (2)求四边形BDEC 的面积S ;(3)在x 轴上是否存在点P ,使得△PBC 是以P 为直角顶点的直角三角形?若存在,求出所有的点P ,若不存在,请说明理由.例2:如图,抛物线与x 轴交于A (-1,0)、B (3,0)两点,与y 轴交于点C (0,-3),设抛物线的顶点为D .(1)求该抛物线的解析式与顶点D 的坐标;(2)以B 、C 、D 为顶点的三角形是直角三角形吗?为什么?(3)探究坐标轴上是否存在点P ,使得以P 、A 、C 为顶点的三角形与△BCD 相似?若存在,请指出符合条件的点P 的位置,并直接写出点P 的坐标;若不存在,请说明理由.二次函数中四边形存在问题研究一、已知三个定点,再找一个定点构成平行四边形(平面内有三个点满足)例1.【08湖北十堰】已知抛物线b ax ax y ++-=22与x 轴的一个交点为A (-1,0),与y 轴的正半轴交于点C .⑴直接写出抛物线的对称轴,及抛物线与x 轴的另一个交点B 的坐标;⑵当点C 在以AB 为直径的⊙P 上时,求抛物线的解析式;⑶坐标平面内是否存在点M ,使得以点M 和⑵中抛物线上的三点A 、B 、C 为顶点的四边形是平行四边形?若存在,请求出点M 的坐标;若不存在,请说明理由.解:1.如图,抛物线y =-x 2+bx +c 与直线221+=x y 交于C 、D 两点,其中点C 在y 轴上,点D 的坐标为)27 3(,. 点P 是y 轴右侧的抛物线上一动点,过点P 作PE ⊥x 轴于点E ,交CD 于点F . (1)求抛物线的解析式;(2)若点P 的横坐标为m ,当m 为何值时,以O 、C 、P 、F 为顶点的四边形是平行四边形?请说明理由.PEOFCDBAxyOCDBA 备用图yx二、已知两个定点,再找两个点构成平行四边形①确定两定点连接的线段为一边,则两动点连接的线段应和已知边平行且相等)例1.【09福建莆田】已知,如图抛物线23(0)=++>与y轴交于C点,与x轴交于A、By ax ax c a两点,A点在B点左侧。

动态几何与函数问题(含答案)

动态几何与函数问题(含答案)

动态几何与函数问题【例1】如图①所示,直角梯形OABC的顶点A、C分别在y轴正半轴与x轴负半轴上.过点B、C作直线l.将直线l平移,平移后的直线l与x轴交于点D,与y轴交于点E.(1)将直线l向右平移,设平移距离CD为t(t≥0),直角梯形OABC被直线l扫过的面积(图中阴影部份)为s,s关于t的函数图象如图②所示,OM为线段,MN为抛物线的一部分,NQ为射线,且NQ平行于x轴,N点横坐标为4,求梯形上底AB的长及直角梯形OABC的面积.(2)当24<<时,求S关于t的函数解析式.t【思路分析】本题虽然不难,但是非常考验考生对于函数图像的理解。

很多考生看到图二的函数图像没有数学感觉,反应不上来那个M点是何含义,于是无从下手。

其实M点就表示当平移距离为2的时候整个阴影部分面积为8,相对的,N点表示移动距离超过4之后阴影部分面积就不动了。

脑中模拟一下就能想到阴影面积固定就是当D移动过了0点的时候.所以根据这么几种情况去作答就可以了。

第二问建立函数式则需要看出当24<<时,阴t影部分面积就是整个梯形面积减去△ODE的面积,于是根据这个构造函数式即可。

动态几何连带函数的问题往往需要找出图形的移动与函数的变化之间的对应关系,然后利用对应关系去分段求解。

【解】(1)由图(2)知,M点的坐标是(2,8)∴由此判断:24,;==A B O A∵N点的横坐标是4,N Q是平行于x轴的射线,∴4C O=∴直角梯形O A B C 的面积为:()()112441222A BO C O A +⋅=+⨯=..... (3分)(2)当24t <<时,阴影部分的面积=直角梯形O A B C 的面积-O D E∆的面积 (基本上实际考试中碰到这种求怪异图形面积的都要先想是不是和题中所给特殊图形有割补关系)∴1122S O D O E=-⋅ ∵142O D O D tO E==-,∴()24O E t =- .∴()()()21122441242St t t =-⨯-⋅-=--284S t t =-+-.【例2】已知:在矩形A O B C 中,4O B =,3O A =.分别以O B O A ,所在直线为x 轴和y 轴,建立如图所示的平面直角坐标系.F 是边B C 上的一个动点(不与B C ,重合),过F 点的反比例函数(0)k y k x=>的图象与A C 边交于点E .(1)求证:A O E △与B O F △的面积相等;(2)记O E F E C F S S S =-△△,求当k 为何值时,S 有最大值,最大值为多少? (3)请探索:是否存在这样的点F ,使得将C E F △沿E F 对折后,C 点恰好落在O B 上?若存在,求出点F 的坐标;若不存在,请说明理由.【思路分析】本题看似几何问题,但是实际上△AOE 和△FOB 这两个直角三角形的底边和高恰好就是E,F 点的横坐标和纵坐标,而这个乘积恰好就是反比例函数的系数K 。

