因式分解习题PPT课件

合集下载

课件《因式分解》精美PPT课件_人教版2

课件《因式分解》精美PPT课件_人教版2
(2)S1=S2,相同的两2个长方形拼成的两个图形的面积相等,即都等于这两个长方形面积的和.
解:原式=(a2+1)(a+1)(a-1).
原式=3x(2x+1)(2x-1).
-2x(x+1)(x-1)
(3b+2a)(3b-2a)
3(x+2)(x-2)
解:原式=(m-2)(n+1)(n-1).
; .
6. (例 2)分解因式:
三级检测练
一级基础巩固练
14. 分解因式:
(1)x2-25=
(x+5)(x-5)

(2)4b2-a2=
(2b+a)(2b-a)

(3)9b2-4a2=
(3b+2a)(3b-2a)
.
15. 下列各式中,能用平方差公式分解因式的是
(D )
A. 2a2-b2
B. y2+9
C. -x2-y2
D. x2-1
(2)2m(2m-3)+6m-1. (2b+a)(2b-a)
原式=y(3x+1)(3x-1).
2y(x+2)(x-2)
解:原式=(m-2)(n+1)(n-1).
(2)S1=S2,相同的两个长方形拼成的两个图形的面积相等(x+1)(x-1)
解:原式=(4x2+1)(4x2-1)
3. 平方差公式:
整式乘法:(a+b)(a-b)= a2-b2

分解因式:a2-b2=
(a+b)(a-b)
.
4. (例 1)分解因式:
(1)x2-4=
(x+2)(x-2)

初中数学因式分解.完美版PPT

初中数学因式分解.完美版PPT

【自主解答】4+12(x-y)+9(x-y)2 =22+12(x-y)+ [3(x-y)]2 =[2+3(x-y)]2 =(2+3x-3y)2. 答案:(2+3x-3y)2
【母题变式】(改变问法)因式分解:4-9(x-y)2=_____. 提示:把9(x-y)2看成[3(x-y)]2使用平方差公式分解为(2+3x-3y)(2-3x+3y). 答案:(2+3x-3y)(2-3x+3y)
-(x-1)(x+2),正确.
【思路点拨】确定公因式,提取后再根据项数确定所使用的公式继续因式分解.
【典例2】(2021·东营中考)因式分解:
【典例2】(2021·东营中考)因式分解:
只有多项式符合完全平方公式或平方差公式的特点时,才能用相应的公式因式分解.
(1)若各项系数都是整数时,取各项系数的最大公因数作为公因式的系数.
③若多项式有四项或四项以上,就考虑综合运用上面的方法.
(3)若上述方法都不能分解,则考虑把多项式重新整理、变形,再按上面步骤进行.
因为mx2-m=m(x2-1)=m(x-1)(x+1),x2-2x+1=(x-1)2,所以公因式为x-1.
答案:3(m2+4)(m+2)(m-2)
【典例4】(1)(2021·枣庄中考)如图,边长为a,b的矩形的周长为14,面积为10,则a2b+ab2的值为 ( )
命题角度2:提公因式后应用公式
【典例3】(1)(2021·聊城中考)把8a3-8a2+2a进行因式分解,结果正确的是 ( )
A.2a(4a2-4a+1)
B.8a2(a-1)

课件《因式分解》PPT_完美课件_人教版2

课件《因式分解》PPT_完美课件_人教版2

所学的解题过程,我们应用了如下关系:
x(a−b)3+y(b−a)3=(a−b)3(x+y)
因式分解与整式乘法是互逆过程.
(1)8a3b2+12ab3c (6) m2-4=(m+2)(m-2)
14.3.1 提公因式法因式分解
理解公因式的概念,会根据“三定法”确定公因式。
(7) 2πR+ 2πr= 2π(R+r)
新的多项式中若 有小括号,要化

