几何中的函数问题(一)

合集下载

三角函数在几何中的应用

三角函数在几何中的应用

三角函数在几何中的应用三角函数是数学中一个重要的分支,它在几何学中有着广泛的应用。

无论是在平面几何还是空间几何中,三角函数都扮演着重要的角色。

本文将介绍三角函数在几何中的应用,并以实际例子来说明其在几何问题解决中的作用。

作为一种数学工具,三角函数在几何中有着多种运用。

首先,我们来看在平面几何中的应用。

一、平面几何中的应用1. 直角三角形求解直角三角形是几何学中最基本的一类三角形。

通过三角函数,我们能够根据已知一边和一个角度,求解出其他未知边长和角度。

例如,已知一个直角三角形的一个锐角为30°,该直角三角形的斜边长为10个单位。

现在我们想要求解其余两条边的长度。

设其中一条边为a,另一条边为b。

根据三角函数的定义,我们可以得到以下方程组:sin(30°) = a / 10cos(30°) = b / 10通过解方程组,我们可以得到a和b的值,从而求解出直角三角形的边长。

2. 三角形面积计算在平面几何中,三角形是最简单的多边形。

通过三角函数,我们能够根据已知三角形的两条边和夹角,计算出三角形的面积。

例如,已知一个三角形的两边长分别为5个单位和8个单位,夹角为60°。

现在我们想要求解该三角形的面积。

根据三角函数的定义,我们可以得到:sin(60°) = 高 / 5通过解方程,我们可以计算出高的值,进而求解出三角形的面积。

二、空间几何中的应用除了在平面几何中的应用,三角函数在空间几何中同样发挥着重要作用。

1. 锥体体积计算在空间几何中,锥体是一种常见的几何形体。

通过三角函数,我们可以根据已知锥体的高度和底面积,计算出锥体的体积。

例如,已知一个锥体的高度为10个单位,底面半径为5个单位。

现在我们想要求解该锥体的体积。

根据锥体的定义,我们可以使用三角函数得到该锥体的体积公式:体积 = (1/3) * 底面积 * 高度通过代入已知的数值,我们可以计算出该锥体的体积。

一次函数与几何综合(一)(讲义及答案).

一次函数与几何综合(一)(讲义及答案).

一次函数与几何综合(一)(讲义)➢ 课前预习1. 若一次函数经过点 A (2,-1)和点 B (4,3),则该一次函数的表达式为.2. 若直线 l 平行于直线 y =-2x -1,且过点(1,4),则直线 l 的表达式为 .3.如图,一次函数的图象经过点 A ,且与正比例函数 y =-x 的图象交于点 B ,则该一次函数的表达式为.第 3 题图第 4 题图4.如图,点 A 在直线 l 1:y =3x 上,且点 A 在第一象限,过点 A 作 y 轴的平行线交直线 l 2:y =x 于点 B .(1) 设点 A 的横坐标为 t ,则点 A 的坐标为,点 B的坐标为 ,线段 AB 的长为;(用含 t的式子表示)(2) 若 AB =4,则点 A 的坐标是.➢ 知识点睛1. 一次函数与几何综合的处理思路:从已知的表达式、坐标或几何图形入手,分析特征,通过坐标与横平竖直线段长、函数表达式相互转化解决问题.2. 函数与几何综合问题中常见转化方式:(1) 借助表达式设出点坐标,将点坐标转化为横平竖直线段长,结合几何特征利用线段长列方程;(2) 研究几何特征,考虑线段间关系,通过设线段长进而表达点坐标,将点坐标代入函数表达式列方程.表达线段长:横平线段长,横坐标相减,右减左; 竖直线段长,纵坐标相减,上减下.1➢ 精讲精练1.如图,直线 y = - 3x + 3 与 x 轴、y 轴交于 A ,B 两点,点 C4是 y 轴负半轴上一点,若 BA =BC ,则直线 AC 的表达式为.第 1 题图第 2 题图2.如图,在平面直角坐标系中,一次函数 y =kx +b 的图象经过点A (-2,6),且与 x 轴相交于点 B ,与正比例函数 y =3x 的图象交于点 C ,点 C 的横坐标为 1,则△OBC 的面积为 .3.如图,直线l :y = 3x + 6 与 y 轴相交于点 N ,直线l :y = kx -31 42与直线l 1 相交于点 P ,与 y 轴相交于点 M ,若△PMN 的面积为 18,则直线l 2的表达式为.4.如图,一次函数 y = 1x + 2 的图象与 y 轴交于点 A ,与正比例3函数 y =kx 的图象交于第二象限内的点 B ,若 AB =OB ,则 k 的值为.5. 如图,点A,B 的坐标分别为(-8,0),(0,4),点C(a,0)为x轴上一个动点,过点C 作x 轴的垂线,交直线AB 于点D,若CD=5,则a 的值为.6.如图,直线y=kx+6 与x 轴、y 轴分别交于点A,B,点A 的坐标为(6,0),点C 的坐标为(4,0).若点P 是直线y=kx+6 上的一个动点,当点P 的坐标为时,△OPC 的面积为4.7.如图,直线y =-1x +b 与x 轴、y 轴分别交于点A,B,与直2线y=x 交于点M,点M 的横坐标为2,点C 为线段AM 上一点,过点C 作x 轴的垂线,垂足为点D,交直线y=x 于点E.若ED=4CD,则点E 的坐标为.8.如图,直线l1:y=2x+1 与直线l2:y=mx+4 相交于点P(1,b),垂直于x 轴的直线x=a 与直线l1,l2 分别交于点A,B,若线段AB 的长为2,则a 的值为.9.如图,直线AB:y=-x+20 与y 轴交于点A,与直线OB:y =1 x 3交于点B.点C 为线段OB 上一点,过点C 作y 轴的平行线交直线AB 于点D,向y 轴作垂线,垂足为点E.若DC=2CE,则点C 的坐标为.10.如图,在平面直角坐标系中,点A,C 和B,D 分别在直线y=1x+3和x 轴上,若△OAB,△BCD 都是等腰直角三角形,2∠OAB=∠BCD=90°,则点C 的坐标为.11.如图,直线l1:y 3x 与直线l2:y=-x+7 相交于点A.点P 4在x 轴正半轴上,过点P 作x 轴的垂线,与直线l1,l2 分别交于点B,C.设点P 的横坐标为t.(1)当t=1 时,求线段BC 的长;(2)用含t 的式子表达BC 的长;(3)若三个点B,C,P 中恰有一点是其他两点所连线段的中点,则称B,C,P 三点为“共谐点”.请直接写出使得B,C,P 三点成为“共谐点”的t 的值.⎨ 【参考答案】➢ 课前预习1. y = 2x - 52. y = -2x + 63. y = x + 24. (1)(t ,3t ),(t ,t ),2t(2)(2,6)➢ 精讲精练1. y = 1x - 222. 63. y = - 3x - 32 4. - 13 5. 2 或-186. (4,2)或(8,-2)7. (4,4)8. 5 或 13 3 9. (6,2) 10. (30,18) 11. (1) BC =21;4 ⎧- 7t + 7(0 < t ≤ 4) (2) BC = ⎪4 ;7 ⎪ t - 7(t > 4) ⎩ 4(3)当 t 的值为14 ,56或 28 时,B ,C ,P 三点成为“共5 11谐点”⎪。

