运筹学1
运筹学1
16/10
若将目标函数变为max Z = 2x1 + 4x2 ,则表示目标函数的等值线与约束 条件x1 + 2x2 ≤8的边界线x1 + 2x2 = 8平行。当Z值由小变大时,与线段Q 2Q3重合,如图1.3所示,线段Q2Q3上任意一点都使Z取得相同的最大值, 即这个线性规划问题有无穷多最优解。
17/10
运筹学第一次作业指导
储宜旭
이 문서는 나눔글꼴로 작성되었습니다. 설치하 기
运筹学
2/10
3/10
4/10
5/10
实际问题线性规划模型的基本步骤: (1) 确定决策变量。这是很关键的一步,决策变量选取 得当,不仅会使线性规划的数学模型建得容易,而且 求解比较方便。 (2) 找出所有限制条件,并用决策变量的线性等式或不 等式来表示,从而得到约束条件。一般可用表格形式 列出所有的限制数据,然后根据所列出的数据写出相 应的约束条件,以避免遗漏或重复所规定的限制要求。 (3) 把实际问题所要达到的目标用决策变量的线性函数 来表示,得到目标函数,并确定是求最大值还是最小 值。
10/10
11/10
12/10
线性规划问题的图解法
为了给后面的线性问题的基本理论提供较直观的几何说明, 先介绍线性规划问题的图解法。 我们把满足约束条件和非负条件的一组解叫做可行解,所有 可行解组成的集合称为可行域。 图解法的一般步骤如下。 (1) 建立平面直角坐标系。 (2) 根据线性规划问题的约束条件和非负条件画出可行域。 (3) 作出目标函数等值线Z = c(c 为常数),然后根据目标函 数平移等值线至可行域边界,这时目标函数与可行域的交点 即最优解。
运筹学(一)
第三节
单纯形法原理
一、线性规划问题的解
可行解:满足约束条件的解称为可行解,可行解的集合称
a m 1 x1
a
m
2
x2
amnxn (,)bm
x1, x2 , , xn 0
n : 变 量 个 数 ; m:约 束 行 数 ;
n:变量个数 m:约束个数 cj:价值系数 bi:资源拥有量 aij :工艺系数
n m :线性规划问题的规模
c j : 价 值 系 数 ; b j : 右 端 项 ; aij : 技 术 系 数
2x1 x2 x3 x3 x4 9
st.34xx11
x2 2x3 2x3 x5 2x2 3x3 3x3 6
4
x1, x2, x3, x3, x4, x5 0
第二节
图解法
一、图解法的步骤
1.画出直角平面坐标系; 2.图示约束条件,找出可行域; 3.图示目标函数; 4.最优解的确定。
x2 2x2
2x3 3x3
4 6
x1 0, x2 0, x3取值无约束
解: z令 z,x1x1,x3x3 x3 ,其x中 3 , x3 0, 同时引入x4松 和弛 剩变 余 x5,标 量 变准 量形式
m z x a 1 2 x 2 x 3 x 3 3 x 3 0 x 4 0 x 5
1940年,英国军事部门成立了第一个由一些数学家、物理学家 和工程专家等组成的OR小组,负责研究一些武器有效使用的问题。
1942年,美国也成立了由17人组成的OR小组,研究反潜艇策 略等问题。
(3)二战后:推广与发展
战时从事运筹学研究的许多专家转到了经济部门、民用企业、大 学或研究所,继续从事决策的数量方法的研究,运筹学作为一门学 科逐步形成并得以迅速发展。运筹学发展到今天,已成为分支学科 众多的一个繁荣昌盛的大家族。随着电子计算机的发展和使用,运 筹学处理复杂性问题的能力大大加强,成为解决实际问题的有力工 具,广泛地应用于企业管理、交通运输、公共服务等领域。
运筹学(1)
一、绪论§1 运筹学的简史运筹学作为科学名称出现于20世纪30年代末。
英、美对付德国空袭,采用雷达,技术上可行,实际运用不好用。
如何合理运用雷达?“运用研究”(Operational Research),我国1956年用“运用学”名词,1957年正式定名为运筹学。
运筹学小组在英、美军队中成立,研究:护航舰队保护商船队的编队问题、当船队遭受德国潜艇攻击时如何使船队损失最小问题、反潜深水炸弹的合理爆炸深度(德国潜艇被摧毁数增到400%)、船只在受敌机攻击时的逃避方法(大船急转向、小船缓转向,中弹数由47%降到29%)。
运筹学组织在英、美军队(RAND)中成立,研究:战略性问题、未来武器系统的设计和合理运用方法、美国空军各种轰炸机系统的评价、未来武器系统和未来战争战略、苏联军事能力及未来预报、苏联政治局计划的行动原则和未来战争的战略、到底发展哪种洲际导弹(50年代)、战略力量的构成和数量(60年代)。
运筹学在工业、农业、经济、社会问题等领域有应用。
