圆周运动与天体运动

合集下载

圆周运动问题分析

圆周运动问题分析

圆周运动问题分析【专题分析】圆周运动问题是高考中频繁考查的一种题型,这种运动形式涉及到了受力分析、牛顿运动定律、天体运动、能量关系、电场、磁场等知识,甚至连原子核的衰变也可以与圆周运动结合(衰变后在磁场中做圆周运动)。

可见,圆周运动一直受到命题人员的厚爱是有一定原因的。

不论圆周运动题目到底和什么知识相联系,我们都可以把它们分为匀速圆周运动和变速圆周运动两种。

同时,也可以把常用的解题方法归结为两条。

1、匀速圆周运动匀速圆周运动的规律非常简单,就是物体受到的合外力提供向心力。

只要受力分析找到合外力,再写出向心力的表达式就可解决问题。

2、竖直面内的非匀速圆周运动物理情景:在重力作用下做变速运动,最高点速度最小,最低点速度最大,所以最高点不容易通过。

特点:在最高点和最低点都满足“合外力等于向心力”, 其他位置满足“半径方向的合外力等于向心力”, 整个过程中机械能守恒。

注意:上面所述“半径方向的合外力等于向心力”实际上适用于一切情况。

另外,涉及的题目可能不仅仅是重力改变速率,可能还有电场力作用,此时,应能找出转动过程中的速率最大的位置和速率最小的位置。

基本解题方法:1、涉及受力,使用向心力方程;2、涉及速度,使用机械能守恒定律或动能定理。

【题型讲解】题型一 匀速圆周运动问题例题1:如图所示,两小球A 、B 在一漏斗形的光滑容器的内壁做匀速圆周运动,容器的中轴竖直,小球的运动平面为水平面,若两小球的质量相同,圆周半径关系为r A >r B ,则两小球运动过程中的线速度、角速度、周期以及向心力、支持力的关系如何?(只比较大小)解析:题目中两个小球都在做匀速圆周运动,其向心力由合外力提供,由受力分析可知,重力与支持力的合力提供向心力,如图3-2-2所示,由几何关系,两小球运动的向心力相等,所受支持力相等。

两小球圆周运动的向心力相等,半径关系为r A >r B ,由公式rvmF 2=向,可得v A >v B ; 由公式2ωmr F =向,可得ωA <ωB ; 由公式ωπ2=T ,可得T A >T B ;A B图3-2-1A B 图3-2-2[变式训练]如图3-3-3所示,三条长度不同的轻绳分别悬挂三个小球A 、B 、C ,轻绳的另一端都固定于天花板上的P 点。

圆周天体公式

圆周天体公式

一、圆周运动 1、线速度v= (定义式)= 2、角速度w= (定义式)= 3、周期T= = 4、向心加速度a n = = = 5、需要的向心力大小F= = = = = 二、天体运动 1、基本公式GMm/r 2= = = = 2、v= ;w= ;a= T= 3、星球表面:GMm/r=三、天体质量和密度估算(1)已知r 和v 求M 公式:M=已知r 、v 、R,求ρ=(2)已知r 和T 求M 公式:M=已知r 、T 、R,求ρ=(3)已知g 和R 求M 公式:M=已知g 、R,求ρ=一、圆周运动1、线速度v= (定义式)=2、角速度w= (定义式)=3、周期T= =4、向心加速度a n = = =5、需要的向心力大小F= = == =二、天体运动1、基本公式 GMm/r 2= = = =2、v= ;w= ;a=T=3、星球表面:GMm/r=三、天体质量和密度估算(1)已知r 和v 求M 公式: M=已知r 、v 、R,求ρ= (2)已知r 和T 求M 公式: M=已知r 、T 、R,求ρ=(3)已知g 和R 求M 公式:M=已知g 、R,求ρ=一、圆周运动 1、线速度v= (定义式)= 2、角速度w= (定义式)= 3、周期T= = 4、向心加速度a n = = = 5、需要的向心力大小F= = = = = 二、天体运动 1、基本公式GMm/r 2= = = = 2、v= ;w= ;a= T= 3、星球表面:GMm/r= 三、天体质量和密度估算(1)已知r 和v 求M 公式:M=已知r 、v 、R,求ρ=(2)已知r 和T 求M 公式:M=已知r 、T 、R,求ρ=(3)已知g 和R 求M 公式:M=已知g 、R,求ρ=一、圆周运动1、线速度v= (定义式)=2、角速度w= (定义式)=3、周期T= =4、向心加速度a n = = =5、需要的向心力大小F= = == =二、天体运动 1、基本公式 GMm/r 2= = = =2、v= ;w= ;a= T=3、星球表面:GMm/r= 三、天体质量和密度估算 (1)已知r 和v 求M 公式:M= 已知r 、v 、R,求ρ= (2)已知r 和T 求M 公式:M= 已知r 、T 、R,求ρ= (3)已知g 和R 求M 公式: M= 已知g 、R,求ρ=。

(精)解决天体运动问题的方法

(精)解决天体运动问题的方法

解决天体运动问题的方法一、基本模型计算天体间的万有引力时,将天体视为质点,天体的全部质量集中于天体的中心;一天体绕另一天体的稳定运行视为匀速圆周运动;研究天体的自转运动时,将天体视为均匀球体。

二、基本规律1.天体在轨道稳定运行时,做匀速圆周运动,具有向心加速度,需要向心力。

所需向心力由中心天体对它的万有引力提供。

设质量为m的天体绕质量为M的天体,在半径为r的轨道上以速度v匀速圆周运动,由牛顿第二定律及万有引力定律有:。

这就是分析与求解天体运行问题的基本关系式,由于有线速度与角速度关系、角速度与周期关系,这一基本关系式还可表示为:或。

2.在天体表面,物体所受万有引力近似等于所受重力。

设天体质量为M,半径为R,其表面的重力加速度为g,由这一近似关系有:,即。

这一关系式的应用,可实现天体表面重力加速度g与的相互替代,因此称为“黄金代换”。

3.天体自转时,表面各物体随天体自转的角速度相同,等于天体自转角速度,由于赤道上物体轨道半径最大,所需向心力最大。

对于赤道上的物体,由万有引力定律及牛顿第二定律有:,式中N为天体表面对物体的支持力。

如果天体自转角速度过大,赤道上的物体将最先被“甩”出,“甩”出的临界条件是:N=0,此时有:,由此式可以计算天体不瓦解所对应的最大自转角速度;如果已知天体自转的角速度,由及可计算出天体不瓦解的最小密度。

三、常见题型1.估算天体质量问题由关系式可以看出,对于一个天体,只要知道了另一天体绕它运行的轨道半径及周期,可估算出被绕天体的质量。

例1.据媒体报道,嫦娥一号卫星环月工作轨道为圆轨道,轨道高200km,运行周期为127分钟。

若还知道引力常量和月球半径,仅利用以上条件不能求出的是A.月球表面的重力加速度B.月球对卫星的吸引力C.卫星绕月运行的速度D.卫星绕月运行的加速度解析:设月球质量为M,半径为R,月面重力加速度为g,卫星高度为h,运行周期为T,线速度为v,加速度为a,月球对卫星的吸引力为F。