几何中的函数问题

几何中的函数问题

几何中的函数问题作者:王竞进来源:《初中生世界(初三年级)》2011年第07期【问题】如图1,在△ABC中,∠C=45°,BC=10,高AD=8,矩形EFPQ的一边QP在BC边上,E、F两点分别在AB、AC上,AD交EF于点H.(1)求证:■=■;(2)设EF=x,当x为何值时,矩形EFPQ的面积最大?并求其最大值;(3)当矩形EFPQ的面积最大时,该矩形EFPQ以每秒1个单位的速度沿射线QC匀速运动(当点Q与点C重合时停止运动),设运动时间为t秒,矩形EFPQ与△ABC重叠部分的面积为S,求S与t的函数关系式.【命题意图】本题是2010年福州市的一道中考试题,它既考查了同学们对三角形相似的条件和性质的掌握,也考查了图形运动过程中的最大值或最小值的确定,同时,还考查了分类讨论和运动变化的数学思想方法.【解题指导】本题中的三个小问,入口较宽,以三角形相似为起点.第(1)问,由于AH是△AEF中EF边上的高,AD是△ABC中BC边上的高,因此,要证■=■,只需证明△AEF与△ABC相似即可;第(2)问,矩形EFPQ的面积跟EF的长度有关,根据(1)中的结论可以知道,矩形EFPQ的面积是关于x的二次函数,再利用二次函数的性质求面积最大值;第(3)问,矩形EFPQ和△ABC重叠部分的面积与运动时间有关,运动时间不同,重叠部分的形状不同,因此,需要分类加以讨论,根据不同情况确定面积S与t的函数关系式.【解题过程】(1)∵四边形EFPQ是矩形,∴ EF∥QP,∴△AEF∽△ABC.又∵ AD⊥BC,∴ AH⊥EF,∴ ■=■.(2)由(1)得■=■,AH=■x,∴ EQ=HD=AD-AH=8-■x,∴ S矩形EFPQ=EF·EQ=x(8-■x)=-■x2+8x=-■(x-5)2+20.∵ -■<0,∴当x=5时,S矩形EFPQ有最大值,最大值为20.(3)由(2)得EF=5,EQ=4.∵∠C=45°,∴△FPC是等腰直角三角形,∴ PC=FP=EQ=4,QC=QP+PC=9.分三种情况讨论:①如图2,当0≤t<4时,设EF、PF分别交AC于点M、N,则△MFN是等腰直角三角形,∴ FN=MF=t,∴ S=S矩形EFPQ-SRt△MFN=20-■t2=-■t2+20;②如图3,当4≤t<5时,则ME=5-t,QC=9-t,∴ S=S梯形EMCQ=■[(5-t)+(9-t)]×4=-4t+28;③如图4,当5≤t≤9时,设EQ交AC于点K,则KQ=QC=9-t,∴ S=S△KQC=■(9-t)2=■(t-9)2.综上所述:S与t的函数关系式为:S=-■t2+20,(0≤t<4)-4t+28,(4≤t<5)■(t-9)2.(5≤t<9)【追根溯源】本题类似于苏科版《数学》八年级下册教材第109页第5题:如图,在△ABC中,AD是高,矩形PQMN的顶点P、N分别在AB、AC上,QM在边BC上.若BC=a,AD=h,PN=2PQ,求矩形PQMN的长和宽(用含a、b的代数式表示).【变式拓展】如图5,在梯形ABCD中,AD∥BC,AB=AD=DC=2cm,BC=4cm,在等腰△PQR中,∠QPR=120°,底边QR=6cm,点B、C、Q、R 在同一直线l上,且C、Q两点重合,如果等腰△PQR以1cm/秒的速度沿直线l箭头所示方向匀速运动,经过t秒时梯形ABCD与等腰△PQR重合部分的面积记为Scm2.(1)当t=4时,求S的值;(2)当4≤t≤10,求S与t的函数关系式,并求出S的最大值.【参考答案】1.(1)t=4时,Q与B重合,P与D重合,重合部分是△BDC,面积为■·2·2■=2■;(2)当4≤t≤6时,如图6,则BQ=t-4,CR=6-t,由△PQR∽△BQK∽△CRN得,■=■2=■2,■=■2=■2.所以S=S△PQR-S△BQK-S△CRN=3■1-■2-■2=■.当6<t≤10时,如图7,BR=10-t,BK⊥PK,且∠KRB=30°,所以BK=■BR=■(10-t),KR=■(10-t),S=SRt△KBR=■BK×KR=■(10-t)2=■(t-10)2.“本文中所涉及到的图表、公式、注解等请以PDF格式阅读”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

几何中的函数问题
金汇学校初三数学备课组
教学目标:
以四边形为载体探究几何图形中两个变量的数量关系,了解、掌握在几何图形背景中建立函数解析式常见的方法;研究几何图形的性质,沟通函数与几何的关系,体验函数在几何图形中的应用;进一步感悟和运用数形结合思想、分类讨论思想、方程思想解决综合问题。