运筹数学:数学规划(线性规划(丹捷格(G.B.Dantzig)1947,单纯形法;康托洛维奇1939解乘数法,1960《最佳资源利用的经济计算》,诺贝尔奖;列昂节夫1932投入产出模型;冯.诺意曼)、非线性规划、整数规划、目标规则、动态规划、随机规划等)、图论与网络、排队论(随机服务系统理论)(丹麦工程师爱尔朗(Erlang)1917提出一些著名公式)、存贮论、对策论(冯.诺意曼和摩根斯坦,1944《对策论与经济行为》)、决策论、维修更新理论、搜索论、可靠性和质量管理等。
运筹学领域的诺贝尔奖得主:阿罗、萨谬尔逊、西蒙(经济学家)、多夫曼、胡尔威茨、勃拉凯特(Blackett,美,物理学家)。
运筹学会的建立:英国(1948年)、美国(1952年)、法国(1956年)、日本(1957年)、印度(1957年)、中国(1980年),38个国家和地区。
国际运筹学联合会(IFORS)的成立:1959年,英、美、法发起成立,中国1982年加入。
运筹学第1章-线性规划
下一页 返回
图解法步骤:
(1)建立坐标系; (2)将约束条件在图上表示; (3)确立满足约束条件的解的范围; (4)绘制出目标函数的图形 (5)确定最优解
用图解法求解下列线性规划问题
max z 2x1 3x2
4x1 0x2 16
s.t
10xx11
4x2 2x2
12 8
x1, x2 0
1. 1.1问题举例
(1)生产计划问题。 生产计划问题是典型的已知资源求利润最大化的问题,对于此类
问题通常有三个假设:①在某一计划期内对生产做出的安排;②生产 过程的损失忽略不计;③市场需求无限制,即假设生产的产品全部 卖出。
下一页 返回
1.一般线性规划问题的数学模型
例1 用一块连长为a的正方形铁皮做一个容 器,应如何裁剪,使做成的窗口的容积为最 大?
解:设 x1, x2分别表示从A,B两处采购的原油量(单
位:吨),则所有的采购方案的最优方案为:
min z 200x1 290x2
0.15x1 0.50x2 150000
s.t
0.20x1 0.50x1
0.30x2 0.15x2
120000 120000
x1 0, x2 0
1. 1线性规划问题与模型
也可以写成模型(1-6)和模型(1-7)的形式,其中模型(1-7)较为常用。
运筹学-1、线性规划
则:
x1 x2 100
x1 ( x3 ) x4 x2 2
设x3为第二年新的投资; x4为第二年的保留资金;
则:
18
•设x5为第三年新的投资;x6为第三年的保留资金;
则:
x3 ( x5 ) x6 x4 2 x1 2
•设x7为第四年新的投资;第四年的保留资金为x8;
max Z 2 x7 x9 x1 x2 100 x 2x 2x 2x 0 2 3 4 1 4 x1 x3 2 x4 2 x5 2 x6 0 s.t 4 x3 x5 2 x6 2 x7 2 x8 0 4 x5 x7 2 x 8 2 x9 0 x 0, j 1, 2, , 9 j
13
例3:(运输问题)设有两个砖厂A1 、A2 ,产 量分别为23万块、27万块,现将其产品联合供应三 个施工现场B1 、 B2 、 B3 ,其需要量分别为17万 块、18万块、15万块。各产地到各施工现场的单位 运价如下表: 现场 砖厂 B1 B2 B3
A1 A2
5 6
14 18
7 9
问如何调运才能使总运费最省?
20
例5:(下料问题) 某一机床需要用甲、乙、 丙三种规格的钢轴各一根,这些轴的规格分别是 2.9,2.1, 1.5(m),这些钢轴需要用同一种圆钢来做,圆 钢长度为7.4m。现在要制造100台机床,最少要用多 少根圆钢来生产这些钢轴?
解:第一步:设一根圆钢切割成甲、乙、丙三 种钢轴的根数分别为y1,y2,y3,则切割方式可用不等 式2.9y1+2.1y2+1.5y3≤7.4 表示,求这个不等式的有实 际意义的非负整数解共有8组,也就是有8种不同的 下料方式,如下表所示:
运筹学第1章:线性规划问题及单纯型解法
原料甲 原料乙 最低含量 VA 0.5 0.5 2 VB1 1.0 0.3 3 VB2 0.2 0.6 1.2 VD 0.5 0.2 2 0.3 0.5 单价
分别代表每粒胶丸中甲, 设 x1, x2分别代表每粒胶丸中甲, 乙两种原料的用量
5
例3,合理下料问题 , 分别代表采用切割方案1~8的套数, 的套数, 设 xj 分别代表采用切割方案 的套数
19
( f(x
)= 3
6
1.2.2 单纯型法的基本思路
确定初试基础可行解
检查是否为 最优解? 最优解?