第四章 圆周运动和天体运动

第四章   圆周运动和天体运动

第四章 圆周运动和天体运动1.匀速圆周运动:相等的时间内通过的圆弧长度都相等的运动。

2.描述圆周运动的物理量:周期T:转一圈所用的时间,单位:秒(s);转速(或频率):每秒钟转过的圈数,单位:转/秒(r/s)或赫兹(Hz)周期和频率的关系:线速度: 大小:通过的弧长跟所用时间的比值方向:圆弧上该点的切线方向。

角速度:大小:半径转过的角度跟所用时间的比值线速度与角速度的关系:4.匀速圆周运动:线速度的大小不变,方向时刻变化,是变加速曲线运动。

5.皮带传动问题解决方法:结论:1.固定在同一根转轴上的物体转动的角速度相同。

2. 传动装置的轮边缘的线速度大小相等。

6.万有引力定律:1.宇宙间的一切物体都具有相互吸引力。

两个物体间的引力大小,跟它们质量的乘积成正比,跟它们的距离的二次方成反比。

①公式是引力常量G=6.67×10-11N·m2/kg2 (或写成G=6.67×10-11N·m2·kg-2)②牛顿发现的万有引力现象并推出万有引力定律。

引力常量首先由英国的卡文迪许利用扭秤实验准确测出,扭秤的关键就是在T形架的竖直部分装一个平面镜,将引力作用于扭秤产生的微小扭转效果,通过光点的移动加以放大。

③万有引力定律的公式严格讲只适用于两个质点间的相互作用,当两个物体间的距离远大于自身直径时,也可以使用,r即两个物体中心距离。

7.天体运动两种类型:第一种:某天体绕中心天体做匀速圆周运动,用公式F向=F万,如:人造地球卫星(半径与加速度,线速度,向心加速度之间的关系)第二种:物体在某星体表面附近的问题,用公式F万=mg’;如求地球某高度h处的g。

高中物理天体运动知识点总结

高中物理天体运动知识点总结

高中物理天体运动知识点总结一、质点的运动(1)------直线运动1)匀变速直线运动1.平均速度V平=s/t(定义式)2.有用推论Vt2-Vo2=2as3.中间时刻速度Vt/2=V平=(Vt+Vo)/24.末速度Vt=Vo+at5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/26.位移s=V平t=Vot+at2/2=Vt/2t7.加速度a=(Vt-Vo)/t{以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0}8.实验用推论Δs=aT2{Δs为连续相邻相等时间(T)内位移之差}9.主要物理量及单位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;时间(t)秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s=3.6km/h。

注:(1)平均速度是矢量;(2)物体速度大,加速度不一定大;(3)a=(Vt-Vo)/t只是量度式,不是决定式;(4)其它相关内容:质点、位移和路程、参考系、时间与时刻〔见第一册P19〕/s--t图、v--t图/速度与速率、瞬时速度〔见第一册P24〕。

2)自由落体运动1.初速度Vo=02.末速度Vt=gt3.下落高度h=gt2/2(从Vo位置向下计算)4.推论Vt2=2gh注:(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律;(2)a=g=9.8m/s2≈10m/s2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。

(3)竖直上抛运动1.位移s=Vot-gt2/22.末速度Vt=Vo-gt(g=9.8m/s2≈10m/s2)3.有用推论Vt2-Vo2=-2gs4.上升最大高度Hm=Vo2/2g(抛出点算起)5.往返时间t=2Vo/g(从抛出落回原位置的时间)注:(1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值;(2)分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性;(3)上升与下落过程具有对称性,如在同点速度等值反向等。

天体运动的三个模型

天体运动的三个模型


n o J i t , 一
4( 。 7
r.
G-
F向 = = =
目 一

= = =
。 一 r

r《

r的取 值 范 围 : ≥ R( r R为中心天体的半径) .
当 r R 时 , 取 最 小 值 , 应 的 、 最 大 , — r 对 T最小 , 有 G 且
, ● ?
联 立 解 得
2 环 绕模 型 : . F引 一 F向, r≥ R

个 中心 天体 吸 引不 同的物 体 围绕它做 圆
周运动, 圆心在 中 心天体 的球 心上 , 物体 受 到的 万有 引力 全部用 来 提供 向心 力.
解 题选 用公 式 :
, 、
M m
= 一 一
② 轨道半 径 可能不 同.
不 同点 : 道 半 径 不 同 . 轨
易 混淆 点 : 轨道 半径 r 中心天 体 的半径 尺、 、
高 度 h . 例 2 已 知 “ 娥 一 号 ”绕 月 飞 行 轨 道 近 似 嫦
③ 所 需 向心力 可能 不 同.
易 混淆 点 : ① 引 力 与 向 心 力 : 》 F自 F引 .
物 理 基 础 精 讲
《 数 火 地 》 『 版 高 f I

物理基础精讲 ・
关 体 遣 动 圈 虽 幞 型
罗 林 贵 张 红 娇 ( 江西省吉安县第二 中学 330) 4 10
1 自转模 型 : . F引》 F向, ≤ R r 在 白转 天体 表面上相对 天体静止 的物体 , 以 天体 自转轴 七某 一点 为 圆心 , 匀 速 圆周 运 动 , 做 它的 圆轨迹依 附在天体 表面上 , 角速 度等 于天体 自转角速度 . 天 体表 面 上不 同 位置 的 物 体 , 在 轨 道 半径不 同 , 需 的 向心力 不 同. 所 向心力 由万有 引力 的一个分力 提供 , 另一 个分力为重力 . 解题 选 用公 式 :