即是提公因式后剩下的另一个因式.
练一练
下面的因式分解正确吗?
➢ 3x2y−9xy2=3x(xy−3y2) 3xy (x−3y) ➢ 4x2y−6xy2+2xy=2xy(2x−3y) 2xy (2x−3y+1) ➢ x(a−b)3+y(b−a)3=(a−b)3(x+y) (a−b)3(x−y)
分解因式
例1: 找 3x 2 – 6 x3y 的公因式.
因式分解与整式乘法有何关系?
提公因式并确定另一个因式:要确定另一个因式,可用原多项式除以公因式,所得的商即是提公因式后剩下的另一个因式.
所以,公因式是3x2 .
所以,公因式是3x2 . 所以,公因式是3x2 . 所以,公因式是3x2 .
第十四章 整式的乘法
(5) (a-3)(a+3)=a2-9
定系数,再确定字母,最后确定公因式字母 【名师点拨】别忘记最后核实括号内的多项式是否还有公因式。
2)(x+2)(x-2)= 这种分解因式方法叫提公因式法。
6)a2+2ab+b2= 是pa+pb+pc除以p的商
2xy (2x−3y+1)
的指数;

因式分解ppt(共22张PPT)

因式分解ppt(共22张PPT)
3.(随堂练习p31、2)
规律总结
• 对多项式分解因式与整式乘法是方向相反的两种恒等变 形.
• 整式的乘法运算是把几个整式的积变为多项式的形式,
特征是向着积化和差的形式发展;
• 多项式的分解因式是把一个多项式化为几个整式乘积的
形式,特征是向着和差化积的形式发展.
• 因式分解要注意以下几点: 1.分解的对象必须是多项式.
• 把一个多项式化成几个整式的积的形式,这 种变形叫做因式分解。
• 因式分解也可称为分解因式。
因分解的结果要以积的形式表示
2.每个因式必须是整式,且每个因式的次数 都要低于原多项式的次数。
3.必须分解到每个多项式不能分解为止(具 体由所在的数集决定)。
想一想: 因式分解与整式乘法有什么联系?
2.分解的结果一定是几个整式的乘积的形式.
2:计算
(1) 8728713 (2) 1012992
=87(87+13) =8700
=(101+99)(101-99) =200×2 =400
3.若 x101,y99则 x22xyy2_ 4_
动脑筋
n2+n是奇数还是偶数?
2517-532能被120整除吗? 若n是整数,证明 (2n+1)2-(2n-1)2是8的倍数.
多项式的因式分解与整式乘法是方向相反的恒等式.
整式乘法
3x(x-1)= _____
(3).(5a-1) =25a -10a+1 解: ab-ac=a(b-c)
a(a+1)(a-1) a3-a=a(a+1)(a-1)
2
2
整式乘法
答: 由a(a+1)(a-1)得到a3-a的变形是整式乘法,由a3-a得到a(a+1)(a-1)的变形是把一个多项式化成几个整式的积的形式.

因式分解ppt课件

因式分解ppt课件
识别多项式的系数
观察多项式的系数,可以发现其中的规律和特点,有助于因式分解的进行。
ห้องสมุดไป่ตู้
寻找公因式或公因子
提取公因式
通过观察多项式的各项,可以发现其 中的公因式,提取公因式是因式分解 的一种常用方法。
寻找公因子
在某些情况下,多项式中可能存在公 因子,通过寻找公因子可以简化因式 分解的过程。
灵活运用公式和分组方法
利用公式进行因式分解
在数学中存在许多公式可以用于因式分解,如平方差公式、 完全平方公式等,利用这些公式可以简化因式分解的过程。
分组方法
对于一些复杂的多项式,可以将其分组进行因式分解,这样 可以更好地理解和处理多项式。
04
因式分解的应用实例分析
代数式的化简与求值
代数式的化简
通过因式分解,可以将复杂的代数式 化简为简单的形式,便于计算和理解 。
$ax^n + bx^{n-1} + \ldots + y = a(x^m)^n + b(x^m)^{n-1} + \ldots + y$
因式分解的意义
01
02
03
简化计算
因式分解可以简化多项式 的计算过程,提高计算效 率。
便于应用
因式分解在解决实际问题 中具有广泛应用,如解方 程、求根、不等式等。
分组分解法
总结词
将多项式分组进行因式分解
详细描述
分组分解法是将多项式中的某些项进行分组,然后对每组进行因式分解的方法。这种方法可以简化多项式的结构 ,使其更容易进行因式分解。
03
因式分解的技巧与策略
观察多项式的结构特点
识别多项式的项数和各项的次数
观察多项式的项数和各项的次数,有助于确定因式分解的策略。