是
求最优解的目标函数值
否 确定改善方向
求新的基础可行解
20
1.2.3 单纯型表及其格式
IV CB III XB II x1 b c1 a11 a21 c1′′= cn+1 xn+1 b1 c2′′= cn+2 xn+2 b2 x2 … xn c2 … cn a12 … a1n a22 … a2n I xn+1 cn+1 1 0 0 zn+1 xn+2 cn+2 0 1 0 zn+2 … … … … … … xn+m cn+m 0 0 1 zn+m
OBJ : max f ( x) = 6x1 + 4x2 2x1 + x2 ≤ 10 铜资源约束 x1 + x2 ≤ 8 铅资源约束 s.t. x2 ≤ 7 产量约束 x1, x2 ≥ 0 产量不允许为负值 最优解: x1 = 2, x2 = 6, max f ( x) = 36.
4
例2,配料问题(min, ≥) ,配料问题(
2 max 1 O 1 2 3 4 D 5 6 7 H 8
运筹学第一章 1.4 大M法和两阶段法
(2)写出初始基本可行解 )写出初始基本可行解——
根据“ 用非基变量表示基变量的表达式” 根据 “ 用非基变量表示基变量的表达式 ” , 非基变量取0 算出基变量, 非基变量取0,算出基变量,搭配在一起构成 初始基本可行解。 初始基本可行解。 2、建立判别准则: 建立判别准则: (1)两个基本表达式的一般形式 LP限制条件中全部是 LP限制条件中全部是“≤”类型约束,新 限制条件中全部是“ 类型约束, 增的松弛变量作为初始基变量的情况来描述: 增的松弛变量作为初始基变量的情况来描述 :
2、处理人工变量的方法: 处理人工变量的方法:
(1)大M法——在约束条件中人为地加入非负 在约束条件中人为地加入非负 的人工变量, 的人工变量,以便使它们对应的系数列向量构 成单位阵。 成单位阵。 问题:加入的人工变量是否合理?如何处理? 问题:加入的人工变量是否合理?如何处理? 目标函数中, 在目标函数中,给人工变量前面添上一个绝对 值很大的负系数M>>0 迭代过程中, 值很大的负系数 -M ( M>>0 ) , 迭代过程中 , 只要基变量中还存在人工变量, 只要基变量中还存在人工变量,目标函数就不 可能实现极大化——惩罚! 惩罚! 可能实现极大化 惩罚
σj =cj −zj =cj −∑ a c
i= 1
m
' n+i ij
(2)最优性判别定理
若 X = (0,0,L0,b ,b ,Lb ) 是对应于基B的基本 是对应于基B , , 可行解, 的检验数, 可行解,σ j 是非基变量 x (j0) 的检验数,若对 于一切非基变量的角指标j 于一切非基变量的角指标j,均有 σ j ≤0,则 X(0)为最优解。 为最优解。
最优性判别定理; 最优性判别定理;无“有限最优解”判断定理 有限最优解”
运筹学:第1章 线性规划 第3节 对偶问题与灵敏度分析
s.t.
4x1 3x1
5x2 200 10x2 300
x1, x2 0
9x1 4x2 360
s.t.
34xx11
5x2 10 x
200 2 300
3x1 10x2 300
x1, x2 0
则D为
min z 360y1 200y2 300y3 300y4
9 y1 4 y2 3y3 3y4 7 s.t.4 y1 5y2 10 y3 10 y4 12
amn xn bm ym xn 0
机会成本 a1 j y1 a2 j y2 aij yi amj ym
表示减少一件产品所节省的可以增加的利润
(3)对偶松弛变量的经济解释——产品的差额成本
机会成本
利润
min w b1 y1 b2 y2 bm ym
a11 y1
st
a12
y1
a1n y1
max z CX
(P)
AX b
s
.t
.
X
0
(D)
min w Yb
s.t.
YA C Y 0
• (2)然后按照(D)、(P)式写出其对偶
例:写出下面线性规划的对偶规划模型:
max z 2x1 3x2
min w 3 y1 5y2 1y3
x1 2x2 3 y1 0
s.t.