圆周运动知识点

圆周运动知识点

圆周运动知识点圆周运动是物理学中的一个重要概念,它是物体在一定力作用下所做的一种周期性运动。

本文将介绍圆周运动的基础知识、应用以及未来的发展前景。

一、圆周运动基础知识圆周运动是指一个物体沿着一个圆形轨迹进行运动,通常称为“圆周运动”。

圆的周长、直径和半径等参数都可以用来描述圆周运动。

其中,圆的周长公式为:C=2πr,其中C表示圆的周长,r表示圆的半径。

圆的直径是圆的任意两条直径或半径的距离,而圆的半径则是从圆心到圆上的任意一点的距离。

在圆周运动中,最重要的概念是角速度和角加速度。

角速度是描述物体在单位时间内转过的角度的物理量,而角加速度则是描述物体在单位时间内角速度的变化率。

根据角速度的定义,可以得到角速度的公式:ω=Δθ/Δt,其中ω表示角速度,Δθ表示物体转过的角度,Δt表示时间间隔。

同样地,角加速度的公式为:α=Δω/Δt,其中α表示角加速度。

二、圆周运动的应用圆周运动在日常生活和工程应用中有着广泛的应用。

例如,手表、时钟等计时器就是利用圆周运动来测量时间的。

在交通工程中,车辆的轮胎也是基于圆周运动原理进行设计和制造的。

在建筑学中,圆周运动也得到了应用。

例如,摩天轮、旋转餐厅等都是基于圆周运动原理设计的。

在物理学中,圆周运动也被用来解释许多自然现象,如天体运动、原子核衰变等。

三、未来发展前景随着科学技术的不断发展,圆周运动的应用前景也越来越广阔。

例如,在能源领域,基于圆周运动的储能技术正在成为研究的热点。

在医疗领域,基于圆周运动的微操作技术也得到了广泛应用。

总之,圆周运动作为物理学中的一个重要概念,在日常生活和工程应用中有着广泛的应用。

随着科学技术的不断发展,圆周运动的应用前景也将越来越广阔。

专题圆周运动与天体运动

专题圆周运动与天体运动

cb a O A D R专题三 圆周运动与天体运动例题1.如图1所示竖直面内的光滑轨道,它是由半径R 的半圆环和切于D 点的水平部分组成,a.b.c 三个物体由水平部分半圆环滑去,它们重新落回水平面上时的着地点到D 点的距离依次为AD<2R,BD=2R,CD>2R.若a ,b ,c 三个物体在空中飞行时间依次为Ta ,Tb ,Tc,则关于三者的时间关系一定有:( ) A. Ta=Tb B. Tb=TcC. Ta=TcD.无法确定 2.如图2所示,在绕竖直轴做水平匀速转动的圆盘上,沿半径方向放着A 、B两物,质量分别为0.3kg 和0.2kg ,用长L=0.1m的细线把A 、B 相连,A 距转轴0.2m ,A 、B 与盘面间最大静摩擦力均为其重力大小的0.4倍,取g=10m/s 2.求:(1)为使A、B同时相对于圆盘滑动,圆盘的角速度至少为多大?(2)当圆盘转动到使A、B即将相对圆盘滑动时烧断细线,则A、B两物运动情况如何?3.如图3所示,一水平放置的圆桶正在以中轴线为轴匀速转动,桶上有一小孔,当小孔转到桶的上方时,在孔正上方h 处有一小球由静止开始下落.已知圆孔半径足够大,以使小球穿过时不受阻碍,要使小球穿桶下落,h 与圆桶半径R 之间应满足什么关系?4.宇航员站在一星球表面上的某高处,沿水平方向抛出一个小球,经过时间t ,小球落到星球表面,测得抛出点与落地点之间的距离为L .若抛出时的初速增大到2倍,则抛出点与落地点之间的距离为3L .已知两落地点在同一水平面上,该星球的半径为R ,万有引力常数为G ,该星球的质量M .图1 图2 图35.已知地球半径R=6.4×106m ,地面附近重力加速度g=9.8m/s 2,计算在距离地面高为h=2×106m 的圆形轨道上的卫星作匀速圆周运动的线速度v 和周期T 。

6.已知万有引力常量G ,地球半径R ,月球和地球之间的距离r ,同步卫星距地面的高度h ,月球绕地球的运转周期T1,地球的自转周期T2,地球表面的重力加速度g 。

圆周运动的相关公式与计算方法

圆周运动的相关公式与计算方法

圆周运动的相关公式与计算方法圆周运动是物体在半径为r的圆周上做匀速或变速运动的过程。

在物理学中,我们可以利用一些相关的公式和计算方法来描述和计算圆周运动。

一、圆周运动的基本概念圆周运动是物体绕着一个固定点进行的运动,这个固定点称为圆心,运动轨迹是圆周。

在圆周运动中,物体离开固定点的距离称为半径,用符号r表示。

二、圆周运动中的角度和弧长在圆周运动中,我们常用角度和弧长来描述物体在圆周上的位置。

圆周上的角度以弧度制表示,一周的角度为360°或2π弧度。

而弧长指的是物体在圆周上所经过的弧的长度。

1. 角度和弧度的换算关系在数学中,我们常用角度制和弧度制来表示角度。

它们之间的换算关系如下:1圆周角= 360° = 2π弧度2. 弧长和角度的计算方法(1)当已知圆的半径r和圆周上的角度θ时,可以通过以下公式计算弧长l:l = 2πr(θ/360°) 或l = r(θ/180°)π(2)当已知圆的半径r和弧长l时,可以通过以下公式计算角度θ:θ = (l/r)(360°/2π) 或θ = (l/r)(180°/π)三、圆周运动中的速度圆周运动中,物体的速度可以分为两种:切向速度和角速度。

1. 切向速度切向速度是指物体在圆周运动过程中在轨迹上某一点的瞬时速度。

当物体做匀速圆周运动时,切向速度恒定,其计算公式为:v = ωr其中,v表示切向速度,ω表示角速度,r表示半径。

2. 角速度角速度是描述物体在圆周运动中角度变化的快慢程度,通常用符号ω表示。

角速度的计算公式为:ω = θ/t 或ω = 2πf其中,θ表示角度变化的大小,t表示时间,f表示频率。

四、圆周运动中的加速度圆周运动中,物体的加速度可以分为两种:切向加速度和径向加速度。

1. 切向加速度切向加速度是指物体在圆周运动过程中在轨迹上某一点的瞬时加速度。

当物体做匀速圆周运动时,切向加速度为零;当物体做变速圆周运动时,切向加速度不为零。

天体运动知识点

天体运动知识点

第二讲天体运动一、两种对立的学说1.地心说(1)地球就是宇宙的中心,就是静止不动的;太阳、月亮以及其她行星都绕_地球运动;(2) 地心说的代表人物就是古希腊科学家__托勒密__.2.日心说(1)__ 太阳_就是宇宙的中心,就是静止不动的,所有行星都绕太阳做__匀速圆周运动__;(2)日心说的代表人物就是_哥白尼_.二、开普勒三大定律行星运动的近似处理在高中阶段的研究中可以按圆周运动处理,开普勒三定律就可以这样表述:(1)行星绕太阳运动的轨道十分接近圆,太阳处在圆心;(2)对某一行星来说,它绕太阳做圆周运动的角速度(或线速度)不变,即行星做匀速圆周运动;(3)所有行星轨道半径的三次方跟它的公转周期的二次方的比值都相等,即r3T2=k、三、太阳与行星间的引力1.模型简化:行星以太阳为圆心做__匀速圆周__运动.太阳对行星的引力,就等于行星做_匀速圆周_运动的向心力.2.太阳对行星的引力:根据牛顿第二定律F=mv2r与开普勒第三定律r3T2∝k可得:F∝___mr2__、这表明:太阳对不同行星的引力,与行星的质量成___正比_,与行星与太阳间距离的二次方成___反比___.3.行星对太阳的引力:太阳与行星的地位相同,因此行星对太阳的引力与太阳对行星的引力规律相同,即F′∝_Mr2 4.太阳与行星间的引力:根据牛顿第三定律F=F′,所以有F∝Mmr2_,写成等式就就是F=_GMmr2__、四、万有引力定律1、内容:自然界中任何两个物体都相互吸引,引力的方向在它们的连线上,引力的大小与物体的质量m1与m2的乘积成正比、与它们之间距离r的二次方成反比、2、公式: F=G(1)G 叫做引力常量,(2)单位:N·m²/kg²。

在取国际单位时,G就是不变的。

(3)由卡文迪许通过扭秤实验测定的,不就是人为规定的。

3、万有引力定律的适用条件(1)在以下三种情况下可以直接使用公式F=Gm1m2r2计算:内容理解开普勒第一定律所有行星绕太阳运动的轨道都就是椭圆,太阳处在椭圆的一个上。

高一物理之天体运动

高一物理之天体运动

天体运动问题:1,开普勒第三定律:=k例:月球环绕地球运动的轨道半径约为地球半径的60倍,运行周期约为27天,应用开普勒第三定律计算:在赤道平面离地多高时,人造卫星随地球一起转动,就像是停留在天空中不动一样。