用函数解决几何问题

用函数解决几何问题

用函数解决几何问题函数是数学中的重要概念,它们能够将一个自变量的值映射到一个因变量的值。

在几何学中,我们也可以使用函数来解决一些几何问题。

本文将介绍如何使用函数来解决几何问题,并且给出几个具体的例子。

一、函数的基本概念函数是几何学中常用的工具,它可以将几何形状的属性与数值联系起来。

在几何学中,我们通常将几何形状的特征参数称为自变量,而将对应的几何属性称为因变量。

通过定义一个函数,我们可以根据给定的自变量的值求出对应的因变量的值,从而解决几何问题。

二、使用函数解决几何问题的步骤1. 确定问题的几何形状和属性。

首先,我们需要明确问题是关于哪个几何形状的,以及需要解决该几何形状的哪些属性。

例如,如果问题涉及到一个圆的面积,我们需要确定圆是我们需要考虑的几何形状,而面积是我们需要求解的属性。

2. 建立函数表达式。

在确定了问题的几何形状和属性之后,我们需要建立一个函数表达式,将自变量和因变量联系起来。

函数表达式的形式与具体的问题相关,可以是一元函数或多元函数。

例如,在求解圆的面积问题中,我们可以建立一个一元函数,该函数的自变量是圆的半径,因变量是圆的面积。

3. 求解函数的值。

一旦建立了函数表达式,我们就可以根据给定的自变量的值,使用函数表达式求解对应的因变量的值。

这样,我们就能够准确地得到问题的答案。

三、使用函数解决几何问题的例子1. 求解圆的面积。

假设我们要求解一个半径为r的圆的面积。

我们可以建立一个函数A(r)表示圆的面积,其中r为自变量。

利用圆的面积公式A(r) = π*r^2,我们可以根据给定的半径r,通过函数A(r)求解对应的面积。

2. 求解三角形的面积。

假设我们要求解一个三角形的面积。

我们可以建立一个函数A(a, b, c)表示三角形的面积,其中a、b、c为三角形的边长。

利用海伦公式,我们可以根据给定的三个边长a、b、c,通过函数A(a, b, c)求解对应的面积。

3. 求解直线的斜率。

假设我们要求解一条直线的斜率。

专题01 用几何意义探究反比例函数中k值问题的多种解法(解析版)

专题01 用几何意义探究反比例函数中k值问题的多种解法(解析版)

