人教版九年级数学上册:21.2.1 配方法 教学设计

合集下载

人教版九年级数学上册21.2.1:配方法(第一课时)优秀教学案例

人教版九年级数学上册21.2.1:配方法(第一课时)优秀教学案例
(三)学生小组讨论
1.组织学生进行小组合作,让他们共同解决一个实际问题。例如,给学生提供一组购物数据,让他们运用配方法计算出最优的购买方案。
2.在小组讨论过程中,引导学生运用配方法解决问题,并鼓励他们分享自己的解题思路和方法。
3.教师巡回指导,解答学生的问题,并给予鼓励和肯定。鼓励学生提出疑问,培养他们的合作意识和解决问题的能力。
5.设计具有梯度的练习题,让学生在实践中运用配方法,巩固所学知识。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣和自信心,使他们能够主动参与课堂讨论,积极思考问题。
2.引导学生认识到数学与实际生活的紧密联系,提高他们运用数学知识解决生活问题的能力。
3.教育学生勇于面对困难,敢于挑战,培养他们坚持不懈、克服困难的精神。
2.通过多媒体手段,展示与配方法相关的实际问题,让学生感受到数学与生活的紧密联系。例如,利用动画演示二次函数图像的平移过程,引导学生思考如何运用配方法解决问题。
3.设计具有挑战性的任务,让学生在解决问题的过程中自然地引入配方法。例如,让学生解决一个实际问题,并根据问题的特点引导学生尝试使用配方法。
(二)问题导向
二、教学目标
(一)知识与技能
1.让学生掌握配方法的基本概念和操作步骤,能够独立完成配方法的计算过程。
2.使学生理解配方法在解决二次函数图像与性质问题中的作用,能够运用配方法分析二次函数的顶点、开口方向等性质。
3.培养学生将实际问题转化为数学问题,并运用配方法解决问题的能力。
4.引导学生通过配方法的学习,总结归纳数学规律,提高他们的抽象思维能力。
2.问题导向的教学策略:通过提出具有挑战性的问题,引导学生进行深入思考,培养他们的抽象思维能力和解决问题的能力。问题导向的教学策略使得学生在解决问题的过程中自然地接触到配方法,并理解其作用。

部编版人教初中数学九年级上册《21.2.1 配方法(1) 教学设计》最新精品优秀完美教案

部编版人教初中数学九年级上册《21.2.1 配方法(1) 教学设计》最新精品优秀完美教案

探究课本问题 2
1.根据题意列方程并整理成一般形式.
学生审读并列方程
2.将方程 x2+6x-16=0 和 x2+6x+9=2 对比,怎样将方程
组织学生讨论,交流 感知一元二次
x2+6x-16=0 化为像 x2+6x+9=2 一样,左边是含有未知数的完全 然后师生总结
方程的实际应
平方式,右边是非负常数的方程?
教学难点
降次思想,配方法
教学过程设计
教学程序及教学内容
师生行为
设计意图
一、复习引入
导语:已经学习了一元二次方程的概念,本节课开始学习其解 点题,板书课题. 法,首先学习直接开平方法,配方法.
开门见山明确 本节课内容
二、探究新知 探究课本问题 1
学生读题找等量关
-1-
分析:
系列方程,思考解方 淡化列方程难

○1 完成填空: x2+6x+
=(x+ )2
在比较成完全平方
配方法的实质
式?
归纳:
用配方法解二次项系数是 1 且一次项系数是偶数的一元二次
方程的一般步骤及注意事项:
先将常数项移到方程右边,然后给方程两边都加上一次项
系数的一半的平方,使左边配成完全平方式的三项式形式,再
25m),•另三边用木栏围成,木栏长 40m. (1)鸡场的面积能达到 180m2 吗?能达到 200m 吗? (2)鸡场的面积能达到 210m2 吗?
教 学 反思
-1-
-1-
归纳:
肯定并总结
特点,更好把握
1 运用平方根知识将形如 x2=p(p≥0)或(mx+n)2=p(p≥0)

人教版九年级数学上册:21.2.1 配方法 教学设计

人教版九年级数学上册:21.2.1 配方法  教学设计

人教版九年级数学上册:21.2.1 配方法教学设计一. 教材分析人教版九年级数学上册21.2.1配方法是数轴和实数章节的一部分,主要介绍了配方法的基本原理和应用。

通过配方法,学生可以更好地理解实数的性质,特别是平方根的概念。

本节课的内容为后续学习二次函数和方程打下基础。

二. 学情分析九年级的学生已经掌握了实数的基本概念,具备一定的逻辑思维能力。

但部分学生对实数的性质和配方法的理解可能还不够深入。

因此,在教学过程中,需要关注学生的学习情况,针对性地进行讲解和辅导。

三. 教学目标1.让学生理解配方法的原理,掌握配方法的基本步骤。

2.培养学生运用配方法解决实际问题的能力。

3.加深学生对实数性质的认识,为后续学习打下基础。

四. 教学重难点1.配方法的原理和步骤。

2.运用配方法解决实际问题。

五. 教学方法1.讲授法:讲解配方法的原理和步骤,引导学生理解实数的性质。

2.案例分析法:通过具体案例,让学生学会运用配方法解决问题。

3.讨论法:鼓励学生参与课堂讨论,提高学生的逻辑思维能力。

六. 教学准备1.教学课件:制作配方法的动画演示,帮助学生形象地理解原理。

2.案例素材:准备一些实际问题,用于课堂练习和巩固。

3.练习题:设计一些有关配方法的练习题,检验学生对知识点的掌握。

七. 教学过程1.导入(5分钟)利用课件展示实数的性质,引导学生回顾已学知识。

然后提出本节课的主题——配方法,激发学生的学习兴趣。

2.呈现(10分钟)讲解配方法的原理和步骤,让学生跟随教师的讲解,逐步理解实数的性质。

通过动画演示,让学生直观地感受配方法的过程。

3.操练(10分钟)呈现一些实际问题,让学生运用配方法进行解决。

引导学生分组讨论,共同完成任务。

教师巡回辅导,解答学生的疑问。

4.巩固(10分钟)让学生自主完成练习题,检验对配方法的理解。

教师选取部分学生的作业进行点评,总结错误原因,强化知识点。

5.拓展(10分钟)引导学生思考:配方法在实际生活中的应用。

人教版九年级数学上册:21.2.1配方法教学设计

人教版九年级数学上册:21.2.1配方法教学设计

人教版九年级数学上册:21.2.1配方法教学设计1.知识掌握上,九年级学生学习了平方根的意义及刚刚学的直接开方法。

即如果 X = a ,那么X = ±(x+ n ) = a (a ≥0),那么x = ± a –n ,他们还学习了完全平方式 X +2Xy+y =(X+y) ,这给配方法221.2.1 《用配方法解一元二次方程》教学设计一、教材分析1、本节内容《用配方法解一元二次方程》是九年制义务教育人教版九年级上册第二十一章第二节第一课时的内容,是研究用配方法解一元二次方程的方法思路、方法与步骤。