规律总结:若将天体的运动看成圆周运动,则=k,解题时常用两星体比较,此时有=因此利用开普勒第三定律可以求解运动时间,轨道半径,绕行速度的比值问题。

注意点:公式中的k是一个与行星无关的常量,但不是恒量,在不同的星系中,k的值不同,k的值与中心天体有关。

练习:对于开普勒第三定律的表达式=k的理解,正确的是()A.k与成正比B.k与成反比C,k的值是与a和T无关的量D,k值与行星自身无关2,太阳对行星引力规律的推导基本思想:引力作为合外力提供向心力。

(合外力提供向心力是解决天体运动问题的核心思想)结论:F正比于例1:地球质量约为月球质量的81倍,宇宙飞船从地球飞往月球,当飞至某一位置时,宇宙飞船所受到的合力为零,问:此时飞船在空间的什么位置?(已知地球与月球之间的距离是3.84x km)例2:已知太阳光从太阳射到地球需要500s,地球绕太阳的公转周期约为3.2x s,地球的、质量约为6x kg,求太阳对地球的引力为多少?练习:把火星和地球绕太阳运行的轨道视为圆周,有火星和地球绕太阳运动的周期之比可以求得()A,火星和地球的质量之比B,火星和太阳的质量之比C.火星和地球到太阳的距离之比D.火星和地球绕太阳运行速度大小之比3,万有引力定律注意点:1,万有引力定律公式适用的条件;1:万有引力公式适用于质点间的引力大小计算2:对于可视为质点的物体间的引力求解也可以利用万有引力公式,如两物体间的距离远小于物体本身的大小时,物体可以视为质点:均匀球体可以视为质量集中于球心的质点3:当物体不能看成是质点时,可以把物体假想分割成无数个质点,理论上讲,求出两个物体上每个质点与另一个物体上所有质点的万有引力,然后求合力在通常情况下,万有引力非常小,只有在质量巨大的星球之间或天体与天体附近的物体间,它的存在才有实际意义,故在分析地球表面上物体间的受力时,不考虑物体间的万有引力,只考虑地球对物体的引力。

高考物理二轮复习课件:圆周运动与天体运动

高考物理二轮复习课件:圆周运动与天体运动
2 v0 2n 2 2 mgR FN m (n 1、、). 23 R h
【例2】如图所示,用一连接体一端与一小球相连, 绕过O点的水平轴在竖直平面内做圆周运动,设轨 道半径为r,图中P、Q两点分别表示小球轨道的最 高点和最低点,则以下说法正确的是( ) A.若连接体是轻质细绳时,小 球到达P点的速度 可以为零 B.若连接体是轻质细杆时,小 到达P点的速度可以为零 C.若连接体是轻质细绳时,小 在P点受到绳的拉力可能为零 D.若连接体是轻质细杆时,小球在P点受到细杆 的作用力为拉力,在Q点受到细杆的作用力为推力
【切入点】考查万有引力定律的应用.
v GMm mv2 1 【解析】 由 R2 = R 可知 E′k=4Ek,v′=2 GMm mv2 R ⇒ =1∶4 2= R′ R′ R′ mv′2 ma向= R a向 =16∶1 2⇒ mv′ a′向 ma′向= R′
所以
ω= v R v′ ω′=R′
球在P点的速度恰为
gr 时,重力提供向心力,无
论是绳还是杆作为连接体,其作用力都为零.C选 项正确;在Q点向心力竖直向上,连接体对小球的 作用必为拉力,不可能是推力,所以D错.
【点评】竖直平面内的圆周运动一般是变速圆周运动,可 分为轻绳、轻杆两种基本模型.这类问题的难点是分析物体在 最高点时的速度和受力问题.弄清不同情况下的临界问题是解 决这类问题的关键. 1.线作用下的圆周运动,在最高点速度v gr,当v gr 时,线对物体无作用力;当v gr时线对物体有拉力作用;而 当v gr时,因为线不能对物体提供支持力而使物体做近心运 动,从而无法完成圆周运动. 2.杆可以提供支持力作用,物体在圆周的最高点处于任意 的速度,当v gr时,杆对物体提供拉力;当v gr时,杆对 物体不提供作用力;当v gr时,杆对物体提供支持力.