专题01 用几何意义探究反比例函数中k 值问题的多种解法如图,反比例函数k y x =(k >0),A 、C 是第一象限上两点,S △OAB =S △OCD =2k ;S △OAC =S 梯形ABDC 在已知面积或比例线段解答反比例函数的问题中,善于利用k 与面积的关系,往往可以事半功倍.典例1.知面积比值,求k 值(2022•山东聊城中考真题)如图,直线与反比例函数在第一象限内的图象交于点,与y 轴交于点B ,过双曲线上的一点C 作x 轴的垂线,垂足为点D ,交直线于点E ,且.()30y px p =+¹()0k y k x=>()2,A q 3y px =+:3:4AOB COD S S =△△(1)求k ,p 的值;(2)若OE 将四边形BOCE 分成两个面积相等的三角形,求点C 的坐标.【答案】(1),;(2)点C 的坐标为(4,2)【解析】【方法一】坐标法(1)解:∵直线与y 轴交点为B ,∴,即.∵点A 的横坐标为2,∴.∵,∴△COD 的面积为4,设,∴,解得.∵点在双曲线上,∴,把点代入,得,∴,;8k =12p =3y px =+()0,3B 3OB =13232AOB S =´´=V :3:4AOB COD S S =△△,k C m m æöç÷èø142k m m×=8k =()2,A q 8y x=4q =()2,4A 3y px =+12p =8k =12p =(2)解:由(1)得8,C m m æöç÷èø,∴.∵OE 将四边形BOCE 分成两个面积相等的三角形,∴,∵32BOE S m =△,,∴,解得或(不符合题意,舍去),∴点的坐标为(4,2).【方法二】k 的几何意义法解:(1)由题意知,△ABO 的面积为3,又,得:△OCD 的面积为4,故k =2S △OCD =8,所以,A (2,4),把点代入,得(2)如图,过A ,E 作y 轴垂线,垂足为M ,N则四边形ODEN 为矩形,所以,S △OEN =S △OED ,又S △OBE =S △OCE ,所以S △BEN =S △OCD =4,1,32E m m æö+ç÷èøBOE COE S S =△△13422COE m S m æö=+-ç÷èø△3134222m m m æö=+-ç÷èø4m =4m =-C :3:4AOB COD S S =△△()2,4A 3y px =+12p =所以S △ABM =1,∵AM ∥NE ,∴△ABM ∽△EBN ,其面积比为1:4,∴AM :NE =1:2,即NE =4,∴C 点坐标为(4,2)典例2.知比例线段,求k 值(2022•贵州铜仁中考真题)如图,点A 、B 在反比例函数k y x=的图象上,AC y ^轴,垂足为D ,BC AC ^.若四边形AOBC 的面积为6,12AD AC =,则k 的值为_______.【答案】3.【解析】【方法一】坐标法设点,k A a a æöç÷èø,∵AC y ^轴,∴AD a =,k OD a =,∵12AD AC =,∴AC 2a =,∴CD =3a ,∵BC AC ^.AC y ^轴,∴BC ∥y 轴,∴点B 3,3æöç÷èøk a a ,∴233k k k BC a a a=-=,∵AOD AOBC OBCD S S S =+V 四边形梯形,四边形AOBC 间面积为6,∴12136232k k a k a a æö+´=+ç÷èø,解得:3k =.【方法二】k 的几何意义法如图,连接OC ,延长CB 交x 轴于E ,则S △AOD =S △BOE =12k ,因为AD :AC =1:2,所以S △AOC =2S △AOD =k ,S △BOC =6-k ,又四边形DOEC 为矩形,OC 为对角线,所以,S △COD =S △COE ,所以12k +k =6-k +12k ,解得:k =3.典例3.知面积值,求k 值(2022•内蒙古呼伦贝尔中考真题)如图,在平面直角坐标系中,Rt OAB △的直角顶点B 在x 轴的正半轴上,点O 与原点重合,点A 在第一象限,反比例函数k y x=(0x >)的图象经过OA 的中点C ,交AB 于点D ,连接CD .若ACD △的面积是1,则k 的值是_________.【答案】43.【解析】【方法一】坐标法解:设C (m ,k m),因为C 为OA 中点,所以A (2m ,2k m),则D (2m ,2k m ),又△ACD 的面积为1,所以12122k k m m m æö×-=ç÷èø,解得:k =43【方法二】k 的几何意义法解:连接OD ,过C 作CE AB ∥,交x 轴于E ,∵∠ABO =90°,反比例函数k y x =(x >0)的图象经过OA 的中点C ,1ACD S =V ,∴12COE BOD S S k ==△△,1ACD OCD S S ==V V ,2OC =OA ,∵CE AB ∥,∴△OCE ∽△OAB ,∴221124OCE S OC S OA æöæö===ç÷ç÷èøèø△△O A B ,∴4OCE OAB ACD OCD OBD S S S S S ==++V V V V V ,∴1141122k k ´=++,∴k =43,故答案为:43.1.