2、对于一元二次方程,配方法是解法中的通法,它的推导建立在直接开平方法的基础上,他又是公式法的基础:同时一元二次方程又是今后学生学习二次函数等知识的基础。

一元二次方程是中学数学的主要内容之一,在初中数学中占有重要地位。

我们从知识的发展来看,学生通过一元二次方程的学习,可以对已学过的一元二次方程、二次根式、平方根的意义、完全平方式等知识加以巩固。

初中数学中,一些常用的解题方法、计算技巧以及主要的数学思想,如观察、类比、转化等,在本章教材中都有比较多的体现、应用和提升。

我们想通过一元二次方程来解决实际问题,首先就要学会一元二次方程的解法。

解一元二次方程的基本策略是将其转化为一元一次方程,这就是降次。

3、本节课由简到难展开学习,使学生认识配方法的基本原理并掌握具体解法。

二、学情分析2a ;22 2解一元二次方程奠定了基础。

2.学生学习本节的障碍是怎样配(给哪些项配,配上什么数),这是个难点,老师应该予以简单明白、深入浅出的分析。

3.我们老师必须从学生的认知结构和心理特征出发,分析初中学生的心理特征,他们有强烈的好奇心和求知欲。

当他们在解决实际问题时发现要解的方程不再是以前所学过的一元一次方程或可化为一元一次方程的其他方程时,他们自然会想进一步研究和探索解方程的问题。

而从学生的认知结构上来看,前面我们已经系统的研究了完全平方式、二次根式,这就为我们继续研究用配方法姐一元二次方程奠定了基础。

人教版数学九年级上册教学设计21.2.1《配方法》

人教版数学九年级上册教学设计21.2.1《配方法》

人教版数学九年级上册教学设计21.2.1《配方法》一. 教材分析《配方法》是人教版数学九年级上册第21.2.1节的内容,主要是让学生掌握配方法的原理和步骤,并能够运用配方法解决一些实际问题。

本节课的内容是学生在学习了二次函数的基础上进行学习的,对于学生来说,配方法是一种新的解决问题的方法,对于教师来说,需要引导学生从直观的图形理解配方法,逐步过渡到抽象的数学公式。

二. 学情分析九年级的学生已经具备了一定的逻辑思维能力和抽象思维能力,对于二次函数的基本概念和性质有一定的了解。

但是,学生在学习过程中,对于一些抽象的数学公式可能会感到困惑,因此,教师需要通过具体的例子,引导学生理解配方法的原理和步骤。

三. 教学目标1.让学生理解配方法的原理和步骤,并能够运用配方法解决一些实际问题。

2.培养学生的逻辑思维能力和抽象思维能力。

3.通过对配方法的学习,培养学生解决问题的能力和创新精神。

四. 教学重难点1.配方法的原理和步骤。

2.如何引导学生从直观的图形理解配方法,逐步过渡到抽象的数学公式。

五. 教学方法1.采用问题驱动的教学方法,通过引导学生解决实际问题,让学生理解配方法的原理和步骤。

2.采用数形结合的教学方法,通过直观的图形,帮助学生理解配方法。

3.采用小组合作的学习方法,培养学生的团队协作能力和解决问题的能力。

六. 教学准备1.准备相关的教学PPT,包括配方法的原理和步骤,以及一些实际问题的例子。

2.准备一些相关的数学题目,用于巩固学生对配方法的理解。

七. 教学过程1.导入(5分钟)通过一个实际问题,引导学生思考如何解决这个问题,从而引出配方法的概念。

2.呈现(10分钟)通过PPT,向学生介绍配方法的原理和步骤,以及一些相关的例子。

3.操练(10分钟)让学生通过小组合作,解决一些实际问题,从而加深对配方法的理解。

4.巩固(5分钟)通过一些相关的数学题目,巩固学生对配方法的理解。

5.拓展(5分钟)引导学生思考,配方法在实际生活中有哪些应用,从而培养学生的创新精神。

人教版九年级数学上册:21.2.1配方法(教案)

人教版九年级数学上册:21.2.1配方法(教案)
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“配方法在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
对于难点(2),指导学生如何处理二次项系数不为1的情况,如方程2x^2 + 4x - 1 = 0,需要先将系数化为1,再进行配方。
对于难点(3),通过实际例题,如“一个长方形的长比宽多3厘米,面积为18平方厘米,求长和宽”,引导学生如何构建方程并配方求解。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《配方法》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要解决一元二次方程的情况?”(如面积计算、速度问题等)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索配方法的奥秘。
2.培养学生数学建模和直观想象的核心素养,使学生能够运用配方方法解决实际问题,并培养从具体到抽象的数学思维能力;
3.培养学生运算能力和数据分析的核心素养,通过配方练习,提高学生的运算速度和准确性,培养学生对数据敏感度和分析能力;
4.培养学生团队合作和表达交流的核心素养,让学生在小组讨论和分享中,加深对配方方法的理解,提高数学表达和交流能力。
-配方步骤的应用:在具体操作过程中,学生可能会在系数化为1或加平方项时出错,这是配方的难点。
-配方在实际问题中的应用:如何从实际问题中抽象出一元二次方程,并将其配方求解,是学生需要克服的难点。

人教版九年级数学上册:21.2.1 配方法 教学设计1

人教版九年级数学上册:21.2.1 配方法  教学设计1

人教版九年级数学上册:21.2.1 配方法教学设计1一. 教材分析人教版九年级数学上册21.2.1配方法是本册的一个重要内容。

配方法是解决一元二次方程的一种常用方法,它可以帮助学生更好地理解一元二次方程的解法,并且为后续的二次函数、不等式等内容的学习打下基础。

本节课通过配方法的学习,使学生掌握一元二次方程的解法,提高他们解决实际问题的能力。

二. 学情分析学生在学习本节课之前,已经掌握了一元一次方程、二元一次方程组等知识,具备了一定的数学基础。

但学生在解决实际问题时,往往对一元二次方程的解法感到困惑。

因此,在教学过程中,要注重引导学生理解配方法的原理,并通过大量的练习让学生熟练运用配方法解决实际问题。

三. 教学目标1.知识与技能:使学生掌握配方法解一元二次方程的基本步骤和技巧。

2.过程与方法:通过自主学习、合作交流,培养学生解决实际问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养他们勇于探索、积极向上的精神。