因式分解(完全平方公式)课件

因式分解(完全平方公式)课件
3 因式分解(完全平方公式)
因式分解(完全平方公式)是将多项式分解成平方因子的特殊方法。
完全平方公式的原理
1 平方公式
平方公式是指一个二次方程的两个解之和等于系数b的相反数,而两个解的乘积等于系数 c。
2 完全平方公式的推导
完全平方公式的推导基于平方公式,通过对多项式进行平方运算。
3 常用的完全平方公式
因式分解(完全平方公式) 课件
因式分解(完全平方公式)是一种数学方法,用于将多项式分解成较简单的因子。 它的原理基于完全平方的特性,可以帮助我们解决各种数学问题。
什么是因式分解(完全平方公式)
1 定义
因式分解是将一个多项式分解成多个乘积的过程,每个乘积都被称为因子。
2 完全平方
一个完全平方是一个数的平方,例如4的完全平方是16。
1
确定多项式的类型
首先,我们需要确定多项式的类型,是一个二次方程还是其他类型的多项式。
2
提取公因子
然后,我们可以尝试提取多项式的公因子,使其更容易进行因式分解。
3
应用完全平方公式
接下来,我们可以根据所学的完全平方公式,将多项式分解成平方因子。
因式分解(完全平方公式)的例子
二次方程
多项式
例如,我们可以用因式分解(完全 平方公式)来解决二次方程的问题。
常用的完全平方公式包括平方差公式和平方和公式。
完全平方公式的应用
求解方程
完全平方公式可以帮助我们求 解二次方程,找到方程的解。
化简多项式
通过因式分解(完全平方公式), 我们可以将复杂的多项式化简 为更简单的形式。
探索数学关系
通过分析完全平方公式,我们 可以发现数学中的一些有趣的 关系和特性。
因式分解(完全平方公式)的步骤

因式分解(完全平方公式)课件

因式分解(完全平方公式)课件
公式
$x^2+4x+4=(x+2)^2$
解析
这是一个完全平方公式,其中$a=x$,$b=2$,$c=2$。将$a$和$b$的平方和 加上$2ab$得到$(x+2)^2$。
实例二
公式
$(x+y)^2=x^2+2xy+y^2$
解析
这是一个完全平方公式,其中$a=x$,$b=y$,$c=y$。将$a$和$b$的平方和加上$2ab$得到 $(x+y)^2=x^2+2xy+y^2$。
完成因式分解
如果多项式可以被完全分解为 几个整式的积,则因式分解完
成。
03
完全平方公式的概念和形 式
完全平方公式的定义
完全平方公式是指一个多项式等于一 个平方数与另一个平方数的乘积。
完全平方公式通常表示为 a^2+2ab+b^2或a^2-2ab+b^2,其 中a和b是实数。
完全平方公式的形式
完全平方公式可以表示为(a+b)^2或(a-b)^2,其中a和b是任意实数。 展开后得到a^2+2ab+b^2或a^2-2ab+b^2。
实例三
公式
$(a+b)^2=a^2+2ab+b^2$
解析
这是一个完全平方公式,其中$a=a$,$b=b$,$c=b$。将$a$和$b$的平方和加上$2ab$得到 $(a+b)^2=a^2+2ab+b^2$。
05
因式分解(完全平方公式) 的练习题
练习题一:将下列多项式因式分解
题目1
$x^2 - 4x + 4$
应用在数学问题中
因式分解是解决某些数学 问题的重要方法,如解方 程、求值等。