高中物理圆周运动及天体运动试题及答案解析

高中物理圆周运动及天体运动试题及答案解析

圆周运动试题一、单选题1、关于匀速圆周运动下列说法正确的是A、线速度方向永远与加速度方向垂直,且速率不变B、它是速度不变的运动C、它是匀变速运动D、它是受力恒定的运动2、汽车以10m/s速度在平直公路上行驶,对地面的压力为20000N,当该汽车以同样速率驶过半径为20m的凸形桥顶时,汽车对桥的压力为A、10000N B、1000N C、20000N D、2000N3、如图,光滑水平圆盘中心O有一小孔,用细线穿过小孔,两端各系A,B两小球,已知B球的质量为2Kg,并做匀速圆周运动,其半径为20cm,线速度为5m/s,则A的重力为A、250NB、C、125ND、4、如图O1 ,O2是皮带传动的两轮,O1半径是O2的2倍,O1上的C 点到轴心的距离为O2半径的1/2则A、VA:VB=2:1B、aA:aB=1:2C、VA:VC=1:2D、aA:aC=2:15、关于匀速圆周运动的向心加速度下列说法正确的是A.大小不变,方向变化 B.大小变化,方向不变C.大小、方向都变化D.大小、方向都不变6、如图所示,一人骑自行车以速度V 通过一半圆形的拱桥顶端时,关于人和自行车受力的说法正确的是:A 、人和自行车的向心力就是它们受的重力B 、人和自行车的向心力是它们所受重力和支持力的合力,方向指向圆心C 、人和自行车受到重力、支持力、牵引力、摩擦力和向心力的作用D 、人和自行车受到重力、支持力、牵引力、摩擦力和离心力的作用 7、假设地球自转加快,则仍静止在赤道附近的物体变大的物理量是 A 、地球的万有引力 B 、自转所需向心力 C 、地面的支持力 D 、重力 8、在一段半径为R 的圆孤形水平弯道上,已知弯道路面对汽车轮胎的最大静摩擦力等于车重的μ倍,则汽 车拐弯时的安全速度是 9、小球做匀速圆周运动,半径为R ,向心加速度为 a ,则下列说法错误..的是 A 、 小球的角速度Ra=ω B 、小球运动的周期aRT π2=C 、t 时间内小球通过的路程aR t S =D 、t 时间内小球转过的角度aRt=ϕ 10、某人在一星球上以速度v 0竖直上抛一物体,经t 秒钟后物体落回手中,已知星球半径为R,那么使物体不再落回星球表面,物体抛出时的速度至少为11、假如一人造地球卫星做圆周运动的轨道半径增大到原来的2倍,仍做圆周运动;则A.根据公式V=r ω可知卫星的线速度将增大到原来的2倍B.根据公式r v m F 2=,可知卫星所受的向心力将变为原来的21C.根据公式2r MmGF =,可知地球提供的向心力将减少到原来的41D.根据上述B 和C 给出的公式,可知卫星运动的线速度将减少到原来的2倍 12、我们在推导第一宇宙速度时,需要做一些假设;例如:1卫星做匀速圆周运动;2卫星的运转周期等于地球自转周期;3卫星的轨道半径等于地球半径;4卫星需要的向心力等于它在地面上的地球引力;上面的四种假设正确的是 A 、123 B 、234 C 、134 D 、12413、如图所示,在固定的圆锥形漏斗的光滑内壁上,有两个质量相等的小物块A 和B,它们分别紧贴漏斗的内 壁.在不同的水平面上做匀速圆周运动,则以下叙述正确的是 A.物块A 的线速度小于物块B 的线速度 B.物块A 的角速度大于物块B 的角速度C.物块A 对漏斗内壁的压力小于物块B 对漏斗内壁的压力D.物块A 的周期大于物块B 的周期14、火星有两颗卫星,分别是火卫一和火卫二,它们的轨道近似为圆;已知火卫一的周期为7小时39分;火卫二的周期为30小时18分,则两颗卫星相比较,下列说法正确的是:A 、火卫一距火星表面较远;B 、火卫二的角速度较大C 、火卫一的运动速度较大;D 、火卫二的向心加速度较大; 15、如图所示,质量为m 的物体,随水平传送带一起匀速运动,A 为传送带的终端皮带轮,皮带轮半径为r,则要使物体通过终端时能水平抛出,皮带轮每秒钟转动的圈数至少为A 、rg π21 B 、rg C 、gr D 、π2gr16、如图所示,碗质量为M,静止在地面上,质量为m 的滑块滑到圆弧形碗的底端时速率为v,已知碗的半径为R,当滑块滑过碗底时,地面受到碗的压力为:A 、M+mgB 、M+mg +R mv 2C 、Mg +R mv 2D 、Mg +mg -m Rv 217、1990年5月,紫金山天文台将他们发现的第2752号小行星命名为吴健雄星,该小行星的半径为16km;若将此小行星和地球均看成质量分布均匀的球体,小行星密度与地球相同;已知地球半径R=6400km,地球表面重力加速度为g;这个小行星表面的重力加速度为 A 、g 400 B 、g 4001 C 、g 20 D 、g 20118、银河系的恒星中大约四分之一是双星;某双星由质量不等的星体S 1和S 2构成,两星在相互之间的万有引力作用下绕两者连线上某一定点C 做匀速圆周运动;由天文观察测得其运动周期为T 1,S 1到C 点的距离为r 1,S 1和S 2的距离为r,已知引力常量为G;由此可求出S 2的质量为A 、2122)(4GTr r r -π B 、23124GT r π C 、2224GT r π D 、21224GT r r π 19、2001年10月22日,欧洲航天局由卫星观测发现银河系中心存在一个超大型黑洞,命名为MCG6—30—15;由于黑洞的强大引力,使得太阳绕银河系中心运转;假定银河系中心仅此一个黑洞,且太阳绕银河系中心做的是匀速圆周运动;则下列哪一组数据可估算该黑洞的质量A.、地球绕太阳公转的周期和速度 B 、太阳的质量和运动速度C 、太阳质量和到该黑洞的距离D 、太阳运行速度和到该黑洞的距离20、质量不计的轻质弹性杆P 插入桌面上的小孔中,杆的另一端套有一个质量为m 的小球,今使小球在水平面内作半径为R 的匀速圆周运动,且角速度为ω,则杆的上端受到球对其作用力的大小为A 、m ω2RB 、242R g m ω-C 、242R g m ω+D 、不能确定21、已知万有引力恒量G,要计算地球的质量,还必须知道某些数据,现给出下列各组数据,算不出地球质量的有哪组:A 、地球绕太阳运行的周期T 和地球离太阳中心的距离R ;B 、月球绕地球运行的周期T 和月球离地球中心的距离R ;C 、人造卫星在近地表面运行的线速度v 和运动周期T ;D 、地球半径R 和同步卫星离地面的高度;第二卷二、计算题共37分22、如图所示,一质量为m=1kg 的滑块沿着粗糙的圆弧轨道滑行,当经过最高点时速度V=2m/s,已知圆弧半经R=2m,滑块与轨道间的摩擦系数μ=,则滑块经过最高点时的摩擦力大小为多少12分23.一个人用一根长L=1m,只能承受T=46N绳子,拴着一个质量为m=1kg 的小球,已知圆心O离地的距离H=6m,如图所示,速度转动小球方能使小球到达最低点时绳子被拉断,绳子拉断后,小球的水平射程是多大 13分24、经天文学观察,太阳在绕银河系中心的圆形轨道上运行,这个轨道半径约为3×104光年约等于×1020m,转动周期约为2亿年约等于×1015s 太阳作圆周运动的向心力是来自于它轨道内侧的大量星体的引力,可以把这些星体的全部质量看作集中在银河系中心来处理问题;根据以上数据计算太阳轨道内侧这些星体的总质量M 以及太阳作圆周运动的加速度a;G =×10-11Nm 2/kg 212分答案22、12分 解:由 所以 N = mg – m v 2/R =8 N 6分再由 f = μN 得 f = 4 N 6分23、13分 设小球经过最低点的角速度为ω,速度为v 时,绳子刚好被拉断,则T – m g = m ω2L∴ s rad mLmgT /6=-=ω v = ωL = 6 m/s 7分 小球脱离绳子的束缚后,将做平抛运动,其飞行时间为s gL H gh t 1)(22=-==3分 所以,小球的水平射程为 s = v t = 6 m 3分班级_____________ 姓名_________________________ 座号______________24、12分 M =×1041kg a=×10-10m /s 2若算出其中一问得8分 两问都算出的12分高中物理复习六 天体运动一、关于重力加速度1. 地球半径为R 0,地面处重力加速度为g 0,那么在离地面高h 处的重力加速度是A. R h R h g 022020++()B. R R h g 02020()+ C. h R h g 2020()+D.R hR h g 0020()+二、求中心天体的质量2.已知引力常数G 和下列各组数据,能计算出地球质量的是 A .地球绕太阳运行的周期及地球离太阳的距离 B .月球绕地球运行的周期及月球离地球的距离C. 人造地球卫星在地面附近绕行的速度及运行周期 D .若不考虑地球自转,己知地球的半径及重力加速度 三、求中心天体的密度3.中子星是恒星演化过程的一种可能结果,它的密度很大,,现有一中子星,观测到它的自转周期为T,问:该中子星的最小密度应是多少才能维持该星体的稳定,不致因自转而瓦解;计算时星体可视为均匀球体; 6π/GT 2四、卫星中的超失重求卫星的高度4. m = 9kg 的物体在以a = 5m/s 2 加速上升的火箭中视重为85N, ,则火箭此时离地面的高度是地球半径的_________倍地面物体的重力加速度取10m/s 25.地球同步卫星到地心的距离可由r 3 = a 2b 2c / 4π2求出,已知a 的单位是m, b的单位是s, c 的单位是m/ s2,请确定a、b、c 的意义地球半径地球自转周期重力加速度五、求卫星的运行速度、周期、角速度、加速度等物理量6.两颗人造地球卫星的质量之比为1:2,轨道半径之比为3:1,求其运行的周期之比为;线速度之比为 ,角速度之比为;向心加速度之比为;向心力之比为 ;331/2:1 31/2:3 31/2:9 1:3 1:97.地球的第一宇宙速度为v1,若某行星质量是地球质量的4倍,半径是地球半径的1/2倍,求该行星的第一宇宙速度;221/2v18.同步卫星离地心距离r,运行速率为V1,加速度为a1,地球赤道上的物体随地球自转的向心加速度为a2,线速度为V2,第一宇宙速度为V3,以第一宇宙速度运行的卫星向星加速度为a3,地球半径为R,则a2=r/R >a1>a2V2=R/r D. V3>V1>V2六、双星问题9.两个星球组成双星;设双星间距为L,在相互间万有引力的作用下,绕它们连线上某点O 转动,转动的角速度为ω,不考虑其它星体的影响,则求双星的质量之和;L3ω2/G七、变轨问题年5月,航天飞机在完成对哈勃空间望远镜的维修任务后,在A点从圆形轨道Ⅰ进入椭圆轨道Ⅱ,B为轨道Ⅱ上的一点,如图所示,关于航天飞机的运动,下列说法中正确的有 ABCA.在轨道Ⅱ上经过A 的速度小于经过B 的速度B.在轨道Ⅱ上经过A 的动能小于在轨道Ⅰ上经过A 的动能C.在轨道Ⅱ上运动的周期小于在轨道Ⅰ上运动的周期D.在轨道Ⅱ上经过A 的加速度小于在轨道Ⅰ上经过A 的加速度 八、追击问题11. 如图,有A 、B 两颗行星绕同一颗恒星M 做圆周运动,旋转方向相同,A 行星的周期为T 1,B 行星的周期为T 2,在某一时刻两行星相距最近,则A .经过时间 t=T 1+T 2两行星再次相距最近B .经过时间 t=T 1T 2/T 2-T 1,两行星再次相距最近C .经过时间 t=T 1+T 2 /2,两行星相距最远D .经过时间 t=T 1T 2/2T 2-T 1 ,两行星相距最远 课堂练习1.宇宙飞船在半径为R 1的轨道上运行,变轨后的半径为R 2,R 1>R2.宇宙飞船绕地球做匀速圆周运动,则变轨后宇宙飞船的A .线速度变小B .角速度变小C .周期变大D .向心加速度变大2.两个质量均为M 的星体,其连线的垂直平分线为HN,O 为其连线的中点,如图所示,一个质量为m 的物体从O 沿OH 方向运动,则它受到的万有引力大小变化情况是A.一直增大B.一直减小C.先减小,后增大D.先增大,后减小3. “嫦娥一号”月球探测器在环绕月球运行过程中,设探测器运行的轨道半径为r ,运行速率为v ,当探测器在飞越月球上一些环形山中的质量密集区上空时、v 都将略为减小 、v 都将保持不变将略为减小,v将略为增大 D. r将略为增大,v将略为减小4. 为了对火星及其周围的空间环境进行探测,我国预计于2011年10月发射第一颗火星探测器“萤火一号”;假设探测器在离火星表面高度分别为h1和h2的圆轨道上运动时,周期分别为T1和T2;火星可视为质量分布均匀的球体,且忽略火星的自转影响,万有引力常量为G;仅利用以上数据,可算出A.火星的密度和火星表面的重力加速度B.火星的质量和火星对“萤火一号”的引力C.火星的半径和“萤火一号”的质量 D .火星表面的重力加速度和火星对“萤火一号”的引力5.设地球半径为R,在离地面H 高度处与离地面h 高度处的重力加速度之比为A. H 2/h 2 / h C.R+ h/R+ H D. R+ h2/R+ H26.如图所示,在同一轨道平面上,有绕地球做匀速圆周运动的卫星A、B、C某时刻在同一条直线上,则A.卫星C的速度最小 B.卫星C受到的向心力最小C.卫星B的周期比C小 D.卫星A的加速度最大7. 气象卫星是用来拍摄云层照片,观测气象资料和测量气象数据的;我国先后自行成功研制和发射了“风云Ⅰ号”和“风云Ⅱ号”两颗气象卫星,“风云Ⅰ号”卫星轨道与赤道平面垂直并且通过两极,称为“极地圆轨道”,每12h巡视地球一周;“风云Ⅱ号”气象卫星轨道平面在赤道平面内,称为“地球同步轨道”,每24h巡视地球一周,则“风云Ⅰ号”卫星比“风云Ⅱ号”卫星A.发射速度小 B.线速度大 C.覆盖地面区域大 D.向心加A B速度小8. 我国未来将建立月球基地,并在绕月轨道上建造空间站.如图所示,关闭动力的航天飞机在月球引力作用下向月球靠近,并将与空间站在B处对接,已知空间站绕月轨道半径为r,周期为T,引力常量为G,下列说法中正确的是A.图中航天飞机正加速飞向B处B.根据题中条件可以算出月球质量C.航天飞机在B处由椭圆轨道进入空间站轨道必须点火减速D.根据题中条件可以算出空间站受到月球引力的大小9. 物体在一行星表面自由落下,第1s内下落了,若该行星的半径为地球半径的一半,那么它的质量是地球的倍. 110.已知火星的一个卫星的圆轨道的半径为r,周期为T,火星可视为半径为R的均匀球体. 不计火星大气阻力,则一物体在火星表面自由下落H高度时的速度为_____________. 8π2r3H/T2R21/211.地球赤道上的物体重力加速度为g,物体在赤道上随地球自转的向心加速度为a,要使赤道上的物体“飘”起来,则地球的角速度应为原来的倍g+a/a1/212.一个行星探测器从所探测的行星表面竖直升空,探测器的质量为1500 kg,发动机推力恒定.发射升空后9 s末,发动机突然间发生故障而关闭.下图是从探测器发射到落回地面全过程的速度图象.已知该行星表面没有大气.不考虑探测器总质量的变化.求:(1)探测器在行星表面上升达到的最大高度 H;(2)该行星表面附近的重力加速度g;3发动机正常工作时的推力F. 1800m24m/s2317000N。