四. 教学重难点1.重点:配方法解一元二次方程的基本步骤和技巧。

2.难点:如何引导学生理解配方法的原理,并熟练运用配方法解决实际问题。

五. 教学方法1.引导法:教师引导学生自主学习,发现配方法的原理和步骤。

2.讲解法:教师通过讲解示例,让学生理解配方法的应用。

3.练习法:学生通过大量练习,巩固配方法解一元二次方程的能力。

4.合作交流法:学生分组讨论,分享解题心得,提高解决问题的能力。

六. 教学准备1.教学课件:制作课件,展示配方法解题的过程和步骤。

2.练习题:准备一定数量的练习题,让学生在课堂上进行练习。

3.小组讨论:提前分组,便于学生在课堂上进行合作交流。

七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾一元一次方程、二元一次方程组的知识,为新课的学习做好铺垫。

2.呈现(10分钟)教师展示一元二次方程的实例,引导学生尝试运用已有的知识解决。

学生在解决过程中,发现一元二次方程的解法存在困难。

人教版九年级数学上册:21.2.1 配方法 教学设计3

人教版九年级数学上册:21.2.1 配方法  教学设计3

人教版九年级数学上册:21.2.1 配方法教学设计3一. 教材分析人教版九年级数学上册第21章是关于二次函数的内容,而21.2.1节“配方法”是研究二次函数性质的重要方法之一。

本节内容通过配方法将一般形式的二次函数转化为顶点式,便于学生理解和掌握二次函数的图象与性质。

教材通过具体的例子引导学生探究配方法的步骤和应用,为学生提供了丰富的数学活动经验。

二. 学情分析九年级的学生已经学习了函数的概念、一次函数和二次函数的基本性质,对于函数图像的平移、变换等有一定的了解。

但是,学生在理解配方法的过程中,可能会对一些步骤和概念的理解不够深入,需要教师的引导和启发。

此外,学生对于实际问题的解决能力也需要进一步提高。

三. 教学目标1.理解配方法的定义和作用,掌握配方法的基本步骤。

2.能够将一般形式的二次函数转化为顶点式,从而研究二次函数的图象与性质。

3.培养学生的逻辑思维能力、解决问题的能力以及合作交流的能力。

四. 教学重难点1.配方法的定义和作用2.配方法的基本步骤3.如何将一般形式的二次函数转化为顶点式五. 教学方法1.引导发现法:教师通过提出问题,引导学生发现配方法的步骤和规律。

2.合作交流法:学生分组讨论,共同解决问题,分享解题思路和方法。

3.实践操作法:学生通过具体的例子,动手操作,巩固配方法的应用。

六. 教学准备1.PPT课件:教师制作配方法的步骤、例题和练习题的PPT课件。

2.练习题:教师准备一些配方法的练习题,用于巩固学生的学习效果。

七. 教学过程1.导入(5分钟)教师通过提出问题,引导学生回顾一次函数和二次函数的性质,为新课的学习做好铺垫。

2.呈现(10分钟)教师通过PPT课件展示配方法的步骤和例题,让学生初步了解配方法的概念和作用。

3.操练(10分钟)学生分组讨论,共同解决配方法的例题,教师巡回指导,帮助学生理解配方法的步骤和应用。

4.巩固(10分钟)教师提出一些配方法的练习题,让学生独立完成,巩固所学知识。

人教版九年级上册数学 21.2.1 第2课时 配方法 优秀教案

人教版九年级上册数学 21.2.1  第2课时  配方法 优秀教案

第2课时配方法1.了解配方的概念,掌握运用配方法解一元二次方程的步骤.2.探索直接开平方法和配方法之间的区别和联系,能够熟练地运用配方法解决有关问题.一、情境导入李老师让学生解一元二次方程x2-6x -5=0,同学们都束手无策,学习委员蔡亮考虑了一下,在方程两边同时加上14,再把方程左边用完全平方公式分解因式……,你能按照他的想法求出这个方程的解吗?二、合作探究探究点:配方法【类型一】配方用配方法解一元二次方程x2-4x=5时,此方程可变形为( )A.(x+2)2=1 B.(x-2)2=1C.(x+2)2=9 D.(x-2)2=9解析:由于方程左边关于x的代数式的二次项系数为1,故在方程两边都加上一次项系数一半的平方,然后将方程左边写成完全平方式的形式,右边化简即可.因为x2-4x=5,所以x2-4x+4=5+4,所以(x-2)2=9.故选D.方法总结:用配方法将一元二次方程变形的一般步骤:(1)把常数项移到等号的右边,使方程的左边只留下二次项和一次项;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.【类型二】利用配方法解一元二次方程用配方法解方程:x-4x+1=0.解析:二次项系数是1时,只要先把常数项移到右边,然后左、右两边同时加上一次项系数一半的平方,把方程配成(x+m)2=n(n≥0)的形式再用直接开平方法求解.解:移项,得x2-4x=-1.配方,得x2-4x+(-2)2=-1+(-2)2.即(x-2)2=3.解这个方程,得x-2=± 3.∴x1=2+3,x2=2- 3.方法总结:用配方法解一元二次方程,实质上就是对一元二次方程变形,转化成开平方所需的形式.【类型三】用配方解决求值问题已知:x2+4x+y2-6y+13=0,求x-2yx2+y2的值.解:原方程可化为(x+2)2+(y-3)2=0,∴(x+2)2=0且(y-3)2=0,∴x=-2且y=3,∴原式=-2-613=-813.【类型四】用配方解决证明问题(1)用配方法证明2x2-4x+7的值恒大于零;(2)由第(1)题的启发,请你再写出三个恒大于零的二次三项式.证明:(1)2x2-4x+7=2(x2-2x)+7=2(x2-2x+1-1)+7=2(x-1)2-2+7=2(x-1)2+5.∵2(x-1)2≥0,∴2(x-1)2+5≥5,即2x2-4x+7≥5,故2x2-4x+7的值恒大于零.(2)x2-2x+3;2x2-2x+5;3x2+6x+8等.【类型五】配方法与不等式知识的综合应用证明关于x的方程(m2-8m+17)x2+2mx+1=0不论m为何值时,都是一元二次方程.解析:要证明“不论m为何值时,方程都是一元二次方程”,只需证明二次项系数m2-8m+17的值不等于0.证明:∵二次项系数m2-8m+17=m2-8m+16+1=(m-4)2+1,又∵(m-4)2≥0,∴(m-4)2+1>0,即m2-8m+17>0.∴不论m为何值时,原方程都是一元二次方程.三、板书设计握完全平方式的形式.。