第三讲因式分解PPT课件

第三讲因式分解PPT课件

① x2-5x+6
1
-2
1
-3
解:原式=(x-2)(x-3)
② a2-a-2
1
1
1
-2
解:原式=(a+1)(a-2)
【例 4】 (2011·台湾)下列四个多项式,是 2x2+5x-3 的因式的只能为
( A)
A.2x-1
B.2x-3
C.x-1
D.x-3
2x²-5x-3
4x²+10x+6
⑷分组分解法: a3 a2 a 1
(1)、提公因式法: 公因式的确定:
ma + mb + mc = m(a+b+c)系数取所有系数的最大公约数,
字母取相同的字母, 指数取最低指数。
练习:把下列各式分解因式
① 6x3y2-9x2y3+3x2y2
)②p(y-x)-2(x-y)
解:原式=3x2y2(2x-3y+1)
解:原式=p(y-x)+2(y-x) =(y-x)(p+2)
综合运用多种方法分解因式
知能迁移 4 (1)分解因式:a5-a (2)分解因式:(x+2)(x+4)+x2-4 (3)(解2012(·x+临2沂)(x)+分4解)+因x式22-:4a-6ab+9ab2= ________=.x22+6x+8+x22-4 (4)在=实2x数22+范6x围+内4 分解因式:x4-4
(2)运用公式法:
例题精析
【例 1】 (1)(2013·广东湛江)分解因式:x2-4=___x_2-__4_=__(_x_+__2_)(_x_-__2_)____. (2)(2013·江苏苏州)分解因式:a2+2a+1=___a_2+__2_a_+__1_=__(_a_+__1_)2_____. (3)(2013·山东滨州)分解因式:5x2-20=__5_x_2_-__2_0_=__5_(_x_+__2_)(_x_-__2_)_. (4)(2013·湖南益阳)分解因式:xy2-4x=___x_y2_-__4_x_=__x_(_y+__2_)_(_y_-__2_) __.

人教版八年级上册第14章因式分解习题课件(共27张PPT)

人教版八年级上册第14章因式分解习题课件(共27张PPT)
(2)2x2+x-6. (2x-3)(x+2)
12. 分解因式: (1)3x2+8x+4; (3x+2)(x+2)
13. 分解因式: (1)3x2-12x+9; 3(x-1)(x-3)
(2)5x2-7x-6. (5x+3)(x-2)
(2)5a3-3a2-2a. a(a-1)(5a+2)
第3关
14. 分解因式: (1)x2-4(x-1);
14. 给出三个多项式:①2x2+4x-4;②2x2+12x+4; ③2x2-4x. 请你把其中任意两个多项式进行加法 运算,并把结果分解因式.
①+②,即(2x2+4x-4)+(2x2+12x+4)=4x2+16x=4x(x+ 4);
①+③,即(2x2+4x-4)+(2x2-4x)=4x2-4=4(x+1)(x-1); ②+③,即(2x2+12x+4)+(2x2-4x)=4x2+8x+4=4(x+1)2.
(1)若a-b=3,ab=2,则a2b-ab2=____6____; (2)若a+b=4,a-b=3,则a2-b2=___1_2____.
10. 如图,边长为a,b的矩形的周长为14,面积为10,
则a2b+ab2的值为
(B)
A. 140 B. 70 C. 35 D. 24
11. 分解因式: (1) (2x+1)2-x2; (x+1)(3x+1)
十字相乘法
一、知识储备
1. 分解因式: (1)x2-4=__(_x_+__2_)_(x_-__2_)__; (2)x2-4x+4=___(_x_-__2_)_2 ____; (3)2x2-8=_2_(_x_+__2_)_(x_-__2_)_;(4)x3-4x2+4x= x(x-2)2
_____________.
(2)x2-6x+8. (x-2)(x-4)

2-4《因式分解法》课件(共35张PPT)

