九年级上册数学思维导图

合集下载

九年级上册数学人教版思维导图

九年级上册数学人教版思维导图

第二十一章一元二次方程基本概念解法根的判别式列一元二次方程解实际问题根与系数的关系一元二次方程一般形式一元二次方程的解只含有一个未知数,并且未知数的最高次数是2的整式方程使一元二次方程左右两边相等的未知数的值直接开平方法配方法公式法因式分解法利用平方根的意义直接降次左边配成完全平方式的形式,右边为常数对方程的左边因式分解使方程化为两个一次式的乘积等于的形式Δ>0时,方程有两个不相等的实数根Δ=0时,方程有两个相等的实数根Δ<0时,方程无实数根审:审清题意设:设未知数列:列一元二次方程解:解一元二次方程检:检验所求得的解是否符合题意答:写出答案第二十二章二次函数二次函数的定义二次函数的图象二次函数的性质二次函数的实际应用抛物线的平移规律用待定系数法求二次函数的解析式二次函数与一元二次方程一般地形如是常数的函数叫做二次函数画法特征描点法平移法a>0,图象开口向上a<0,图象开口向下对称轴:直线顶点坐标:|a|越大,开口越小;|a|越小,开口越大增减性最值当a>0时,在对称轴的左侧,y随x的增大而减小;在对称轴的右侧,y随x的增大而增大当a<0时,在对称轴的左侧,y随x的增大而增大;在对称轴的右侧,y随x的增大而减小当a>0时,有最小值当a<0时,有最大值左加右减自变量,上加下减常数项,已知图象上三点的坐标,通常设一般式一般式,已知图象的顶点坐标或对称轴方程,通常设顶点式顶点式:,已知图象与x轴的交点坐标,通常设交点式交点式抛物线与轴的公共点的横坐标即一元二㳄方程的根抛物线与x轴的公共点情况有两个公共点↔Δ>0有一个公共点↔Δ=0没有公共点↔Δ<0拓展:抛物线与直线的交点个数利用图象法求一元二次方程的根常见类型求图形面积的最值求获得最大利润建立平面直角坐标系判断船是否能通过桥洞求动点问题中的最值第二十三章旋转定义性质图案设计旋转的三要素中心对称中心对称图形关于原点对称的点的坐标把一个平面图形绕着平面内某一点O转动一个角度,叫做图形的旋转,点O叫做旋转中心,转动的角叫做旋转角对应点到旋转中心的距离相等对应点与旋转中心所连线段的夹角等于旋转角旋转前、后的图形全等旋转中心旋转角旋转方向定义把一个图形绕着某一点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心性质中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分中心对称的两个图形是全等图形定义把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形常见的中心对称图形线段、平行四边形、圆等两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点的对称点为P′(-x,-y)利用平移、轴对称、旋转设计图案第二十四章 圆圆的有关概念圆的有关计算圆的基本性质和定理与圆有关的位置关系圆内接正多边形确定圆的要素圆心:确定圆的位置半径:确定圆的大小特征 圆上各点到定点(圆心)的距离等于定长(半径)到定点的距离等于定长的点都在同一个圆上弦与直径的关系弦是连接圆上两点的线段直径是过圆心的弦直径一定是弦,但弦不一定是直径弧于半圆的关系优弧(用三个字母表示)劣弧(用两个字母表示) 弧时连接圆上两点间的部分半圆是直径两端点间的部分半圆是弧,但弧不一定是半圆等弧具备的条件同圆或等圆能够互相重合缺一不可圆的对称性垂径定理及其推论圆心角、弧、弦的关系圆周角定理及其推论确定圆的条件点和圆的位置关系 直线和圆的位置关系轴对称图形→对称轴(直径所在直线)有无数条中心对称图形→对称中心(圆心)只有一个旋转图形→旋转角为任何度数定理 垂直于弦的直径平分弦,并且平分弦所对的两条弧推论 平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等推论1 在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦也相等推论2 在同圆或等圆中,如果两条弦相等,那么它们所 对的圆心角相等,所对的优弧和劣弧分别相等定义顶点在圆上两边都与圆相交缺一不可 定理一条弧所对的圆周角等于它所对的圆心角的一半推论1同弧或等弧所对的圆周角相等推论2 半圆(或直径)所对的圆周角是直角,90°的圆周角所对弦是直径过一点→画无数个圆 过两点→画无数个圆→圆心在这两点的垂直平分线上过三点三点在一条直线上→不能画圆 三点不在同一直线上→画一个圆→圆心是任意两点的垂直平分线的交点点在圆外↔d>r点在圆上↔d=r点在圆内↔d<r位置关系三角形的外接圆三角形的内切圆相交↔d<r ;相切↔d=r ;相离↔d>r切线的判定定理 经过半径的外端并且垂直于这条半径的直径是圆的切线切线的性质定理圆的切线垂直于过切点的半径切线长定理 从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角定义 经过三角形的三个顶点可以作一个圆,这个圆叫做三角形的外接圆,这个三角形叫做这个圆的内接三角形 外心:三角形的外接圆的圆心是三角形三条边的垂直平分线的交点,叫做这个三角形的外心 外心性质:三角形的外心到三角形三个顶点的距离相等,等于其外接圆的半径外心的位置锐角三角形→三角形的内部直角三角形→斜边的中点钝角三角形→三角形的外部定义 与三角形各边都相切的圆叫做三角形的内切圆,这个三角形叫做这个圆的外切三角形 内心:三角形的内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心 内心性质:三角形的内心到三角形三条边的距离相等,且等于其内切圆的半径内心的位置:均在三角形内部相关概念正多边形的中心→外接圆的圆心正多边形的半径→外接圆的半径正多边形的中心角→每一条边所对的圆心角 正多边形的边心距→中心到正多边形的一边的距离画法把圆周角等分成n 份把360°的圆心角等分成n 份弧长公式扇形的面积公式圆锥的侧面积和全面积公式侧全第二十五章概率初步事件概率确定性事件随机事件必然事件:P(A)=1不可能事件:P(A)=00<P(A)<1概念表示随机事件发生的可能性大小的数值叫做概率公式在一次试验中有种等可能的结果事件包含其中的种结果,则求法应用用列举法求概率直接列举法列表法画树状图法用频率估计概率试验次数比较多试验结果不是有限个各种可能出现的结果发生的可能性不同抽奖问题、游戏是否公平问题等。