2xx11
例如,在前面的练习中已知
max z 2.5x1 x2 的终表为
3x1 5x2 15 s.t.5x1 2x2 10
x1, x2 0
0 x3 9 2.5 x1 2
0 19 1 - 3
5
5
1
2
0
1
5
运筹学第1章
(第三版)《运筹学》教材编写组编清华大学出版社运筹学第1章线性规划与单纯形法第1节线性规划问题及其数学模型二.线性规划与目标规划第1章线性规划与单纯形法第2章对偶理论与灵敏度分析第3章运输问题第4章目标规划第1章线性规划与单纯形法第1节线性规划问题及其数学模型第2节线性规划问题的几何意义第3节单纯形法第4节单纯形法的计算步骤第5节单纯形法的进一步讨论第6节应用举例第1节线性规划问题及其数学模型•1.1 问题的提出•1.2 图解法•1.3 线性规划问题的标准形式•1.4 线性规划问题的解的概念第1节线性规划问题及其数学模型线性规划是运筹学的一个重要分支。
线性规划在理论上比较成熟,在实用中的应用日益广泛与深入。
特别是在电子计算机能处理成千上万个约束条件和决策变量的线性规划问题之后,线性规划的适用领域更为广泛了。
从解决技术问题的最优化设计到工业、农业、商业、交通运输业、军事、经济计划和管理决策等领域都可以发挥作用。
它已是现代科学管理的重要手段之一。
解线性规划问题的方法有多种,以下仅介绍单纯形法。
1.1 问题的提出从一个简化的生产计划安排问题开始例1某工厂在计划期内要安排生产Ⅰ、Ⅱ两种产品,已知生产单位产品所需的设备台时及A、B两种原材料的消耗,如表1-1所示。
资源产品ⅠⅡ拥有量设备 1 2 8台时原材料A40 16kg原材料B0 4 12kg续例1该工厂•每生产一件产品Ⅰ可获利2元,•每生产一件产品Ⅱ可获利3元,•问应如何安排计划使该工厂获利最多?如何用数学关系式描述这问题,必须考虑称它们为决策变量。
产品的数量,分别表示计划生产设II I,,21x x ∙12416482212121≤≤≤+∙x ;x ;x x ,x ,x 这是约束条件。
即有量的限制的数量多少,受资源拥生产021≥∙x ,x ,即生产的产品不能是负值这是目标。
最大如何安排生产,使利润,∙数学模型⎪⎪⎩⎪⎪⎨⎧≥≤≤≤++=0124164823221212121x ,x x x x x :x x z max 约束条件目标函数例2. 简化的环境保护问题靠近某河流有两个化工厂(见图1-1),流经第一化工厂的河流流量为每天500万立方米,在两个工厂之间有一条流量为每天200万立方米的支流。
运筹学基础(1)
展
英国创刊 ☺ 1952年第一个运筹学学会在美国成立
☺ 1947年丹齐克在研究美国空军资源优化配置 时提出线性规划及其通用解法——单纯形法
战后这些研究成果被应用到生
产、经济领域,其发展可以分
运
为三个阶段:
筹 学
的
① 1945至50年代初期—创建时期
② 50年代初期至50年代末期——成长 时期
产
生
商船护航的规模等等。
战后这些研究成果被应用到生
产、经济领域,其发展可以分
运
为三个阶段:
筹 学
的
① 1945至50年代初期—创建时期
☺ 1948年英国成立“运筹学俱乐部”在煤力、 电力等部门推广应用运筹学
产
☺ 相继一些大学开设运筹学课程
生
1948年美国麻省理工学院
和
1950年英国伯明翰大学
发
☺ 1950年第一本运筹学杂志《运筹学季刊》在
的 定 义
与 特 点
为“运作研究”。
美国运筹学会认为:运筹学所研 究的问题,通常是在要求有限资 源的条件下科学地决定如何最好 地设计和运营人机系统。
中国大百科全书释义:它用数学 方法研究经济、民政和国防等部 门在内外环境的约束条件下合理 分配人力、物力、财力等资源, 使实际系统有效运行的技术科学,
bi ,i 1,2m 为资源系数;
aij ,i 1,2m, j 1,2n 为技术系数,或约束
系数 ;
mn
运筹学基础
第四讲
主讲教师:郑黎黎
学时:48
线 性 数规 学划 模问 型题 及 其
线性规划的标准形式有四个特点 : 目标最大化、约束为等式、右端项 非负、决策变量均非负。 对于各种非标准形式的线性规划问 题,我们总可以通过以下变换,将 其转化为标准形式。
运筹学第一章
30
1.1.3解的概念
概念: 1、可行解:满足所有约束条件的解。 2、可行域:即可行解的集合。所有约束条件的交 集,也就是各半平面的公共部分。满足所有约 束条件的解的集合,称为可行域。 3、凸集:集合内任意两点的连线上的点均属于这 个集合。如:实心球、三角形。线性规划的可 行域是凸集。
OR1
OR1
27
线性规划图解法例题
(无界解)
max z x 2 y x y 1 2 x 4 y 3 x 0, y 0
OR1
28
线性规划图解法例题
(无解)
min z x 2 y x y 2 2 x 4 y 3 x 0, y 0
请问该 医院至 少需要 多少名 护士?
5
例题2建模
目标函数:min Z=x1+x2+x3+x4+x5+x6 约束条件: x1+x2 ≥70
x2+x3 ≥60 x3+x4 ≥ 50 x4+x5 ≥20 x5+x6 ≥30 非负性约束:xj ≥0,j=1,2,…6
OR1
6
例题3:运输问题
三个加工棉花的加工厂,并且有三个仓库供应棉花,各 供应点到各工厂的单位运费以及各点的供应量与需求量 分别如下表所示:问如何运输才能使总的运费最小?