教学重点与难点:
探求几何图形中两个变量之间的函数关系,寻找解题规律,并正确写出函数定义域。

教学过程:
问题1:已知正方形ABCD 中,点P 在对角线BD 上,联结PC ,过点P 作PE ⊥PC ,交AB 于点E ,如图1所示。

求证:PE=PC .
(学生独立思考并解答,让学生体会随着点P 的运动,变量PE 、 PC 之间的关系)
问题2:如果把条件中的正方形改为梯形ABCD ,其中AD ∥BC ,
∠ABC =
90,并设AD =3,AB =4,BC =6,(如图)若将一个直角顶点P 放在对角线BD 上移动,一条直角边过点C ,另一条直角边与腰AB (或AB 思考:图中哪些量在变化?
探究一:当Q 在AB 的上 时试探究PQ 、PC 之间有怎样的数量关系,并证明你的结论;
(说明:以问题(1)为铺垫,从几何图形入 手,根据几何图形的特点,运用几何图形的有关 性质,来找到两个变量PQ 、PC 之间的关系。


探究二、在图2中,联结AP ,且点Q 在线段AB
上时,设点B Q 、之间的距离为x ,
APQ PBC
S y S △△,其中APQ S △表
示APQ △的面积,PBC S △表示PBC △的面积,求y 关于x 的函
数解析式,并写出函数定义域; 说明:(1)解题的关键是用含x 的代数式表示出相关的线段,利 图1
D
C
B A E P 。

O
C 用图形的性质、面积计算公式等建立动点与线段、面积之间的函数关系式;
(2)求函数的定义域时,画出所有运动状态,在“极限图形”中 求出x 等于多少?y 存在还是不存在?
探究三:当Q 在AB 的延长线上的 时,设x DP =,点B Q 、之间的距离为y ,求y 关于x 的函数解析式,并写出函数定义域;
说明:建立线段与线段之间的函数解析式主要 的途径是利用图形的性质如相似三角形的性质
勾股定理、锐角三角比等。

探究四、在探究三条件下,若△ADP 是等腰三角形时,
求BQ 的长
三、课堂小结:
1、建立线段与线段之间的函数关系式
解决这类问题的一般方法是:利用特殊三角形的边角关系、相似三角形对应边成比例等关系式,把线段与线段之间的函数关系式表示出来 2、建立线段与面积之间的函数关系式
根据题设条件,利用面积计算公式或相似三角形性质定理等方法,建立线段与面积之间的函数关系式
3、建立动点与线段、面积之间的函数关系式根据题设条件和动点位置的变化,利用特殊图形的性质、面积计算公式或相似三角形性质定理等方法,建立动点与线段、面积之间的函数关系式
4、解题的关键是用含x 的代数式表示出相关的线段. 四、课堂作业:(第(1)(2)必做,第(3)尽力完成) 1、如图,等腰梯形ABCD 中,AD BC ∥,5,AB DC ==AD =2,BC =8,MEN B ∠=∠.
MEN ∠的顶点E 在边BC 上移动,一条边始终经过点A ,另一边与CD
交于点F ,联结AF .
(1)求的值B cos
C Q C
(2)设y DF x BE ==,,试建立y 关于x 的函数关系式,并写出函数定义域; (3)若AEF △为等腰三角形,求出BE 的长.
2、已知24AB AD ==,,90DAB ∠=,AD BC ∥(如图).E 是射线BC 上的动点(点E 与点
B 不重合),M 是线段DE 的中点.
(1)设BE x =,ABM △的面积为y ,求y 关于x 的函数解析式,并写出函数的定义域; (2)如果以线段AB 为直径的圆与以线段DE 为直径的圆外切,求线段BE 的长;
(3)联结BD ,交线段AM 于点N ,如果以A N D ,,为顶点的三角形与BME △相似,求线段BE 的长.
教案设计说明:
本节课的教学内容是在几何图形中,通过点或线段的运动变化,引出线段与线段、线段与几何图形的面积之间的函数关系。

以几何图形为载体,通过图形的全等、相似等有关知识来确定函数解析式,是将平面几何问题与函数知识巧妙结合的一种题型,在解题的过程中覆盖了初中阶段学习的几乎全部的数学思想:化归思想、数形结合思想、分类讨论思想、类比思想、方程思想、函数思想、整体思想、数学模型思想、抽象概括思想、字母表示数的思想等,是学生学习中的难点,也是学生解决问题的盲点。

本节课以2009年中考25题为背景,从具有正方形特色问题引入,指导学生寻找解决问题的突破口,然后改变问题背景,把解决问题的策略从全等引到相似,让学生在解决问题过程中亲身体验并感悟从几何图形入手,根据几何图形的特点,运用几何图形的有关性质,来找到两个变量之间的关系,通过设、表、列获得函数解析式,进一步归纳得到基本解题步骤。

B A
D M
E C
B A
D C 备用图
C
D
C
B
A 备用图。

相关文档
最新文档