导图系列(5)九学年上册数学(北师大版)各章知识点思维导图集合

导图系列(5)九学年上册数学(北师大版)各章知识点思维导图集合

中心对称 两组对角分别相等的四边形
面积 底×高
对角线互相平分的四边形
对角相等, 邻角互补
四边相等的四边形
互相垂直平分; 中心对称
每一条对角线
+
有一组邻边相等的平行四边形
平分一组对角 轴对称 对角线互相垂直的平行四边形
底×高; 对角线乘积
的一半
四个角 都是直角
相等且 互相平分
有三个角是直角的四边形
第五章 投影与视图
第六章 反比例函数
九年级上册数学(北师大版) 思维导图集合
第一章 特殊的平行四边形
图形 边
平行 对边平行 四边形 且相等
菱形
对边平行, 四条边相等
矩形
对边平行 且相等
对边平行, 正方形
四条边相等
第一章 特殊的平行四边形
性质 角
对角线
对角相等, 邻角互补
互相平分
对称性
判定
两组对边分别相等的四边形 两组对边分别平行的四边形 一组对边平行且相等的四边形
中心对称
+
有一个角是直角的平行四边形
轴对称 对角线相等的平行四边形
长×宽
四个角 都是直角
有一个角是直角的菱形
相等且
中心对称 对角线相等的菱形
互相垂直平分;
+
每一条对角线
轴对称 有一组邻边相等的矩形
平分一组对角
对角线互相垂直的矩形
边长×边长
第二章 一第四章 图形的相似

沪教版(上海市) 初中数学思维导图 九年级数学全册章节思维导图集

沪教版(上海市) 初中数学思维导图 九年级数学全册章节思维导图集
-2Math 实验室
你现在的努力要对得起别人对你的好!
第二十八章 统计初步的章节知识点结构思维导图
-3Math 实验室
你现在的努力要对得起别人对你的好!
上海市(沪教版)九年级数学全册章节思维导图 共五章
第二十四章 相似三角形的章节知识点结构思维导图
第二十五章 锐角三角比的章节知识点结构思维导图
-1Math 实验室
你现在的努力要对得起别人对你的好!
第二十六章 二次函数的章节知识点结构思维导图
第二十七章 圆ห้องสมุดไป่ตู้正多边形的章节知识点结构思维导图