OR1
14
总
结
从以上 5 个例子可以看出,它们都属于优化问题,它们 的共同特征: 1 、每个问题都用一组决策变量表示某一方案;这组决 策变量的值就代表一个具体方案,一般这些变量取值是 非负的。 2 、存在一定的约束条件,这些约束条件可以用一组线 性等式或线性不等式来表示。 3 、都有一个要求达到的目标,它可用决策变量的线性 函数(称为目标函数)来表示。按问题的不同,要求目 标函数实现最大化或最小化。 满足以上三个条件的数学模型称为线性规划的数学模型。
运筹学复习资料(1)
运筹学复习一、单纯形方法(表格、人工变量、基础知识)线性规划解的情况:唯一最优解、多重最优解、无界解、无解。
其中,可行域无界,并不意味着目标函数值无界。
无界可行域对应着解的情况有:唯一最优解、多重最优解、无界解。
有界可行域对应唯一最优解和多重最优解两种情况。
线性规划解得基本性质有:满足线性规划约束条件的可行解集(可行域)构成一个凸多边形;凸多边形的顶点(极点)与基本可行解一一对应(即一个基本可行解对应一个顶点);线性规划问题若有最优解,则最优解一定在凸多边形的某个顶点上取得。
单纯形法解决线性规划问题时,在换基迭代过程中,进基的非基变量的选择要利用比值法,这个方法是保证进基后的单纯型依然在解上可行。
换基迭代要求除了进基的非基变量外,其余非基变量全为零。
检验最优性的一个方法是在目标函数中,用非基变量表示基变量。
要求检验数全部小于等于零。
“当x1由0变到45/2时,x3首先变为0,故x3为退出基变量。
”这句话是最小比值法的一种通俗的说法,但是很有意义。
这里,x1为进基变量,x3为出基变量。
将约束方程化为每个方程只含一个基变量,目标函数表示成非基变量的函数。
单纯型原理的矩阵描述。
在单纯型原理的表格解法中,有一个有趣的现象就是,单纯型表中的某一列的组成的列向量等于它所在的单纯型矩阵的最初的基矩阵的m*m矩阵与其最初的那一列向量的乘积。
最初基变量对应的基矩阵的逆矩阵。
这个样子:'1222 1 0 -32580 1 010 0 158P B P -⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦51=5所有的检验数均小于或等于零,有最优解。
但是如果出现非基变量的检验数为0,则有无穷多的最优解,这时应该继续迭代。
解的结果应该是:X *= a X 1*+(1-a)X 2* (0<=a<=1)说明:最优解有时不唯一,但最优值唯一;在实际应用中,有多种方案可供选择;当问题有两个不同的最优解时,问题有无穷多个最优解。
运筹学(一)
一、运筹学的起源与发展
1.什么是运筹学 英文:Operational Research(英国)
Operations Research(美国) (直译为“作业研究”、“运用研究”)
中文:运筹学(来源于“夫运筹帷幄之中,决胜 于千里之外”)
运筹学是在实行管理的领域,运用数学方法, 对需要进行管理的问题统筹规划,作出决策的一
库存管理。存储论应用于多种物资库存量的管理,确定某些设备的合 理的能力或容量以及适当的库存方式和库存量
运输问题。用运筹学中运输问题的方法,可以确定最小成本的运输线 路、物资的调拨、运输工具的调度以及建厂地址的选择。
人事管理。可以用运筹学方法对人员的需求和获得情况进行预测;确 定合适需要的人员编制;用指派问题对人员合理分配;用层次分析法 等方法来确定一个人才评价体系等。
4
x1, x2, x3 , x3, x4, x5 0
第二节
图解法
一、图解法的步骤
1.画出直角平面坐标系; 2.图示约束条件,找出可行域; 3.图示目标函数; 4.最优解的确定。
例4:用图解法求解以下线性规划问题
max z 2x1 x2
5x2 15
st.6
x1 2 x1
x2 x2
3.线性规划问题的最优解若存在,则最优解或 最优解之一一定是可行域的凸集的某个顶点。
4 .解题思路是,先找凸集的任一顶点,计算其 目标函数值。比较其相邻顶点函数值,若更 优,则逐点转移,直到找到最优解。
第三节
单纯形法原理
一、线性规划问题的解
可行解:满足约束条件的解称为可行解,可行解的集合称
为可行域。
解:令z z, x1 x1, x3 x3 x3,其中x3,x3 0, 同时引入松弛变量x4和剩余变量x5 , 标准形式化为:
运筹学1至6章习题参考答案
0
2
11/8
0
-3/4
0
9
X4
0
0
0
9/8
1
7/16
-1/4
27/4
6
X1
3
1
0
-1/2
0
1/4
0
3
M
X2
2
0
1
[11/16]
0
-3/32
1/8
1/8
0.181818
C(j)-Z(j)
0
0
0
0
-9/16
-1/4
37/4
X3进基、X2出基,得到另一个基本最优解。
C(j)
3
2
-0.125
6重油
7残油
辛烷值
80
115
105
蒸汽压:公斤/平方厘米
1.0
1.5
0.6
0.05
每天供应数量(桶)
2000
1000
1500
1200
1000
1000
800
问炼油厂每天生产多少桶成品油利润最大,建立数学模型。
解设xij为第i(i=1,2,3,4)种成品油配第j(j=1,2,…,7)种半成品油的数量(桶)。
10
-5
1
0
0
0
* Big M
5
3
1
0
0
0
X1
10
1
3/5
1/5
0
1/5
2
X4
0
0
4
-9
1
1
25
C(j)-Z(j)
0
-11
-1
运筹学(01规划)1
1、将目标函数的系数按递增或递减的顺序重新排列。 2、参照目标函数的排列,列出问题所有可能取到的点,并检查是否可行,若可 行,则算出相应的目标函数值。 3、比较可行解的目标函数值,找出最优解和最优值。 以上题为例, 按系数递增重新排列) 以上题为例,1、max=15X3+20X1+30X2(按系数递增重新排列) 2、参照目标函数系数的排列,依次序列出所有可能取到的点,并检 参照目标函数系数的排列,依次序列出所有可能取到的点, 查可行性,算出相应的目标函数值,如下表: 查可行性,算出相应的目标函数值,如下表:
在可行解中比较,点(1,0,1)的目标函数值最大,所以最优解为: X=(1,0,1),相应的目标函数值为Z=35(万元)
?