(2022•辽宁锦州中考真题)如图,在平面直角坐标系中,△AOB 的边OB 在y 轴上,边AB 与x 轴交于点D ,且BD =AD ,反比例函数y =k x(x >0)的图像经过点A ,若S △OAB =1,则k 的值为___________.【答案】2.【解析】【方法一】坐标法解:设A(a,b) ,如图,作A过x轴的垂线与x轴交于C,则:AC=b,OC=a,AC∥OB,∴∠ACD=∠BOD=90°,∠ADC=∠BDO,∴△ADC≌△BDO,∴S△ADC=S△BDO,∴S△OAC=S△AOD+ S△ADC=S△AOD+ S△BDO= S△OAB=1,∴12×OC×AC=12ab=1,∴ab=2,∵A(a,b) 在y=kx上,∴k=ab=2 .【方法二】k的几何意义法由上知,S△AOC=1,所以,k=2S△AOC=2故答案为:2.2.(2022•辽宁鞍山中考真题)如图,在平面直角坐标系中,O 是坐标原点.在Rt OAB V 中,90OAB Ð=°,边OA 在y 轴上,点D 是边OB 上一点,且:1:2OD DB =,反比例函数()0ky x x=>的图象经过点D 交AB 于点C ,连接OC .若4OBC S =△,则k 的值为_________.【答案】1.【解析】【方法一】坐标法解:∵反比例函数()0k y x x=>的图象经过点D ,∠OAB =90°,∴D (m ,k m ),∵OD :DB =1:2,∴B (3m ,3k m),∴AB =3m ,OA =3k m ,∴反比例函数()0k y x x =>的图象经过点D 交AB 于点C ,∠OAB =90°,∴12AOC S k =△,∵4OBC S △=,∴4AOB AOC S S -△△=,即1313422k m k m ´×-=,解得k =1【方法二】k 的几何意义法如图,过D 作DE ⊥x 轴,则DE ∥AB ,因为OD :BD =1:2,所以DE :AB =1:3,所以S △ODE :S △OAB =1:9,又S △ODE =S △OAC =12k ,所以12k +4=92k ,解得:k =13.(2022•江苏南通中考真题)平面直角坐标系中,已知点是函数图象上的三点.若,则k 的值为___________.【答案】【解析】【方法一】坐标法解:∵点是函数图象上的三点,∴,,∴m =n ,∴,,∴点B 、C 关于原点对称,∴设直线BC 的解析式为,代入得:,解得:,∴直线BC 的解析式为,xOy (,6),(3,2),(3,2)--A m m B m n C m n (0)k y k x=¹2ABC S =△34(,6),(3,2),(3,2)--A m m B m n C m n (0)k y k x =¹260k m =>6k mn =(3,2)B m m (3,2)C m m --()0y kx k =¹(3,2)B m m 23m mk =23k =23y x =不妨设m >0,如图,过点A 作x 轴的垂线交BC 于D ,把x =m 代入得:,∴D (m ,),∴AD =,∴,∴,∴,而当m <0时,可得,故答案为:.【方法二】由题意知,S △OAB =12632m n m m ×-×,O 为BC 中点,因为所以,S △OAB =12632m n m m ×-×=1,即291mn m -=①,又632m m m n k ×=×=②,23y x =23y m =23m 216633m m m -=()11633223ABC S m m m =´×+=V 218m =2136684k m ==´=34k =342ABC S =△由①②可得:4.(2022•湖北十堰中考真题)如图,正方形ABCD 的顶点分别在反比例函数()110k y k x=>和()220k y k x =>的图象上.若BD y ∥轴,点D 的横坐标为3,则12k k +=( )A .36B .18C .12D .9【答案】B .【解析】【方法一】解:连接AC ,与BD 相交于点P ,设PA =PB =PC =PD =t (t ≠0).∴点D 的坐标为(3,23k ),∴点C 的坐标为(3-t ,23k +t ).∵点C 在反比例函数y =2k x 的图象上,34k=∴(3-t )(23k +t )=k 2,化简得:t =3-23k ,∴点B 的纵坐标为23k +2t =23k +2(3-23k )=6-23k ,∴点B 的坐标为(3,6-23k ),∴3×(6-23k )=1k ,整理,得:1k +2k =18.【方法二】先利用D 点坐标,表示出A 和C 点坐标,再根据四边形ABCD 为正方形,BD 与y 轴平行,知AC 平行于x 轴,那么,A 和C 点的纵坐标相等,进而求解23,3k D æöç÷èø,13,3k B æöç÷èø,122123,636k k k C k k æöç÷--ç÷-ç÷-èø,121123,636k k k A k k æöç÷-+ç÷-ç÷+èø所以2112123366k k k k k k =---+,整理得:()212212180k k k k ---=即()()1212108k k k k -+=-因为()120k k -¹所以()12018k k +-=,即1218k k +=5.