人教版九年级数学上册:21.2.1 配方法 教学设计2

人教版九年级数学上册:21.2.1 配方法  教学设计2

人教版九年级数学上册:21.2.1 配方法教学设计2一. 教材分析人教版九年级数学上册第21章是关于圆的方程,而21.2.1节是配方法在圆的方程求解中的应用。

这部分内容是在学生已经掌握了二元一次方程和一元二次方程的基础上进行讲解的,目的是让学生通过配方法这种技巧,更好地理解和解决圆的方程问题。

教材通过具体的例题,让学生掌握配方法的基本步骤和应用,并通过练习题进行巩固。

二. 学情分析九年级的学生在数学上已经有了一定的基础,对于方程的解法和求解过程有一定的了解。

但是,他们在面对复杂方程时,可能会感到困惑和不解。

因此,在教学过程中,需要帮助学生回顾和巩固已学的知识,并通过具体例题,让学生理解和掌握配方法。

三. 教学目标通过本节课的学习,学生能够理解配方法在圆的方程求解中的应用,掌握配方法的基本步骤,并能够运用配方法解决实际问题。

四. 教学重难点教学难点是学生对于配方法的理解和应用。

配方法是一种解决问题的技巧,需要学生通过具体的例题,理解和掌握其基本步骤和应用。

五. 教学方法采用问题驱动的教学方法,通过引导学生回顾已学的知识,引入配方法的概念,并通过具体的例题,让学生理解和掌握配方法。

在教学过程中,注重学生的参与和思考,鼓励学生提出问题和解决问题。

六. 教学准备准备相关的教学材料,包括PPT和练习题,以及相关的辅助教学工具。

七. 教学过程1.导入(5分钟)通过提问,引导学生回顾已学的方程知识,为新知识的学习做好铺垫。

2.呈现(15分钟)通过PPT,呈现配方法的基本步骤和应用。

讲解配方法的基本概念,并通过具体的例题,让学生理解和掌握配方法。

3.操练(10分钟)让学生通过练习题,运用配方法解决问题。

在学生解决问题的过程中,给予适当的引导和帮助。

4.巩固(5分钟)通过PPT,总结配方法的基本步骤和应用。

让学生通过思考和讨论,巩固所学的知识。

5.拓展(5分钟)让学生通过思考和讨论,探索配方法在其他方程求解中的应用。

人教版数学九年级上册教案21.2.1《配方法》

人教版数学九年级上册教案21.2.1《配方法》

人教版数学九年级上册教案21.2.1《配方法》一. 教材分析《配方法》是人教版数学九年级上册第21章第2节的内容,本节课主要让学生掌握配方法的原理和步骤,并能够运用配方法解决一些实际问题。

教材通过引入“完全平方公式”的概念,引导学生探索如何将一个二次多项式转化为完全平方形式,从而引出配方法。

学生在学习过程中,需要理解并掌握配方法的基本步骤,以及如何判断一个多项式是否可以配成完全平方形式。

二. 学情分析学生在学习本节课之前,已经学习了二次方程的解法、完全平方公式等知识,对于二次多项式的基本概念和性质有一定的了解。

但学生在运用配方法解决实际问题时,可能会遇到一些困难,如判断多项式是否可以配成完全平方形式,以及如何正确地进行配方操作。

因此,在教学过程中,教师需要关注学生的学习情况,引导学生积极参与课堂活动,提高学生运用配方法解决问题的能力。

三. 教学目标1.知识与技能目标:使学生掌握配方法的原理和步骤,能够运用配方法将一个二次多项式转化为完全平方形式。

2.过程与方法目标:通过小组合作、讨论交流等学习活动,培养学生探索问题、解决问题的能力。

3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的耐心和自信心。

四. 教学重难点1.重点:配方法的原理和步骤。

2.难点:如何判断一个多项式是否可以配成完全平方形式,以及如何正确地进行配方操作。

五. 教学方法1.启发式教学:教师通过提出问题,引导学生思考和探索,激发学生的学习兴趣。

2.小组合作学习:学生分组讨论,共同解决问题,培养学生的团队协作能力。

3.案例教学:教师通过举例子,让学生理解并掌握配方法的运用。

六. 教学准备1.准备相关教案和教学资料。

2.准备多媒体教学设备,如投影仪、电脑等。

3.准备一些实际问题,用于巩固和拓展学生的知识。

七. 教学过程1.导入(5分钟)教师通过提出一个实际问题,引导学生思考如何解决。

例如:已知一个二次多项式 f(x) = x^2 - 6x + 9,请问如何将其转化为完全平方形式?2.呈现(10分钟)教师引导学生回顾二次方程的解法和完全平方公式,然后引导学生探索如何将 f(x) = x^2 - 6x + 9 转化为完全平方形式。

初中数学人教版九年级上册:配方法 教案

初中数学人教版九年级上册:配方法 教案

21.2.1配方法教学目标(一)教学知识点1.会用配方法解简单的数字系数的一元二次方程.2.了解用配方法解一元二次方程的基本步骤.(二)能力训练要求1.理解配方法;知道“配方”是一种常用的数学方法.2.会用配方法解简单的数字系数的一元二次方程.3.能说出用配方法解一元二次方程的基本步骤.(三)情感与价值观要求通过用配方法将一元二次方程变形的过程,让学生进一步体会转化的思想方法,并增强他们的数学应用意识和能力.教学重点用配方法求解一元二次方程.教学难点理解配方法.教学方法讲练结合法.教学过程我们通过配成完全平方式的方法得到了一元二次方程的根,这种解一元二次方程的方法称为配方法.平方根的意义:如果x 2=a ,那么x=±a.完全平方式:式子a 2±2ab +b 2叫完全平方式,且a 2±2ab +b 2=(a±b)2用配方法解一元二次方程的步骤:移项:把常数项移到方程的右边;配方:方程两边都加上一次项系数绝对值一半的平方;变形:方程左边分解因式,右边合并同类项;开方:根据平方根的意义,方程两边开平方;求解:解一元一次方程;定解:写出原方程的解.探究:一桶油漆可刷的面积为1500dm 2,李林用这桶油漆恰好刷完10个同样的正方体形状的盒子的全部外表面,你能算出盒子的棱长吗?设一个盒子的棱长为xdm ,则它的外表面面积为____,10个这种盒子的外表面面积的和为____,由此你可得到方程为____,你能求出它的解吗?解:26x ,2106x ,21061500x ,整理得225x ,根据平方根的意义,得5x ,可以验证,5和-5是原方程的两个根,因为棱长不能为负值,所以盒子的棱长为5dm ,故5x dm .【归纳结论】一般地,对于方程2x p ,(Ⅰ)(1)当p>0时,根据平方根的意义,方程(Ⅰ)有两个不等的实数根1x,2x 师:(2)当p=0时,方程(Ⅰ)有两个相等的实数根120x x ;(3)当p<0时,因为对任意实数x ,都有20x ,所以方程(Ⅰ)无实数根。