最优解
二、指派问题
在生产管理上,管理者总希望能够将人员分配的最佳,以发挥其最大 的工作效率,这就是所谓的“指派问题”。
特点: 特点:把n项工作指派给n个人去做时,每个人仅能接受一项任务,而 项工作指派给n个人去做时,每个人仅能接受一项任务, 项任务也只能由一个人去做。(指派问题也是整数规划的一个分支) 。(指派问题也是整数规划的一个分支 且一项任务也只能由一个人去做。(指派问题也是整数规划的一个分支)
完全枚举法(显枚举法) 完全枚举法(显枚举法) Xj的取值有0和1两种情况,三种方案就有8种组合,把每种组合列出,带入约束 方程检验是否可行,再比较目标函数的大小,从而求得最优解
因此,人们设计出了一种只需要检查一部分可能的变量组合,就可以达 到最优解的方法-------------------
隐枚举法(部分枚举法) 隐枚举法(部分枚举法)
虽
可
Z=C12+C24+C31+C43+C55=7+6+7+6+6=32 Min Z=C12+C24+C31+C43+C55=7+6+7+6+6=32
运筹学基础1
四、运筹学的主要内容 :
• 规划论 (线性规划、非线性规划、整数规划、动 态规划、多目标规划、随机规划 )
min (max) st f (x, y, ) hi (x, y, ) 0 i 1 2 me g j (x, y, ) 0 j me 1 m x X R n为决策变量, y Y R m为参数,
原料I的费用 : 65( x11 x21 x31 ) 原料II的费用: 25( x12 x22 x32 )
原料III的费用: 35( x13 x23 x33 )
则目标函数为总产值减去总成本,表示为
z 50( x11 x12 x13 ) 35( x21 x22 x23 ) 25( x31 x32 x33 ) 65( x11 x21 x31 ) 25( x12 x22 x32 ) 35( x13 x23 x33 ) 15x11 25x12 15x13 30 x21 10 x22 40 x31 10 x33
x1 x x
3
3
3
x1 x2 x4 6 x1 x x x5 5
2 x1 x2 x3 x3 2 x j 0, j 1, 2, 4, 5; x3 0, x3 0 3
另一种更好的方法是直接消去自由变量x3,由 最后的方程知: x3=2-2x1+x2 , 代入到目标和 其它两个方程得:
运筹学第1章线性规划及单纯形法复习题
max (min)
Z = CX
AX ≤ ( = , ≥ ) b X ≥ 0
3、线性规划的标准形式 、
ma0
4、线性规划问题的解 、 (一)求解方法
一 般 有 两种方法 图 解 法 单纯形法 两个变量、 两个变量、直角坐标 三个变量、 三个变量、立体坐标
适用于任意多个变量、 适用于任意多个变量、但需将 一般形式变成标准形式
(二)线性规划问题的解
1、解的概念 可行解:满足约束条件② 的解为可行解。 ⑴ 可行解:满足约束条件②、③的解为可行解。 所有解的集合为可行解的集或可行域。 所有解的集合为可行解的集或可行域。 最优解: 达到最大值的可行解。 ⑵ 最优解:使目标函数①达到最大值的可行解。 ⑶ 基:B是矩阵A中m×m阶非奇异子矩阵 是矩阵A ≠0), ),则 是一个基。 (∣B∣≠0),则B是一个基。
§2 图 解 法
例一、 例一、 max
Z = 2 x 2 x 2 x 4 x
2 2 1
+ 3 x
2
2 x1 + x + 1 4 x1 x1 ≥
≤ 12 ≤ 8 ≤ 16 ≤ 12
2
⑴ ⑵ ⑶ ⑷
2
0, x
≥ 0
max
Z = 2 x1 + 3 x 2 x 2 x
2 2
当xj=0时, 必有 j=zj=0, 因此 时 必有y
∑P x = ∑P y = ∑P z
j =1
r
r
r
r
j
j
j =1
j
j
j =1
j
j
=b
∑(y
j =1
j
− z j ) Pj = 0
运筹学第一课
分别为甲、 【解】设x1、x2、x3 分别为甲、乙、丙三种产品的产量数学模型 为:
m Z = 40x1 + 30x2 + 50x3 ax
10
4 配料问题
例5.某工厂要用三种原料1、 某工厂要用三种原料1 2、3混合调配出三种不同规格的 产品甲、 数据如右表。 产品甲、乙、丙,数据如右表。 该厂应如何安排生产, 问:该厂应如何安排生产,使利 润收入为最大? 润收入为最大?