(2022•黑龙江龙东中考真题)如图,在平面直角坐标系中,点O 为坐标原点,平行四边形OBAD 的顶点B 在反比例函数3y x =的图象上,顶点A 在反比例函数k y x=的图象上,顶点D 在x 轴的负半轴上.若平行四边形OBAD 的面积是5,则k 的值是( )A .2B .1C .1-D .2-【答案】D .【解析】解:设B点坐标为3,mmæöç÷èø,则A3,3kmmæöç÷èø,因为平行四边形OBAD的面积是5,所以353kmmmæö-×=ç÷èø,解得k=-2【方法二】解:如图,连接OA,设AB交y轴于点C,∵四边形OBAD是平行四边形,平行四边形OBAD的面积是5,∴1522AOB OBADS S==V Y,AB∥OD,∴AB⊥y轴,∵点B在反比例函数3yx=的图象上,顶点A在反比例函数kyx=的图象上,∴3,22 COB COAkS S==-V V,∴35222 AOB COB COAkS S S=+=-=V V V,解得:2k=-.故选:D.6.(2022•湖北黄石中考真题)如图,反比例函数kyx=的图象经过矩形ABCD对角线的交点E和点A,点B、C在x轴上,OCE△的面积为6,则k=______________.【答案】8.【解析】设C (m ,0),由题意知E 为AC 中点,因为△OCE 面积为6,所以E 点纵坐标为12m,所以E 12,12km m æöç÷èø,A 24,6km m m æö-ç÷èø,又A 在反比例函数图像上所以246km m k mæö-×=ç÷èø解得k =8【方法二】解:如图作EF ⊥BC ,则12EF AB =,设E 点坐标为(a ,b ),则A 点的纵坐标为2b ,则可设A 点坐标为(c ,2b ),∵点A ,E 在反比例函数k y x=上,∴ab =k =2bc ,解得:a =2c ,故BF =FC =2c -c =c ,∴OC =3c ,故113622OEC S OC EF c b =´´=´´=V ,解得:bc =4,∴k =2bc =8,故答案为:8.7.(2022•贵州六盘水中考真题)如图,正比例函数与反比例函数的图象交于,两点.y x =4y x=A B(1)求,两点的坐标;(2)将直线向下平移个单位长度,与反比例函数在第一象限的图象交于点,与轴交于点,与轴交于点,若,求的值.【答案】(1);(2)【解析】(1)解:联立与,解得,;(2)【方法一】解:如图,过点作轴于点,A B y x =a C x D y E 13CD DE =a ()()2,2,2,2A B --3a =y x =4y x=121222,22x x y y ==-ììíí==-îî()()2,2,2,2A B \--C CF y ^F,,,直线向下平移个单位长度得到,根据图象可知,令,得,令,得,,,,,与反比例函数在第一象限的图象交于点,,将代入,得,解得或(舍去).【方法二】CF OD \∥Q 13CD DE =13OF CD OE DE \==Q y x =a y x a =-0a >0x =y a =-0y =x a =()0,E a \-(),0D a 10,3F a æö\ç÷èø13c y a \=Q y x a =-4y x=C 41213c x aa \==121,3C a a æöç÷èøy x a =-1123a a a=-3a =3a =-如图,连接OC ,过C 作CE ⊥x 轴,因为CD :DE =1:3,CE ∥OE则△CDE ∽△EDO ,相似比为1:3,面积比为1:9,易知△ODE 面积为212a ,△OCE 的面积为12k =2,所以△OCD 的面积为2-2118a ,又△OCD 与△ODE 的面积比为1:3,所以2-2118a =21132a ´,解得:a =3或a =-3(舍)8.(2022•安徽中考真题)如图,平行四边形OABC 的顶点O 是坐标原点,A 在x 轴的正半轴上,B ,C 在第一象限,反比例函数1y x =的图象经过点C ,()0k y k x=¹的图象经过点B .若OC AC =,则k =________.【答案】3.【解析】【方法一】设C 1,m m æöç÷èø,因为OC =AC所以A ()2,0m ,又OABC 为平行四边形所以B 13,m m æöç÷èø因为B 点在k y x =上,所以k =133m m ×=【方法二】解:过点C 作CD ⊥OA 于D ,过点B 作BE ⊥x 轴于E ,∴CD ∥BE ,∵四边形ABCO 为平行四边形,∴CB OA ∥ ,即CB DE ∥,OC =AB ,∴四边形CDEB 为平行四边形,∵CD ⊥OA ,∴四边形CDEB 为矩形,∴CD =BE ,∴在Rt △COD 和Rt △BAE 中,OC AB CD EB =ìí=î,∴Rt △COD ≌Rt △BAE (HL ),∴S △OCD =S △ABE ,∵OC =AC ,CD ⊥OA ,∴OD =AD ,∵反比例函数1yx=的图象经过点C,∴S△OCD=S△CAD=12,∴S平行四边形OCBA=4S△OCD=2,∴S△OBA=11 2OCBAS=平行四边形,∴S△OBE=S△OBA+S△ABE=13122+=,∴3232k=´=.故答案为3.。