2-4《因式分解法》课件(共35张PPT)
(1)提取公因式法: am+bm+cm=m(a+b+c).
(2)公式法:
a2-b2=(a+b)(a-b), a2±2ab+b2=(a±b)2.
(3)十字相乘法:
1 a
x2+(a+b)x+ab= (x+a)(x+b). 1 b
实际问题
根据物理学规律,如果把一 个物体从地面 10 m/s 的速度竖 直上抛,那么经过 x s 物体离地 面的高度(单位:m)为
3. 分别解两个一元一次方程,它们的根就 是原方程的根.
AB = 0
A=0或B=0
( A、B 表示两个因式)
用因式分解法解一元二次方程的步骤
1. 方程右边化为_零_____。
2. 将方程左边分解成两个__一__次___因__式__的乘积。 3. 至少_有___一__个__因式为零,得到两个一元一次
⑴ 5x2-3 2 x=0 (运用因式分解法)
⑵ 3x2-2=0
(运用直接开平方法)
⑶ x2-4x=6
(运用配方法)
⑷ 2x2-x-3=0
(运用公式法)
⑸ 2x2+7x-7=0 (运用公式法)
② 公式法虽然是万能的,对任何一元二次方程都适用, 但不一定是最简单的,因此在解方程时我们首先考虑能 否应用“直接开平方法”、“因式分解法”等简单方法, 若不行,再考虑公式法(适当也可考虑配方法)
① x2-3x+1=0 ② 3x2-1=0
③ -3t2+t=0
④ x2-4x=2
⑤ 2x2-x=0
⑥ 5(m+2)2=8
⑦ 3y2-y-1=0 ⑧ 2x2+4x-1=0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
1、求多项式P a2 2b2 2a 4b 2008的最小值。
2、若0 x 1,化简

x

1
2

4


x

1
2

4。
x
x
3、已知a、b、c是△A B C的三 边,
且满足a2 2b2 c2 2ba c 0,
判断 △A B C的形 状并 说明 理由 。
11
例2试将 x2 6x 16 分解因式
x2 6x 16
x2 6x 16
x 8x 2
提示:当二次 项系数为-1时 ,先提出负号 再因式分解 。
独立练习 a2 13a 42
12
1x2 7x 10 (4)x2-5x+4 2x2 2x 8 (5)x2+6x-16 3a2 30a 81(6)x2-2x-8
x2 14x 45 (x 5)(x 9)
x2 7x 60 (x 12)(x 5)
x2 29x 138 (x 23)(x 6)
5
(x+a)(x+b)=2+(a+b)x+ab
x2+(a+b)x+ab=(x+a)(x+b)
6
请大家记住公式
十字相乘法公式:
13
14

15
x2 (a b)x ab (x a)(x b)
7

8
十字相乘法(借助十字交叉相乘分解因式的方法)
例一:分解因式
步骤:
x2 6x 7 (x 7)(x 1) ①竖分二次项与常数项
x

7
x 1
②交叉相乘,和相加 ③检验确定,横写因式
x7x 6x
顺口溜:竖分系数交叉验, 横写因式不能乱。
3
一、计算:
(1)(x 5)(x 9) x2 14x 45
(2) (x 12)(x 5) x2 7x 60 (3) (x 23)(x 6) x2 29x 138
(x a)(x b) x2 (a b)x ab
4
下列各式是因式分解吗?
2
综合配方
1已知a2 b2 2a 4b 5 0,求ab 1 2已知a,b, c是三角形ABC 的三边,
试说明 a2 b2 c2 2 4a2b2 0
3已知三角形ABC 的三条边分别是a,b, c且满足
a2 b2 c2 ab bc ac试判断此三角形的形状
9
试一试: (顺口溜:竖分系数交叉验,横写因式不能乱。)
x2 8x 15 (x 5)(x 3)


x
5
x
3
(3x) (5x) 8x
10
将下列各式用十字相乘法进行因式分解
(1)X2-7x+12 (2)x2-4x-12 (3)x2+8x+12 (4)x2-11x-12 (5)x2+13x+12 (6)x2-x-12
相关文档
最新文档