单价( 产品名称 规格要求 单价(元/kg) ) 50 甲 原材料 1 不少于 50%,原材料 2 不超过 25% , 35 乙 原材料 1 不少于 25%,原材料 2 不超过 50% , 25 丙 不限 原材料名称 1 2 3 每天最多供应量 100 100 60 单价( 单价(元/kg) ) 65 25 35
• 利润 = 总收入 - 总成本 = 甲乙丙三种产品的销售单价 产品数量 - 甲乙 甲乙丙三种产品的销售单价*产品数量 丙使用的原料单价*原料数量 原料数量, 丙使用的原料单价 原料数量,故有
目标函数
50( +35( +25( Max 50(x11+x12+x13)+35(x21+x22+x23)+25(x31+x32+x33)-65 25( 35( (x11+x21+x31)-25(x12+x22+x32)-35(x13+x23+x33) = -15x11+25x12+15x13-30x21+10x22-40x31-10x33
运筹学第一章
第一章、 线性规划和单纯形法1.1 线性规划的概念一、线性规划问题的导出1.(引例) 配比问题——用浓度为45%和92%的硫酸配置100t 浓度为80%的硫酸。
取45%和92%的硫酸分别为x1和x2t,则有: 求解二元一次方程组得解。
目的相同,但有5种不同浓度的硫酸可选(30%,45%,73%,85%,92%)会出现什么情况?设取这5种硫酸分别为 x1、x2、x3、x4、x5 t, 则有: ⎩⎨⎧⨯=++++=++++1008.092.085.073.045.03.01005432154321x x x x x x x x x x 请问有多少种配比方案?为什么?哪一种方案最好?假设5种硫酸价格分别为:400,700,1400,1900,2500元/t ,则有:2.生产计划问题如何制定生产计划,使三种产品总利润最大?考虑问题:⎩⎨⎧⨯=+=+1008.092.045.01002121x x x x ⎪⎩⎪⎨⎧=≥⨯=++++=++++++++=5,,2,1,01008.092.085.073.045.03.0100..250019001400700400543215432154321 j x x x x x x x x x x x t s x x x x x MinZ j(1)何为生产计划?(2)总利润如何描述?(3)还要考虑什么因素?(4)有什么需要注意的地方(技巧)?(5)最终得到的数学模型是什么?二、线性规划的定义和数学描述(模型)1.定义:对于求取一组变量xj (j =1,2,......,n),使之既满足线性约束条件,又使具有线性表达式的目标函数取得极大值或极小值的一类最优化问题称为线性规划问题,简称线性规划。
2.配比问题和生产计划问题的线性规划模型的特点:用一组未知变量表示要求的方案,这组未知变量称为决策变量;存在一定的限制条件,且为线性表达式;有一个目标要求(最大化,当然也可以是最小化),目标表示为未知变量的线性表达式,称之为目标函数; 对决策变量有非负要求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
管理运筹学模拟试题一
一 判断下列说法是否正确,并对错误加以改正。
(每题2分,合计10分) 1. 图解法可以求解包含5个变量的LP 问题。
2. 当线性规划问题的一个基解满足所有的x i ≤ 0时,称此基解为一个可
行基解。
3. 根据对偶问题的性质,当对偶问题无可行解时,其原问题无最优解。
4. 用表上作业法求解运输问题时,产、销可能不平衡。
5. 输入过程是泊松流,则顾客相继到达的间隔时间服从负指数分布。
二 填空题(每空2分,合计40分)
1. 一个线性规划问题包含一组 变量,一组 条件和一个 函数。
2. 线型规划的系数矩阵B 为m ×n 阶,其基可行解的个数不超过 。
3. 标准LP 问题 的检验数σ=
4. 若原问题有有最优解,则其对偶问题是否有最优解 ,若存在最优解,则目标函数值之间存在什么关系 z ω。
5. 对偶单纯形法求解LP 问题,若换入变量x j 所在行的各系数a ij ≥0,则该问题 。
6. 在运输问题中,通常以达到___________或获得___________为目标,来选择最佳运输方案。
7. 为求解需要量大于供应量的运输问题,可虚设一个供应点,该点的供应量等于_____________。
8. 整数规划中如果所有变量都限制为(非负)整数,就称为 。
1
1max ,.. ,
0,1,2,,.n
j j j n
j j j j z c x s t P x b x j n ====≥=∑
∑
9. 要求恰好达到目标值的目标规划,其目标函数为 。
10. 分支定界法用于求解 和 。
11. 图( ,)G V E =是一个树,则G 中任意两点间 。
12. 排队系统的三个基本组成部分 、 和 。
13. 泊松分布的期望E[N(t)]= 。
三 按要求做出模型,不需计算(每题10分,合计20分)
1.利民服装厂生产男式童装和女式童装。
产品的销路很好,但有三种工序即裁剪、缝纫和检验限制了生产的发展。
已知制作一件童装需要这三道工序的工时数、预计下个月内各工序所拥有的工时数以及每件童装所提供
该厂生产部经理希望知道下个月内使利润最大的生产计划。
试建立该问题的LP 模型。
2. 写出下面线性规划问题的对偶问题:(10分)
123123123123123min z 25,.. 258, 23 3, 4 26, ,,0.