一元函数微分学几何应用(一)--单调性与极值

一元函数微分学几何应用(一)--单调性与极值

⼀元函数微分学⼏何应⽤(⼀)--单调性与极值单调性与极值的判别单调性的判别若 y = f(x)在区间I上有f'(x)>0,则 y=f(x)在I上严格单调增加若 y = f(x)在区间I上有f'(x)<0,则 y=f(x)在I上严格单调增加费马引理(极值点的必要条件)⼀阶可导点是极值点的必要条件(极值导数必为0,导数为0不⼀定是极值,如y=x3)设f(x)在x=x0处可导,且在点x0处取得极值,则必有f'(x0)=0判别极值的第⼀充分条件(左右邻域⼀阶导异号)极值点不⼀定是可导点左邻域内,f'(x)<0,⽽右邻域,f'(x)>0,则f(x)在x=x0处取得极⼩值左邻域内,f'(x)>0,⽽右邻域,f'(x)<0,则f(x)在x=x0处取得极⼤值若f'(x)在左右邻域内不变号,则点x0不是极值点判别极值的第⼆充分条件(⼀阶导数=0,⼆阶导数≠0)设f(x)在x=x0处⼆阶可导,且f'(x0)=0,f''(x0)≠0若f''(x0)<0,则f(x)在x0处取得极⼤值若f''(x0)>0,则f(x)在x0处取得极⼩值可以⽤⼀阶导数定义和保号性证明判别极值的第三充分条件(⾼阶导)f(x)在x0处n阶可导,且 f(m)(x0)=0(m=1,2,...,n-1),f(n)(x)≠0(n≥2)f'(x0)=f''(x0)=...=f(n-1)(x0)=0若n为偶数且f(n)(x0)<0时,f(x)在x0处取得极⼤值若n为偶数且f(n)(x0)>0时,f(x)在x0处取得极⼩值拉格朗⽇中值定理推⼴(联系函数与导函数)f(b) - f(a) = f'(ξ)(b - a)f(x) - f(x0) = f'(ξ)(x - x0)。

高中三角函数在几何中的应用解析

高中三角函数在几何中的应用解析

高中三角函数在几何中的应用解析三角函数是数学中重要的概念之一,它不仅在代数中有广泛的应用,也在几何中发挥着重要的作用。

本文将从几何的角度解析高中三角函数在几何中的应用,包括图形的旋转、角度的测量和直角三角形的性质等方面。

1. 图形的旋转与三角函数在几何中,我们经常需要讨论图形的旋转问题。

三角函数可以帮助我们描述旋转过程中图形的位置与形状的变化。

以单位圆为例,如果我们将单位圆绕原点逆时针旋转一个角度θ,那么圆上某一点P(x, y)在旋转后的位置可以通过三角函数来表示。

假设旋转后的点为P'(x', y'),则有以下关系:x' = x * cosθ - y * sinθy' = x * sinθ + y * cosθ通过这些关系,我们可以利用三角函数来计算图形在旋转过程中的位置坐标,进而研究图形的旋转性质。