九年级上册数学知识点思维导图

九年级上册数学知识点思维导图

九年级上册数学知识点思维导图+考点梳理〔开学前新初三必看〕一元二次方程二次函数知识点梳理:1.定义:一般地,如果y=ax²+bx+c〔其中a,b,c是常数,a≠0〕,那么y叫做x的二次函数.2.二次函数y=ax²的性质〔1〕抛物线y=ax²的顶点是坐标原点,对称轴是y轴.〔2〕函数y=ax²的图像与a的符号关系.①当a>0时Û抛物线开口向上Û顶点为其X点;②当a<0时Û抛物线开口向下Û顶点为其X点.〔3〕顶点是坐标原点,对称轴是轴的抛物线的解析式形式为y=ax²〔a≠0〕.3.二次函数y=ax²+bx+c的图像是对称轴平行于〔包含重合〕y轴的抛物线.4.二次函数y=ax²+bx+c用成分法可化成:y=a〔x - h〕²+k的形式,其中5.二次函数由特别到一般,可分为以下几种形式:①y=ax²;②y=ax²+k;③y=a〔x - h〕²;④y=a〔x - h〕²+k;⑤y=ax²+bx+c.6.抛物线的三要素:开口方向、对称轴、顶点.①a的符号决定抛物线的开口方向:当a>0时,开口向上;当a<0时,开口向下;|a|相等,抛物线的开口大小、形状相同.②平行于y轴〔或重合〕的直线记作x=h.特别地,y轴记作直线x=0.7.顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数a相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同.8.求抛物线的顶点、对称轴的方法〔1〕公式法:∴顶点是:对称轴是直线:〔2〕成分法:运用成分的方法,将抛物线的解析式化为y=a 〔x-h〕²+k的形式,得到顶点为(h,k),对称轴是直线x=h.〔3〕运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点.用成分法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失.9.抛物线y=ax²+bx+c中,a、b、c的作用〔1〕a决定开口方向及开口大小,这与y=ax²中的a完全一样.〔2〕b和a共同决定抛物线对称轴的位置.由于抛物线y=ax²+bx+c的对称轴是直线,故:①b=0时,对称轴为y轴;②〔即a、b同号〕时,对称轴在y轴左侧;③〔即a、b异号〕时,对称轴在y轴右侧.〔3〕的大小决定抛物线y=ax²+bx+c与y轴交点的位置.当x=0时,y=c,∴抛物线y=ax²+bx+c与y轴有且只有一个交点〔0,c〕:①c=0,抛物线经过原点;②c>0,与y轴交于正半轴;③c<0,与y轴交于负半轴.以上三点当结论和条件互换时仍成立.如抛物线的对称轴在y轴右侧,则10.几种特别的二次函数的图像特征如下:11.用待定系数法求二次函数的解析式〔1〕一般式:y=ax²+bx+c.已知图像上三点或三对x、y的值,通常选择一般式.〔2〕顶点式:y=a〔x - h〕²+k .已知图像的顶点或对称轴,通常选择顶点式.〔3〕交点式:已知图像与x轴的交点坐标x1、x2,通常选用交点式:y=a(x-x1)(x-x2).12.直线与抛物线的交点〔1〕y轴与抛物线y=ax²+bx+c得交点为(0, c).〔2〕与y轴平行的直线X=h与抛物线y=ax²+bx+c有且只有一个交点〔h, ah²+bh+c〕〔3〕抛物线与轴的交点二次函数y=ax²+bx+c的图像与x轴的两个交点的横坐标x1、x2,是对应一元二次方程ax²+bx+c=0的两个实数根.抛物线与轴的交点情况可以由对应的一元二次方程的根的判别式判定:①有两个交点Û△>0Û抛物线与x轴相交;②有一个交点〔顶点在x轴上〕Û△=0Û抛物线与x轴相切;③没有交点Û△<0Û抛物线与轴相离.〔4〕平行于轴的直线与抛物线的交点同〔3〕一样可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为k,则横坐标是ax²+bx+c=k的两个实数根.〔5〕一次函数y=kx+n(k≠0)的图像L与二次函数y=ax²+bx+c(a≠0)的图像G的交点,由方程组的解的数目来确定:①方程组有两组不同的解时L与G有两个交点;②方程组只有一组解时L与G只有一个交点;③方程组无解时L与G没有交点.〔6〕抛物线与x轴两交点之间的距离:假设抛物线y=ax²+bx+c与x 轴两交点为A(x1,0),B(x2,0),由于x1、x2是方程ax²+bx+c=0的两个根,故。