x x x s t x x x x x x x x x x x x =++-+≤++=-+≤≥
四 对偶计算题(每题10分,合计10分)
设有下述问题:
(P )
123
4
123412341234m i n z 2653,
.. -223,
23 2, ,,,0.
x x x x s t x x x x x x x x x x x x =++++++≥++-≥≥
(1)写出(P )的对偶问题(D );
(2)求解(D );
(3)利用(D )的最优表直接写出原问题(P )的解。
五 最短路径计算题(每题10分,合计10分)
求下图所示图G 中v1到v8的最短路。
六 排队论计算题(每题10分,合计10分)
某修理店只有一个工人,顾客按强度为4人每小时的Poisson 过程到达,该工人检查顾客的器具的损坏情况,立即修好或提出修理意见,所需时间平均为6分钟,服务时间服从指数分布。
试求: (1) 修理店空闲时间的比例; (2) 在店内顾客的平均数; (3) 等待服务顾客的平均数。
V 1
8 V 6
2 12
1 5 9
V 2
V 3 V 4
V 5 V 7
V 8
2 11
4
2 4
2 8
1
参考答案
一、 判断下列说法是否正确,并对错误加以改正。
(每题2分,合计10分) 1. 错误。
图解法只能求解包含三个或三个以下变量的LP 问题。
2. 错误。
当线性规划问题的一个基解满足所有的x i ≥ 0时,称此基解为
一个可行基解。
3. 正确。
4. 错误。
产、销必须平衡
5. 正确。
二、 填空题(每空2分,合计40分) 1 决策变量 2 约束条件 3 目标函数 4
m
n
C 5
1
,1
j j i i j i c c a -=-∑
6 存在最优解
7 z = ω
8 无可行解
9 总运费最少 10 总利润最大 11 需要量与供应量的差值
12 纯整数规划
13
min ()z f d d +-=+
14 纯整数规划 15 混合整数规划
16 必有一条链
17 输入过程 18 排队规则
19 服务机构
20 t λ
三、 按要求做出模型,不需计算(每题10分,合计20分)
1.解:设x 1,x 2分别表示男式童装和女式童装下个月的产量,z 表示生产x 1件男式童装和x 2件女式童装所创造的总利润,以元为单位,则LP 模型为:
Max z =5x 1 + 8x 2
s.t. x 1 +
3
2x 2 ≤ 900 12x 1 + 1
3x 2 ≤ 300
18x 1 + 1
4
x 2 ≤ 100
x 1,x 2 ≥ 0 2. 解:
四、 对偶计算题(每题10分 ,合计10分)
解: (1)(P )的对偶问题为
(D ) 121212121212max 32,.. 22, 236, 2 5, 3, ,0y y s t y y y y y y y y y y ω=+-+≤+≤+≤-≤≥.
(2)将(D )化为标准型,加入松弛变量y1,y2,y3,y4,用单纯形法求解后的最优表为: 表16.1
(D )的最优解和最优值为
*
**129131,;424
y y ω===
(3)将表16.1中各松弛变量 的检验数反号,就得到原问
题的最优解:
**
**1234150,,,044x x x x ====
(P )的最优值与(D )的相同,即 。
123123123123132max 836,.. -241, 23 2, -5 25, ,0,y y y s t y y y y y y y y y y y y ω=+++-≤++≤+-≤≥无约束.
*31
4
z =
****3456,,,y y y y
五、 最短路径计算题(每题10分 ,合计10分) 解 如图
最短路长8
六、 排队论计算题(每题10分 ,合计10分) 解 (1)店内没有顾客的概率为
010.6p ρ=-=
(2)在店内顾客的平均数为
0.671L ρ
ρ
=
=-
(3)等待服务顾客的平均数
2
0.2671q L ρρ
==-
1 12
5 9
V 1
V 2
V 3 V 4
V 5 V 6
V 7
V 8
8 2 11
4
2 2 4
2 8
1。