2. 角度的测量与三角函数在几何中,我们经常需要测量角度大小,而三角函数可以帮助我们进行角度的测量。

常见的三角函数包括正弦函数、余弦函数和正切函数。

我们可以利用这些函数来计算角度的值。

例如,在直角三角形中,角度的正弦值可以表示为对边与斜边的比值,余弦值可以表示为邻边与斜边的比值,而正切值可以表示为对边与邻边的比值。

通过三角函数的计算,我们可以准确地获得各种角度的大小,进而帮助我们解决几何中的问题。

3. 直角三角形的性质与三角函数直角三角形是几何中最基础的三角形,而三角函数恰好与直角三角形的性质相对应。

在直角三角形中,根据勾股定理可知,两个直角边的平方和等于斜边的平方。

利用三角函数的关系,我们可以用三角函数的数值表达式来表示这一关系。

以正弦函数为例,根据定义,正弦函数的值可以表示为对边与斜边的比值,而根据勾股定理,这一比值可以表示为直角边与斜边的比值的平方。

通过这种关系,我们可以发现三角函数与直角三角形的性质之间存在着紧密的联系。

综上所述,高中三角函数在几何中的应用是广泛而重要的。

应用几何画板解决初中数学的函数问题

应用几何画板解决初中数学的函数问题

应用几何画板解决初中数学的函数问题初中数学中的函数问题可以利用几何画板来解决,通过绘制图形,可以直观地理解和分析函数的性质。

下面将详细介绍几何画板在解决初中数学函数问题中的应用。

一、函数的定义和性质函数是数学中的一个重要概念,可以用几何画板来帮助理解。

通过几何画板,我们可以绘制出函数的图像,并观察图像的特点和性质。

我们要绘制函数y = 2x + 1的图像。

打开几何画板,可以选择直线工具,在坐标系上绘制出函数的图像。

通过观察图像的斜率和截距,我们可以理解函数的性质:斜率为2表示函数是一个直线,截距为1表示函数与y轴的交点为(0, 1)。

这样,我们对函数的定义和性质有了更深的理解。

二、函数的图像和方程之间的关系在初中数学中,我们经常需要通过函数的图像来确定函数的方程,或者反过来,通过函数的方程来绘制出函数的图像。

几何画板可以帮助我们更直观地理解这种关系。

已知函数y = x^2的图像是一个抛物线,我们可以打开几何画板,选择曲线工具,在坐标系上绘制出函数的图像。

通过观察图像的形状,我们可以发现这是一个开口向上的抛物线,这样就能够推测出函数的方程为y = x^2。

反过来,我们也可以通过给定的方程来绘制出函数的图像,从而验证方程的正确性。

三、函数的增减性和零点函数的增减性和零点是初中数学中的重要内容。

几何画板可以帮助我们直观地理解和分析函数的增减性和零点。

几何画板是解决初中数学中函数问题的有力工具。

通过绘制图形,我们可以直观地理解和分析函数的定义、性质、图像和方程之间的关系,以及增减性、零点、复合和反函数等概念。

推荐学生在解决函数问题时使用几何画板,以加深对函数概念的理解和掌握。

中考数学几何模型专题25函数与正方形存在性问题(老师版)知识点+例题

中考数学几何模型专题25函数与正方形存在性问题(老师版)知识点+例题

【压轴必刷】2023年中考数学压轴大题之经典模型培优案专题25函数与正方形存在性问题【例1】(2022•崂山区一模)如图,正方形ABCD,AB=4cm,点P在线段BC的延长线上.点P从点C出发,沿BC方向运动,速度为2cm/s;点Q从点A同时出发,沿AB方向运动,速度为1cm/s.连接PQ,PQ分别与BD,CD相交于点E,F.设运动时间为t(s)(0<t<4).解答下列问题:(1)线段CF长为多少时,点F为线段PQ中点?(2)当t为何值时,点E在对角线BD中点上?(3)当PQ中点在∠DCP平分线上时,求t的值;(4)设四边形BCFE的面积为S(cm2),求S与t的函数关系式.【分析】(1)可得出C点是BP的中点,从而求得t=2;(2)证明DEF≌△BEQ,从而得出DF=BQ=4﹣t,进而CF=CD﹣DF=t,证明△PCF∽△PBQ,从而得出,进而求得t;(3)作OG⊥BP于G,可根据OG=CG,进一步求得结果;(4)根据△PCF∽△PBQ,△DOF∽△BOG,分别列出比例式表示出CF,DF及EH,进一步求得结果.【解答】解:由题意得,CP=2t,AQ=t,BQ=4﹣t,(1)四边形ABCD是正方形,∴CD∥AB,∴=1,∴PC=BC=4,∴t==2s;(2)∵AB∥CD,∴∠QBE=∠EDF,∠BQE=∠DFE,△PCF∽△PBQ,∴,∵点E是BD的中点,∴BE=DE,∴△DEF≌△BEQ(AAS),∴DF=BQ=4﹣t,∴CF=CD﹣DF=t,∴t1=1,t2=0(舍去),(3)如图1,点O是PQ的中点,CO平分∠DCP,作OG⊥BP于G,同理得:OG=,PG=,∴CG=PC﹣PG=2t﹣(2+t)=t﹣2,∵∠COG=∠OCG==45°,∴OG=CG,∴,∴t=;(4)如图2,过点E作GH∥BC,交AB于G,交CD于H,∵CF∥EG∥AB,∴△PCF∽△PBQ,△DEF∽△BEG,∴,=,∴,=,∴DF=CD﹣CF=4﹣=,∴=,∴EH=,∴S=S△BCD﹣S△DEF=﹣=8﹣.【例2】(2022春•孟村县期末)如图,在平面直角坐标系中.直线l:y=﹣2x+10(k≠0)经过点C(3,4),与x轴,y轴分别交于点A,B,点D的坐标为(8,4),连接OD,交直线l于点M,连接OC,CD,AD.(1)填空:点A的坐标为(5,0),点M的坐标为(4,2);(2)求证:四边形OADC是菱形;(3)直线AP:y=﹣x+5与y轴交于点P.①连接MP,则MP的长为5;②已知点E在直线AP上,在平面直角坐标系中是否存在一点F,使以O,A,E,F为顶点的四边形是正方形?若存在,请直接写出点F的坐标;若不存在,请说明理由.【分析】(1)利用一次函数图象上点的坐标特征,可得出点A的坐标,又点D的坐标,利用待定系数法可求出直线OD的解析式,再联立两函数解析式,可求出交点M的坐标;(2)过点C作CQ⊥x轴于点Q,利用勾股定理可得出OC=5,又点C,D的坐标可得出CD=5,CD ∥x轴,结合点A的坐标,可得出CD=OA,进而可得出四边形OADC为平行四边形,再结合OC=OA,即可证出四边形OADC是菱形;(3)①过点M作MN⊥y轴于点N,利用一次函数图象上点的坐标特征,可求出点P的坐标,结合点M。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

几何中的函数问题
金汇学校初三数学备课组
教学目标:
以四边形为载体探究几何图形中两个变量的数量关系,了解、掌握在几何图形背景中建立函数解析式常见的方法;研究几何图形的性质,沟通函数与几何的关系,体验函数在几何图形中的应用;进一步感悟和运用数形结合思想、分类讨论思想、方程思想解决综合问题。