九年级数学的思维导图

九年级数学的思维导图

九年级数学的思维导图推荐文章•九年级上第一二单元历史思维导图热度:•九年级上册历史第一课思维导图热度:•九年级上历史的思维导图热度:•北师大版历史九年级上册思维导图热度:•九年级上册历史第一单元思维导图热度:九年级数学的思维导图在九年级学数学的时候,运用数学思维导图,可以帮助我们更好的复习。

下面小编精心整理了九年级数学的思维导图,供大家参考,希望你们喜欢!九年级数学的思维导图汇总九年级数学:分组分解法知识点我们看多项式am+ an+ bm+ bn,这四项中没有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式.如果我们把它分成两组(am+ an)和(bm+ bn),这两组能分别用提取公因式的方法分别分解因式.原式=(am +an)+(bm+ bn)=a(m+ n)+b(m +n)做到这一步不叫把多项式分解因式,因为它不符合因式分解的意义.但不难看出这两项还有公因式(m+n),因此还能继续分解,所以原式=(am +an)+(bm+ bn)=a(m+ n)+b(m+ n)=(m +n)?(a +b).这种利用分组来分解因式的方法叫做分组分解法.从上面的例子可以看出,如果把一个多项式的项分组并提取公因式后它们的另一个因式正好相同,那么这个多项式就可以用分组分解法来分解因式.提公因式法1.在运用提取公因式法把一个多项式因式分解时,首先观察多项式的结构特点,确定多项式的公因式.当多项式各项的公因式是一个多项式时,可以用设辅助元的方法把它转化为单项式,也可以把这个多项式因式看作一个整体,直接提取公因式;当多项式各项的公因式是隐含的时候,要把多项式进行适当的变形,或改变符号,直到可确定多项式的公因式.2. 运用公式x2 +(p+q)x+pq=(x+q)(x+p)进行因式分解要注意:1.必须先将常数项分解成两个因数的积,且这两个因数的代数和等于一次项的系数.2.将常数项分解成满足要求的两个因数积的多次尝试,一般步骤:① 列出常数项分解成两个因数的积各种可能情况;②尝试其中的哪两个因数的和恰好等于一次项系数.3.将原多项式分解成(x+q)(x+p)的形式.分式的乘除法1.把一个分式的分子与分母的公因式约去,叫做分式的约分.2.分式进行约分的目的是要把这个分式化为最简分式.3.如果分式的分子或分母是多项式,可先考虑把它分别分解因式,得到因式乘积形式,再约去分子与分母的公因式.如果分子或分母中的多项式不能分解因式,此时就不能把分子、分母中的某些项单独约分.4.分式约分中注意正确运用乘方的符号法则,如x-y=-(y-x),(x-y)2=(y-x)2, (x-y)3=-(y-x)3.5.分式的分子或分母带符号的n次方,可按分式符号法则,变成整个分式的符号,然后再按-1的偶次方为正、奇次方为负来处理.当然,简单的分式之分子分母可直接乘方.6.注意混合运算中应先算括号,再算乘方,然后乘除,最后算加减.分数的加减法1.通分与约分虽都是针对分式而言,但却是两种相反的变形.约分是针对一个分式而言,而通分是针对多个分式而言;约分是把分式化简,而通分是把分式化繁,从而把各分式的分母统一起来.2.通分和约分都是依据分式的基本性质进行变形,其共同点是保持分式的值不变.3.一般地,通分结果中,分母不展开而写成连乘积的形式,分子则乘出来写成多项式,为进一步运算作准备.4.通分的依据:分式的基本性质.5.通分的关键:确定几个分式的公分母.通常取各分母的所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.6.类比分数的通分得到分式的通分:把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.7.同分母分式的加减法的法则是:同分母分式相加减,分母不变,把分子相加减。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档