圆周运动和天体运动

圆周运动和天体运动

3、卫星运动: 求解卫星运动问题要抓住两个要点:其一是卫星的运 动近似看做匀速圆周运动,其二是卫星运动所需的向心力 就是处于圆轨道中心处的行星对它的万有引力:
即: 由上式得向心加速度 线速度: 面越高,线速度越小。 周期: 地面越高,周期越大。 ,故卫星离地 , 故卫星离
角速度: 地面越高,角速度越小。
重点难点导析
1、向心力:做匀速圆周运动的物体受到指向圆心的合外 力作用,称为向心力。物体做匀速圆周运动,其速度方向时 刻改变,向心力的效果就是用于改变速度方向 ,由于向心力 总与线速度方向垂直,故不能改变速度大小,所以向心力对 物体不做功,向心力是根据力的效果命名的。在具体情况中, 可以是一个力充当向心力,也可以是多个力的合力充当向心 力。从性质上讲,向心力可以由各种性质的力来充当,向心 力是变力。
当角速度w较大时,A有离心的趋势,摩擦力的方向沿半径 指向圆心,对A、B两物体有 T+f=mAw2R,且T=mBg。 由此可得w= (mBg+f)/Rm A
当f有最大值时,w有最大值w max=5rad/s,
因此可得 5 rad/s≤w≤5rad/s。
三、万有引力定律
一.万有引力定律
数学表达式: F=Gm1m2/R2 万有引力恒量:G=6.67*10-11 N m2/kg2 测量:卡文迪许扭称实验 适用条件:严格来说公式只适用于质点间的相互作用, 当两个物体间距离远远大于物体本身大小时,公式也近似 适用,但它们间距离r应为两物体质心间距离。 注意:公式 F=Gm1m2/R2 中F为两物体间的引力,F与 两物体质量乘积成正比,与两物体间的距离的平方成反比, 不要理解成F与两物体质量成正比、与距离成反比。
利用
[例2]已知地球半径约为6.4×106m,已知月球绕地球运动可近 似看作匀速圆周运动,试估算出月球到地心的距离约为多少米? (结果只保留一位有效数字) [精析与解答] 月球可看作质点,月球运动看作做匀速圆 周运动,不考虑地球的自转。 月球绕地球运动的周期T=30d=30×24×3600s 根据 (R为待求的距离)