教学重点与难点:
探求几何图形中两个变量之间的函数关系,寻找解题规律,并正确写出函数定义域。

教学过程:
问题1:已知正方形ABCD 中,点P 在对角线BD 上,联结PC ,过点P 作PE ⊥PC ,交AB 于点E ,如图1所示。

求证:PE=PC .
(学生独立思考并解答,让学生体会随着点P 的运动,变量PE 、 PC 之间的关系)
问题2:如果把条件中的正方形改为梯形ABCD ,其中AD ∥BC ,
∠ABC =
90,并设AD =3,AB =4,BC =6,(如图)若将一个直角顶点P 放在对角线BD 上移动,一条直角边过点C ,另一条直角边与腰AB (或AB 思考:图中哪些量在变化?
探究一:当Q 在AB 的上 时试探究PQ 、PC 之间有怎样的数量关系,并证明你的结论;
(说明:以问题(1)为铺垫,从几何图形入 手,根据几何图形的特点,运用几何图形的有关 性质,来找到两个变量PQ 、PC 之间的关系。


探究二、在图2中,联结AP ,且点Q 在线段AB
上时,设点B Q 、之间的距离为x ,
APQ PBC
S y S △△,其中APQ S △表
示APQ △的面积,PBC S △表示PBC △的面积,求y 关于x 的函
数解析式,并写出函数定义域; 说明:(1)解题的关键是用含x 的代数式表示出相关的线段,利 图1
D
C
B A E P 。

O
C 用图形的性质、面积计算公式等建立动点与线段、面积之间的函数关系式;
(2)求函数的定义域时,画出所有运动状态,在“极限图形”中 求出x 等于多少?y 存在还是不存在?
探究三:当Q 在AB 的延长线上的 时,设x DP =,点B Q 、之间的距离为y ,求y 关于x 的函数解析式,并写出函数定义域;
说明:建立线段与线段之间的函数解析式主要 的途径是利用图形的性质如相似三角形的性质
勾股定理、锐角三角比等。

探究四、在探究三条件下,若△ADP 是等腰三角形时,
求BQ 的长
三、课堂小结:
1、建立线段与线段之间的函数关系式
解决这类问题的一般方法是:利用特殊三角形的边角关系、相似三角形对应边成比例等关系式,把线段与线段之间的函数关系式表示出来 2、建立线段与面积之间的函数关系式
根据题设条件,利用面积计算公式或相似三角形性质定理等方法,建立线段与面积之间的函数关系式
3、建立动点与线段、面积之间的函数关系式根据题设条件和动点位置的变化,利用特殊图形的性质、面积计算公式或相似三角形性质定理等方法,建立动点与线段、面积之间的函数关系式
4、解题的关键是用含x 的代数式表示出相关的线段. 四、课堂作业:(第(1)(2)必做,第(3)尽力完成) 1、如图,等腰梯形ABCD 中,AD BC ∥,5,AB DC ==AD =2,BC =8,MEN B ∠=∠.
MEN ∠的顶点E 在边BC 上移动,一条边始终经过点A ,另一边与CD
交于点F ,联结AF .
(1)求的值B cos
C Q C
(2)设y DF x BE ==,,试建立y 关于x 的函数关系式,并写出函数定义域; (3)若AEF △为等腰三角形,求出BE 的长.
2、已知24AB AD ==,,90DAB ∠=,AD BC ∥(如图).E 是射线BC 上的动点(点E 与点
B 不重合),M 是线段DE 的中点.
(1)设BE x =,ABM △的面积为y ,求y 关于x 的函数解析式,并写出函数的定义域; (2)如果以线段AB 为直径的圆与以线段DE 为直径的圆外切,求线段BE 的长;
(3)联结BD ,交线段AM 于点N ,如果以A N D ,,为顶点的三角形与BME △相似,求线段BE 的长.
教案设计说明:
本节课的教学内容是在几何图形中,通过点或线段的运动变化,引出线段与线段、线段与几何图形的面积之间的函数关系。

以几何图形为载体,通过图形的全等、相似等有关知识来确定函数解析式,是将平面几何问题与函数知识巧妙结合的一种题型,在解题的过程中覆盖了初中阶段学习的几乎全部的数学思想:化归思想、数形结合思想、分类讨论思想、类比思想、方程思想、函数思想、整体思想、数学模型思想、抽象概括思想、字母表示数的思想等,是学生学习中的难点,也是学生解决问题的盲点。

本节课以2009年中考25题为背景,从具有正方形特色问题引入,指导学生寻找解决问题的突破口,然后改变问题背景,把解决问题的策略从全等引到相似,让学生在解决问题过程中亲身体验并感悟从几何图形入手,根据几何图形的特点,运用几何图形的有关性质,来找到两个变量之间的关系,通过设、表、列获得函数解析式,进一步归纳得到基本解题步骤。

B A
D M
E C
B A
D C 备用图
C
D
C
B
A 备用图。

相关文档
最新文档