人教版数学九年级上册21.2.1配方法(第1课时)优秀教学案例

人教版数学九年级上册21.2.1配方法(第1课时)优秀教学案例
3.设计不同难度的练习题,让学生在实践中运用配方法,提高解决问题的能力。
4.教师适时给予反馈和指导,帮助学生纠正错误,巩固所学知识。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣和自信心,让他们体验到数学学习的乐趣和成就感。
2.引导学生认识到配方法在实际问题中的应用价值,培养他们学以致用的意识。
(三)小组合作
本节课通过小组合作的形式,让学生在团队中互相学习、互相帮助。教师将学生分成若干小组,每组成员共同完成任务或解决问题。在小组合作过程中,学生可以互相交流自己的想法和做法,分享学习心得和经验,从而提高团队合作能力和沟通能力。同时,小组合作也有助于培养学生的自主学习能力,让他们在学习过程中形成良好的学习习惯。
五、案例亮点
1.情境创设:本节课通过设计生动有趣的问题情境,激发了学生的学习兴趣,让他们在解决问题的过程中自然地引入配方法。这种情境创设的方式,使学生在真实的情境中感受配方法的应用,增强了学生对知识的记忆和理解。
2.问题导向:本节课以问题为导向,引导学生思考和探索。教师提出具有启发性的问题,激发学生的思维,让他们在解决问题的过程中自然地引入配方法。这种方式有助于培养学生的思维能力和解决问题的能力。
3.通过对配方法的学习,培养学生勇于探索、积极思考的科学精神,提高他们的综合素质。
4.注重培养学生的团队合作精神,让他们在互相学习、互相帮助的过程中,形成良好的学习习惯和价值观。
三、教学策略
(一)情景创设
本节课通过设计丰富多样的情景,让学生在真实的情境中感受配方法的应用。例如,通过给出实际问题,让学生运用配方法解决,从而激发学生的学习兴趣,引导他们主动探究配方法的原理和应用。同时,情景创设还包括利用多媒体课件、实物模型等教学资源,直观地展示配方法的过程,帮助学生更好地理解和掌握知识。

人教版九年级数学上册:21.2.1配方法说课稿3

人教版九年级数学上册:21.2.1配方法说课稿3

人教版九年级数学上册:21.2.1 配方法说课稿3一. 教材分析人教版九年级数学上册21.2.1配方法是本册教材中的重要内容。

配方法是解决一元二次方程的一种基本方法,也是解决实际问题的重要工具。

本节内容通过引入配方法,让学生掌握一元二次方程的求解过程,并能够运用配方法解决实际问题。

教材通过丰富的例题和练习题,帮助学生巩固配方法的应用。

二. 学情分析九年级的学生已经学习过一元二次方程的基本知识,对解一元二次方程有一定的了解。

但学生在解决实际问题时,往往不知道如何运用配方法。

因此,在教学过程中,需要引导学生回顾一元二次方程的基本知识,并通过例题和练习题,让学生逐步掌握配方法的应用。

三. 说教学目标1.知识与技能:学生能够掌握配方法的基本概念和步骤,理解配方法在解决一元二次方程中的应用。

2.过程与方法:学生能够通过自主学习、合作交流的方式,探索配方法的应用,培养学生的数学思维能力。

3.情感态度与价值观:学生能够体验到数学在解决实际问题中的重要作用,增强学生学习数学的兴趣和自信心。

四. 说教学重难点1.教学重点:学生能够掌握配方法的基本概念和步骤,理解配方法在解决一元二次方程中的应用。

2.教学难点:学生能够灵活运用配方法解决实际问题,理解配方法在解决实际问题中的作用。

五. 说教学方法与手段1.教学方法:采用问题驱动的教学方法,引导学生自主学习,合作交流,探索配方法的应用。

2.教学手段:利用多媒体课件,展示配方法的步骤和应用实例,帮助学生直观理解配方法。

六. 说教学过程1.导入:通过复习一元二次方程的基本知识,引导学生回顾解一元二次方程的方法,为新课的学习做好铺垫。

2.探究:学生自主学习配方法的基本概念和步骤,通过例题和练习题,体会配方法在解决一元二次方程中的应用。

3.讲解:教师引导学生总结配方法的应用规律,讲解配方法在解决实际问题中的具体步骤。

4.实践:学生分组讨论,合作解决实际问题,巩固配方法的应用。

21.2.1用配方法解一元二次方程(教案)

21.2.1用配方法解一元二次方程(教案)
二、核心素养目标
本节课的核心素养目标主要包括以下三个方面:
1.培养学生的逻辑推理能力:通过配方法解一元二次方程的过程,使学生理解数学逻辑推理的重要性,提高他们在解决问题时的逻辑思维能力。
2.增强学生的数学建模素养:让学生在实际问题中运用配方法求解一元二次方程,培养他们将现实问题转化为数学模型的能力,从而提高解决实际问题的数学素养。
其次,在新课讲授环节,我发现学生们在理解配方法的原理和步骤上存在一定困难。虽然我通过详细的解释和举例来说明,但仍有部分学生感到困惑。在以后的教学中,我需要更加关注学生的反馈,针对他们的疑难点进行有针对性的讲解和练习。同时,可以增加一些互动环节,让学生在课堂上及时提问,以便于我了解他们的掌握情况。
在实践活动和小组讨论环节,学生们表现得相当积极。他们能够将所学知识应用到实际问题中,并通过小组合作解决问题。这一点让我感到很欣慰。但同时我也注意到,有些小组在讨论过程中出现了偏离主题的现象,导致讨论效果不佳。针对这个问题,我需要在今后的教学中加强对学生讨论方向的引导,确保讨论能够紧紧围绕主题进行。
21.2.1用配方法解一元二次方程(教案)
一、教学内容
本节课选自九年级数学教材《代数与方程》第21章第2节,主题为“21.2.1用配方法解一元二次方程”。教学内容主要包括以下两个方面:
1.掌握配方法解一元二次方程的步骤,并能熟练运用该方法解决实际问题。
2.了解配方法的原理,理解为何配方法可以求解一元二次方程。
a.将一元二次方程的一般形式ax^2 + bx + c = 0转换为完全平方形式。
b.利用完全平方公式解出方程的根。
c.分析解的实际情况,如重根、无解等。
(2)运用配方法解决实际问题:学生需学会将实际问题抽象为一元二次方程,然后运用配方法求解,例如以下例题:

人教版九年级上册21.2.1配方法课程设计 (2)

人教版九年级上册21.2.1配方法课程设计 (2)

人教版九年级上册21.2.1配方法课程设计一、课程设计目标本课程旨在帮助学生掌握人教版九年级上册21.2.1配方法的相关知识,能够熟练应用该方法完成简单的练习题,提高学生的数学解题能力和思维能力。