天体运动

天体运动

开 普 勒 行 星 运 动 定 律
说明:
开普勒定律不仅适用于行星绕太阳 的运动, 的运动,而且也适用于卫星绕行星的 运动
开 普 勒 行 星 运 动 定 律
由于行星的椭圆轨道都跟圆近似, 由于行星的椭圆轨道都跟圆近似,在 中学阶段研究中按圆处理, 中学阶段研究中按圆处理,开普勒定律适 用于圆轨道时,应该怎样表述? 用于圆轨道时,应该怎样表述?
练一练: 练一练:
如图1所示,已知行星在A点的速率大于它在B 如图1所示,已知行星在A点的速率大于它在B 点的速率,试判断太阳是位于图中的F 点还是F 点的速率 , 试判断太阳是位于图中的 F 1 点还是 F 2 点,为什么? 为什么?
A F1 图1 F2 B
练一练: 练一练:
关于开普勒行星运动的公式: 关于开普勒行星运动的公式: 3 以下理解正确的是:(AD ) 以下理解正确的是:( R
=
R月
3 2
练一练: 练一练:
(08四川理综20)1990年 (08四川理综20)1990年4月25日,科学家将 四川理综20)1990 25日 哈勃天文望远镜送上距地球表面约600 km的高空 的高空, 哈勃天文望远镜送上距地球表面约600 km的高空, 使得人类对宇宙中星体的观测与研究有了极大的 进展.假设哈勃天文望远镜沿圆轨道绕地球运行. 进展.假设哈勃天文望远镜沿圆轨道绕地球运行. m,利用地球同步卫星 已知地球半径为6.4 6.4× 已知地球半径为6.4×106 m,利用地球同步卫星 与地球表面的距离为3.6 3.6× 与地球表面的距离为3.6×107 m这一事实可得到 哈勃天文望远镜绕地球运行的周期. 哈勃天文望远镜绕地球运行的周期.以下数据中 最接近其运行周期的是( 最接近其运行周期的是( B ) 0.6小时 B.1.6小时 小时 A. 0.6小时 B.1.6小时 C.4.0小时 小时 D.24小时 C.4.0小时 D.24小时

(教案)圆周运动与天体运动

(教案)圆周运动与天体运动

教案:“圆周运动与天体运动”一、教学目标1. 让学生了解圆周运动的概念、特点和基本公式。

2. 使学生掌握天体运动的基本原理和主要类型。

3. 培养学生的观察能力、思考能力和实践能力。

4. 增强学生对自然科学的兴趣和好奇心。

二、教学内容1. 圆周运动的概念和特点1.1 圆周运动的定义1.2 圆周运动的特点1.3 圆周运动的实例2. 圆周运动的基本公式2.1 线速度、角速度和周期2.2 向心加速度和向心力2.3 半径、线速度和角速度的关系3. 天体运动的基本原理3.1 天体运动的分类3.2 开普勒定律3.3 牛顿万有引力定律在天体运动中的应用4. 主要的天体运动类型4.1 行星运动4.2 卫星运动4.3 双星系统三、教学方法1. 采用问题驱动的教学方式,引导学生主动探究圆周运动和天体运动的规律。

2. 利用多媒体课件和实物模型,帮助学生直观地理解圆周运动和天体运动的概念。

3. 组织学生进行小组讨论和实验操作,提高学生的实践能力和团队合作能力。

四、教学评价1. 课堂问答:检查学生对圆周运动和天体运动的基本概念的理解。

2. 课后作业:布置有关圆周运动和天体运动的计算题和思考题,检验学生的掌握程度。

3. 小组实验报告:评估学生在实验中的观察、分析和解决问题的能力。

五、教学资源1. 多媒体课件:展示圆周运动和天体运动的图像、公式和实例。

2. 实物模型:提供行星、卫星等天体模型,帮助学生直观理解。

3. 实验器材:进行圆周运动和天体运动的模拟实验。

4. 参考书籍和网络资源:为学生提供丰富的学习资料。

六、教学步骤1. 引入:通过一个简单的旋转物体(如地球自转)来引入圆周运动的概念。

2. 探究:让学生通过观察和记录旋转物体的运动轨迹、速度和加速度,来探究圆周运动的特点。

3. 讲解:讲解圆周运动的基本公式,包括线速度、角速度、周期、向心加速度和向心力等。

4. 应用:通过实例(如摩天轮、地球公转等)来应用圆周运动的基本公式。

大学物理圆周运动

大学物理圆周运动

圆周运动的分类
总结词
圆周运动可以根据不同的分类标准进行分类,如匀速圆周运动和变速圆周运动。
详细描述
匀速圆周运动是指物体在转动过程中角速度保持不变的运动,其特点是线速度的 大小不变,只有方向改变。变速圆周运动是指物体在转动过程中角速度发生变化 的运动,其特点是线速度的大小和方向都可能改变。
02
匀速圆周运动
ቤተ መጻሕፍቲ ባይዱ 匀速圆周运动的定义
总结词
匀速圆周运动是指物体沿着圆周路径做等速运动,即线速度大小恒定,方向时刻改变。
详细描述
匀速圆周运动是圆周运动的一种特殊形式,其特点是线速度的大小恒定,方向始终沿着圆周的切线方 向。匀速圆周运动中,物体的加速度大小恒定,方向始终指向圆心,即向心加速度的大小恒定,方向 始终与线速度垂直并指向圆心。
圆周运动的描述
总结词
圆周运动可以通过角速度、角加速度、转速等物理量进行描述。
详细描述
角速度是描述圆周运动快慢的物理量,单位为弧度/秒,其值等于物体转动一周所需的时间。角加速度是描述圆 周运动加速度的物理量,单位为弧度/秒²,表示物体转动过程中角速度的变化率。转速是描述圆周运动频率的物 理量,单位为转/分,表示物体每分钟转动的圈数。
03
非匀速圆周运动
非匀速圆周运动的定义
特点
加速度不指向圆心,存在 切向加速度和法向加速度 。
非匀速圆周运动
与匀速圆周运动相对,速 度大小或方向发生变化的 圆周运动。
切向加速度
改变速度大小,不改变速 度方向。
法向加速度
改变速度方向,不改变速 度大小。
非匀速圆周运动的描述
描述参数
线速度、角速度、周期、频率、向心加速 度等。
离心力的计算

《圆周运动》教案完美版

《圆周运动》教案完美版

《圆周运动》教案完美版一、教学目标1. 让学生了解圆周运动的概念,理解圆周运动的特点和基本性质。

2. 使学生掌握圆周运动的基本公式,能够运用公式进行简单的计算。

3. 培养学生运用数学知识解决物理问题的能力,提高学生的科学思维能力。

二、教学内容1. 圆周运动的概念及特点2. 圆周运动的向心力3. 圆周运动的线速度、角速度和周期4. 圆周运动的基本公式及应用5. 圆周运动的实例分析三、教学重点与难点1. 教学重点:圆周运动的概念、特点、基本公式及应用。

2. 教学难点:圆周运动的向心力、线速度、角速度和周期的关系。

四、教学方法1. 采用问题驱动法,引导学生思考和探索圆周运动的特点和规律。

2. 利用公式推导法,让学生掌握圆周运动的基本公式。

3. 通过实例分析,使学生能够将理论知识应用于实际问题。

4. 利用多媒体教学,形象直观地展示圆周运动的现象。

五、教学过程1. 引入新课:通过讲解生活中的圆周运动实例,如钟表、Ferris 轮等,引导学生关注圆周运动现象。

2. 讲解圆周运动的概念及特点:阐述圆周运动的定义,分析其特点和基本性质。

3. 向心力的概念及计算:讲解向心力的来源,引导学生理解向心力与圆周运动的关系。

4. 线速度、角速度和周期的概念及计算:推导线速度、角速度和周期的定义及计算公式。

5. 圆周运动的基本公式及应用:总结圆周运动的基本公式,举例说明公式的应用。

6. 实例分析:分析实际生活中的圆周运动问题,让学生运用所学知识解决实际问题。

7. 课堂小结:回顾本节课所学内容,强调圆周运动的特点和基本公式。

8. 作业布置:布置相关习题,巩固所学知识。

9. 课后反思:对本节课的教学过程进行总结,查找不足,提高教学质量。

10. 教学评价:对学生的学习情况进行评价,了解学生对圆周运动的掌握程度。

六、教学策略与方法1. 采用互动式教学法,鼓励学生积极参与课堂讨论,提问和解答问题。

2. 通过实验演示,让学生直观地理解圆周运动的现象和原理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

冲刺2010·名师易错点睛·物理 圆周运动与天体运动
7】 一飞船在某行星表面附近沿圆轨道绕该行星飞行,认为行星是密度均匀的球体,要确定该行星的密度,只需要测量( )
A .飞船的轨道半径
B .飞船的的运行速度
C .飞船的运行周期
D .行星的质量
【答案】 C
【8】 某同学在物理学习中记录了一些与地球、月球有关的数据资料如下:
地球半径R=6400km ,月球半径r=1740km , 地球表面重力加速度g 0=9.80m/s 2, 月球表面重力加速度g ′=1.56m/s 2, 月球绕地球转动的线速度v=1km/s , 月球绕地球转动一周时间为T=27.3天 光速c=2.998×105km/s ,
1969年8月1日第一次用激光器向位于天顶的月球表面发射出激光光束,经过约t=2.565s 接收到从月球表面反射回来的激光信号,利用上述数据可算出地球表面与月球表面之间的距离s ,则下列方法正确的是 ( )
A .利用激光束的反射2
t c s ⋅=来算 B .利用月球运动的线速度、周期关系T r R s v )(2++=
π来算 C .利用地球表面的重力加速度,地球半径及月球运动的线速度关系r
R s v m m ++=
20g 月月来算 D .利用月球表面的重力加速度,地球半径及月球运动周期关系
)(422
r R s T
m g m ++='π月月来算 【答案】 AB
【解析】 激光束在地月之间往返的距离为ct ,故A 选项正确;月球绕地球运动的半径为s+R+r ,则月球的线速度与周期的关系为T
r R s v )(2++=π,B 正确;月球所受的向心力不等于月球质量乘以地面的重力加速度,C 错误;D 中月球质量乘以月球表面的重力加速度
没有意义,故D错误。

【易错点点睛】本题主要考察大阅读量对学生心理的影响,考察学生的心理素质,以及对干扰选项的排除能力。

【11】开普勒第三定律告诉我们:所有行星的椭圆轨道的半长轴的三次方根跟公转周期的二次方根的比值都相等,这一规律同样适用于地球的卫星绕地球的运动,如果认为地球的所有卫星绕地球做匀速圆周运动,那么地球卫星的轨道半径r的三次方根与卫星运动周期的T的二次方根的比值是一个常数,已知地球的半径为R,地球的质量为M,卫星的质量为m,地球表面的重力加速度为g0 万有引力恒量常数为G, 则此常数等于()
A . GM/4π2
B . Gm/4π2
C. g0R2 /4π2 D g0R /4π2
【13】一内壁光滑的环形细圆管,位于竖直平面内,环的半径为R(比细管的半径大得多),圆管中有两个直径与细管内径相同的小球(可视为质点)。

A球的质量为m1, B球的质量为m2。

它们沿环形圆管顺时针运动,经过最低点时的速度都为v0。

设A球运动到最低点时,球恰好运动到最高点,若要此时两球作用于圆管的合力为零,那么m1,m2,R与v0应满足关系式。

【14】从地球上发射的两颗人造地球卫星A和B,绕地球做匀速圆周运动的半径之比为R A∶R B=4∶1,求它们的线速度之比和运动周期之比。

【解析】卫星绕地球做匀速圆周运动,万有引力提供向心力,根据牛顿第二定律有
【易错点点睛】
这里错在没有考虑重力加速度与高度有关。

根据万有引力定律知道:
【15】使一小球沿半径为R的圆形轨道从最低点上升,那么需给它最小速度为多大时,才能使它达到轨道的最高点?
【16】用长L=1.6m的细绳,一端系着质量M=1kg的木块,另一端挂在固定点上。

现有一颗质量m=20g的子弹以v1=500m/s的水平速度向木块中心射击,结果子弹穿出木块后以v2=100m/s的速度前进。

问木块能运动到多高?(取g=10m/s2,空气阻力不计)
如果v B<4 m/s,则木块不能升到B点,在到达B点之前的某一位置以某一速度开始做斜向上抛运动。

而木块在B点时的速度v B=4m/s,是不符合机械能守恒定律的,木块在 B点时的能量为(选A点为零势能点)
【17】一内壁光滑的环形细圆管,位于竖直平面内,环的半径为R(比细管的半径大得多),圆管中有两个直径与细管内径相同的小球(可视为质点)。

A球的质量为m1,B球的质量为m2。

它们沿环形圆管顺时针运动,经过最低点时的速度都为v0。

设A球运动到最低点时,球恰好运动到最高点,若要此时两球作用于圆管的合力为零,那么m1,m2,R与v0应满足关系式是。

【解析】首先画出小球运动达到最高点和最低点的受力图,如图4-1所示。

A球在圆管最低点必受向上弹力N1,此时两球对圆管的合力为零,m2必受圆管向下的弹力N2,且N1=N2。

据牛顿第二定律A球在圆管的最低点有
【18】 如图所示,一高度为h =0.2m 的水平面在A 点处与一倾角为θ=30°的斜面连接,一小球以v 0=5m/s 的速度在平面上
向右运动。

求小球从A 点运动到地面所需的时间(平面与斜面
均光滑,取g =10m/s 2)。

某同学对此题的解法为:小球沿斜面运
动, 则
,sin 21sin 20t g t v h ⋅+=θθ由此可求得落地的时间t 。

问:你同意上述解法吗?若同意,求出所需的时间;若不同意,则说明理由并求出你认为正确的结果。

A h v 0 θ
【19】A 、B 两小球同时从距地面高为h =15m 处的同一点抛出,初速度大小均为v 0=10m/s .A 球竖直向下抛出,B 球水平抛出,空气阻力不计,重力加速度取g =l0m /s 2.求:
(1)A 球经多长时间落地?
(2)A 球落地时,A 、B 两球间的距离是多少?
【答案】t=1s 102L m。

相关文档
最新文档