二、学情分析本课程的教学对象为九年级学生,他们已经具备了初中阶段的数学基础,对于21.2.1配方法这个知识点,他们已经有了初步的了解。

但是,在实际的解题过程中,学生还有很多不足之处,需要进一步加强练习和掌握。

三、教学重难点本课程的教学重点在于帮助学生深入理解21.2.1配方法的基本思路,掌握配方法的基本步骤以及应用技巧。

教学难点在于帮助学生解决具体的应用问题,提高学生的实际操作能力。

四、教学方法本课程采用多种教学方法,包括讲解法、示范法、练习法、讨论法和实验法,以帮助学生全面和深入地理解配方法的相关知识。

五、教学内容和步骤1.教学内容本课程的教学内容主要包括以下几个方面:•21.2.1配方法的基本思路和步骤;•21.2.1配方法的具体应用;•21.2.1配方法在其他知识点中的应用;•21.2.1配方法中需要注意的问题。

2.教学步骤(1)导入环节在导入环节中,可以通过问题、情景等方式使学生产生学习兴趣和学习动力。

(2)知识传授在知识传授环节中,教师应首先简要介绍21.2.1配方法的基本思路和步骤,然后通过示范、讲解等方式详细讲解配方法的具体应用和注意事项。

(3)练习环节在练习环节中,教师可以根据学生的实际情况设计一些简单的练习题,让学生熟练应用配方法解题。

同时,教师可以针对学生的实际情况进行适当调整,加强练习环节的实用性。

(4)巩固环节在巩固环节中,教师可以通过讨论、合作等方式对学生进行知识巩固和综合提高,以达到更好的教学效果。

(5)总结环节在总结环节中,教师可以对本节课的教学内容进行简要回顾和总结,让学生对配方法的相关知识有更深刻的理解和掌握。

同时,教师可以向学生询问对本节课程的掌握情况,以便为下一节课做好准备工作。

初中数学人教版九年级上册 第21章:21.2.1配方法(教案)

初中数学人教版九年级上册 第21章:21.2.1配方法(教案)

是 1 的一元二次方程,经历从简单到复杂的过程,对配方法全面认识.
情感、态度、价值观:1.通过对配方法的探究活动,培养学生勇于探索的学习精神.
2. 感受数学的严谨性和数学结论的确定性.
3.温故知新,培养学生利用旧知解决问题的能力.
教学重点:用配方法解一元二次方程
教学难点:用配方法解二次项系Fra bibliotek不是 1 的一元二次方程,首先方程两边都除以二次项系 数,将方程化为二次项系数是 1 的类型.
教学方法:讲练法,引导法,合作学习法。
教学准备:多媒体课件
课时安排:1 课时
一、 复习引入
教学 过程
二次备课
【教师活动】
教师展示多媒体课件,引导学生. 导语:我们在上节课,已经学习了用直接开平方法解形如 x2=p(p≥0)或 (mx+n)2=p(p≥0)的一元二次方程,以及用配方法解二次项系数是 1, 一次项系数是偶数的一元二次方程,这节课继续学习配方法解一元二次方 程. 【学生活动】
○1 .把常数项移到方程右边得:
x2 6x -4
○2 .(如果二次项的系数不为零时方程两边同除以二次项系数,化二次 项系数为 1);
○3 .方程两边都加上一次项系数一半的平方得:
x2 6x 9 -4 9
○4 .原方程变形为(x+m)2=n 的形式得 (x+3)2=5 ○5 降次得
x+3= 5 得 x+3= 5 或 x+3=- 5
D.( 1 x-a)2=a
2
2.一般地,如果一个一元二次方程通过配方转化成 (x+n)2=p
的形式,那么就有:
(1) 当 p>0 时,方程有两个不等的实数根
1 =-n+ p , 2 =-n- p

人教版数学九年级上册21.2.1配方法解一元二次方程 教案

人教版数学九年级上册21.2.1配方法解一元二次方程 教案

配方法解一元二次方程的教案教学内容:本节内容是:人教版义务教育课程标准实验教科书数学九年级上册第21章第2节第1课时。

一、教学目标(一)知识目标1、理解求解一元二次方程的实质。

2、掌握解一元二次方程的配方法。

(二)能力目标1、体会数学的转化思想。

2、能根据配方法解一元二次方程的一般步骤解一元二次方程。

(三)情感态度及价值观通过用配方法将一元二次方程变形的过程,让学生进一步体会转化的思想方法,并增强他们学习数学的兴趣。

二、教学重点配方法解一元二次方程的一般步骤三、教学难点具体用配方法的一般步骤解一元二次方程。

四、知识考点运用配方法解一元二次方程。

五、教学过程(一)复习引入1、复习:解一元一次方程的一般步骤:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)系数化为1。

2、引入:二次根式的意义:若x2=a (a为非负数),则x叫做a的平方根,即x=±√a 。

实际上,x2 =a(a为非负数)就是关于x的一元二次方程,求x的平方根就是解一元二次方程。

(二)新课探究通过实际问题的解答,引出我们所要学习的知识点。

通过问题吸引学生的注意力,引发学生思考。

问题1:一桶某种油漆可刷的面积为1500dm2李林用这桶油漆刚好刷完10个同样的正方体形状的盒子的全部外表面,你能算出盒子的棱长吗?问题1重在引出用直接开平方法解一元二次方程。

这一问题学生可通过“平方根的意义”的讲解过程具体的解答出来,具体解题步骤:解:设正方体的棱长为x dm,则一个正方体的表面积为6x2dm2列出方程:60x2=1500x2=25x=±5因为x为棱长不能为负值,所以x=5即:正方体的棱长为5dm。

1、用直接开平方法解一元二次方程(1)定义:运用平方根的定义直接开方求出一元二次方程解。

(2)备注:用直接开平方法解一元二次方程,实质是把一个一元二次方程“降次”,转化为两个一元二次方程来求方程的根。

问题2:要使一块矩形场地的长比宽多6cm,并且面积为16㎡,场地的长和宽应各为多少?问题2重在引出用配方法解一元二次方程。

九年级数学上册 21.2.1 配方法教案 (新版)新人教版-(新版)新人教版初中九年级上册数学教案

九年级数学上册 21.2.1 配方法教案 (新版)新人教版-(新版)新人教版初中九年级上册数学教案

配方法第1课时直接开平方法1.了解降次将一元二次方程转化为一元一次方程.2.能用直接开平方法解x2=p(p≥0)或(mx+n)2=p(p≥0)形式的方程.【重点难点】会用直接开平方法解一元二次方程.【新课导入】1.你能求出方程x2=16中的未知数吗?2.把方程(x-1)2=9中的x-1看作一个整体,你能转化为两个一元一次方程吗? 【课堂探究】一、用直接开平方法解形如x2=p的一元二次方程1.一元二次方程2x2-6=0的解为x1=,x2=-.2.解方程4x2=9.解:由4x2=9,得x2=,两边直接开平方,得x=±,所以原方程的解为:x1=,x2=-.二、用直接开平方法解形如(mx+n)2=p(p≥0)的一元二次方程3.解方程2(x+3)2-4=0.解:x1=-3+,x2=-3-.4. 解方程(2x+1)2=(x-1)2.解:两边直接开平方,得到2x+1=±(x-1),即2x+1=x-1或2x+1=-(x-1), 解得x1=-2,x2=0.1.只有二次项和常数项的方程x2=p(p≥0),方程两根为x=±.2.方程左边是完全平方式,右边是常数的方程(mx+n)2=p(m≠0,p≥0)方程可转化为两个一元一次方程mx+n=±p,解得x1=,x2=.1.方程x2-4=0的根是(C)(A)x=2 (B)x=-2(C)x1=2,x2=-2 (D)x=42.(2013某某)一元二次方程(x+6)2=16可转化为两个一元一次方程,其中一个一元一次方程是x+6=4,则另一个一元一次方程是(D)(A)x-6=-4 (B)x-6=4(C)x+6=4 (D)x+6=-43.三角形两边的长是3和4,第三边的长是方程x2-12x+35=0的根,则该三角形的周长为(B)(A)14 (B)12(C)12或14 (D)以上都不对4.关于x的一元二次方程(x-k)2+k=0,当k>0时的解为(D)(A)k+ (B)k-(C)k±(D)无实数解5.解方程:2y2=8.解:两边同除以2,得y2=4,所以y1=2,y2=-2.6.解方程:4(3x-2)2-32=0.解:移项,得4(3x-2)2=32,方程两边同除以4,得(3x-2)2=8.两边直接开平方,得3x-2=±2,所以3x-2=2或3x-2=-2.因此,原方程的解是:x1=,x2=.第2课时配方法1.会用配方法解数字系数的一元二次方程.2.掌握配方法的推导过程,熟练地用配方法解一元二次方程. 【重点难点】配方法解一元二次方程.【新课导入】1.将x2+6x配成完全平方式且原整式不变(x+3)2-9.2.你能将方程x2-2x-5=0的左边配成完全平方式吗?【课堂探究】一、多项式的配方1.填空: x2-8x+16=(x-4)2.2.应用配方法把关于x的二次三项式x2-4x+6变形,然后证明:无论x取任何实数值,二次三项式的值都是正数.解:x2-4x+6=x2-4x+4-4+6=(x-2)2+2,无论x取任何实数值,(x-1)2≥0,则(x-1)2+2>0.所以无论x取任何实数值,二次三项式的值都是正数.二、配方法解一元二次方程3.解方程x2-2x-1=0.解:移项,得x2-2x=1,配方,得(x-1)2=2,两边开平方,得x-1=±,所以x1=1+,x2=1-.4.用配方法解方程4x2-12x-1=0.解:二次项系数化为1,得x2-3x-=0,移项,得x2-3x=,配方,得x2-3x+-2=+-2,得到x-2=,则x-=±,∴x1=+,x2=-.小结:配方法解一元二次方程的关键一步是:配方,即方程两边同时加上一次项系数一半的平方,化成(x+m)2=n(n≥0)的形式.1.配方法:通过配成完全平方式来解一元二次2.配方法解一元二次方程的步骤方程的方法. (1)移项:方程右边只有常数项,(2)化1:二次项系数化为1,(3)配方:方程化为(x+m)2=n形式,(4)开方:n≥0时,方程两边直接开方,n<0时,无解,(5)求解:解两个一元一次方程得原方程解.1.(2013某某)用配方法解方程x2-2x-1=0时,配方后所得的方程为(D)(A)(x+1)2=0 (B)(x-1)2=0(C)(x+1)2=2 (D)(x-1)2=22.用配方法解方程x2-x-1=0应该先变形为(C)(A)x-2= (B)x-2=-(C)x-2= (D)x-2=03.方程x2-9x+18=0的两个根是等腰三角形的底和腰,则这个三角形的周长为(B)(A)12 (B)15(C)12或15 (D)不能确定4.解方程:x(x+4)=21.解:原方程即x2+4x=21,配方,得(x+2)2=25,两边开平方,得x+2=±5,所以x1=-7,x2=3.5.解方程:-2x2+2x+1=0.解:化二次项系数为1,得x2-x-=0,移项,配方, 得x2-x+=+即x-2=,两边开平方, 得x-=±,所以x1=,x2=.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.知识掌握上,九年级学生学习了平方根的意义及刚刚学的直接开方法。

即如果 X = a ,那么 X = ±(x+ n ) = a (a ≥0),那么 x = ± a –n , 他们还学习了完全平方式 X +2Xy+y =(X+y) ,这给配方法221.2.1 《用配方法解一元二次方程》教学设计一、教材分析1、本节内容《用配方法解一元二次方程》是九年制义务教育人教版九年级上册第二十一章第二节第一课时的内容,是研究用配方法解一元二次方程的方法思路、方法与步骤。

2、对于一元二次方程,配方法是解法中的通法,它的推导建立在直接开平方法的基础上,他又是公式法的基础:同时一元二次方程又是今后学生学习二次函数等知识的基础。

一元二次方程是中学数学的主要内容之一,在初中数学中占有重要地位。

我们从知识的发展来看,学生通过一元二次方程的学习,可以对已学过的一元二次方程、二次根式、平方根的意义、完全平方式等知识加以巩固。

初中数学中,一些常用的解题方法、计算技巧以及主要的数学思想,如观察、类比、转化等,在本章教材中都有比较多的体现、应用和提升。

我们想通过一元二次方程来解决实际问题,首先就要学会一元二次方程的解法。

解一元二次方程的基本策略是将其转化为一元一次方程,这就是降次。

3、本节课由简到难展开学习,使学生认识配方法的基本原理并掌握具体解法。

二、学情分析2a ;22 2解一元二次方程奠定了基础。

2.学生学习本节的障碍是怎样配(给哪些项配,配上什么数),这是个难点,老师应该予以简单明白、深入浅出的分析。

3.我们老师必须从学生的认知结构和心理特征出发,分析初中学生的心理特征,他们有强烈的好奇心和求知欲。

当他们在解决实际问题时发现要解的方程不再是以前所学过的一元一次方程或可化为一元一次方程的其他方程时,他们自然会想进一步研究和探索解方程的问题。

而从学生的认知结构上来看,前面我们已经系统的研究了完全平方式、二次根式,这就为我们继续研究用配方法姐一元二次方程奠定了基础。

三、教学目标(一)知识技能目标掌握配方的基本步骤,会用配方法解简单的数字系数的一元二次方程。

(二)能力训练目标理解配方法;知道“配方”是一种常用的数学方法。

(三)情感与价值观要求1.通过用配方法将一元二次方程变形的过程,让学生进一步体会转化的思想方法,并增强他们的数学应用意识和能力,激发学生的学习兴趣。

或(x+ n ) = p (p ≥0)的一元二次方程。

复习旧知快速回忆,形成X 2= 32.能根据具体问题的实际意义,验证结果的合理性。

四、教学重、难点重点:理解配方法的基本思想,会用配方法解一元二次方程。

难点:理解配方法的基本过程,正解的配方。

五、教法与学法利用幻灯片展示,提供丰富的学习内容,用框图形式表示配方法解方程的全过程,一步一步的引导启发学生发现归纳的学习方法。

六、教学过程教学环节教师活动 学生活动 设计意图教学目标会用配方法解简单的数字系数的一元二 次方程。

1、可直接开平方的一元二次方程有哪些?形如x 2= p2朗读教学 目标并思考教师给出的问题。

让学生明确学习目标回忆巩固 直接开平方法 解方程为配方2 快速出下列一元二次方程的解X 2= -22X 2-8=0 X 2=0(X-5)2=1003、如果 X 2=a ,(a ≧0)那么 X=?如果 X 2+2Xy+y 2=9,那么 X+y=?基础法打下基础回忆完全 平方公式为配 方法奠定基础活动一提出问题(1)如何设未知数?列出什么样的方问题(1)作为本课的开始,有益于培养学生的应用意识通过问题学生思考、(2),学生比问题1要使一块矩形场地的长比宽多6m,并且面积为16m2,场地的长程?(2)所列方程和上节课学过的方程(x+3)2=25有何联系和区别?列方程然后观察,找到联系和区别,教师抽三到四名同学回答较后找出联系和区别,进而引发联想促使学生继续探究。

和宽应各是多少?(3)你能有由方程(x+3)2=25的解法联想到如何解方程x2+6x-16=0吗?在问题(3)中,学生通过对比去联想、总结尝试,解决了一个新的数学问题,这激发了学生的学习热情。

② X 2- X+( )2=(X--_)221、 填空:① X 2+8X+( )2=(X+__)23 2X 2+MX+( )2=( )22、 X 2+8X+7=0 如何变形可得到(X+4)2=9①∵X 2+8X+7=0∴X 2+8X=_____②∴X 2+8X+( )2=( )2阅读课本并独 立完成问题 1、 2、3、4.小结配方法解活动二探索配方法的步骤即(X+4)2=9第①步叫做______,第②步叫做_______.3、3X 2-6X+2=0 如何变形可得到(X-1) =① ∵3X 2-6X+2=0∴3X 2-6X=_____② X 2-2X=_____③ X 2-2X+(_____)=_____一元二次方程的步骤 1、移项:把常 数项移到方程 的右边; 1 2、二次项系数 3 为化 1; 3、配方:方程 两边都加上一 次项系数绝对值一半的平方; 3、左边写成完全平方式,右边 合并同类项;5、开方:根据学会利用 完全平方知识填空 初步配 方为后面学习打下基础以填空形 式出现习题可 降低难度同时 帮助学生规范 格式步骤。

④∴(X-1)2=1 平方根的意义,3 方程两边开平第① ② ③ ④步分别叫做___________方;4、 怎样解方程 X 2+6X-16=0a) 移项________b) 配方 X 2+6X+(_ _)=16+(__)c) 左边写成完全平方式(X+__)2=25d) X+3=____e) X+3=____或 X+3=____f) X 1=____,X 2 =____6、求解:解一 元一次方程;(4)2X+1=3X 学生解题,注重解题步骤和配方过程;活动三巩固配方法的步骤1、(教师出题):用配方法解下列方程(1)X2+8X+9=0(2)4X2-12X+9=0(3)X2-2X+1=022、(教师巡视、点拨)小组内合作完成,每个小组派一名代表展示,找另一组的学生对其进行评改。

全体总结出容易出错的地方及错误的原因。

发现配方后完全平方式出现三种情况:1)(x+n)2>02)(x+n)2=03)(x+n)2﹤01、强化巩固步骤2、让学生明白需要先整理后才能配方。

3、一元二次方程的根的三种不同形式:1)有两个不等的实数根;2)有两个相等的实数根3)没有实数根学会根据完全平方式是正数、负数、零的情况判断方程的根的情况并下结论无根或继续求出方程的根。

活动四1、当x为何值时,代数式X2-8X+12=X怎样判断?拓展延伸2、求证:方程有两个相等的实数根?3、解方程:3X2+2x-a=0灵活运用所学知识,解决实际问题学生按时完成活动五小结1.解一元二次方程的基本思路:———降次,把一元二次方程化为a(x+h)2=k(k≥0)的形式后,两边开平方使原方程变为两个一元一次方程。

2、解一元二次方程的步骤:①移项②二次项系数化为1③配方④左边写成完全平方的形式,右边合并同类项⑤降次直接开平方⑥求解解一元一次方程通过小结使学生对配方法的完整过程要求学生进行回顾,从通过讨论自己而完善知识体归纳得出步骤。

系,加深对课引导学生回顾堂知识的理目标,明确重解,加强记忆难、难点和应用能力。

使学生养成归纳总结的好习惯活动六作业布置1、复习巩固所讲内容2、完成课后练习和习题相关作业;3、完成练习册相关作业。

即时练习,巩固所学知识。

板书设计活动二解:设场地宽x米。

列方程x(x+6)=16解这个方程活动四解方程2x2+1=3x活动六小结1.解一元二次方程的基本思路:降次——把一元二次方程化为a(x+h)2=k(k≥0)的形式后,两边开平方使原方程变为两个一元一次方程,;;2.解一元二次方程的一般步骤(1)移项(把常数项移到方程的右边);(2)把二次项系数化为 1(方程两边同时除以二次项系数 a );(3)配方(方程两边都加上一次项系数的一半的平方)(4)开平方(根据平方根意义,方程两边开平方)(5)求解(解一元一次方程);(6)定解(写出原方程的解)教学反思:本节共分 3 课时,第一课时引导学生通过转化得到解一元二次方程的配方法,第二课时利用配方法解数字系数的一般一元二次方程,第 3 课时通过实际问题的解决,培养学生数学应用的意识和能力,同时又进一步训练用配方法解题的技能,提高学生的计算能力。

在教学中最关键的是让学生掌握配方,配方的对象是含有未知数的二次三项式,其理论依据是完全平方式,配方的方法是通过添项:加上一次项系数一半的平方构成完全平方式,对学生来说,要理解和掌握它,确实感到困难,因此在教学过程中及课后批改中发现学生出现以下几个问题:1.在利用添项来使等式左边配成一个完全平方公式时,等式的右边忘了加。

2.在开平方这一步骤中,学生要么只有正、没有负的,要么右边忘了开方。

3.当一元二次方程有二次项的系数不为 1 时,在添项这一步骤时,没有将系数化为 1,就直接加上一次项系数一半的平方。

因此,要纠正以上错误,必须让学生多做练习、上台表演、当场讲评,才能熟练掌握。

相关文档
最新文档